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Several methods exist for estimating the statistical properties of wind
speed, most of them being deterministic or probabilistic, disregarding
though its long-term behaviour. Here, we focus on the stochastic nature

1. Abstract - Introduction

“The answer my friend is blowin' in the wind”

from Bob Dylan’s song released in 1962

though its long-term behaviour. Here, we focus on the stochastic nature
of wind. After analyzing several historical timeseries at the area of
interest (AoI) in Thessaly (Greece), we show that a Hurst-Kolmogorov
(HK) behaviour is apparent. Thus, disregarding the latter could lead to
unrealistic predictions and wind load situations, causing some impact
on the energy production and management. Moreover, we construct a
stochastic model capable of preserving the HK behaviour and westochastic model capable of preserving the HK behaviour and we
produce synthetic timeseries using a Monte-Carlo approach to estimate
the future wind loads in the AoI. Finally, we identify the appropriate
types of wind turbines for the AoI (based on the IEC-61400 standards)
and propose several industrial solutions.



2. Area of interest
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Figure 1: Locations of the meteorological stations at the area of interest 
(green-coloured) and at the wider area of Greece (red-coloured). 



3. Marginal characteristics

To test the wind 
potential over the AoI 
(cf. [1]), we choose to 
analyze 16 stations from 

station name source longitude latitude elevation
no. 

years
mean wind 
speed (m/s)

std wind 
speed (m/s)

skew wind 
speed (m/s)

mean gust 
speed (m/s)

Alexandroupoli HNMS 25.917 40.850 3.0 75 3.629 3.147 0.997 15.216

Araxos HNMS 21.417 38.150 12.0 60 2.607 2.105 0.611 12.475

Eleufsis HNMS 23.550 38.067 31.0 49 3.065 2.349 1.070 12.384

Table 1: General characteristics of stations over the AoI 
and allover Greece for wind speed and gust.

analyze 16 stations from 
NOA (meteo.gr). Due to 
the minimum daily scale 
and the small number of 
years with available 
data, we also analyze 8 
stations from allover 

Eleufsis HNMS 23.550 38.067 31.0 49 3.065 2.349 1.070 12.384

Ιraκlio HNMS 25.183 35.333 39.0 75 4.583 2.918 0.752 12.678

Corfu HNMS 19.917 39.617 4.0 75 2.174 3.166 0.805 16.460

Kos HNMS 27.067 36.783 129.0 34 4.844 2.619 1.279 13.211

Larissa HNMS 22.417 39.633 74.0 74 1.669 2.709 0.327 14.728

Nea Akhialos HNMS 22.800 39.217 15.0 37 3.258 2.331 1.501 12.780

agia NOA 22.80 39.70 172.0 4 1.171 0.566 1.175 9.929

volos NOA 22.96 39.38 54.5 9 1.007 0.801 2.397 9.857

uth volos NOA 21.30 39.50 11.5 2 1.277 1.087 1.494 11.057

gardiki NOA 22.93 39.36 1110.0 6 0.784 0.716 2.738 9.073

zagora NOA 23.10 39.50 510.0 7 0.849 0.808 2.503 10.154

kalampaka NOA 21.63 39.71 245.0 3 1.059 0.537 0.775 9.014stations from allover 
Greece from HNMS 
(noaa.gov), which are in 
an hourly scale and 
include up to 75 years of 
measurements.

kalampaka NOA 21.63 39.71 245.0 3 1.059 0.537 0.775 9.014

karditsa NOA 21.90 39.40 96.0 2 1.097 0.791 1.525 7.282

koniskos NOA 21.80 39.78 834.0 6 1.100 0.790 1.812 10.204

larissa NOA 22.40 39.63 90.0 6 0.352 0.373 3.180 6.333

lafkos NOA 23.25 39.18 334.0 4 1.339 0.867 1.532 10.133

plastira NOA 21.79 39.24 865.0 6 2.728 2.175 2.384 13.005

makrinitsa NOA 22.98 39.40 855.0 7 2.788 1.800 1.619 14.078

moni paou NOA 23.20 39.21 152.0 2 2.106 1.675 1.280 12.035

pertouli NOA 21.46 39.54 1175.0 8 0.866 0.733 2.438 9.664

portaria NOA 22.92 39.20 603.0 3 1.651 1.260 1.667 12.262

trikala NOA 21.76 39.56 168.0 9 0.800 0.531 1.886 8.546



4. Cyclostationarity
The wind process (like any other hydrometeorological process) includes
two cyclostationarities, one seasonal and one daily (cf. [2]). We apply a
simple model of double periodicity (described by the equations below) to
catch simultaneously both of them using nine dimensionless coefficients:catch simultaneously both of them using nine dimensionless coefficients:

(1)

(2)

(3)
A B C

a 0.463 0.736 -0.144

Table 2: Model 
coefficients for 
the Larissa 
station (HNMS).

(3)

(4)

where t denotes time in hours; aA, aB, aC are dimensionless coefficients; bA, bB, bC are 
in time units; cA, cB and cC are in m/s; andμh is the hourly mean of the process.

a 0.463 0.736 -0.144

b -1.107 -6.558 -6.776

c 0.323 1.039 -1.619



5. Cyclostationarity (cont.)
Figure 2: (a) within-day fluctuation of 
hourly mean wind speed (w) for each 
month; (b) cyclostationary model 
fitting for months 2 (Feb.), 5 (May), 8 
(Aug.) and 11 (Nov.); and (c) monthly 2
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6. Probability functions
For the marginal distribution functions of w, we check the Normal,
Gamma and Weibull (cf. [3]), using maximum likelihood algorithms for
the parameters’ estimation (neglecting the low w part). For the Larissa
station the minimum error corresponds to the Gamma function (with
k=4.829 and θ=0.758), while for most other stations is the Normal one.
station the minimum error corresponds to the Gamma function (with
k=4.829 and θ=0.758), while for most other stations is the Normal one.
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Figure 3: (a) Empirical cumulative and probability density functions of wind speed 
(with low value limit); and (b) fitting of the Gamma function for the Larissa station.
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7. Probability function (cont.)
For the marginal distribution functions of wind gust (wg), we check the
General Extreme Value (GEV), Burr and Generalized Gamma (cf. [4]),
using again the method of maximum likelihood. For the Larissa station
the minimum error corresponds to the Burr function (with a=12.125,
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the minimum error corresponds to the Burr function (with a=12.125,
c=9.865 and l=0.831), while for most other stations is the GEV one.
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Figure 4: (a) Empirical cumulative and probability density functions of wind gust; 
and (b) fitting of the Burr function for the Larissa station.
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8. Stochastic structure
We investigate the structure of the wind process with the climacogram
(i.e. variance of the averaged process versus averaging time scale). This
choice is based on the analysis of [5], where the aforementioned
stochastic tool resulted (for all the examined processes, e.g. Markov, HK
and combinations thereof) in a smaller statistical uncertainty (i.e. mean-
stochastic tool resulted (for all the examined processes, e.g. Markov, HK
and combinations thereof) in a smaller statistical uncertainty (i.e. mean-
squared error) for the majority of scales, in comparison to the power
spectrum and autocovariance. In the equations below, we show its
definition and expected value of its classical estimator:

(5)

where the underlined symbols 
denote random variables, m (in 
units of time) and k

(5)

(6)

units of time) and k
(dimensionless) are the scales of 
the continuous and discrete-time 
process, Δ is the sampling time 
interval and n is the total number 
of observations.



9. Stochastic structure (cont.)
We estimate the empirical climacogram (from hourly to climatic scale) for 
the long timeseries of NOA and then, we fit an HK model to the apparent

1.E+01
long-term behaviour:

(7)

1.E-03
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1.E-01

1.E+00

γ
(m

)

Alexandroupoli Araxos
Eleufsis Ιraκlio
Corfu Kos
Larissa Nea Akhialos
true expected

(7)

We calculate that the best fit, 
for scales up to 10% n, is for λ 
≈ 45 m2/s2 and H ≈ 0.7 (Hurst 
coefficient, ranging from 0 to 
1), with correlation coefficient 

1.E-04

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

m (h)

Larissa Nea Akhialos
true expected
empirical 10% n

Figure 5: Larissa, Note that we fit the model up 
to 10% of n (following the rule of thumb, cf. [5]).

1), with correlation coefficient 
of R2 ≈ 95% (note that the 
empirical variance’s deviation 
from the power-law model at 
latter scales, is characterized 
by high uncertainty).



10. Stochastic generation of hourly wind speed
For the wind turbines installation we choose the area near the Plastira
station, which exhibits the larger hourly mean wind speed, i.e. 11.782
m/s (calculated by multiplying the daily mean with 4.458, which is the
ratio of the mean values of the HNMS and NOA stations of Larissa).ratio of the mean values of the HNMS and NOA stations of Larissa).

We can then produce an hourly wind speed timeseries by preserving
the cyclostationary-deterministic model of Larissa station (which is the
nearest one with a long period and an hourly time-step), the desired
distribution function and the HK stochastic process (following [5]).

We finally categorize the wind turbine generator into class II, based on
the IEC-61400 standards (cf. [6]) and for an annual average wind speedthe IEC-61400 standards (cf. [6]) and for an annual average wind speed
greater than 10 m/s as well as for a reference one approx. 33 m/s
(estimated from the wind gust distribution function of the Larissa
station). A possible industrial solution for the wind turbine is the
ENERCON E-82 (e.g. [1]).



11. Energy production forecasting

2.5 2.535

Furthermore, we can estimate the hourly energy production (denoted E) 
based on the turbine’s power curve (a time-window of the first month of 
the simulation is shown below).
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12. Conclusions
We present a methodology for constructing a wind process and energy
production model on an hourly time-scale, essential for the energy
management of renewable sources. This model can preserve both daily
and seasonal periodicity as well as the distribution function and
stochastic structure of the process. Additionally, we apply the model tostochastic structure of the process. Additionally, we apply the model to
the area of Thessaly (Greece) and we propose an industrial wind-turbine
solution based on the IEC-61400 standards classification.
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