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Abstract 9 

From ancients times dice have been used to denote randomness. A dice throw experiment is set up in order 10 

to examine the predictability of the die orientation through time using visualization techniques. We apply 11 

and compare a deterministic-chaotic and a stochastic model and we show that both suggest predictability in 12 

die motion that deteriorates with time just like in hydrometeorological processes. Namely, die’s trajectory 13 

can be predictable for short horizons and unpredictable for long ones. Furthermore, we show that the same 14 

models can be applied, with satisfactory results, to high temporal resolution time series of rainfall intensity 15 

and wind speed magnitude, occurring during mild and strong weather conditions. The difference among the 16 

experimental and two natural processes is in the time length of the high-predictability window, which is of 17 

the order of 0.1 s, 10 min and 1 h for dice, rainfall and wind process, respectively. 18 

1 Introduction 19 

In principle, one should be able to predict the trajectory and outcome of a die throw solving the classical 20 

deterministic equations of motion; however, the die has been a popular symbol of randomness. This has 21 

been the case from ancient times, as revealed from the famous quotation by Heraclitus (ca. 540-480 BC; 22 

Fragment 52) ‘Αἰών παῖς ἐστι παίζων πεσσεύων’ (‘Time is a child playing, throwing dice’). Die’s first 23 

appearance in history is uncertain but, as evidenced by archaeological findings, games with cube-shaped 24 

dice have been widespread in ancient Greece, Egypt and Persia. Dice were also used in temples as a form of 25 

divination for oracles and sometimes even restricted or prohibited by law perhaps for the fear of gamblers’ 26 

growing passion to challenge uncertainty (Vasilopoulou, 2003). 27 

Despite dice games originating from ancient times, little has been carried out in terms of explicit trajectory 28 

determination through deterministic classical mechanics (cf. Nagler and Richter, 2008; Kapitaniak et al., 29 

2012). Recently, Strzalco et al. (2010) studied the Newtonian dynamics of a three dimensional die throw and 30 

noticed that a larger probability of the outcome face of the die is towards the face looking down at the 31 

beginning of the throw, which makes the die not fair by dynamics. However, the probability of the die 32 

landing on any face should approach the same value for any face, for large values of the initial rotational and 33 

potential energy, and large number of die bounces.  Contrariwise to deterministic analyses, real experiments 34 

with dice have not been uncommon. In a letter to Francis Galton (1894), Raphael Weldon, a British 35 

statistician and evolutionary biologist, reported the results of 26 306 rolls from 12 different dice; the 36 

outcomes showed a statistically significant bias toward fives and sixes with an observed frequency 37 

approximately 0.3377 against the theoretical one of 1/3 (cf. Labby, 2009). Labby (2009) repeated Weldon’s 38 

experiment (26 306 rolls from 12 dice) after automating the way the die is released and reported outcomes 39 

close to those expected from a fair die (i.e. 1/6 for each side). This result strengthened the assumption that 40 

Weldon’s dice was not fair by construction. Generally, a die throw is considered to be fair as long as it is 41 

constructed with six symmetric and homogenous faces (cf. Diaconis and Keller, 1989) and for large initial 42 

rotational energy (Strzalko et al., 2010). Experiments of the same kind have also been examined in the past in 43 

coin tossing (Jaynes, 1996, ch. 10; Diaconis et al., 2007). According to Strzalco et al. (2008), a significant factor 44 

influencing the coin orientation and final outcome is the coin’s bouncing. Particularly, they observed that 45 
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successive impacts introduce a small dependence on the initial conditions leading to a transient chaotic 46 

behaviour. Similar observations are noticed in the analysis of Kapitaniak et al. (2012) in die’s trajectory, 47 

where lower dependency in the initial conditions is noticed when die’s bounces are increasing and energy 48 

status is decreasing. This observation allowed the speculation that as knowledge of the initial conditions 49 

becomes more accurate, the die orientation with time and the final outcome of a die throw can be more 50 

predictable and thus, the experiment tends to be repeatable. Nevertheless, in experiments with no control of 51 

the surrounding environment, it is impractical to fully determine and reproduce the initial conditions (e.g. 52 

initial orientation of the die, magnitude and direction of the initial or angular momentum). Although in 53 

theory one could replicate in an exact way the initial conditions of a die throw, there could be numerous 54 

reasons for the die path to change during its course. Since the classical Newtonian laws can lead to chaotic 55 

trajectories, this infinitesimal change could completely alter the rest of die’s trajectory and consequently, the 56 

outcome. For example, the smallest imperfections in die’s shape or inhomogeneities in its density, external 57 

forces that may occur during the throw such as air viscosity, table’s friction, elasticity etc., could vaguely 58 

diversify die’s orientation. Nagler and Richter (2008) describe the die’s throw behaviour as pseudorandom 59 

since its trajectory is governed by deterministic laws while it is extremely sensitive to initial conditions. 60 

However, Koutsoyiannis (2010) argues that it is a false dichotomy to distinguish deterministic from random. 61 

Rather randomness is none other than unpredictability, which can emerge even if the dynamics is fully 62 

deterministic (see Appendix B for an example of a chaotic system resulting from the numerical solution of a 63 

set of linear differential equations). According to this view, natural process predictability (rooted to 64 

deterministic laws) and unpredictability (i.e. randomness) coexist and should not be considered as separate 65 

or additive components. A characteristic example of a natural system considered as fully predictable is the 66 

Earth’s orbital motion, which greatly affects the Earth’s climate (e.g. Markonis and Koutsoyiannis, 2013). 67 

Specifically, the Earth’s location can become unpredictable, given a scale of precision, in a finite time-68 

window (35 to 50 Ma, according to Laskar, 1999). Since die’s trajectory is governed by deterministic laws, the 69 

related uncertainty should emerge as in any other physical process. Hence, there must also exist a time-70 

window for which predictability dominates over unpredictability. In other words, die’s trajectory should be 71 

predictable for short horizons and unpredictable for long ones. 72 

In this paper, we reconsider the uncertainty related to dice throwing. We conduct dice throw experiments to 73 

estimate a predictability window in a practical manner, without implementing equations based on first 74 

principles (all data used in the analysis are available at: http://www.itia.ntua.gr/en/docinfo/1538/). 75 

Furthermore, we apply the same models to high temporal resolution series of rainfall intensity and wind 76 

speed magnitude, which occurred during mild and strong weather conditions, to acquire an insight on their 77 

similarities and differences in the process’ uncertainty. The predictability windows are estimated based on 78 

two types of models, one stochastic model fitted on experimental data using different time scales and one 79 

deterministic-chaotic model (also known as the analogue model) that utilizes observed patterns assuming 80 

some repeatability in the process. For validation reasons, the aforementioned models are also compared to 81 

benchmark ones. Certainly, the estimated predictability windows are of practical importance only for the 82 

examined type of dice experiments and hydrometeorological process realizations; nevertheless, this analysis 83 

can improve our perception of what predictability and unpredictability (or randomness) are. 84 

2 Data description 85 

In this section, we describe the dice throw experimental setup and analysis techniques, as well as 86 

information related to the field observations of small scale rainfall intensities and wind speed magnitude. 87 

2.1 Experimental setup of dice throw 88 

A simple mechanism is constructed with a box and a high speed camera in order to record the die’s motion 89 

for further analysis (see also Dimitriadis et al., 2014). For this experiment we use a wooden and white colour 90 

painted (to easily distinguish it from the die) box, with dimensions 30 x 30 x 30 cm. Each side of the die 91 

represents one number from 1 to 6, so that the sum of two opposite sides is always seven. The die is of 92 

acetate material with smoothed corners, has dimensions 1.5 × 1.5 × 1.5 cm and weighs 4 g. Each side of the 93 

die has been painted with a different colour (Fig. 1): yellow, green, magenta, blue, red and black, for the 1, 2, 94 
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…, 6 pip, respectively (Table 1). Instead of the primary colour cyan, we use black that is easier traceable 95 

contrasting to the white colour of the box. The height, from which the die is released (with zero initial 96 

momentum) or thrown, remained constant for all experiments (30 cm). However, the die is released or 97 

thrown with a random initial orientation and momentum, so that the results of this study are independent of 98 

the initial conditions. Specifically, 123 die throws are performed in total, 52 with initial angular momentum 99 

in addition to the initial potential energy and 71 with only the initial potential energy. Despite the similar 100 

initial energy status of the die throws, the duration of each throw varied from 1 to 9 s, mostly due to the die’s 101 

cubic shape that allowed energy to dissipate at different rates (cf. Fig. 3). 102 

 103 

 104 

Figure 1: Mixed combination of frames taken from all the die throw experiments. 105 

 106 

The visualization of the die’s trajectory is done via a digital camera with a pixel density of 0.045 cm/pixel and 107 

a frame resolution of 120 Hz. The camera is placed in a standard location and symmetrically to the top of the 108 

box. The video is analysed to frames and numerical codes are assigned to coloured pixels based on the HSL 109 

system (i.e. hue-saturation-lightness colour representation) and die’s position inside the box. Specifically, 110 

three coordinates are recorded based on the Cartesian orthogonal system; two are taken from the box’s plan 111 

view (denoted xc and yc) and one corresponding to die’s height (denoted zc) is estimated through the die’s 112 

area (the higher the die, the larger the area; Fig. 2). Moreover, the area of each colour traced by the camera is 113 

estimated and then is transformed to a dimensionless value divided by the total traced area of the die. In this 114 

way, the orientation of the die in each frame can also be estimated through the traced colour triplets, i.e. 115 

combinations of three successive colours (Table 1; e.g. Fig 2f). Note that pixels not assigned to any colour 116 

(due to relatively low resolution and blurriness of the camera) are approximately 30% of the total traced die 117 

area on the average. Finally, the audio is transformed to a dimensionless index from 0 to 1 (with 1 indicating 118 

the highest sound produced in each experiment) and can be used to record the times the die bounces, 119 

colliding with the bottom or sides of the box and contributing in this way to sudden changes in die’s 120 

orientation, to its orbit and as a result, to final outcome. We observe in Fig. 3 that die’s potential energy 121 

status (roughly estimated through the noise produced by the die’s bounces) decays faster than its kinetic 122 

energy status (roughly estimated through linear velocity). Seemingly, most of the die’s energy dissipation 123 

occurs approximately before 1.5 s, regardless of the initial conditions of the die throw (Fig. 3). Based on these 124 

observations, we expect predictability to improve after the first 1.5 s. 125 
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  127 

  128 

Figure 2: Selected frames showing the die’s trajectory from experiments no. (a) 48 and (b) 78; (c, d) the three 129 

Cartesian coordinates (denoted xc, yc and zc for length (left-right), width (down-up) and height, respectively); 130 

(e) the standardized audio index (representing the sound the die makes when colliding with the box); and (f) 131 

the colour triplets (corresponding to one of the 8 possible combinations of the three neighbouring and most 132 

dominant colours; see Table 1 for the definition). 133 

  134 

Figure 3: All experiments’ (a) standardized audios, showing the time the die collides with the box (picks) 135 

and (b) linear velocities (calculated from the distance the die covers in two successive frames). 136 

 137 

To describe the die orientation we use three variables (x, y and z) representing proportions of each colour, as 138 

viewed from above, each of which varies in [-1,1], with x, y, z = 1 corresponding to black, blue or green, 139 
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respectively, and with x, y, z = -1 corresponding to the colour of the opposite side, that is yellow, magenta or 140 

red, respectively (see Table 1 and Fig. 4). 141 

 142 

Table 1: Definitions of variables x, y and z, that represent proportions of each pair of opposite colours (on the 143 

left) and the eight possible colour/pips triplets, i.e. combinations of three successive colours (on the right). 144 

Value → −1 1 
  

no. colour triplets (by pips) 

Variable 
↓ 

Colour Pips Colour Pips 
  1 2 4 6 

  2 4 5 6 

x yellow 1 black 6 
  3 2 3 6 

  4 3 5 6 

y magenta 3 blue 4 
  5 1 2 4 

  6 1 4 5 

z red 5 green 2 
  7 1 2 3 

  8 1 3 5 

 145 

  146 

  147 

  148 

Figure 4: Time series of variables x, y and z for experiments: 48 (a, b, c) and 78 (d, e, f); in both experiments 149 

the outcome was green. 150 
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However, these variables are not stochastically independent to each other because of the obvious 151 

relationship: 152 

|�| � |�| � |�| � 1          (1) 153 

The following transformation produces a set of independent variables �, 	 and 
, where � and 	 vary in 154 

[-1,1] and 
 is a two-valued variable taking either the value -1 or 1: 155 

� � � � �, 	 � � � �, 
 � sign���        (2) 156 

The inverse transformation is 157 

� � �� � 	�/2, � � �� � 	�/2, � � 
�1 �max�|�| � |	|��      (3) 158 

In Fig. 5, the plots of all experimental points and of the probability density function (pdf) show that � and 	 159 

are independent and fairly uniformly distributed, with the exception of the more probable states where u ± v 160 

= 0 (corresponding to one of the final outcomes). Note that 
 outcomes are also nearly uniform with 161 

marginal probabilities Pr�
 � �1� � 54% and Pr�
 � 1� � 46%. 162 

 163 

 164 

Figure 5: Plot of (a) all (x, y) and (u, v) points from all experiments and (b) the probability density function of 165 

(u,v). 166 

2.2 Hydrometeorological time series 167 

We choose a set of high resolution time series of rainfall intensities (denoted ξ and measured in mm/h) and 168 

wind speed (denoted ψ and measured in m/s). The rainfall intensities data set consists of 7 time series (Fig. 169 

6a), with a 10 s time step, recorded during various weather states (high and low rainfall rates) by the 170 

Hydrometeorology Laboratory at the Iowa University (for more information concerning the database see 171 

Georgakakos et al., 1994). The wind speed database consists of 5 time series (Fig. 5b), with a 1 min time step,  172 

recorded during various weather states (such as strong breeze and storm events) by a sonic anemometer on 173 

a meteorological tower located at Beaumont KS and provided by NCAR/EOL (http://data.eol.ucar.edu/). We 174 

have chosen these processes as they are of high interest in hydrometeorology and often are also regarded as 175 

random-driven processes. 176 
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  177 

Figure 6: (a) Rainfall events no. 1 and 7 (provided by the Hydrometeorology Laboratory at the Iowa) 178 

University and (b) wind events no. 3 and 5 (provided by NCAR/EOL). 179 

3 Prediction models 180 

In this section, we use several prediction models in order to illustrate the differences and similarities in 181 

predictability of a die’s motion (in particular, its orientation) and of two hydrometeorological processes 182 

(rainfall intensity and wind speed magnitude). Specifically, we apply two types of prediction models in each 183 

process and compare their output to each other, for the same process and between the other processes, in 184 

terms of the Nash and Sutcliffe (1970) efficiency coefficient defined as: 185 

 � 1 � ∑ ∑ �"#$�%�&"'$�%��()$*+,-$+.
∑ ∑ �"/&"'$�%��()0*+,-$+.

         (4) 186 

where d is an index for the sequent number of the die experiments, rainfall or wind events; i denotes time; n 187 

is the total number of the experiments, or of recorded rainfall or wind events (n=123 for the die throw 188 

experiment, n=7 for the rainfall and n=5 for the wind events); 12 is the total number of recorded frames in the 189 

dth experiment, rainfall or wind event; " represents the variable of interest (u, v and w, ξ or ψ);  "' is the 190 

vector ��'2�3�, 	'2�3�, 
52�3��, transformed from the originally observed ��'2�3�, �'2�3�, �̂2�3��, for the die throw, 191 

the 1D rainfall intensity, 782�3�, for the rainfall events and the 1D wind speed magnitude, 9:2�3�, for the wind 192 

events; "/ is the process’ mean vector; and "# is the discrete-time vector estimated from the model. 193 

The prediction models described below are checked against two naïve benchmark models. For the first 194 

benchmark model (abbreviated B1), the prediction is considered to be the average state (hence, F=0), i.e.: 195 

"#��; � <�=� � "/           (5) 196 

where ;= is the present time in s (; denotes dimensionless time), <= the lead time of prediction in s (< > 0), = 197 

the sampling frequency (equal to 1/120 s for the die throw game, 10 s for the rainfall events and 1 min for 198 

the wind events) and "/ the process’ mean (i.e. �/ � 	̅ � 
A � 0, 7̅ � 2 mm/h and 9/ � 7.5 m/s). 199 

Although the mean state is not permissible per se, the B1 can be used as a threshold, since any model worse 200 

than this (i.e. F<0), is totally useless. At the second benchmark model (abbreviated B2), the prediction is 201 

considered to be the current state regardless of how long the lead time <= is, i.e.: 202 

"#��; � <�=� � "�;=�          (6) 203 

Regarding the more sophisticated models applied, a parsimonious linear stochastic model is firstly tested 204 

(described in detail in Appendix A), which predicts the state at lead time <=, based on a number of weighted 205 

present and past states "��; � D�=�, where D � 0,1… , F, as: 206 

"#��; � <�=� � ∑ GH"��; � D�=�IHJK          (7) 207 

where GH are weighting factors and F is the total number of past states. 208 

The coefficients GH are determined on the basis of a generalized Hurst-Kolmogorov stochastic process, which 209 

incorporates both short- and long-term persistence using very few model parameters. Once these parameters 210 

are estimated from the data, in terms of their climacogram (i.e. variance of the time averaged process over 211 

averaging time scale; Koutsoyiannis 2010; 2015), the coefficients GH can be analytically derived as detailed in 212 

Appendix A. 213 
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  214 

   215 

   216 

Figure 7: Comparisons between B1, B2, stochastic and analogue models for the die experiment (a and b), the 217 

observed rainfall intensities (c and d) and the observed wind speed (e and f). The left column (a, c and e) 218 

represents the application of the models to all experiments and events and the right column (b, d and f) to 219 

individual ones. 220 

 221 

Applying a sensitivity analysis to this model (Appendix A; Fig. A.2), we deduce that for the die process a 222 

value of F = 20 (which corresponds to time length ~0. 17 s) works relatively well (on the concept that it is a 223 

small value producing a large F), for lead time, <=, varying from 8 ms to 1.5 s (for larger values of	F, we have 224 

a negligible improvement of the efficiency). Similarly, for the rainfall process, we come to the conclusion that 225 

p = 15 (corresponding to 150 s) is adequate, for <= varying from 10 s to 1 h. Finally, for the wind process, the 226 

model’s performance is sufficient for p = 5 (corresponding to 5 min), for <= varying from 1 min to 6 h. 227 

Additionally, we apply a deterministic data-driven model (also known as the analogue model, e.g. 228 

Koutsoyiannis et al., 2008), which is often used in chaotic systems (such as the classical Lorenz set of 229 

differential equations shown in Appendix B). This model is purely data-driven, since it does not use any 230 

mathematical expressions between variables. Notably, to predict a state "��; � <�=� based on h past states 231 "��; � M � 1�=�, for M varying from 1 to h, we explore the database of all experiments or events to detect k 232 

similar states (called neighbours or analogues), "N O�;N � M � 1�=P, so that for each Q (varying from 1 to k) the 233 

expression below holds for all M: 234 

R"N O�;N � M � 1�=P � "��; � M � 1�=�R ≤ T       (8) 235 
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where T is an error threshold. 236 

Subsequently, we obtain for each neighbour the state at time �;N � <�=, i.e. "N O�;N � <�=P, and predict the state 237 

at lead time <= as: 238 

"#��; � <�=� � U
V∑ "N O�;N � <�=PVNJU         (9) 239 

Applying again a sensitivity analysis to this model (Appendix A; Fig. A.2), we estimate that a number of past 240 

values h= 15 (which corresponds to time length ~0.125 s) and a threshold T = 0.5 performs relatively well for 241 

the die process. Similarly, for the rainfall process, we infer that the model’s performance is adequate for h = 242 

15 (which corresponds to time length 150 s) and a threshold T = 2 mm/h. Finally, we conclude that h = 5 243 

(which corresponds to time length 5 min) and a threshold T = 0.5 m/s work sufficiently for the wind process. 244 

Note that for the estimation of the above model parameters, we adopt two extra criteria. The first is that both 245 

models’ efficiency coefficients should be larger than that of the B2 model (at least for most of the lead times). 246 

The second is that their efficiency values should be estimated from a reasonable large set of tracked 247 

neighbours (>10% of the total number of realizations for each process). Due to high variances of the time 248 

averaged process (or equivalently, high autocorrelations), shown in Fig. A.1 of Appendix A, it is expected 249 

that the B2 model will perform sufficiently, for fairly small lead times. This can be verified in Fig. 7 which 250 

depicts the results for the four prediction models, for the die experiment no. 48, the 1st rainfall event and the 251 

3rd wind event. 252 

The stochastic model provides relatively good predictions (F ≳ 0.5 and efficiency coefficients larger than the 253 

B1 and B2 models) for lead times <= ≲ 0.1 s for the die experiments (with a range approximately from 0.05 to 254 

0.5 s), ≲ 10 min for the rainfall events (with a range approximately from 1 to 30 min) and ≲ 1 h for the wind 255 

events (with a range approximately from 0.1 to 2 h). The analogue model produces smaller F values than the 256 

B2 model for the die and wind process, and larger in case of the rainfall process (but smaller than the 257 

stochastic model). Predictability is generally good for small lead times; however, the situation deteriorates 258 

for larger ones. Finally, we define and estimate the predictability window (that is the window beyond which 259 

the process is considered as unpredictable), as the time-window beyond which the efficiency coefficient F 260 

becomes negative. Specifically, predictability is superior to the case of a pure random process (B1) for lead 261 

times <=≲ 1.5 s for the die throw, ≲ 2 h for the rainfall and ≲ 4 h for the wind process. 262 

4 Summary and conclusions 263 

A dice throw experiment is performed with varying initial conditions (in terms of rotational energy and die 264 

orientation) in order to investigate the predictability time window of die’s trajectory. We apply two types of 265 

models, one solely data-driven model (of deterministic-chaotic type) which exploits observed patterns 266 

similar to the present one to predict future states. Also, a stochastic model is applied for the first time (to the 267 

authors’ knowledge) in this type of experiments. For this model, the climacogram (variance of the time 268 

averaged process over averaging time scale) is estimated and fitted to a generalized Hurst-Kolmogorov 269 

process. Subsequently, the best linear unbiased estimator (BLUE) method is applied to determine weighting 270 

factors for the prediction model components. The predictability time-window is estimated such as the Nash-271 

Sutcliffe efficiency coefficient is greater than 0.5 and greater than those estimated from simple benchmark 272 

models. Furthermore, the same models are applied to predict rainfall intensity and wind speed based on 273 

events observed during mild and strong weather conditions. 274 

The results show that a die’s trajectory is fairly predictable for time windows of approximately 0.1 s, and this 275 

time window becomes 10 min for rainfall intensity and 1 h for wind speed. Thus, dice seems to behave like 276 

any other common physical system: predictable for short horizons, unpredictable for long horizons. The 277 

main difference of dice trajectories from other common physical systems is that they enable unpredictability 278 

very quickly. This important result, though holding only for the examined type of die experiments and 279 

hydrometeorological processes, highlights the fact that the die trajectory should not be considered as 280 

completely unpredictable. Thus, it helps develop a unified perception for all natural phenomena and expel 281 

dichotomies like random vs. deterministic; there is no such thing as a ‘virus of randomness’ infecting some 282 

phenomena to make them random, leaving other phenomena uninfected. It seems that rather both 283 
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randomness and predictability coexist and are intrinsic to natural systems which can be deterministic and 284 

random at the same time, depending on the prediction horizon and the time scale. On this basis, the 285 

uncertainty in a geophysical process can be both aleatory (alea = dice) and epistemic (as in principle we 286 

could know perfectly the initial conditions and the equations of motion but in practice we do not). Therefore, 287 

dichotomies such as ‘deterministic vs. random’ and ‘aleatory vs. epistemic’ may be false ones and may lead 288 

to paradoxes. 289 

Finally, we observe that the largest Hurst coefficient (estimated from the stochastic processes) corresponds to 290 

the wind process (H≈0.95), the intermediate to the rainfall process (H≈0.9) and the smallest one to the die 291 

process (0.6<H<0.5). It is interesting to observe that as H increases so does the predictability time-window. 292 

This may seem as a paradox since high H is related to high uncertainty. The latter statement is indeed true 293 

but only for long time scales. As thoroughly analysed in Koutsoyiannis (2011), processes with high H exhibit 294 

smaller uncertainty (i.e. smaller entropy production) for short time periods, in comparison with processes 295 

with smaller H. Conversely, if averages at large time scales are considered, then dice become more 296 

predictable as they will soon develop a time average of 3.5; this is also strengthened by the fact that die is 297 

orientation-limited to a combination of 6 faces, while rainfall and wind processes have infinite possible 298 

patterns and thus, can be more unpredictable for long horizons and long time scales. 299 
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Appendix A 355 

In this Appendix, we describe the stochastic prediction model (used in sect. 3). Additionally, we show the 356 

results from the sensitivity analysis of the stochastic as well as the analogue model (described in sect. 3). 357 

The linear stochastic model predicts the state at lead time <=, i.e. "��; � <�=�, based on the linear aggregation 358 

of weighted past states, i.e. GH"��; � D � 1�=�, with GH the weighting factors (eq. 7; see sect. 3 for notation). 359 

Before we estimate the weights, it is necessary to presume a model of the stochastic structure for each 360 

process. The observed climacogram (i.e. variance of the time averaged process over averaging time scale) in 361 

Fig. A.1, shows the strong dependence of the die orientation, rainfall intensity and wind speed in time (long-362 

term, rather than short-term persistence). This enables stochastic predictability up to a certain lead time. 363 

Regarding the fitting method of the stochastic model, we choose the climacogram (Koutsoyiannis 2010) and 364 

for the model type, we choose the generalized Hurst-Kolmogorov (gHK) process. The climacogram is chosen 365 

because it results in smaller estimation errors in comparison to autocovariance (or autocorrelation) and 366 

power spectrum for this type of models (a thorough analysis about this has been made elsewhere; 367 

Dimitriadis and Koutsoyiannis, 2015). Also, the gHK model is chosen as it can exhibit both Markovian 368 

(short-term) and HK (long-term) persistence, depending on the value of the Hurst coefficient (defined as H = 369 

1 - b/2, where b is the true log-log slope of the climacogram in large scales). In particular, the Markovian case 370 

appears when H = 0.5, while for greater values it signifies long-term persistence. By definition, the true 371 

autocovariance, G�Y� for lag τ, of a gHK process is (Koutsoyiannis, 2013; Dimitriadis and Koutsoyiannis, 372 

2015): 373 

G�Y� � Z�|Y|/D � 1�&[          (A.1) 374 
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where Z is the variance at an instantaneous time scale and D and 1 are the scale and long-term persistence 375 

parameter, respectively. Its climacogram, \�]�, for time scale m ≔ kΔ (with k the dimensionless discrete-time 376 

scale), is: 377 

\�]� � _`��a/HbU�(c)&�_&[�a/H&U�
�U&[��_&[��a/H�(          (A.2) 378 

while the classical estimator \'�]� of the true climacogram \�]� is biased (due to finite sample size) and is 379 

given by: 380 

E e\'�]�f � U&g�hi�/g�Vi�
U&V/h \�]�          (A.3) 381 

where =	 is the time resolution parameter (1/120 s for the die experiments, 10 s for the rainfall events and 1 382 

min for the wind events) and N is the sample size. 383 

For consideration of the bias effect due to varying sample sizes n of the die experiments and rainfall and 384 

wind events, we estimated the average of all empirical climacograms for experiments and events of similar 385 

sample size. However, due to the strong climacogram structure of all three processes, the varying sample 386 

size has small effect to the shape of the climacogram for scales approximately up to 10% of the sample size 387 

(following the rule of thumb for this type of models, as analysed in Dimitriadis and Koutsoyiannis, 2015) 388 

and thus, we consider the averaged empirical climacogram to represent the expected one. 389 

The fitted models are shown in Fig. A.1 in terms of their climacograms (a stochastic analysis based on the 390 

autocorrelation of the examined rainfall events can be seen in Papalexiou et al., 2011). Their  parameters are: 391 

for the u and v symmetric variables of the dice process Z � 0.6, D � 0.013	k and 1 � 0.83 (m � 0.6); for the w 392 

variable Z � 1.635, D � 0.0082	k and 1 � 1.0 (m � 0.5); for the rainfall process Z � 12.874	mm_/h_, D � 130	s 393 

and 1 � 0.22 (m � 0.9); and for the wind process Z � 65.84	m_/s_, D � 86	min and 1 � 0.09 (m � 0.95). We 394 

observe that the scale parameter D and Hurst coefficient m are largest in the wind process and smallest in the 395 

dice process. 396 

 397 

  398 

  399 

Figure A.1: True, expected and averaged empirical climacograms for (a) u and 	, (b) 
, (c) 7 and (d) ψ. 400 

 401 

Finally, we apply the best linear unbiased estimator (BLUE) method (Koutsoyiannis and Langousis, 2011), 402 

under the assumption of stationarity and isotropy, to estimate the weighting factors GH (so as the sum of 403 

them equals unity): 404 
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p ≔ qrs ttu 0v
&U ews1 f          (A.4) 405 

where p ≔ xGK, … , GI, yz represents the vector of the weighting factors GH (for D � 0,…,	F) and y a coefficient 406 

related to the Lagrange multiplier of the method; rs � Covx�%&Nz, for	all	3, Q � D, is the positive definite 407 

symmetric matrix whose elements are the true (included bias) autocovariances of �, which represents the 408 

variable of interest (u, v, w, ξ or ψ) and now is assumed random (denoted by the underscore) for the 409 

application of this method; ws � Covx��bHz for all D; < is the index for the lead time (< > 0); and the superscript 410 

T denotes the transpose of a matrix. 411 

In Fig. A.2, we show the sensitivity analysis applied to both stochastic and analogue models, and for each 412 

process. Specifically, we apply a variety of F values (i.e. number of present and past states that the model 413 

assumes the future state is depending on) for the stochastic model and combinations of h (same as p) and T 414 

(i.e. error threshold value for selecting neighbours) values for the analogue one. 415 

 416 

  417 

   418 

   419 

Figure A.2: Sensitivity analyses of the stochastic (left column) and analogue (right column) model 420 

parameters for the die experiment (a and b), the rainfall intensities (c and d) and the wind speed (e and f). 421 

Appendix B 422 

In this Appendix, we apply all models described in sect. 3 to a set of time series produced by numerically 423 

solving Lorenz’s chaotic system (see below). Particularly, applying the Runge-Kutta integration approach 424 
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(Press, 2007), we produce n=100 time series of the Lorenz-system dimensionless variables (denoted XL, YL 425 

and ZL), with randomly varying initial values of variables between -1 and 1, a time step of dt=Δ=0.01 426 

(dimensionless), a total time length of TL=103 (so, each time series contains Ν=105 data) and with the classical 427 

Lorenz-system dimensionless parameters of σL=10, rL=8 and bL=8/3 (Lorenz, 1963): 428 

���
��

2��2� � ����� � ���
2��2� � M��� � ��� ����

2��2� � ����� 1��� ���
��

         (B.1) 429 

The 5th time series is shown in Fig. B.1, along with the results from the stochastic and analogue models. The 430 

estimated parameters for the best fitted (Markov-type) stochastic model are Z � 72.8, D � 0.13 for the XL 431 

process, Z � 93.1, D � 0.0836 for YL and Z � 272, D � 0.0007 for ZL, with 1 � 1.0 (m � 0.5) for all processes 432 

(with ��/// � ��A � 0 and ��/// � 23.6). From the analysis, we conclude that the analogue model with h = 2 (which 433 

corresponds to time length 0.02 s) and a threshold of g = 0.1, performs very well as opposed to the stochastic 434 

model. The latter’s efficiency factor is slightly higher than the one corresponding to B2 model, only in small 435 

lead times and lower to the rest, in contrast with the experimental and natural processes in Fig. 7. We believe 436 

this is because the system’s dynamics is relatively simple and no other factors affect the trajectory. Such 437 

conditions are never the case in a natural process and thus, the performance of the analogue model is usually 438 

of the same order (given there are many data available, whereas the stochastic model can be set up with 439 

much fewer data). Finally, predictability seems to be generally superior to a pure random process (B1), for 440 

lead times <=≲ 1. 441 

 442 

  443 

  444 

Figure B.1: (a) Values of XL, YL and ZL, plotted at a time interval of 0.1, for the 5th time series produced by 445 

integrating the classical Lorenz’s chaotic system, (b) observed climacogram as well as its true and expected 446 

values for the fitted stochastic gHK model (average of XL, YL and ZL processes), (c) sensitivity analysis of the 447 

analogue and stochastic models and (d) comparison of the optimum stochastic and analogue models with B1 448 

and B2. 449 
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