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Part 1: On names and definitions
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Schools on names and definitions

The poetic school

What'’s in a name? That which we call a rose, By any other name would smell as
sweet.
—William Shakespeare, “Romeo and Juliet” (Act 2, scene 2)

The philosophico-epistemic school

Apxn copiac ovoudtwv émiokeyic (The beginning of wisdom is the visiting
(inspection) of names)
—Attributed to Antisthenes of Athens, founder of Cynic philosophy

Apxn matdevoews n TV ovouatwv emniokeyis” (The beginning of education is the
inspection of names)
—Attributed to Socrates by Epictetus, Discourses, 1.17,12,

The beginning of wisdom is to call things by their proper name.
—Chinese proverb paraphrasing Confucius’s quote “If names be not correct,
language is not in accordance with the truth of things.”
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On names and definitions (contd.)
The philosophico-epistemic school (contd.)

When I name an object with a word, I thereby assert its existence.”
—Andrei Bely, symbolist poet and former mathematics student of Dmitri
Egorov, in his essay “The Magic of Words”

“Nommer, c’est avoir individu” (to name is to have individuality).
—Nikolai Luzin, leader of the Moscow School of Mathematics (also student of
Dmitri Egorov and teacher of Aleksandr Khinchin and Andrey Kolmogorov)

Each definition is a piece of secret ripped from Nature by the human spirit. I insist
on this: any complicated thing, being illumined by definitions, being laid out in
them, being broken up into pieces, will be separated into pieces completely
transparent even to a child, excluding foggy and dark parts that our intuition
whispers to us while acting, separating into logical pieces, then only can we move
further, towards new successes due to definitions. ..

—Nikolai Luzin

Note: The last three quotes are found in a must-read book by Graham and Kantor (2009):
“Naming infinity: A true story of religious mysticism and mathematical creativity”
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‘Definition of a time series (Wikipedia)

Time series

From Wikipedia, the free encyclopedia
(Redirected from Time series analysis)

1) over a continuous time interval

2) out of successive measurements

across that interval

3) using equal spacing between

every two consecutive

measurements

Time series: andom datg 1-

4) with each time unit within the time S d|ﬁe TS
interval having at most one data point
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‘Definition of a stochastic process (Wikipedia)
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Definition of a stationary process (Wikipedia)
Stationary process

From Wikipedia, the free encyclopedia Stationary Time Series

In mathematics and statistics, a stationary process (or " ]
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It seems that, by poetic licence, the terms stochastic
process and time series are used interchangeably.
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Related definitions in the celebrated book by Kendall and
Stuart (1966)

p. 342: Observations on a phenomenon which is moving through time generate
an ordered set known as a time series. The values assumed by a variable
at time t may or may not embody an element of random variation, but in
the majority of cases with which we shall be concerned some such
element is present, if only as an error of observation.

p. 346: ... consider an infinity of values x(t). It is customary and convenient
(though not, perhaps, very exact) to speak of continuous time series,
when we mean that t is continuous...

p. 404: In the theory of stochastic processes, of which stationary time-series are a
particular case, ...

o A definition of a stochastic process is missing.

e A time series is recognized as a series of observations, i.e. numbers which
could be a series of values not necessarily associated with a stochastic
process.

e However, occasionally the concept of a time series looks to be treated as
identical to (or subcase of) that of a stochastic process.
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Consistent definitions by the Moscow School of Mathematics

e Kolmogorov (1931) introduced the term stochastic process although he cited
Bachelier (1900) as having already used stochastic processes (without using
that name).

e Kolmogorov (1931) used the term stationary to describe a probability density
function that is unchanged in time.

e Kolmogorov (1933) introduced the definition of probability (based on the
measure theory) in an axiomatic manner based on three fundamental
concepts (a triplet called probability space) and four axioms (non-negativity:
normalization, additivity and continuity at zero).

e Khinchin (1934) gave a more formal definition of a stochastic process and
stationarity.

e Kolmogorov (1938) gave a concise presentation of the concepts:

[...] a stationary stochastic process in the sense of Khinchin [...] is a set of
random variables x; depending on the parameter t, —oo < t < +00, such that
the distributions of the systems

(Xt Xty ooy Xt,) AN (Xt, + 7, Xt, + 1) «eey X, 4 7) (1)

coincide for any n, ty, t, ... ,ty, and T.
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Time series models

e Most of the popular knowledge in stochastics originates from so-called time-
series books.

e These have given focus on stylized families of models like AR(p), ARMA(p,q),
ARIMA(p,d,q), and so on,

o introduced by Whittle (1951),
o popularized in the book by Box and Jenkins (1971)
o extended by Hosking (1981; ARFIMA(p,d,q))

e With the exception of AR(1) and ARMA(1,1) they have several problems:

o They are too artificial because, being complicated discrete-time models, they do
not correspond to a continuous time process, while natural processes typically
evolve in continuous time.

o Their stochastic structure is tightly associated with the number of parameters
and usually they become over-parameterized and thus not parsimonious.

o Their identification, typically based on the estimation of the autocorrelation
function from data, usually neglects estimation bias and uncertainly, which in
stochastic processes (as opposed to purely random processes) are high.

o They are unnecessary because synthetic series from a process with any
arbitrary autocorrelation structure can be easily generated otherwise.
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Concluding remarks of part 1

e Most books could be classified in the “poetic school”.

e Nevertheless, there are books on stochastic processes characterized by
perfect clarity (following the Khinchin-Kolmogorov conventions), of which
Papoulis (1991; first edition 1965) is worth mentioning.

e The term time series is ambiguous, sometimes denoting a realization of a
stochastic process and other times denoting the stochastic process per se.

e We can use Stochastics as a collective name for probability theory, statistics
and stochastic processes.

e Stochastics is much more than numerical calculations. Popular computer
programs have made calculations easy and fast, but numerical results may

mean nothing, because biases and uncertainties are often tremendous
(Lombardo et al., 2014).

e We should be aware that
real world processes # models.
¢ [n real world processes we should avoid false dichotomies such as
deterministic vs. random
and unjustified distinctions such as
signal vs. noise.
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Part 2: Important issues in stochastics
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Fundamental concepts of stochastic processes

e Fundamental to stochastics is the concept of a random variable which should
be distinguished from its realizations.

e A random variable is not a regular variable, while “random” means uncertain,
unpredictable, unknown.

e While a regular variable takes on one value at a time, a random variable is a
more abstract mathematical object that takes on all its possible values at once,
but not necessarily in a uniform manner; therefore a distribution function
F(x) should always be associated with a random variable.

e A random variable needs a special notation to distinguish it from a regular
variable x; the best notation devised is the so-called Dutch convention
(Hemelrijk, 1966), according to which random variables are underlined, i.e. x.

e A stochastic process is a family of infinitely many random variables indexed by
a (regular) variable. The index typically represents time and is either a real
number, ¢, in a continuous-time stochastic process x(t), or an integer, i, in a
discrete-time stochastic process x..

e Realizations, x;, of a stochastic process, x; or x(t), at a finite set of discrete time
instances i (or t;) are called time series.
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Stationarity and ergodicity in stochastic processes

e Central to the notion of a stochastic process are the concepts of stationarity
and nonstationarity, two widely misunderstood and misused concepts, whose
definitions are only possible for (and applies only to) stochastic processes
(thus, for example, a time series cannot be stationary, nor nonstationary).

e A process is called (strict-sense) stationary if its statistical properties are
invariant to a shift of time origin, i.e. the processes x(t) and x(t") have the
same statistics for any t and t’ (see also Koutsoyiannis and Montanari, 2015).

e Conversely, a process is nonstationary if some of its statistics are changing
through time and their change is described as a deterministic function of time.

¢ A nonstationary process should be handled theoretically (on the basis of
deduction) rather than empirically.

e Another also misused concept is that of ergodicity (see definition in Papoulis,
1991). If a process is non-ergodic, then its statistics cannot be estimated from
time series.

e For most applications, stationarity and ergodicity entail one another.

e [ronically, numerous studies claiming nonstationarity based on data analyses,
use stochastic tools that are meaningful only for stationary and ergodic
processes.

¢ Claiming, handling, or detecting nonstationarity needs to be based on
deduction; doing those merely from data may be difficult, if not impossible.
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‘From continuous time to discrete time processes
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Second order properties of a stationary stochastic process
e Autocovariance function, c(7) := Cov[x(t), x(t + )], where 7 is time lag.
e Power spectrum (spectral density), s(w), where w is frequency (inverse
time).
e Structure function (semivariogram or variogram), h(z) := %Var[g(t) —x(t+ 1))
(4)
].

e Climacogram, y(4), where 4 denotes time scale, so that y(4) := Var|[x;

e All these properties are transformations of one another, i.e.:

s(w) =4 fooo c(t) cos2mwr)dr, c(1) = fooo s(w) cos(2nwt) dw (2)
h(t) = c(0) —c(r), c(r) =c(0)—h(7) (3)
y(8) = 2[X( - Ocea)te, () =2 LX) (4)

¢ [n estimation from data, the climacogram behaves better than all other tools,
which involve high bias and uncertainty (Dimitriadis and Koutsoyiannis, 2015
Koutsoyiannis, 2016). The climacogram involves bias too, but this can be
determined analytically and included in the estimation.
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Second order properties of discrete time

e Once the continuous-time properties are determined, the discrete-time ones
can be calculated.

¢ For example, the autocovariance of the averaged process is:

@ _ cOv[ @ @] = L <r(|j+1|A)+r((|j—1|A)_ r i A)> (5)

] l+J Y 2

where I'(4) := Var[X(4)] =42y(4).

¢ Also, the power spectrum of the averaged process can be calculated from:
)(w) = ZC(A) + 42}*’:1 c@ cos(2mwj) (6)

where w := w4, sj )(a)) = s (w)/A (nondimensionalized frequency and
spectral density, respectively).

e More details and additional cases can be found in Koutsoyiannis (2013, 2016).
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Cautionary notes for model fitting

¢ Direct estimation of any statistic of a process (except perhaps for the mean)
is not possible merely from the data; we always need to assume a model.

e Any statistical estimator § of a true parameter s is biased either strictly
(meaning: E[S] # s) or loosely (meaning: mode[ﬁ] * S).

e Model fitting is necessarily based on discrete-time data and needs to consider
the effects of (a) discretization and (b) bias.

e The climacogram provides easy means to analytically estimate from its true
expression (that in continuous time) both effects.

¢ As an example, we consider a process with climacogram y(4), from which we
have a time series for an observation period T (multiple of 4), each one giving

the averaged process gi(A)at a time step 4, so that the sample sizeisn =T /A.

e The standard estimator y(4) of the variance y(4) of the averaged process is

SOAY e L @ _ M\ __ 1 r/af @ _ (DY
@) = o Xk () = x") = 5 A (6 - 1) (7)
¢ As shown in Koutsoyiannis (2011, 2016) the bias can be calculated from
N 1-y(D)/y(4) _ 1-(4/T)2r (T)/r4)
E[7(4)] = n(a,Tyy(@), n(a,1) =200 - ZEE0 (8)
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Entropy and entropy production

e The Boltzmann-Gibbs-Shannon entropy of a cumulative process X(t) with
probability density function f(X; t) is a dimensionless quantity defined as:

(X;t) 0 (X;t)
o[x(t)] = E|- lnfh(X) =—[% mL 2 (X ©) dX (9)

where h(X) is the density of a background measure (typically Lebesgue).

e The entropy production in logarithmic time (EPLT) is a dimensionless
quantity, the derivative of entropy in logarithmic time (Koutsoyiannis, 2011):

¢(t) = e[X()] = P'[X(2)] t = dP[X(t)] / d(Int) (10)
¢ For a Gaussian process, the entropy depends on its variance I'(t) only and is:
P[X(t)] = (1/2) In(2me I'(t)/h?), @(t) =I"(t) t / 2I'(t) (11)

e When the past (¢t < 0) and the present (¢ = 0) are observed, instead of the
unconditional variance I'(t) we should use a variance I'¢(t) conditional on the
past and present:

rl(te 2r1(t)-rr(2t))t

[e()) 200 - 120/2, c(t) = 50 ~ L2

(12)
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Resulting processes from maximizing entropy production

o A Markov proceSS: = 2 Markov, unconditional
_ s 1.75 Markov-conditional
C (T) - /16 T/Of’ = 15 e HK, unconditional+conditional
s 1. == - —
A 21 1 1—e~4/a (13) 1.25 RN RN - HEE f::::il‘t::'lal
= — _ : N \ '
)/( ) A/ A/ 1 i\‘\ ‘\ Hurst coefficient, H
maximizes entropy production for 0.75 N
small times but minimizes it for 0.5 -
large times. 0.25
0
o A Hurst-Kolmogorov (HK) process: 0.00001 0.001 0.1 10 1000 t 100000
]/(A) = A(Q/A)Z_ZH (14) 100 -
maximizes entropy production for 3 © 2
large times but minimizes it for T 1 —== -
small times 01 47 el RS
7/ S -
e A Hybrid Hurst Kolmogorov process oo #——=Warkov, uncaditional o~
H—1 1 5 0.001 , 7 = ==| Markov, conditional N\
i — : 7/ e HK, unconditipnal
V(A) - A(l + (A/a)ZK) K ( ) 0.0001 ,’ = =| HK, conditional
. i . ’ /7 == HHK, uncolnfjltlonal \
maximizes entropy production both ;g0 +~ = =| HHK, conditioal
at small and large time Scales. 0.00001 0.001 0.1 10 1000 . 100000
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Part 3: Simulation of stochastic processes
(at discrete time)
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The symmetric moving average scheme

e The so-called symmetric moving average (SMA) method (Koutsoyiannis
2000) can directly generate time series with any arbitrary autocorrelation
function provided that it is mathematically feasible:

— (0 0]
Xi = Dl=—oo Q1| Vi+1 (16)
where a; are coefficients calculated from the autocovariance function and v; is
white noise averaged in discrete-time.

e Assuming that we work for the averaged discrete-time process with power

spectrum Sc(lA) (w), it has been shown (Koutsoyiannis 2000) that the Fourier
transform s§ (w) of the a; series of coefficients is related to the power
spectrum of the discrete time process as

sq(w) = \/ZSCEA) (w) (17)

e Thus, to calculate a; we first determine sg(w) from the power spectrum of the
process and then we inverse the Fourier transform to estimate all a;.
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Handling of truncation error

e [t is expected that the coefficients a; will decrease with increasing [ and will be
negligible beyond some ¢q (I > q), so that we can truncate (16) to read

_ V4
Xi = 2j=—q AU Vit (18)
¢ This would introduce some truncation error in the resulting autocovariance
function. To adjust for this on the variance, we the calculate the a; from
a=a+ a" (19)
where the coefficients a; are calculated from inversing the Fourier transform
of either s§(w) or s (w)(1 — sinc(2mwq))(two options; Koutsoyiannis, 2016).

e The constant a’’ is determined so that the variance is exactly preserved:
2

y(d) =X _qap =Xi_g(ay + a” (20)

e Solving for a”, this yields:
n_ |y@-fa? | (Sar\? _ Sa 21
a _\/ 2q+1 +(2q+1) 2q+1 (21)

r..\'q / 2.4 12
where Xa -—le_q a; and Za .—le_qa |-
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Handling of moments higher than second

¢ [n addition to being general for any second order properties (autocovariance
function), the SMA method can explicitly preserve higher marginal moments.

e Specifically, to produce a discrete-time process x; with coefficient of skewness
Csx we need to use a white-noise process v; with coefficient of skewness:

(22)

e Likewise, to produce a process x; with coefficient of kurtosis Cy ,, the process y;
should have coefficient of kurtosis:

2
q 2\ _.v4 q 2 2
Ck,x(21=_q a|z|) 6 Xi=—q 2k=—q H1|YKk]

q 1
Zl:—q Ay

Ck,v — (2 3)

e See details in Dimitriadis and Koutsoyiannis (2016).

e Note that the method can also be used in multivariate processes, represented
by vectors (Koutsoyiannis, 2000).
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Simple marginal distributions for generation of non-
Gaussian white noise

e Four-parameter distributions are needed to preserve skewness and kurtosis.

e For light-tailed distributions of v we can use an extended and standardized
version of the Kumaraswamy distribution (ESK) with distribution function:

Py =1 (1- (29" 24)

d

¢ For heavy-tailed distributions we can use the Normal-Inverse Gaussian (NIG)
with probability density:
a2 p2abta(v—c)/d
f(v) _Va +b“e

nd\/1+((v—c)/d)2
with K1 denoting a modified Bessel function of the third kind. Even though its
mathematical form is involved, its moments are calculated analytically and
the generation from the distribution is easy.

Ki(Va? + b2/1+ ((v — ¢)/d)?) (25)

e In both cases v is the value of the random variable, a and b are dimensionless
shape parameters, c is location parameter and d scale parameter; c and d have
same dimensions as v (see details in Dimitriadis and Koutsoyiannis, 2016).
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Range of skewness and kurtosis covered by the two

distributions
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[sopleths of parameters a or b of the ESK and the NIG distribution for the indicated
skewness and kurtosis.
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Performance in the generation of non-Gaussian white noise
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Four two-parameter probability density functions, their approximations by maximum
entropy distributions using four moments, i.e., f(x) = A,exp(— X1, (x/1;)Y), and by the
empirical density from a single synthetic time series with n = 105.
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Part 4: Applications
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Application 1: Microscale (turbulence)

¢ Estimation of high moments involves large uncertainty and cannot be reliable
in the typically short time series of geophysical processes.

¢ On the contrary, high moments can be reliably estimated from large samples
recorded in laboratory experiments at sampling intervals of ps.

e Here we use grid-turbulence data provided by the Johns Hopkins University
(http://www.me.jhu.edu/meneveau/datasets/datamap.html).

e This dataset consists of 40 time series with n = 36x10¢ data points of
longitudinal wind velocity along the flow direction, all measured at a sampling
time interval of 25 pus by X-wire probes placed downstream of the grid (Kang
et al., 2003).

¢ By standardizing all series we formed a sample of 40 x 36 x106 = 1.44 x10°
values to estimate the marginal distribution, and an ensemble of 40 series,
each with 36 x10¢ values to estimate the dependence structure through the
climacogram.

e We also performed simulation using the SMA framework with n =10° values.
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Marginal distribution

e The time series are nearly-Gaussian but not exactly Gaussian (skewness =
0.23; kurtosis = 3.08). This divergence of fully developed turbulent processes
from normality has been also derived theoretically (Wilczek et al., 2011).

e Interestingly, these small differences from normality result in highly non-
normal distribution of the white noise of the SMA model (skewness = 3.26;
kurtosis = 12.30!)
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preserving the first four
moments; the standard
normal distribution

— simulated observed  ----- N(0,1) NG, 1yisalsoishow,
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Stochastic dependence of the turbulent velocity process

Sum of two equally weighted processes, an HHK and a Markov:

A N e 1— e 4/% 26
AN==1+( 1-—
y(d) =70+ @/ay) )K+A/0(2 i/, (26)
A (ms)
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1.E+00 - - -

Climacogram of the
turbulent velocity
process (observed
is the average from
the 40 time series);
the five parameters
- - —expected Q\‘\\ of the model are
| % TN estimated as:
——simulated AN A=1.017,a; = 10
\ . ms, a, = 15 ms,
o~ observed B Kk = 0.4, H = 0.85.
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Kurtosis of velocity increments

The change of kurtosis of the velocity increments (differences) with increased
time distance, 7 (lag), is related to the intermittent behaviour of turbulence
(Batchelor and Townsend, 1949). Therefore it is important to preserve this
variation.

6 -
Empirical and
— simulated simulated kurtosis vs.
X lag.
5 o-observed
&)

4 A Not a mystery to have
large Kurtosis (> 5
here) in velocity
increments, even

3 though the velocity is

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 [almost normal

7 (ms) (Kurtosis = 3.08)
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Application 2: Medium scale (wind)

e We can estimate high moments in geophysical processes accurately only after
analyzing thousands of short time series.

e Here we use hourly wind speed data by NOAA (www.ncdc.noaa.gov).

e This dataset consists of 15 000 time series around the globe with 10 min
average measurements every one hour. After several quality and quantity
tests we ended up with approximately 3500 stations.

¢ By standardizing all series we formed a sample of ~10° values to estimate the
90 H

marginal distribution, and an
ensemble of 3500 series, each
with 3 x 10° values on the
average, to estimate the
dependence structure through
the climacogram.

e We also performed multiple
simulations using the SMA
framework with n =3 x10°
values.

latitude (deg)

-180 -120 -60 0 60 120 180
longitude (deg)
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Marginal distribution
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Stochastic dependence of the wind process

4 (h)
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06
1.E+00

1.E-01 -
=~ | N
1.B-02 4 - - -expected
o—0bserved
—— simulated
1.E-03 -

Climacogram of the wind speed process (observed is the average from the 3500 time
series); the four parameters of the model are estimated as: «a =1 h, k=0.5,A=1.3 and
H = 0.82.
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Application 3: Megascale (temperature)

1 o
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Climacograms constructed from the indicated instrumental and proxy Scale, A (years)
data series (Markonis and Koutsoyiannis, 2013)
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Epilogue

Natural processes evolve in continuous time but can be observed in discrete
time.

Observations cannot be handled unless we construct a model of the process.
Stochastic processes in continuous time offer a strong basis for modelling
and interpretation of natural behaviours.

Calculating values of sample statistics without considering their statistical
properties (bias and uncertainty) can yield misleading results.

A general methodology for construction of synthetic time series is possible
provided that we have a good understanding of stochastics.

Thanks to Andrey Kolmogorov, we have a well-founded mathematical theory
of stochastics.

Observations of natural Statistical estimation &
processes time series synthesis

Stochastics

— —

Stochastic process in Stochastic process in
continuous time discrete time
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