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1. Introduction
The difference in atmospheric pressure between two locations can affect the wind speed [1] and, as a result,
precipitation. According to researchers, the air pressure has been globally affected by human activity during
the last half century. This change is of high importance for the climatic processes [2].the last half century. This change is of high importance for the climatic processes [2].

In general, a change in wind’s behaviour is commonly attributed to anthropogenic climatic change. However,
most of the studies have not taken into consideration the “Hurst phenomenon”, also known as “long-term
persistence” for the analysis of hydro-climatic processes and particularly wind speed. Usually, high (low)
values of wind speed are followed by high (low) ones, meaning that observations appear in groups [3]. In other
words, the autocorrelation coefficient remains quite high as the scale increases due to this clustering effect.

In this study, the wind speed is analyzed in terms of its climacogram (i.e., plot of variance or standardIn this study, the wind speed is analyzed in terms of its climacogram (i.e., plot of variance or standard
deviation of the mean-aggregated random variable versus scale) in order to determine whether it exhibits
behaviour of long-term persistence. The justification for the use of the climacogram as a measure of statistical
uncertainty can be seen in [4]. In this analysis, we use hourly wind speed data from over 7,000 wind stations
from around the globe (https://www.ncdc.noaa.gov/cdo-web/) and we also estimate the Hurst coefficient (or
equivalently, we calculate the slope of the decay of the climacogram) for various time periods. Finally, weequivalently, we calculate the slope of the decay of the climacogram) for various time periods. Finally, we
estimate the prediction interval (or error) and we comment on the results:

• If the prediction intervals of the wind speed are large (close to unity) for all examined periods and for each
station, then the model can describe adequately the climatic variability of wind and so, it is possible that the
changes observed during the last decades can be well described by the Hurst phenomenon.

• In contrast, in case a significant variation of the prediction interval is observed for various time periods, then• In contrast, in case a significant variation of the prediction interval is observed for various time periods, then
the model used cannot effectively describe the climatic variability of wind.

Aim: Is it possible to describe the climatic variability of wind speed using just three parameters?

2. Methodology
The statistical uncertainty enclosed within the wind process is quantified through a Monte Carlo approach.
The analysis is based on the assumptions that the ratio of the annual mean wind speed divided by the annual
standard deviation is a stationary process, normally distributed and that it follows one of the most commonlystandard deviation is a stationary process, normally distributed and that it follows one of the most commonly
used stochastic models in geophysics, i.e., Markov and HK (including the White Noise process for H=0.5).
These assumptions are not only parsimonious but also considered conservative since any non-stationary
approach would increase the complexity of the system, the probability function is likely it has a non-Gaussian
tail and the stochastic structure cannot be any less complex that the Markov and HK one-parameter models,
which entail all exponential as well as a power-type behaviours. Furthermore, the analysis is applied for all
climatic zones described in the Koppen system. Moreover, each mean annual value is considered valid whenclimatic zones described in the Koppen system. Moreover, each mean annual value is considered valid when
it is estimated from more than 1200 h, i.e. 4 measurements per day for at least 10 months. For the synthesis of
the stochastic timeseries, we use the 3×AR(1) technique described in [3]:

The stationary process is produced as a sum of 3 stationary Markov processes, xi = Ai + Bi + Ci. The processes
A, B, C have the following characteristics:

Autocorrelation coefficient for lag 1: where γ : the variance of real time series and c and c :Variance:

Based on the Monte Carlo results, we estimate the “prediction error” or “prediction interval” of each 30-year

Autocorrelation coefficient for lag 1: where γ0: the variance of real time series and c1 and c2:

calculated in a way that the correlation coefficient of the

real time series be the same as the synthetic’s for

hysteresis 1 and 100.

ρa = 1.52 (H – 0.5)1.32

ρb = 0.953 – 7.69 (1 – H) 3.85

ρc = 0.932 + 0.087 H,  for H < 0.76,

ρc = 0.993 + 0.007 H, for H > 0.76

Variance:

σ2
a = (1-c1-c2) γ0

σ2
b = c1 γ0

σ2
c = c2 γ0

Based on the Monte Carlo results, we estimate the “prediction error” or “prediction interval” of each 30-year
mean, standard deviation, minimum and maximum values. The prediction interval is actually a measurement
ranging from zero to one that compares the 30-year values observed by each station with the ones predicted
from the model. In this manner, we are able to capture any large, medium or low 30-year climatic variability
that occurred in approximately the last 100 years.

3. Map of spatial distribution of selected stations

Map 1: Location of wind stations that still operate. Background based [5].

4. Table of selected stations for each Koppen
Station ID

Number 

of years

Mean 

(m/s)

Standard 

Deviation (m/s)

Skewness 

(m/s)
Hurst Height (m) Koppen Location

2681 70 5,5 8,0 0,8 0,87 9 ET Winter Trail, Alaska, N. America 

5577 42 5,8 20,7 1,9 0,86 13 EF Antarctica5577 42 5,8 20,7 1,9 0,86 13 EF Antarctica

2255 42 1,8 3,7 1,8 0,91 433 Dwc Daxinganling Heilongjiang, China 

1988 70 2,7 4,0 1,0 0,66 20 Dwa Incheon, South Korea, Asia 

2687 42 5,7 10,9 0,8 0,93 18 Dsc Anchorage, Alaska, N. America   

2745 70 2,5 6,9 1,4 0,95 481 Dfc  Chitina, Alaska, N. America

4618 70 3,9 6,1 0,8 0,91 373 Dfb Pittsburgh, Pensylvania, USA

4649 42 3,9 5,5 0,6 0,98 199 Dfa Springfield, Illinois, USA4649 42 3,9 5,5 0,6 0,98 199 Dfa Springfield, Illinois, USA

5240 42 3,7 12,0 1,3 0,83 528 Cwb Chiapas, Mexico, North America  

2014 42 4,1 7,6 0,9 0,88 68 Cwa Jeonnam, South Korea, Asia 

1075 68 4,6 10,1 0,8 0,87 55 Csb Azores, Portugal, Atlantic Ocean 

1051 42 3,2 7,7 1,4 0,67 62 Csa Valencia, Spain, Europe 

2779 70 4,8 11,2 1,0 0,88 34 Cfc Kodiak Island ,Alaska, N. America

2802 74 4,1 8,8 1,1 0,89 34 Cfb British Columbia, Canada, N. America  2802 74 4,1 8,8 1,1 0,89 34 Cfb British Columbia, Canada, N. America  

4118 68 5,0 7,8 0,4 0,92 6 Cfa Brownsville, Texas, USA

4160 67 4,6 6,6 0,5 0,80 582 BSh San Angelo, Texas, USA

4218 70 2,7 4,2 0,8 0,92 15 BSk San Diego, California, USA

4189 42 2,9 3,6 1,1 0,87 337 BWh Phoenix, Arizona, USA 

4377 37 4,0 7,6 0,8 0,76 1006 BWk Las Vegas, Nevada,  USA

5257 70 3,6 4,9 1,2 0,94 16 Aw  Guantanamo, Gulf of Mexico, N. America

Table 1: Selected stations with high credibility for each Koppen (hourly observations).

5257 70 3,6 4,9 1,2 0,94 16 Aw  Guantanamo, Gulf of Mexico, N. America

5609 76 4,9 6,2 0,2 0,74 3 As Pearl Harbor, Hawaii, Pacific Ocean

2221 42 1,6 4,0 1,3 0,92 35 Am Kedah, Malaysia, Asia  

5616 42 4,4 5,5 0,7 0,68 76 Af Guam, Mariana Islands, Western Pacific Ocean 

5. Quantile-Quantile plots

The observed distribution function is compared
to the Gaussian one. For each observed
standardized value (-3 to +3), we estimate thestandardized value (-3 to +3), we estimate the
value of N(0,1) corresponding to the same
probability of occurrence.
The results are illustrated in the Figure 1. We
notice that the average as well as the Q25, Q50,
Q75 quartiles almost collide with each other.Q75 quartiles almost collide with each other.
Particularly, they are close to N(0,1) for values
ranging from -2 to 2. This means that, for values
ranging from μ-2σ to μ+2σ, the probability
density is very close to normality.
� For X<μ-2σ, the results are quite different,

probably for technical reasons; theprobably for technical reasons; the
anemometers do not work effectively for low
values of wind speed.

� For X>μ+2σ, the fitting is also poor indicating
that the tail of the distribution (corresponding
to extremely high values of wind) is muchto extremely high values of wind) is much
heavier than the normal one.

Figure 1: quantile-quantile plot of annual mean wind speed

6. Climacograms

Koppen

Koppen

Figure 3: Hurst coefficient for each climate type.

each Koppen

Figure 2: climacogram for each climate type.

each Koppen

For each Koppen class, a climacogram is estimated, as
described in Figure 2. By using the equation H=1+d/2,
where H is the Hurst coefficient and d is the loglog slope
of the climacogram, we estimate the Hurst coefficient for
each climatic type. Actually, the five climatic types can be

In addition, the sub-climatic types of C are further
analyzed, since half of the world’s selected wind
stations (661) are characterized by C. The results

Figure 2: climacogram for each climate type.

Figure 4: Hurst coefficient for C climate subdivisions

each climatic type. Actually, the five climatic types can be
described in groups, with types A and B exhibiting
H=0.83, while C and D a slightly higher value of H=0.86
and, finally, a lower value H=0.78 for E (Figure 3).

stations (661) are characterized by C. The results
show that the Hurst coefficient is generally
constant around 0.85, except for the sub-categories
Cfc, Cwb, which however represent only a few
stations (22 in total) and have H=0.8 (as in [6]).

7. Average wind speed and variability coefficient

Both maps and data depicted indicate that near the 
Poles the wind speed is quite high and lower at the Poles the wind speed is quite high and lower at the 
middle zones. These observations are expected by 
comparing them to the background map.

Map 3: Distribution of variability coefficient all around the world

Map 2: Distribution of average wind speed all around the world. 
Source of background: http://www.climate-charts.com/World-
Climate-Maps.html#wind-speedClimate-Maps.html#wind-speed

The variability coefficient is quite high (>1) in
Central and South America, Africa, Asia and
Indonesia. In contrast, it is much less than 1 inIndonesia. In contrast, it is much less than 1 in
North America and Europe.

8. Estimation of the prediction interval for a station of high credibility (1)

The following analysis is based on observations measured at a station located in Winter Trail, Alaska. This
station is characterized by Koppen E climate type, and particularly sub-category ET. It is close to the sea level
(height at 9 m) and near the Arctic ocean. It has measurements for 70 continuous years and it constitutes one(height at 9 m) and near the Arctic ocean. It has measurements for 70 continuous years and it constitutes one
of the most reliable stations of this climatic type and one of the most reliable of all the stations analyzed.
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Figure 5: Time series of wind speed for the examined station.
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Figure 6: Climacograms for the model and observed time series of the 
examined station.

9. Estimation of the prediction interval for a station of high credibility (2)
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Figure 7: Estimation of prediction intervals (mean, standard deviation, minimum and maximum wind speed) for the examined station.
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10. Prediction measures, mean & standard deviation

The prediction intervals for the annualThe prediction intervals for the annual
mean values are exceptional, varying
from 0.65 to 1.
� 99% of the prediction intervals of

the mean values is higher than 0.75.

Map 5: prediction interval of wind velocity annual
standard deviation.

Map 4: prediction interval of wind velocity annual mean.

The prediction intervals for the annual
standard deviation are generally lower than
the ones for the mean values.the ones for the mean values.
� 12% of the standard deviation prediction

intervals is higher than 0.75.

11. Prediction measures, minimum and maximum values

The prediction intervals for the annualThe prediction intervals for the annual
minimum values are really good.
� 65% of the prediction intervals of the

minimum values is higher than 0.75.

Map 6: prediction interval of wind velocity annual
minimum values.

Map 7: prediction interval of wind velocity annual
maximum values.

minimum values.

Stations’ maximum values’ prediction
intervals are also very good.intervals are also very good.
� 60% of the stations’ prediction interval is

more than 0.75.

12. Conclusions
The three parameters mean, standard deviation and Hurst coefficient permit us to describe adequately the
climatic variability of wind speed. The Monte Carlo simulation is used to quantify the stochastic uncertainties
of the model. A different Hurst coefficient is used for each Koppen climatic type, since a slightly different
behaviour is observed from data. Generally, the annual mean wind speed distribution for all stations is very
of the model. A different Hurst coefficient is used for each Koppen climatic type, since a slightly different
behaviour is observed from data. Generally, the annual mean wind speed distribution for all stations is very
close to normality, especially between μ-2σ and μ+2σ values. As a result, the selection of annual mean and
standard deviation, in combination with the Hurst coefficient (which indicates a strong long-term persistence
around the globe), constitutes a challenging way to identify the wind variability along with the over safety
assumption of gaussianity.

Indeed, the mean, standard deviation, minimum and maximum values of 30-year periods appear to have quiteIndeed, the mean, standard deviation, minimum and maximum values of 30-year periods appear to have quite
high prediction intervals for the large majority of wind stations. Particularly:

Mean prediction interval: 90% for 71% of stations and 75% for 99% of stations.

Stdev prediction interval: 70% for 30% of stations and 50% for 80% of stations.

Min prediction interval: 80% for 53% of stations and 60% for 85% of stations.

Max prediction interval: 80% for 50% of stations and 60% for 80% of stations.Max prediction interval: 80% for 50% of stations and 60% for 80% of stations.
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