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Abstract 

The wind process is considered an important hydrometeorological process and one of the basic resources of renewable energy. In 
this paper, we analyze the double periodicity of wind, i.e., daily and annual, for numerous wind stations with hourly data around 
the globe and we develop a four-parameter model. Additionally, we apply this model to several stations in Greece and we 
estimate their marginal characteristics and stochastic structure best described by an extended-Pareto marginal probability 
function and a Hurst-Kolmogorov process, respectively. 
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1. Introduction 

beware of the periodic double threat of the windmill maneuver, 

dedicated to Bobby Fischer for the 1956 game of the century. 

Several studies have been conducted for the stochastic simulation of hourly wind speed on the purpose of 
renewable energy simulation and management [1]. However, the double periodicity of wind [2,3] is often 
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overlooked with most models focusing solely on the annual cycle and therefore, neglecting the contribution of daily 
wind fluctuation in energy production and management. In this work, we present a methodology based on [3] for 
wind speed simulation that includes a deterministic model for the double periodicity of wind as well as a stochastic 
model for the probability and dependence structure of the process under a cyclostationary concept [4]. In section 2, 
we describe the former model and we compare the hourly-monthly mean wind profiles with the corresponding 
temperature ones in an attempt to provide a physical reasoning. We then test the double periodic model to 
approximately 2000 stations around the globe with high quality and large quantity of records and we show several 
statistical characteristics related to the model performance for each station and model parameter. Finally, in section 3 
we estimate the parameters of the double cyclostationary model including the stochastic structure and marginal 
characteristics of the most credible stations in Greece. 

2. Double periodicity of wind 

2.1. Data 

From the original database of more than 15000 land-based stations around the globe downloaded from noaa 
(www.ncdc.noaa.gov), we choose all stations that are still operational (7500) and we form two groups. The first 
group includes stations with at least 105 observations in total and at least one observation per hour (1600 stations). 
For the purpose of having as much as possible a uniform spatial distribution of stations around the globe, we add 
250 stations located mostly at the Southern Hemisphere (group B). These stations have at least 1800 records per 
year corresponding to one measurement per 3 hours and for at least 10 months per year. In Map 1, we depict the 
selected stations for each group. 

 

Map. 1. Spatial distribution of wind stations with hourly data. 
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2.2. Correlation between temperature and wind speed 

The kinetic state of air molecules is related to both their velocity and thermal energy [5]. Therefore, wind speed 
and air temperature must have a strong correlation not only in microscale but also in macroscale, i.e. a difference in 
temperature causing a difference in air pressure and as a consequence, in wind speed, similarly to the lake 
stratification process. In Fig. 1, we estimate the correlation coefficient (denoted r) between hourly wind speed and 
temperature and we plot the monthly average correlation (rav) for each station. It is notable that 90% of stations have 
rav > 0.65 and 46% of stations have rav > 0.9. 

 

 

Fig. 1. Correlation coefficient between hourly-monthly mean wind speed and temperature. 

2.3. Double periodic model 

Several models exist for simulating the deterministic behaviour of hourly-monthly air temperature with the most 
popular ones to be a combination of periodical and exponential functions [6,7]. Since the correlation coefficient 
between wind speed and temperature is high enough, it is only reasonable to adopt similar models for describing the 
double periodicity of wind. Here, we expand the model presented in [3] for the hourly-monthly mean wind speed of 
the form A(t) eB(t) + C(t), where A, B and C are periodic functions describing the annual variability and with the 
exponential function corresponding to the daily variability of the process: 
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where c (m/s) is the mean for the specific hour of the day and month of the year (24×12 different values in total); h 
(m/s) is the overall mean of the process (one value); th is the continuous time in hours and tm the continuous time in 

months; Th = 24 h; Tm = 12 months; a1, a2, a3 are dimensionless parameters; a4 equals ( )− 2
01 dxcosexp1 xa

1266.11 a−≈ , in order to exactly preserve the mean of the process; am is a parameter depicting the month of 

maximum wind speed and varies from 0 to 12 months; and ah is considered a coefficient depicting the hour of 
maximum wind speed varying from 0 h to 24 h (see at the end of section for justification). 

The four parameters are calculated through the minimization of the average squared error between the observed 
and modeled values. Parameter  is closely related to daily fluctuation of wind speed. Furthermore, we estimate the 
average of the daily velocity ratios, i.e., vmax/vmin in order to evaluate the temporal variation of wind speed. The 
monthly-average ratio vrh describes the weighting factor of the temporal variation. We estimate that the 82% of 
stations have vrh > 1.5 and 26% of stations have vrh > 2.5. 

Likewise, parameter  is closely related to the annual periodicity of wind. To evaluate the monthly variation of 
annual wind speed, the ratio vrm = vM/vm is calculated, where vM, vm are the maximum and minimum monthly wind 
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speed. This ratio is evaluated quite larger than unity for most stations indicating a significant annual variation, with 
64% of stations having vrm > 1.5. 

a

    

b 

 

Fig. 2. Variation of (a) vrh and  with latitude and (b) vrh with . 

a

    

b 

 

Fig. 3. Variation of (a) vrm and  with latitude and (b) vrm with . 

 

Fig. 4. Variation of  with longitude. 

Parameter a2 in combination with a3 can capture the most commonly met profiles of wind speed (see Fig. 7 in 
section 3). There are three profiles exhibiting hourly-monthly means: (1) almost parallel to each other, i.e., a2 = 0; 
(2) with similar low values and different peak values for each month, i.e., a3 = 0; and (3) with similar peak values 
and different low values for each month, i.e., a2 a3  0. 

Coefficients ah and parameter am determine the peak hour and month, respectively. The variation of ah with 
longitude is linear with r2 around 0.7, meaning that the maximum velocity seems to appear at the same 
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approximately local hour (14h00) for all examined stations around the globe (all observations are recorded in 
Greenwich Time). As a result of this, ah can be calculated as follows (note that if ah > 24 then ah = ah  24: 

β+= alah                                                                                           (2) 

where  = 12/180 h/deg; l is the longitude varying from 180 to +180 deg;  = 14.2 h. 

2.4. Model performance from global analysis 

Coefficient r and nrmse (abbreviation for the normalized root mean square error) between observed and modeled 
values are in most cases remarkably high and low, respectively. In Fig. 5, we plot the monthly average r and nrmse 
(denoted rav and nrmseav) and we observe that 90% of stations indicate rav > 0.65 and 75% of stations rav > 0.9. In 
addition, 34% of stations have nrmseav < 0.1 and 90% of stations nrmseav < 0.2. 

a

  

b 

 

Fig. 5. Variation of (a) rav with latitude and (b) nrmseav with latitude. 

However, r can sometimes underestimate the goodness of fit, especially if vrh is close to unity. In that case, nrmse 
is close to zero and a smooth hourly-monthly mean profile can be easily fitted. Reasonably, when both nrmse and vrh 
have large values then so will r. In general, both r and nrmse show adequate results with 80% of stations having rav 
> 0.7 and nrmseav < 0.2 (Fig. 6). 

a

   

b  

Fig. 6. Variation of (a) vrh and nrmseav with rav and (b) vrh with nrmseav. 

3. Application 

In this section, we apply the double periodic model to 17 stations of high quality and large quantity of records in 
Greece (Table 1-2 and Fig. 7). Additionally, we model the standard deviation of the process by a single periodic 
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function corresponding solely to annual fluctuation since daily fluctuation is minimal for all stations: 
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where c (m/s) is the standard deviation for each month, h (m/s) is the hourly standard deviation of the process, b is 
a dimensionless parameter related to the magnitude of the monthly fluctuation and bm is a coefficient depicting the 
month of maximum wind speed standard deviation and varying from 0 to 12 months. 
 

Furthermore, we estimate the dependence structure of the wind process all over Greece by combining the 
climacogram (i.e., the variance of the mean process vs. scale, denoted as  (m2/s2) and introduced in [8]) of the 17 
stations (Fig. 8). The justification for the use of climacogram to estimate the stochastic structure of the process 
instead of the commonly used autocorrelation function or power spectrum can be seen in [9]. There, it is illustrated 
that the climacogram has always smaller statistical uncertainty from the other two stochastic tools for common 
processes such as Markov and Hurst-Kolmogorov (HK) as well as combinations thereof. In Fig. 8, we conclude that 
the wind process in Greece follows an HK process: 

Hk 22/ −= λγ           (4) 

where  = 2 m2/s2 is the standardized variance of the discretized stationary process and  = 0.9 is the Hurst 
coefficient. 

 
This behaviour is somehow expected based on the analysis of [10,11], where the HK behaviour is detected in an 

annual scale and in approximately 4000 stations around the globe. Also, we estimate the average marginal 
probability function for the standardized process and we fit a two-parameter extended Pareto-type cumulative 
probability function that shows good agreement with data in a global scale [12]: 
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with p  10 and p  8.5. 

Table 1. General characteristics of the 17 stations in Greece downloaded from noaa (www.ncdc.noaa.gov). 

station name 
longitude 

(deg) 
latitude 
(deg) 

elevation 
(m) 

years 
of 

records 

mean wind 
speed (m/s) 

std wind 
speed (m/s) 

Karpathos 27.13 35.42 20 17 7.6 4.1 
Santorini 25.47 36.40 39 24 5.7 3.2 

Syros 24.95 37.42 72 17 5.1 3.0 
Samos 26.92 37.70 7 37 4.4 3.1 

El. Venizelos 23.95 37.93 94 11 4.0 3.1 
Chios 26.13 38.33 4 24 3.7 2.8 

Limnos 25.23 39.92 4 38 4.4 3.5 
Paros 25.13 37.02 36 11 5.5 3.3 

Kavala 24.60 40.98 5 24 2.4 2.1 
Meganisi 20.77 38.62 4 42 3.6 2.7 
Zakynthos 20.88 37.75 5 24 2.5 2.6 

Kos 27.07 36.78 129 81 4.8 2.6 
N. Aghialos 22.80 39.22 15 62 3.3 2.3 

Larissa 22.42 39.63 74 32 1.7 2.7 
Aleksandroupoli 25.92 40.85 3 80 3.6 3.1 

Herakleio 25.18 35.33 39 41 4.6 2.9 
Araksos 21.42 38.15 12 17 2.6 2.1 
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Table 2. Estimation of the four parameters and the one coefficient of the hourly-monthly mean and standard deviation model for the 17 stations in 
Greece along with the model performance. 

mean model (parameters) mean model 
(coefficients) 

rav nrmseav 

stdev model 
(parameter) 

stdev model 
(coefficient) 

r nrmseav 

a1 a2 a3  
ah (h) 

am 
(months) 

b bm (months) 

0.130 0.042 0.213 11.88 7.12 0.94 0.13 0.019 5.6 0.43 0.05 
0.144 0.000 0.051 11.89 2.00 0.96 0.08 0.164 1.2 0.98 0.06 
0.185 0.000 0.102 12.07 0.34 0.96 0.08 0.122 1.3 0.95 0.08 
0.165 0.000 0.036 12.09 11.00 0.81 0.15 0.098 0.6 0.96 0.16 
0.416 0.188 -0.163 12.51 6.94 0.95 0.13 0.106 0.2 0.79 0.12 
0.291 0.064 -0.140 11.67 5.51 0.96 0.13 0.207 0.6 0.97 0.12 
0.264 0.000 0.139 11.28 0.35 0.95 0.12 0.280 0.6 0.98 0.12 
0.250 0.000 0.005 12.02 11.00 0.95 0.12 0.051 1.2 0.56 0.13 
0.401 0.189 -0.306 12.44 6.67 0.96 0.12 0.210 1.1 0.98 0.07 
0.305 0.000 0.060 13.73 1.80 0.66 0.22 0.217 1.2 0.99 0.10 
0.477 0.220 -0.400 12.75 6.71 0.91 0.16 0.346 1.1 0.98 0.15 
0.251 0.016 0.007 13.23 3.47 0.96 0.07 0.231 1.2 0.98 0.07 
0.314 0.290 -0.318 13.23 6.45 0.80 0.12 0.145 1.8 0.97 0.10 
0.674 0.489 -0.295 15.35 6.36 0.97 0.15 0.121 2.2 0.89 0.16 
0.427 0.164 -0.323 12.27 6.50 0.97 0.11 0.270 0.7 0.99 0.10 
0.171 0.119 -0.225 11.95 6.50 0.89 0.10 0.163 1.5 0.97 0.06 
0.527 0.265 -0.496 13.74 6.95 0.97 0.11 0.244 1.1 0.96 0.13 

 
a

  

b  

c

   

d 

 

Fig. 7. Hourly-monthly mean velocities for the (a) Larissa, (b) Alexandroupoli and (c) Kos stations and monthly standard deviation of mean and 
standard deviation for Larissa (continuous line), Alexandroupoli (dashed line) and Kos (dot dashed line) stations. 

Finally, we describe a methodology to produce synthetic hourly wind timeseries with double periodicity as well 
as preferable marginal characteristics and stochastic structure. Particularly, after we estimate the parameters for the 
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hourly-monthly mean wind speed (Eq. 1), the parameters for the standard deviation (Eq. 3), the dependence 
structure of the process (Eq. 4) and the marginal probability function (Eq. 5), we can use the scheme described in [3] 
to produce hourly wind speed timeseries approximating the desired distribution and with the desired dependence 
structure generated by the sum of multiple Markov processes. The generation algorithm used in [3] is introduced in 
[9] and although it includes only two parameters, it is capable of generating any length of timeseries following an 
HK or various other processes. By applying this method we assume stationarity in autocorrelation rather than 
cyclostationarity. Although this assumption can be cruel for certain hydrometeorological processes, it can be applied 
as an approximation for the wind process, due to the small fluctuation of the autocorrelations of wind for the same 
lag in different months. 
 
a

   

b 

 

Fig. 8. (a) Climacograms for all stations, best fitted HK, Markov and white noise processes and model; (b) empirical tail functions for all stations 
and model. 

4. Conclusions 

In this paper, we investigate the double periodicity of wind and we present a model for the hourly-monthly 
mean comprising four parameters. We further test our model against approximately 2000 stations around the globe 
with 75% of stations having correlation coefficients with the observed values above 0.9. Finally, we apply our 
model to several stations in Greece by also suggesting a deterministic model for the hourly-monthly standard 
deviation and an HK stochastic model for the dependence structure with a Pareto-type marginal probability function, 
all showing excellent agreement with data. 
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