
1. Abstract
Small islands are regarded as promising areas for developing hybrid water-energy
systems that combine multiple sources of renewable energy with pumped-storage
facilities. Essential element of such systems is the water storage component
(reservoir), which implements both flow and energy regulations. Apparently, the
representation of the overall water-energy management problem requires the
simulation of the operation of the reservoir system, which in turn requires a faithful
estimation of water inflows and demands of water and energy. Yet, in small-scale
reservoir systems, this task in far from straightforward, since both the availability
and accuracy of associated information is generally very poor. For, in contrast to
large-scale reservoir systems, for which it is quite easy to find systematic and
reliable hydrological data, in the case of small systems such data may be minor or
even totally missing. The stochastic approach is the unique means to account for
input data uncertainties within the combined water-energy management problem.
Using as example the Livadi reservoir, which is the pumped storage component of
the small Aegean island of Astypalaia, Greece, we provide a simulation framework,
comprising: (a) a stochastic model for generating synthetic rainfall and
temperature time series; (b) a stochastic rainfall-runoff model, whose parameters
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4. Outline of water-energy simulation procedure: data, models, parameters, processes
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6. Reservoir management in stochastic setting
 Problem statement:

 Fulfilment of water supply and irrigation demands;
 Preservation of backup storage for employing energy regulations.

 Model inputs and associated uncertainties:
 Catchment runoff, provided by the stochastic hydrological model (with

uncertain parameters), driven by synthetic rainfall and temperature;
 Rainfall over the lake area, synthetically generated;
 Evaporation losses, estimated on the basis of synthetic temperature;
 Water demand for domestic and touristic use, estimated on the basis of

population data and per capita consumptions that depend on temperature;
 Water demand for irrigation, estimated on the basis of crop data and

evapotranspiration deficits (output of hydrological model).
 Monte Carlo approach, accounting for all behavioral parameter sets of rainfall-

runoff model (>2100 runs), thus providing daily outputs for 100 year simulation.
 For each set of simulated output time series we estimated their statistical

characteristics and fitted a theoretical distribution, representing the parameter
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temperature time series; (b) a stochastic rainfall-runoff model, whose parameters
cannot be inferred through calibration and, thus, they are represented as
correlated random variables; (c) a stochastic model for estimating water supply
and irrigation demands, based on simulated temperature and soil moisture, and
(d) a daily operation model of the reservoir system, providing stochastic forecasts
of water and energy outflows.
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5. Monte Carlo approach for handling parameter uncertainty within runoff modelling 
 Parsimonious modeling structure, using two daily input time series (rainfall , PET) and three parameters.
 Storage components, by means of conceptual tanks:

 Interception tank of infinite capacity, accounting for temporary rainfall deficits within each day;
 Soil tank of finite capacity, accounting for soil moisture storage fluctuations across the simulation period 20
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2. Study area and data
 Astypalaia (Αστυπάλαια) is a Greek island with

1334 residents (2011 census), that belongs to
the Dodecanese complex (total area 97 km2).

 Livadi reservoir is element of a hypothetical
hybrid renewable energy system across the
island, aiming at ensuring full autonomy against
the estimated electricity needs.

 Today, the reservoir fulfills domestic, touristic
and agricultural ware uses; estimated annual
demands are 210 000 m3 for water supply and
230 000 m3 for irrigation.

 Key characteristics:
 Catchment area 8 km2

 Useful capacity 875 000 m3

 Surface at max. elevation 105 000 m2

 Water-energy components (hypothetical):
 Small hydropower plant, installed at

the discharge outlet (max head 32 m);

Astypalaia

Livadi
reservoir

characteristics and fitted a theoretical distribution, representing the parameter
uncertainty, which is propagated from rainfall-runoff simulations.
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3. Representation of process uncertainty through stochastic 
simulation of key meteorological drivers
 Historical hydrometeorological data: daily time series of rainfall and mean

temperature from June 2009 to February 2017.
 Significant uncertainty, due to inherent variability and limited length of raw data
 Generation of daily synthetic data (correlated) for a 100 year simulation period

through Castalia model (Efstratiadis et al., 2014).
 The model preserves the essential statistical characteristics (marginal and joint

distributions) of historical data at three time scales (annual, monthly, daily), as
well as the long-term persistence (Hurst-Kolmogorov dynamics), periodicity and
rainfall intermittency.
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 Soil tank of finite capacity, accounting for soil moisture storage fluctuations across the simulation period
 Model outputs:

 Actual evapotranspiration (ET), comprising direct and soil evapotranspiration;
 Runoff, comprising overland and saturated flow;
 Percolation to lower soil zones, which is finally conducted to the sea.

 Model parameters:
 Interception capacity, Ia, representing a lower rainfall threshold for runoff generation;
 Soil capacity, K, representing the maximum soil moisture that can be retained in the unsaturated zone;
 Recession rate for percolation, a, representing the percentage of soil moisture that moves to the lower zone.

 PET is estimated on the basis of mean daily temperature, through a parametric radiation-based approach, fitted to
historical Penman-Monteith data from neighboring stations (Tegos et al., 2013)

 Overland flow is estimated via a modified CN approach, where potential maximum retention is adjusted according to
the varying soil moisture storage, while saturated flow is estimated by means of spill over the soil tank.

 Due to lack of observed runoff the model is subject to major uncertainty, expressed in terms of a priori distributions
of parameters; for simplicity, Ia, K and a are considered uniformly distributed within “reasonable” feasible ranges.

 To reduce uncertainty, we take advantage of our evidence about the hydrological regime of Livadi catchment (soft
data), thus accepting any parameter set ensuring mean annual percolation and runoff ratios between 10 and 20%.

0

10

20

150 200 250 300 350 400 450

In
te

rc
ep

tio
n 

ca
pa

ci
ty

, 

Soil moisture capacity, K (mm)

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

150 200 250 300 350 400 450

Re
ce

ss
io

n 
ra

te
, a

(m
m

/d
)

Soil moisture capacity, K (mm)

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0 10 20 30 40 50 60 70

Re
ce

ss
io

n 
ra

te
, a

(m
m

/d
)

Interception capacity, Ia (mm)

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

1
89

2
17

83
26

74
35

65
44

56
53

47
62

38
71

29
80

20
89

11
98

02
10

69
3

11
58

4
12

47
5

13
36

6
14

25
7

15
14

8
16

03
9

16
93

0
17

82
1

18
71

2
19

60
3

20
49

4
21

38
5

22
27

6
23

16
7

24
05

8
24

94
9

25
84

0
26

73
1

27
62

2
28

51
3

29
40

4
30

29
5

31
18

6
32

07
7

32
96

8
33

85
9

34
75

0
35

64
1

 By employing Monte Caro sampling we detected 2100
acceptable parameter sets out of 300 000 feasible sets,
independently generated from uniform distributions, thus
providing a posteriori quantification of uncertainty and
insight to nonlinear dependencies between parameters.

 For each behavioral combination of parameters, we ran the
model in stochastic mode, thus providing 2100 synthetic
runoff scenarios to the reservoir simulation model.

Simulated runoff vs. synthetic rainfall assuming the 
median out of 2100 behavioral parameter sets

Scatter plots of all pairs of acceptable 
(behavioral) parameter sets
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7. Conclusions
 Improper representation of uncertainty is intrinsic drawback of all deterministic

hydrological and water management models, which are prone to limited
information provided by historical data (Efstratiadis et al., 2015).

 Combinations of hard (observations) and soft (human evidence based on
experience) information can help reducing yet never eliminating uncertainties.

 Complex water-energy management problems suffer from multiple sources of
uncertainties, since many of their inputs are not directly obtained from in situ
measurements (e.g. rainfall) but are generated through models or even
sequences of models, where uncertainties are propagated from model to model.

 Stochastic approaches are unique means to quantifying uncertainties, yet they do
require careful interpretation of their outcomes, since they may result to
tremendous uncertainty bounds that are difficult to take advantage in practice.

the discharge outlet (max head 32 m);
 Pump-storage tank, implementing daily

regulations of energy surpluses and
deficits, provided by other renewables.
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