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Abstract.  A methodology is proposed for coupling stochastic models of hydrologic 
processes applying to different time scales so that time series generated by the different 
models be consistent. Given two multivariate time series, generated by two separate 
(unrelated) stochastic models of the same hydrologic process, each applying to a different 
time scale, a transformation is developed (referred to as a coupling transformation) that 
appropriately modifies the time series of the lower-level (finer) time scale so that this series 
be consistent with the time series of the higher-level (coarser) time scale without affecting the 
second-order stochastic structure of the former and also establishing appropriate correlations 
between the two time series. The coupling transformation is based on a developed generalized 
mathematical proposition, which ensures preservation of marginal and joint second-order 
statistics and of linear relationships between lower- and higher-level processes. Several 
specific forms of the coupling transformation are studied, from the simplest single variate to 
the full multivariate. In addition, techniques for evaluating parameters of the coupling 
transformation based on second order moments of the lower-level process are studied. 
Furthermore, two methods are proposed to enable preservation of the skewness of the 
processes, in addition to that of second-order statistics. The overall methodology can be 
applied to problems involving disaggregation of annual to seasonal and seasonal to 
subseasonal time scales, as well as problems involving finer time scales (e.g. daily – hourly), 
under the only requirement that a specific stochastic model is available for each involved time 
scale. The performance of the methodology is demonstrated by means of a detailed numerical 
example.  

1 Introduction  

 Very often a hydrologic stochastic process must be studied in different time scales. 
Therefore, the problem arises of how to generate consistent time series both in a coarser, or 
higher-level, time scale and a finer, or lower-level, time scale. A trivial solution of this 
problem is to model the process in the lower-level time scale only, and then aggregate to 
derive the process in the higher-level time scale. However, there are reasons to avoid this 
solution and model the process in both time scales separately, each time focusing on different 
important statistical properties of the process [Salas, 1993, p. 19.32]. For instance, if the 
higher- and lower-level scales are annual and seasonal, respectively, the lower-level model 
may focus on the periodicity and short-term memory of the process whereas the higher-level 
model may focus on the long-term memory properties of the process. In other cases, the 
higher-level process may be the output of a specialized model (e.g., a meteorological rainfall 
prediction model) or known from measurements (e.g., daily rainfall measurements); 
apparently in such cases the aggregation approach cannot work, but rather disaggregation is 
needed.  
 Traditionally, this kind of problems is tackled by disaggregation models [Valencia and 
Schaake, 1972, 1973; Mejia and Rousselle, 1976; Tao and Delleur, 1976; Hoshi and Burges, 
1979; Lane, 1979, 1982; Salas et al., 1980; Todini, 1980; Stedinger and Vogel, 1984; Pereira 
et al., 1984; Stedinger et al., 1985; Oliveira et al., 1988; Grygier and Stedinger, 1988, 1990; 
Lane and Frevert, 1990; Santos and Salas, 1992; Koutsoyiannis, 1992; Salas, 1993, p. 19.34; 
Tarboton et al., 1998]. These are purposely-designed models to generate a process in the 
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lower-level time scale given that in the higher-level. Specifically, they do not model the 
process of interest in the lower-level time scale itself, but rather they are hybrid schemes 
using simultaneously both time scales. Sometimes (owing to nonlinear transformations of 
variables) these models are not able to ensure consistency with the higher-level process. Then, 
adjusting procedures are necessary to restore consistency [Grygier and Stedinger, 1988, 1990; 
Lane and Frevert, 1990, p. V-22; Koutsoyiannis and Manetas, 1996]. 
 However, there is the possibility of not designing and implementing a special model for 
disaggregation as a hybrid scheme incorporating both time scales. On the contrary, there may 
be available a model of the lower-level time scale with no reference to the higher-level time 
scale. The problem is then how a time series generated by the lower-level model can be 
modified so as to be consistent with a given higher-level time series, without affecting the 
stochastic structure implied by the lower-level model. (Practically, this is equivalent to the use 
of adjusting procedures mentioned before.) In a recent study, Koutsoyiannis and Manetas 
[1996] showed that this is possible without using any kind of disaggregation model but only 
using adjusting procedures on top of the separate lower-level model. Their adjusting 
procedures are accurate in the sense that they do not modify certain statistics of the lower-
level process. In that study, a contemporaneous seasonal autoregressive (PAR(1)) model was 
used as the lower-level model.  
 The present study is a generalization of that by Koutsoyiannis and Manetas [1996] in 
several senses. Based on a generalized mathematical proposition, a wider transformation for 
modifying the lower-level time series, so as to be consistent with the higher-level time series, 
is introduced. Several forms of this transformation (referred to as coupling transformation) are 
studied. Apart from ensuring consistency with higher-level time series and reproducing 
second-order statistics of the lower-level variables within a certain period (higher-level time 
step), the transformation preserves lagged covariances of lower-level variables with lower- 
and higher-level variables of previous and next periods as well. Thus, a well-known defect of 
disaggregation models, i.e., their inconsistency in preserving accurately lagged covariances 
among lower- and higher-level variables [Lane, 1982; Stedinger and Vogel, 1984], is 
remedied. In addition, the most general form of the proposed coupling transformation is true 
multivariate, that is, it is applied simultaneously to all the variables of all locations involved 
in the problem examined, rather than adjusting the variables of each location separately. 
Furthermore, the methodology proposed can be applied not only to the simple PAR(1) model 
but to any type of stationary or seasonal stochastic model for any time scale, under the only 
requirement that a specific stochastic model is available for each involved time scale. 
 The theoretical background of the methodology proposed is presented in section 2. The 
specific forms of the coupling transformation are studied in section 3 while the methods for 
evaluating their parameters are given in section 4. The problem of preservation of the 
coefficients of skewness of the variables involved is examined separately in section 5. A 
numerical example that demonstrates the performance of the methodology is given in section 
6 and conclusions are drawn in section 7. To increase readability, several mathematical 
derivations are excluded from the paper (given separately in an Appendix, available on 
microfiche). 
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2 Theoretical background 

Let a hydrologic process, such as rainfall, runoff, etc., defined at n locations and studied in 
discrete time using two different time scales, the higher-level time scale with time step δH and 
the lower-level time scale with time step δL such that k := δH / δL be an integer. We denote the 
higher- and lower-level discrete time processes by Zp = [Ζp

1
, ..., Ζp

 n
]T and Xs = [Xs

1
, ..., X s

 n
]T, 

respectively, where superscript T denotes the transpose of a vector or matrix and subscripts p 
and s are integer time indices that stand for period and subperiod, respectively, with common 
origin (i.e., at the time origin p = 0 and s = 0). Generally, in this paper we use upper case 
letters for random variables, and lower case letters for values, parameters, or constants. 
Furthermore, we use bold letters for arrays or vectors, and normal letters for their elements. 
Higher- and lower-level processes are related by   

 ∑
s = (p – 1) k + 1

p k

  Xs = Zp (1) 

 We assume that two separate stochastic models have been built, one for the higher-level 
process Zp and one for the lower-level process Xs, without link or reference between them. To 
increase readability, we can refer to the simple example where Zp and Xs represent the annual 
and monthly flows at n locations, modeled as an AR(1) (autoregressive process of order 1) 
and a PAR(1) (periodic or seasonal autoregressive process of order 1), respectively. These 
models are expressed by  

 Zp = a΄ Zp – 1 + b΄ V΄p (2) 

and 

 Xs = as Xs – 1 + bs Vs (3) 

where all a΄, b΄, as, and bs are (n × n) matrices of parameters and V΄p and Vs (s, p = …, 0, 1, 2, 
…) are vectors of innovations (independent, both in time and location, random variables) with 
size n. The time indices s, p can take any integer value but in our example the parameters as 
and bs are periodic functions of s with period k whereas a΄ and b΄ do not vary with p. 
 We emphasize that models (2) and (3) and the relevant assumptions are given here just as 
simple model examples of a generalized methodology that can be combined with any type of 
multivariate stochastic models with any distribution functions and perform in any time scale. 
In fact, as no assumption is implied about the involved models, the methodology can be 
combined with linear and nonlinear stochastic models also including generalized 
autocovariance models [Koutsoyiannis, 2000], nonparametric models [Lall and Sharma, 
1996; Sharma et al.,1997] and hybrid models [Srinivas and Srinivasan, 2000]. Moreover, the 
modeling time scales need not be annual and monthly as in the examples used herein, but can 
be much finer such as daily and hourly, even though distribution functions at those time scales 
are much more asymmetric. 
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 We also notice that higher- and lower-level models need not be fully compatible. For 
example, models (2) and (3) are not fully compatible, as the covariance structure implied by 
(3) for the higher-level process Zp (determined by invoking (1)) is not identical with that 
implied by (2) (it can be easily verified that the sum of AR(1) or PAR(1) processes cannot be 
an AR(1) process). If the models were fully compatible, the problem examined would be 
trivial, as the lower-level model would actually incorporate the higher-level model. Thus, the 
problem acquires its interest in case of (partially) incompatible models each focusing on 
different important statistical properties of the stochastic processes examined. For instance, 
the lower-level model may focus on the periodicity and the short-term memory of the process 
whereas the higher-level model may focus on the long-term memory properties of the process. 
Apparently, (2) is not adequate for the latter case and more complex models such as that 
proposed by Koutsoyiannis [2000] must be used instead.  
 Let us assume that a time series zp of the process Zp has been generated using model (2) (or 
any other, linear or nonlinear, parametric or nonparametric, model, or even, it has been 
acquired from measurements) and another time series x~s of the process Xs has been generated 
using (3) (or another appropriate stochastic model). The latter time series has been generated 
independently of the former and, therefore, x~s do not add up to zp, as demanded by the 
additive property (1), but to some other quantities, which we will denote z~p. We wish to 
modify the series x~s thus producing a series xs consistent with zp, in the sense that xs and zp 
obey (1), without affecting the stochastic structure of the lower-level time series. For 
convenience we will assume that x~s is a realization of a stochastic process X

~
s, identical to Xs 

(e.g., following (3)) and the series z~p is a realization of a process Z
~

p defined as the sum of X
~

s. 
In the ideal case that the processes Xs and Zp are fully compatible, Z

~
p will be identical to Zp, 

but, as discussed above, this is not the case in general (note that Z
~

p is derived as a summation 
of the lower-level process whereas Zp corresponds to the higher-level model regardless of the 
lower-level model). We seek for a transformation f(X

~
s, Z

~
p, Zp) whose outcome is a process 

identical to Xs and consistent to Zp (it satisfies (1)). We will use the symbol Xs for the 
outcome of this transformation (i.e., Xs = f(X

~
s, Z

~
p, Zp)) and we will call this transformation a 

coupling transformation. With the followed notation we have two couples of processes, the 
auxiliary processes (X

~
s, Z

~
p) and the “actual” processes (Xs, Zp); in each couple, lower- and 

higher-level processes are consistent (i.e., they satisfy (1)), but members of different couples 
are inconsistent. A schematic representation of the four processes involved, their links, and 
the steps followed to construct the “actual” lower-level process Xs, consistent with Zp, is 
shown in Figure 1. 
 We can determine an appropriate linear form of the coupling transformation based on the 
following general proposition, specific forms of which we will extract and utilize in next 
sections. For the generalized presentation of the Proposition given below, the reader may have 
in mind that the vectors X

~
 and X contain numerous items of the auxiliary and actual lower-

level processes, respectively, and the vectors Y
~

 and Y contain items of the higher-level 
processes and other variables that will be specified later. The additive property (1) is 
represented here by a more generalized linear relationship of the form of equation (6) below. 

Proposition: Let X
~

 and Y
~

 be vectors of random variables with means E[X
~

] and E[Y
~

], 
variance-covariance matrices Cov[X

~
, X

~
] and Cov[Y

~
, Y

~
], respectively, and joint 
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covariance matrix Cov[X
~

, Y
~

]. Let also Y be a vector of stochastic variables independent 
of X

~
 and Y

~
 with means and variance-covariance matrix identical to that of Y

~
. Define  

 X := X
~

 + h (Y – Y
~

) (4) 

where h is a matrix of parameters given by 

 h := Cov[X
~

, Y
~

] {Cov[Y
~

, Y
~

]}–1 (5) 

Then: 
(a)  X has mean and variance-covariance matrix identical to those of X

~
, and joint 

covariance matrix with Y identical to that of X
~

 and Y
~

.  
(b) Any linear relationships that hold among X

~
 and Y

~
, which can be written in the form 

 gΤΧ X
~

 = gΤY Y
~

  (6) 

where gX and gY are matrices (or vectors, in case of a single linear relationship) of 
coefficients, hold also among X and Y, that is 

 gΤΧ Χ = gΤY Y  (7) 

(c) The conditional variance of any element Xi of the vector X, given Y = y, is 

 Var[Xi | Y = y] = Var[X
 ~

i] – Cov[X
 ~

i, Y
~

] {Cov[Y
~

, Y
~

]}–1 Cov[Y
~

, X
 ~

i] (8) 

and is identical to the least mean square prediction error of Xi from Y. 

 The proof of the Proposition is given in Appendix A1. We mention here an interesting 
intermediate result regarding the proof of item (b) of the Proposition: if (6) holds, gX and gY 
affect the covariance matrices Cov[Y

~
, Y

~
] and Cov[X

~
, Y

~
] and consequently h, so that finally 

 gΤY = gΤΧ h (9) 

We also notice that, given the equality of covariances between the couples (X
~

, Y
~

) and (X, Y) 
we can substitute any covariance matrix of the first couple with the corresponding of the 
second couple; for example, we can write (5) as h := Cov[X, Y] {Cov[Y, Y]}–1. 
 Equations (4) and (5) offer the basis to develop the coupling transformation, as we will see 
in the next section. Item (c) of the Proposition, although not used directly in developing the 
coupling transformation, ensures that (4) provides the best possible conditional estimate of X 
given Y in a least-squares sense.  
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3 Specific forms of coupling transformation 

 In this section we will develop several forms of the coupling transformation, starting from 
the simplest case of a single variate model and proceeding towards more complex cases. For 
mathematical convenience, the transformation will extend to the lower-level variables of one 
period only (rather than extending to all simulated periods simultaneously) yet considering the 
necessary links to previous and next periods. For notational convenience, we will assume that 
the time origin coincides with the origin of the examined period so that p = 1. Thus, we will 
write (1) as  

 ∑
s = 1

k

  Xs = Z1 (10) 

We introduce the following notational conventions of covariances among lower- and/or 
higher-level variables: 

 σsr := Cov[Xs, Xr] ≡ σΤrs,      φpr := Cov[Zp, Zr] ≡ φΤrp, 
(11) 

 τsp := Cov[Xs, Zp],              τṕs := Cov[Zp, Xs] ≡ τΤsp  

The evaluation of these parameters will be discussed in section 4. 

3.1 Preserving the additive property  

 In the simplest case, we assume a single site model with lower-level variables X1, …, Xk 
adding up to the higher-level variable Z1. We apply the Proposition of section 2 setting X = 
[X1, …, Xk]T and Y = [Z1]. In the single site case examined we have σsr = Cov[Xs, Xr] ≡ σrs, τsp 
= Cov[Xs, Zp] ≡ τṕs, φpr = Cov[Zp, Zr] ≡ φrp. The additive property (10) can be written in the 
form (6) with gΤΧ = [1, 1, ..., 1] and gΤY = 1. The parameter matrix h is (from (4)) 

 h = 
1
φ11

 [τ11, …, τk 1]Τ (12) 

and thus, the coupling transformation (4) can be written for each subperiod s as 

  Xs := X
~

s + 
τs 1
φ11

 (Z1 – Z
~

1) (13) 

This is the simple adjusting procedure developed by Koutsoyiannis and Manetas [1996]. Note 
that each of the coefficients τs 1 / φ11 for a specific s represents the ratio of the covariance of 
each lower-level variable Xs with the higher-level variable Z1 (τs 1) to the variance of the 
higher-level variable Z1 (φ11).  Thus, (13) distributes the departure (Z1 – Z

~
1) of the additive 

property to each lower-level variable, proportionally to the covariance of this lower-level 
variable with the higher-level variable. Note also that the covariances τs 1 for all s add up to 
the variance φ11 (see also section 4) and thus the coefficients τs 1 / φ11 for all s add up to 1, as 
they should. Thus, the sum of all Xs will equal Z1 regardless of the values of X

~
s, i.e. the 
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preservation of the additive property is ever assured. The special case where the lower-level 
variables are independent (the process Xs is white noise), although unusual, provides better 
understanding of the rationale of (13). In this case τs 1 equals the variance of the lower-level 
variable Xs so that the distribution of the departure (Z1 – Z

~
1) to each lower-level variable 

becomes proportional to the variance of the variable. Interestingly, Grygier and Stedinger 
[1988] and Lane and Frevert  [1990, p. V-22] had proposed a similar empirical adjusting 
procedure but using the standard deviation in place of the variance of each of the lower-level 
variables. We must emphasize, however, that the exact transformation that assures 
preservation of the additive property, means and second order moments of the process in the 
general case of dependent variables is expressed as in (13) in terms of the covariances τs 1 
rather than variances or standard deviations of the different lower-level variables.   

3.2 Linking with lower-level variables of the previous period 

 The above simple transformation preserves the additive property and correlations of lower-
level variables within the examined period. However, it does not preserve explicitly the 
correlations of lower-level variables with subperiods of previous periods. For example, it does 
not preserve explicitly the correlation of the first lower-level variable X1 with the last lower-
level variable of the previous period X0. This can be easily remedied by setting X = [X1, …, 
Xk]T and Y = [X0, Z1]T. In this case, gΤΧ = [1, 1, ..., 1] and gΤY = [0, 1] so that gΤΧ X be the sum of 
all lower-level variables and gΤY Y be the higher-level variable Z1. The parameter matrix h is  

 h = 
⎣
⎢
⎡

⎦
⎥
⎤σ10 τ11

M M

σk 0 τk 1

 
⎣
⎢
⎡

⎦
⎥
⎤σ00 τ01

τ01 φ11

 –1

 (14) 

Thus, the coupling transformation (4) can be written for each subperiod s as 

  Xs := X
~

s + 
1

σ00 φ11 – τ201
 [(φ11 σs 0 – τ01 τs1) (X0 – X

~
0) + (σ00 τs1 – τ01 σs 0) (Z1 – Z

~
1)] (15) 

This notion can be extended to include a greater number of previous lower-level variables, as 
we will see in subsection 3.3. Here an explanation of the rationale of the different terms of 
(15) is no longer simple as it was in (13) (this in even more the case for the equations of the 
following subsections 3.3 and 3.4). We can only say that (15) performs two kinds of 
adjustment to the auxiliary lower-level variables X

~
s: First, it distributes the departure (Z1 – Z

~
1) 

among the different lower-level variables so as to restore the additive property. Second, it 
modifies X

~
s in proportion to the departure (X0 – X

~
0) so as to restore the dependence with 

lower-level variables of the previous period. It may be easily verified that the coefficients 
used to distribute (Z1 – Z

~
1) add up to 1, as they should, whereas the coefficients used for (X0 – 

X
~

0) add up to 0, as they should, too. 
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3.3 Linking with next higher-level variables 

 Linking the lower-level variables of the current period with those of the previous period, in 
the way discussed in subsection 3.2, may be regarded as linking with lower-level variables of 
the next subperiod, as well. Specifically, at the stage of generating the lower-level variables of 
the next period the correlation with the lower-level variables of the current period will be 
preserved in the manner discussed in previous subsection.  
 However, this is not absolutely correct, because in this manner the lagged correlations 
between lower- and higher-level variables are not considered explicitly. As shown by 
Stedinger and Vogel [1984] the departures in preserving such lagged correlations are 
responsible for inconsistencies in preserving correlations between lower-level variables of 
different periods; this problem was first reported by Lane [1982], and contributions to 
overcome it were made by Stedinger and Vogel [1984], Lin [1990], Koutsoyiannis [1992] and 
Koutsoyiannis and Manetas [1996].  
 The developed general proposition allows for an effective tackling of this problem. In 
addition to correlations with the previous lower-level variables, discussed in the previous 
subsection, we will also consider the preservation of correlations between the lower-level 
variables of the current period and the higher-level variable of the next period. We note that 
the correlation of the former with the higher-level variables of the previous periods has been 
already considered indirectly (through correlations with the corresponding lower-level 
variables) whereas the correlation with the higher-level variable of the current period has been 
incorporated explicitly (through the coupling transformation).  
 We will distinguish between two cases regarding the succession of generation steps of 
higher- and lower-level variables. In the first case, all higher-level variables of all periods are 
generated before the generation of lower-level variables. In the second case, the generation of 
lower-level variables of one period follows the generation of the higher-level variable of that 
period and precedes that of the next period. 
 In the first case, at the step of generating the lower-level variables of the current period, the 
higher-level variable of the next period (Z2) is already known and the correlation with it must 
be consider and preserved. This may be essential especially when this correlation is high (e.g., 
for fine time scales). To this aim we must append Z2 to the vector Y again setting X = [X1, …, 
Xk]T. In addition, to acquire a more generalized solution than that of subsection 3.2, which was 
appropriate for the specific model (3), we append to Y a number q (depending on the lower-
level model used) of lower-level variables prior to X0 so that finally Y = [X–q, …, X0, Z1, Z2]T. 
The vectors gX and gY become gΤΧ = [1, 1, ..., 1] and gΤY = [0, …, 0, 1, 0]. The parameter matrix 
h is  

 h = 

⎣⎢
⎢⎡

⎦⎥
⎥⎤

σ1‚–q L σ10 τ11 τ12

M O M M M

σk‚–q L σk‚0 τk‚1 τk‚2

 

⎣
⎢
⎢
⎢
⎡

⎦
⎥
⎥
⎥
⎤σ–q‚–q L σ–q‚0 τ–q‚1 τ–q‚2

M O M M M

σ0‚–q L σ00 τ01 τ02

τ1́‚–q L τ1́0 φ11 φ12

τ2́‚–q L τ2́0 φ21 φ22

–1

 (16) 
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The coupling transformation (4) can be written for each subperiod s as 

  Xs := X
~

s + hs [(X–q – X
~

–q), …, (X0 – X
~

0), (Z1 – Z
~

1), (Z2 – Z
~

2)]T (17) 

where hs is the sth row of h. 
 In the second case mentioned above (which is met rather rarely), at the step of generation 
of the lower-level variables of the current period, the higher-level variable of the next period 
Z2 is not known and thus, the analysis of subsection 3.2 suffices. Just before that step, the 
higher-level variable Z1 of the current period is to be generated. At this time, the lower-level 
variables of the previous periods (X0, X–1, …) are already known and correlation with them 
must be preserved. However, this is not done automatically by the higher-level model itself 
(e.g., by (2)). Using the general Proposition we can remedy this problem as well, if we set X = 
[Z1] and Y = [X–q, …, X0]T, i.e., the vector of q + 1 lower-level variables of the previous 
periods. In this case, q + 1 can be chosen equal to k, the number of lower-level variables of 
one period, but it can be lower or greater than this value as well, depending on how large the 
correlation of higher- to lagged lower-level variables is. The parameter matrix now is 

 hZ = [τ1́‚–q … τ1́0] 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤σ–q‚–q L σ–q‚0

M O M

σ0‚–q L σ00

 –1

 (18) 

and the coupling transformation is 

 Z1 := Z
~

1 + hZ [(X–q – X
~

–q), …, (X0 – X
~

0)]T (19) 

 The generation of the lower-level variables of the current period follows that of the higher-
level variable. This is done by (14) and (15), if only one previous lower-level variable is 
considered, or otherwise by the more general relationship 

 Xs := X
~

s + hs [(X–q – X
~

–q), …, (X0 – X
~

0), (Z1 – Z
~

1)]T (20) 

where hs is the sth row of the matrix h that is now given by 

 h = 

⎣⎢
⎢⎡

⎦⎥
⎥⎤

σ1‚–q L σ10 τ11

M O M M

σk‚–q L σk‚0 τk‚1

 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤σ–q‚–q L σ–q‚0 τ–q‚1

M O M M

σ0‚–q L σ00 τ01

τ1́‚–q L τ1́0 φ11

  –1

 (21) 

Here, (20) and (21) have been derived from (17) and (16), respectively, by omitting all 
elements referring to Z2.  
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3.4 Multivariate case 

 The above forms of the coupling transformation can be applied location by location in the 
case of a multivariate process. However, in this manner, the cross-correlations of the lower-
level variables will be altered by the single-location coupling transformations of different 
locations. The same coupling transformations can be formulated in a true multivariate form, 
so that cross-correlations be explicitly preserved. This is a very simple task, as it suffices to 
write the same relationships in multivariate form. We will give here the multivariate version 
of the most general case of subsection 3.3; the other cases are remedied in a similar manner.  
 The vector X is formed by appending all vectors of lower-level variables of the current 
period, and the vector Y is constructed in a similar manner, i.e.,  

 X = 
⎣
⎢
⎡

⎦
⎥
⎤X1

M

Xk

,       Y = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤X–q

M

X0

Z1

Z2

 (22) 

Thus, X and Y have k n and (q + 3) n elements, respectively. The matrices gX and gY, needed 
to express the additive property in the multivariate form (10), are constructed as in subsection 
3.3 but replacing 1 with the n × n identity matrix I and 0 with the n × n zero matrix O, that is 

 gΤΧ = [Ι, I, ..., I] and gΤY = [O, …, O, I, O] (23) 

For example, in a problem with k = 3 lower-level variables, n = 2 locations, and q = 0, the 
relevant vectors and matrices become  

 X = 

⎣
⎢
⎢
⎢
⎢
⎡

⎦
⎥
⎥
⎥
⎥
⎤X1 

1

X1
 2

X2
 1

X2 
2

 X3 
1

X3
 2

,       Y = 

⎣
⎢
⎢
⎢
⎢
⎡

⎦
⎥
⎥
⎥
⎥
⎤X0 

1

X0
 2

Z1
 1

Z1 
2

 Z2 
1

Z2
 2

,       gΤΧ = 
⎣
⎢
⎡

⎦
⎥
⎤1 0 1 0 1 0

 0 1 0 1 0 1
 ,       gΤY = 

⎣
⎢
⎡

⎦
⎥
⎤0 0 1 0 0 0

 0 0 0 1 0 0
  (24) 

It can be directly verified from this example that the relationship (7) (i.e., gΤΧ Χ = gΤY Y) is 
identical to the additive property (10). 
  The parameter matrix h is constructed as in subsection 3.3 but replacing each scalar 
covariance σ, τ, τ΄ or φ with its corresponding n × n matrix σ, τ, τ΄ or φ, respectively. Thus 
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 h = 

⎣⎢
⎢⎡

⎦⎥
⎥⎤

σ1‚–q L σ10 τ11 τ12

M O M M M

σk‚–q L σk‚0 τk‚1 τk‚2

 

⎣
⎢
⎢
⎢
⎡

⎦
⎥
⎥
⎥
⎤σ–q‚–q L σ–q‚0 τ–q‚1 τ–q‚2

M O M M M

σ0‚–q L σ00 τ01 τ02

τ1́‚–q L τ1́0 φ11 φ12

τ2́‚–q L τ2́0 φ21 φ22

–1

 (25) 

The coupling transformation (4) is 

  X := X
~

 + h [(X–q
T

 – X
~

–q
T

), …, (X0
T
 – X

~
0
T
), (Z1

T
 – Z

~
1
T
), (Z2

T
 – Z

~
2
T
)]

T
 (26) 

 In the second case mentioned in subsection 3.3 we have again two steps. At the first step, 
concerning the generation of the higher-level variables, the corresponding multivariate 
variables are X = Z1 and Y = [X–q

T
, …, X0

T
]
T
. The parameter matrix hZ now is 

 hZ = [τ1́‚–q … τ1́0] 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤σ–q‚–q L σ–q‚0

M O M

σ0‚–q L σ00

 –1

 (27) 

and the coupling transformation is 

 Z1 := Z
~

1 + hZ [(X–q
T

 – X
~

–q
T

), …, (X0
T
 – X

~
0
T
)]

T
 (28) 

At the second step, concerning the generation of the lower-level variables, the vectors of 
variables are X = [X1

T
, …, Xk

T
]
T
 and Y = [X–q

T
, …, X0

T
, Z1

T
]
T
, the parameter matrix is 

 h = 

⎣⎢
⎢⎡

⎦⎥
⎥⎤

σ1‚–q L σ10 τ11

M O M M

σk‚–q L σk‚0 τk‚1

 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤σ–q‚–q L σ–q‚0 τ–q‚1

M O M M

σ0‚–q L σ00 τ01

τ1́‚–q L τ1́0 φ11

  –1

 (29) 

and the coupling transformation is 

 X := X
~

 + h [(X–q
T

 – X
~

–q
T

), …, (X0
T
 – X

~
0
T
), (Z1

T
 – Z

~
1
T
)]

T
 (30) 
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4 Evaluation of parameters of coupling transformation 

 We have seen in section 3 that all forms of the coupling transformation involve three 
categories of parameters, defined in (11). Namely, these are: (a) covariances between lower-
level variables, denoted by σ; (b) covariances between higher-level variables, denoted by φ; 
and (c) covariances between lower- and higher-level variables, denoted by τ or τ΄.  
 A first option to evaluate these parameters would be to refer to the historical data. This, 
however, must be avoided for several reasons, i.e., (a) because in this way we would 
introduce a vast number of parameters depended on, and estimated from, the data, (b) because 
usually historical data records are limited and inadequate to estimate such a large parameter 
set; (c) because such a large parameter set, if estimated from historical data, may not be 
consistent with the higher- or lower-level models, which are usually expressed in terms of a 
parameter set as parsimonious as possible. The alternative is to let models determine the 
parameters (more specifically, the lower-level model, as it will be explained later). There are 
two options to do this, one numerical and one analytical.  
 The numerical option is based on stochastic simulation and is fully generalized, as it can 
perform with any type of lower-level model: We can generate a synthetic data record of 
lower-level variables X

~
 with an appropriate length and aggregate it to obtain the higher-level 

variables Z
~

. As covariances between X
~

 and/or Z
~

 equal those of X and/or Z, we can use these 
synthetic data records to estimate directly the parameters. This option has the advantage of 
being simple and independent of the type of the model. However, it has the disadvantages of 
the approximate character of estimations and the computational effort needed.  
 The analytical option is case-specific and uses the properties of the lower-level model 
chosen to determine the needed parameters theoretically. Owing to its exact character and the 
fast evaluation of parameters, this option is the most preferable whenever analytical equations 
can be established for the model chosen. Below, we will give the equations that are necessary 
to evaluate the needed parameters for a list of very common lower-level models of the 
literature [e.g., Salas et al., 1980; Bras and Rodriguez-Iturbe, 1985; Lane and Frevert, 1990; 
Grygier and Stedinger, 1990; Salas, 1993]. The derivations of equations are given in the 
Appendix A3 and may serve as a basis for extending the list given here with more models.  
 For the simple PAR(1) example defined by (3), the covariance of lower-level variables for 
any lag (s – r) is given by 

 σsr := Cov[Xs, Xr] = as as – 1 L ar + 1 σrr ,     s > r  (31) 

so that all lagged covariances among lower-level variables σsr are determined in terms of lag-
zero cross-covariances σss and the model parameters as. Similar (although somehow more 
complex) is the situation with other common hydrologic stochastic models. Thus, the PAR(2) 
model, expressed by 

 Xs = as Xs – 1 + es Xs – 2 + bs Vs (32) 
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where all as, es and bs are (n × n) matrices of parameters, results in  

 σsr = as σs – 1,r + es σs – 2,r ,     s > r (33) 

By applying this relationship recursively, for s = r + 1, r + 2, …, we can find any lagged 
covariance of lower-level variables in terms of lag-zero and lag-one covariance matrices (σss 
and σs – 1,s) and the model parameters as and es.  
 Similarly, the PARMA(1, 1) model, expressed by 

 Xs = as Xs – 1 + bs Vs + es Vs – 1 (34) 

where as, bs and es are (n × n) matrices of parameters, results in 

 σsr = as σrr + es br
T

 ,     s = r + 1  
(35) 

 σsr = as σs – 1,r ,     s > r + 1  

By applying this relationship recursively, for s = r + 1, r + 2, …, we can find any lagged 
covariance of lower-level variables in terms of the lag-zero covariance matrix σss and the 
model parameters as, bs and es.  
 Similar relationships are extracted for PAR or PARMA models of higher order. If the 
processes are not periodic (seasonal) but stationary, the same equations apply but in a 
simplified form as all parameter matrices do not depend on subperiod. 
 It is very common in stochastic hydrology the case that the lower-level model is expressed 
in terms of the logarithmic transformation of the lower-level variables, e.g., in terms of  

 Xs
* := ln(Xs – cs) (36) 

where cs is a vector of parameters estimated in such a manner that Xs
* be (approximately) 

normally distributed. In this case, relationships (31)-(35) express the covariances of the 
logarithmic transformations of variables. It is easy then to derive the covariances of the 
untransformed variables (which will be used then in the transformation) through the relation  

 σsr
lj
 = (µs

 l
 – cs

 l
) (µr

 j
 – cr

 j
) [exp(σsr

lj *
) – 1] (37) 

valid for any s, r, l and j, where σsr
lj
 = Cov[Xs

 l
, Xr

 j
], σsr

lj *
 = Cov[Xs

 l *
, Xr

 j *
], and 

 µs
 l
 = E[Xs

 l
] = cs

 l
 + exp(µs

 l *
 + σss

ll *
 / 2)   (38) 

with µs
 l *

 = E[Xs
 l *

]. 
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 In conclusion, any lagged covariance matrix of lower-level variables (σsr) can be 
determined in terms of the lower-level model parameters by either of the two methods 
(options) proposed. The next step is to determine covariances between lower-level and higher-
level variables (τsp). This is rather easy, because (1) implies that 

 τsp = Cov[Xs, Zp] = ∑
r = (p – 1) k + 1

p k

  Cov[Xs, Xr] (39) 

or 

 τsp = ∑
r = (p – 1) k + 1

p k

  σsr (40) 

 What it remains is the determination of lagged covariances between higher-level variables 
(φsp). Again using (1) we get 

 φpr = Cov[Zp, Zr] = ∑
s = (p – 1) k + 1

p k

  Cov[Xs, Zr] (41) 

or 

 φpr = ∑
r = (p – 1) k + 1

p k

  τsr (42) 

 We emphasize that the above estimation of φpr has been based on the lower-level model, 
although it could also be based on the higher-level model. However, in the latter case, 
possible incompatibilities of the two models would have negative consequences in 
preservation of the additive property. This is easily demonstrated through the simplest 
transformation (13): If φ11 is estimated from the lower-level model (equation (42)), i.e., as the 
sum of τs 1 for all s, then the coefficients τs 1 / φ11 add up to 1 and (13) preserves the additive 
property. On the contrary, if φ11 were estimated directly from the higher-level model, possibly 
it would have some departure from the sum of τs 1 (due to incompatibilities of models), which 
would result in violation of the additive property. This situation, that is, the estimation of 
higher-level covariances using the lower-level model, may seem strange at first glance. 
However, a more careful consideration of the context where these estimations of covariances 
are used shows that it is absolutely justified. Specifically, these estimations are not used in the 
higher-level model at all. On the contrary, this is an independent model that is fitted in a 
different manner (the appropriate one for the specific model chosen, which is out of the scope 
of this paper). Moreover, the higher-level model is run in an initial modeling phase, previous 
to that of the lower-level mode. In turn, the lower-level model is fitted with a procedure that is 
appropriate for this specific model, which again is out of the scope of this paper. Thus, the 
estimations of covariances described in the present section are used only in the coupling 
transformation, which applies to the values generated by the lower-level model. Therefore, it 
is natural to infer these parameters using the lower-level model only.  
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5 Preservation of skewness 

 The preservation of skewness is often of great importance, as hydrologic processes, 
particularly in small time scales, exhibit non-symmetric distributions. In all analyses of the 
previous sections, the skewness of the processes, either higher- or lower-level, was not 
considered. On the contrary, the analyses focused on second, marginal or joint, moments of 
the processes, the preservation of which was proved theoretically. Unfortunately, the 
preservation of third moments is hard to be handled in an analytical manner.  
 From the general relation (4), used to develop the various forms of the coupling 
transformation, we may conclude that the marginal third moments of X do not necessarily 
equal those of X

~
. Specifically, we may assume that, the marginal third moment of the term 

h (Y – Y
~

) is zero, due to symmetry, and thus it is not responsible for differences between the 
coefficients of skewness of X

~
 and X. However, apart for that marginal moment, joint third 

moments of X
~

 and h Y
~

 may create such differences. These joint third moments are difficult to 
determine analytically. Generally, because X in (4) is expressed as a linear combination of X

~
 

and other variables, we expect that the coefficient of skewness of X will be lower than that of 
X
~

 (from the central limit theorem we know that, under certain conditions, linear combinations 
of variables tend to have symmetric distributions). Indeed, numerical investigations confirm 
this observation. Since an analytical solution is too complicated (if not intractable), we seek 
for approximate numerical methods. We will discuss two such methods. 
 Let ζs

 l
 := E[(Xs

 l
 – µs

 l
)3] and ζ

 ~
s
 l
 := E[(X

 ~
s
 l
 – µs

 l
)3] be the third central moments of Xs

 l
 and X

 ~
s
 l
, 

respectively, where µs
 l
 = E[Xs

 l
] = E[X

 ~
s
 l
]. From the properties of the lower-level model we 

know ζs
 l
. In the first method we assume that ζ

 ~
s
 l
 shall be different from (generally, higher than) 

ζs
 l
 and we seek for the value of ζ

 ~
s
 l
 that results in the correct value of ζs

 l
. This can be 

determined by iterative stochastic (Monte-Carlo) simulation. At the ith iteration we assume a 
trial value ( ζ

 ~
s
 l
)i, starting with an initial value ( ζ

 ~
s
 l
)0 = ζs

 l
. We run the lower-level model to 

obtain a synthetic time series x~s with a sufficient length, and the coupling transformation to 
derive the series xs. From the latter we estimate the sample third moments which we denote 
( ζ
 ^

s
 l
)i (for location l, subperiod s and iteration i). We modify then ζ

 ~
s
 l
 according to the rule 

 ( ζ
 ~

s
 l
)i + 1 = ( ζ

 ~
s
 l
)i + [ζs

 l
 – ( ζ

 ^
s
 l
)i] / c (43) 

and proceed to the next iteration. The denominator c in (43) is a number greater than 1 (e.g., c 
= 2) that enhances numerical stability in the route to the final solution. Normally, this 
procedure will stop when the attained sample third moments ( ζ

 ^
s
 l
) match the theoretical ones 

(ζs
 l
) for all l and s. However, given the Monte-Carlo character of the method, we must relax 

the convergence criterion and accept the solution of iteration i if for all l and s 

 |( ζ
 ^

s
 l
)i – ζs

 l
| ≤ max

i
 {( ζ

 ~ ^
s
 l)i – ( ζ

 ~
s
 l
)i|} (44) 

where ζ
 ~ ^

s
 l denotes the sample third moment of the synthetic time series x~s. Practically, this 

means that a deviation of the sample skewness, after performing the coupling transformation, 
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from its theoretical value can be acceptable if it is lower than or equal to the corresponding 
deviation without applying the coupling transformation. 
 The second method is based on conditional sampling in a manner much the same with that 
proposed by Koutsoyiannis and Manetas [1996]. Here we demand that the departure of Y

~
 and 

Y in the coupling transformation be small enough so that the addition of the term h (Y – Y
~

) to 
X
~

 do not affect the statistics of the latter. Therefore, we can assume that ζ
 ~

s
 l
 = ζs

 l
. To achieve a 

vector Y
~

 close to the known Y, we must keep repeating the generation process for the 
variables of each period (rather than performing a single generation only) until the distance of 
Y
~

 from Y be lower that an accepted limit. This distance can be defined as 

 ∆ = (1 / m) ||Y΄ – Y
~
΄|| (45) 

where Y΄ and Y
~
΄ are Y and Y

~
 standardized by standard deviation (i.e. Υ ś

l
 = Υs

 l
 / {Var[Υs

 l
]}1/2, 

Y
 ~

ś
l
 = Y

 ~
s
 l
 / {Var[Υs

 l
]}1/2), m is the common size of Y and Y

~
, and ||.|| denotes the Euclidian 

norm (other norms such as the maximum norm were found to behave worse).  
 Because in the initial generation scheme proposed, the variables X

~
 are generated 

independently of the higher-level variables, it was assumed in the Proposition of section 2 that 
Y is independent of X

~
. However, repetition apparently introduces dependence of X

~
 on Y. 

Hence, the question arises whether the conclusions of the Proposition are still valid for Y 
dependent on X

~
 (and Y

~
) or not. For an intuitive answer to that question we observe that the 

case of independent Y and X
~

 is the worst to manage. If the covariance Cov[X
~

, Y] approaches 
(or matches) the true covariance Cov[X, Y], instead of being zero, then it is easier for the 
coupling transformation to preserve the statistical properties of interest. Furthermore, the 
applications given by Koutsoyiannis and Manetas [1996] for the similar case of using their 
adjustment procedure, which is equivalent to the simplified transformation of subsection 3.1, 
and those given here in section 6 below, verify empirically a positive answer to the above 
question.  
 That the answer is positive, under certain conditions, can be proved theoretically. 
Specifically, it is shown in Appendix A2 that under the assumption that Y is no more 
independent from X

~
 and Y

~
 but correlated to both, such that 

 Cov[X
~

, Y] = h Cov[Y
~

, Y] (46) 

where h is given from (5), the Proposition of section 2 remains valid in all its items. We note 
that the condition (46) holds in the case of Y independent from X

~
 and Y

~
, as both its sides are 

zero. Also it holds in the other extreme case where both Cov[X
~

, Y] and Cov[Y
~

, Y] match the 
true covariances Cov[X, Y] and Cov[Y, Y], respectively. This can be verified using (5). 
Numerical investigation with the proposed repetition scheme shows that the condition holds 
in intermediate cases as well.  
 Both the above methods can lead to sufficient preservation of skewness (see section 6 
below), although none of them is ideal. Their common disadvantages are the approximate 
character and the repetitive application, which increases computer time (although this time is 
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not an obstacle as it ranges from less than a minute to some minutes for typical hydrological 
problems run on a modern PC to generate some thousands of synthetic data). Their common 
advantages are their simplicity and independence of the type of models. The Monte-Carlo 
simulation method seems to need fewer repetitions that the conditional sampling method and, 
once its additional parameters ( ζ

 ~
s
 l
) are evaluated, it does not need further repetitions in 

subsequent applications of the model. However, to get adequate estimates of these parameters 
a large length of simulation record (e.g., 10 000 years or more) is needed. Another weak point 
of the Monte-Carlo method is the fact that it results in coefficients of skewness higher than 
those of the original lower-level model, and this may be a problem if the latter are already 
large. Generally, we can consider the Monte-Carlo method preferable if a model must be 
setup once and thereafter run several times. Conversely, if the model is to run only once, the 
conditional sampling method may be preferable.  
 Apart from the computational cost, i.e., the increase of computer time due to repetition, no 
additional cost is implied by either of the two approaches for preservation of skewness. 
Specifically, there is no negative effect in preserving other properties of the lower-level 
processes such as the second order moments. On the contrary, the conditional sampling 
method may have positive effects in preserving second order moments by simplified forms of 
the coupling transformation, as it is demonstrated in section 6. 

6 Performance demonstration  

 The entire modelling framework for both time scales can be summarized in the following 
steps composing two groups. The steps of the first group correspond to model choice and 
fitting: 

1. Choose a model for the higher-level (coarse) time scale and fit it using the appropriate 
method for that model.  

2. Choose a model for the lower-level (fine) time scale and fit it using the appropriate 
method for that model. 

3. Decide the composition of the vector Y according to the specific needs of the problem 

as discussed in section 3. In the most general multivariate case use the composition 

defined in (22).  

4. Define the appropriate matrix h of the coupling transformation using the corresponding 

equations of section 3. In the most general multivariate case use (25). 

5. Evaluate the items of matrix h using either of the methods of section 4.  

 The steps of the second group perform the generation: 

6. Use the higher-level model to produce a series of Z with the desired length.  
7. Use the lower-level model to produce a series of X

~
 with the same length, without 

reference to the higher-level series. 
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8. At each period evaluate the vectors Y and Y
~

 using the values of Z, X
~

 of the current and 

(if applicable) next period, and (if applicable) X of the previous period.   

9. Apply the coupling transformation to derive X of the current period. 
10. Repeat steps 8 and 9 for all periods. 
For the preservation of skewness the algorithm becomes slightly more complex due to 
repetition as described in section 5.  
 The different forms and methods of the proposed framework for coupling stochastic 
models of different time scales are demonstrated through a simple numerical example 
involving two locations and two lower-level variables per period. The higher- and lower-level 
models used are those of equations (2) and (3), respectively (we remind that models  (2) and 
(3) are not fully compatible one another). Several sets of model parameters were examined; 
here we present the results of a representative case with the parameter set shown in Table 1. 
 The following forms of the coupling transformation were examined: 

1. Full transformation, multivariate mode; as in subsection 3.4 (symbolically: F/M). 
2. Full coupling transformation, single variate mode, i.e., transformation applied separately to 

each location; as in subsection 3.3 (symbolically: F/S). 
3. Transformation without link to the higher-level variable of the next period, as in subsection 

3.2, but in multivariate mode (symbolically: N+/M). 
4. Transformation without link to the lower-level variables of the previous period, 

multivariate mode (symbolically: N–/M). 
5. Simplified transformation, single variate mode; as in subsection 3.1 (symbolically: S/S). 
6. Modified simplified transformation, single variate mode (symbolically: S1/S).  

The modification in item 6 of the above list (in comparison to item 5) consists of using the 
value of the last lower-level variable of the previous period for initialization the PAR(1) 
model (3) in each period, although this is not used by the coupling transformation.  
 For comparison, results of the non-coupled lower-level model (symbolically: NC) are also 
presented. In all cases the model generated synthetic series of 10 000 periods, from which the 
sample statistics were computed and compared to the theoretical values. 
 In Figure 2 we compare the marginal statistics (means, standard deviations and coefficients 
of skewness) of all lower-level variables, obtained by the different transformation forms, to 
their theoretical values. As anticipated, all forms of coupled models preserved perfectly the 
means and standard deviations but no form preserved the coefficients of skewness (apart, of 
course, from the non-coupled model). Figure 3 shows the temporal correlation coefficients of 
the lower-level variables with previous lower-level variables and current and next higher-level 
variables, as derived by the various forms of the coupling transformation for the test 
application. We observe that only the full transformation form, either in multivariate or 
single-variate mode (F/M, F/S) has a perfect behavior in preserving all these correlations. 
Transformation form N+/M fails to reproduce some of the correlations with higher-level 
variables of next period; also, it has a lower performance in preserving correlations with 
previous lower-level variables. Transformation forms N−/M and S/S exhibit a poor behavior 
in preserving correlations with previous lower-level variables (particularly, those of previous 
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period); the situation is improved with model S1/M. Also, both simplified models (S/S, S1/S) 
fail to reproduce the correlations with next higher-level variables. Figure 4 shows the lag-zero 
cross-correlation coefficients attained by the various transformation forms. As anticipated, the 
multivariate forms (F/M, N+/M, N–/M) performed very well whereas single-variate models 
(F/S, S/S, S1/S) failed to preserve cross-correlations.  
 To improve the preservation of the coefficients of skewness we applied both methods 
discussed in section 5. In Figure 5 we present the results of the Monte-Carlo method for the 
full transformation form in multivariate mode (F/M). We observe that after the tenth iteration, 
the attained coefficients of skewness become close to the theoretical ones. The criterion of 
equation (44) results true for iteration 13; the fluctuation of the attained coefficients of 
skewness of most variables that appears beyond iteration 13 are anticipated because of the 
Monte-Carlo character of the method. We notice that the differences of the assumed and 
attained (after applying the coupling transformation) coefficients of skewness, which 
correspond to ζ

 ~
s
 l
 and ζ

 ^
s
 l
, respectively, may be very large (e.g., for variable X1

 1
). 

 We also applied the method of conditional sampling using repetitions for the full (F/M), 
the simplified (S/S) and the modified simplified (S1/S) forms of the coupling transformation. 
In Figure 6 we plotted the average number of repetitions required to achieve a certain distance 
∆ (defined in (45)). Figure 7 shows the attained coefficients of skewness using the conditional 
sampling method, as a function of the mean number of repetitions. We observe that all three 
transformation forms examined have roughly the same performance. Adequate values of 
sample coefficients of skewness are obtained with 50-100 repetitions. We also examined in 
this case the preservation of correlation coefficients of the lower-level variables with the 
previous lower-level variables and the next higher-level variables (Figure 8) and cross-
correlation coefficients (Figure 9). We observe that both S/S and S1/S forms, which failed to 
preserve all these statistics if applied without repetitions (Figure 3, Figure 4), result in 
adequate preservation of cross-correlations after 50-100 repetitions. In addition, the S1/S 
model performs well in preserving correlation coefficients of the lower-level variables with 
the previous lower-level variables after 50-100 repetitions. However, none of the two 
simplified forms could approach the theoretical correlation coefficients of the lower-level 
variables with the next higher-level variables, even after 1000 repetitions. In conclusion, 
repetition, apart from its usefulness for preserving coefficients of skewness, improves also 
preservation of auto- and cross-correlation coefficients of lower-level variables of simplified 
model versions. Notably, this is done at no additional computational cost.  

7 Summary and conclusions 

 A methodology is proposed for coupling stochastic models of hydrologic processes 
applying to different time scales so that time series generated by the different models be 
consistent. Given two multivariate time series, generated by two separate (unrelated) 
stochastic models of the same hydrologic process, each applying to a different time scale, a 
transformation is developed (referred to as a coupling transformation) that appropriately 
modifies the time series of the lower-level time scale so that this series be consistent with the 
time series of the higher-level time scale without affecting the second-order stochastic 
structure of the former and also establishing appropriate correlations between the two time 
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series. The coupling transformation is based on a developed generalized mathematical 
proposition, which ensures preservation of marginal and joint second-order statistics and 
linear relationships between lower- and higher-level processes. The methodology can be 
applied to problems involving disaggregation of annual to seasonal and seasonal to 
subseasonal time scales, as well as problems involving finer time scales, under the only 
requirement that a specific stochastic model is available for each involved time scale. An 
implementation of the methodology for disaggregation of daily rainfall into hourly rainfall at 
many locations (a problem much more demanding than disaggregation of annual to seasonal 
quantities, due to the intermittent aspect of the process and the very asymmetric marginal 
distributions) is under way.   
 Several specific forms of the coupling transformation are studied. The simplest of them, 
symbolically S/S and S1/S, are single variate and do not consider any link to higher- or lower-
level variables of previous or next periods; the difference of the two is that S1/S uses some of 
the already generated variables of the previous period for its initialization whereas S/S does 
not. The most detailed form, symbolically F/M, is multivariate and incorporates appropriate 
links to higher- and lower-level variables of previous and next periods. In addition, techniques 
for evaluating parameters of the coupling transformation based on second order moments of 
the lower-level process are studied. Specific implementations of these techniques are given 
for the very common cases where the lower-level process (or its logarithmic transformation) 
is multivariate PAR(1), PAR(2) or PARMA(1, 1).  
 Although the coupling transformation can explicitly preserve means and second-order 
statistics of the processes involved, it introduces bias to the coefficients of skewness and any 
other parameters that cannot be related to means and second order statistics (e.g. probabilities 
of dry intervals in the case of the fine-scale rainfall process). Due to its linearity, the coupling 
transformation encompasses the effects of the central limit theorem. Thus, the transformed 
series tend to be Gaussian (their coefficients of skewness are reduced). Unlike second-order 
statistics, third moments and coefficients of skewness are too complicated to handle 
analytically. However, two approximate methods that enable preservation of skewness of the 
processes are studied. The first introduces negative bias to the coefficients of skewness of the 
lower-level processes, the magnitude of which is determined by Monte-Carlo simulation, to 
counterbalance the bias introduced by the application of the coupling transformation. The 
second uses repetition as a means of conditional sampling and, in that way, it prevents the 
lower-level variables from departing (in terms of their sum) significantly from the known 
higher-level variables, thus reducing bias to a negligible level. 
 A detailed numerical example of the application of the methodology demonstrates that it 
behaves as it should. The full multivariate (F/M) form preserves all temporal and spatial 
correlations of lower-level variables either with other lower-level variables or with higher-
level variables whereas simplified forms fail to preserve some of these correlations. All forms 
preserve first and second marginal moments but fail to preserve third moments. The latter are 
preserved only after application of either of the two methods developed for that purpose, 
Monte-Carlo simulation or conditional sampling. The latter, apart from its usefulness for 
preservation of skewness coefficient, improves also (at no additional computational cost) 
preservation of auto- and cross-correlation coefficients of lower-level variables for simplified 
forms of the coupling transformation.  
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 Among the different forms of the coupling transformation studied, the full multivariate one 
(F/M) is the most preferable as it preserves explicitly the greater number of statistics. Between 
the two methods for preserving skewness, the Monte-Carlo method may be preferable if a 
model must be setup once and thereafter run several times. Conversely, if the model is to run 
only once, the conditional sampling method may be preferable. Besides, if a simplified form 
of the coupling transformation is chosen, then it must be combined with the conditional 
sampling method to improve preservation of statistics that are not explicitly considered in the 
transformation.  
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Table 1 Model parameters for the test application 

Parameter type Parameter values 
 Lower-level process 

 Subperiod s = 1 Subperiod s = 2 
 Location l = 1 Location l = 2 Location l = 1 Location l = 2 

Variable symbol X1
 1
 X1

 2
 X2

 1
 X2

 2
 

Mean, µs
 l
 1.000 2.000 3.000 4.000 

Covariance matrices     
 σss  l = 1 0.250 0.210 0.810 0.432 

l = 2 0.210 0.490 0.432 2.560 
 σs,s – 1  l = 1 0.225 0.120 0.090 0.076 
  l = 2 0.113 0.672 0.432 1.008 
Third central moment, ζs

 l
 0.125 0.240 0.437 6.550 

 Higher-level process  

 Location l = 1 Location l = 2  

Variable symbol Z1
 1

 Z1
 2

   
Mean 4.000 6.000  

Covariance matrices    

 φ11 l = 1 1.240 1.150  

  l = 2 1.150 5.066  

 φ12 l = 1 0.340 0.693  

  l = 2 0.192 2.863  

Third central moment  0.708 10.704  
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Figure 1 Schematic representation of actual and auxiliary processes, their links, and the steps 
followed to construct the actual lower-level process from the actual higher-level process.  
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Figure 2 Comparison of marginal statistics of the lower-level variables (Xs 
l
, indicated by the 

block arrows to the left) as derived by various forms of the coupling transformation for the 
test application. Key: TH: Theoretical values; NC: Non-coupled lower-level model; F/M: Full 
coupling transformation, multivariate mode; F/S: Full transformation, single variate mode; 
N+/M: Transformation without link to the next higher-level variable, multivariate mode; 
N−/M: Transformation without link to the previous lower-level variable, multivariate mode; 
S/S: simplified transformation, single variate mode; S1/S: modified simplified transformation 
(starting with the known value of the previous lower-level variable), single variate mode. 
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Figure 3 Comparison of temporal correlation coefficients of the lower-level variables (Xs 
l
, 

indicated by the block arrows to the left) with previous lower-level variables and current and 
next higher-level variables (Xs – 1

 l
, Z1

 l
, Z2

 l
, respectively, indicated by the block arrows in the 

top) as derived by various forms of the coupling transformation for the test application. Key: 
same as in Figure 2. 
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Figure 4 Comparison of cross-correlation coefficients of the lower-level variables of the first 
(left) and second (right) subperiod as derived by various forms of the coupling transformation 
for the test application. Key: same as in Figure 2. 
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Figure 5 Hypothesized (open circles, corresponding to ζ
 ~

s
 l
) and attained (diamonds, 

corresponding to ζ
 ^

s
 l
) coefficients of skewness for each of the lower-level variables (shown in 

the block arrows to the left), as a function of the iteration number, for a test application of the 
full coupling transformation (F/M, Monte-Carlo method). Full and dotted lines represent the 
theoretical values (corresponding to ζs

 l
) and the values obtained from the non-coupled lower-

level model (NC, corresponding to ζ
 ~ ^

s
 l), respectively.  
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Figure 6 Average number of repetitions required to achieve the preset allowed distance 
between Y and Y

~
 using the conditional sampling method for the full (F/M, diamonds), the 

simplified (S/S, triangles), and the modified simplified (S1/S, open circles) coupling 
transformations.  
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Figure 7 Attained coefficients of skewness of the lower-level variables (Xs
 l
, indicated by the 

block arrows to the left) as a function of the mean number of repetitions, for the full (F/M, 
diamonds), the simplified (S/S, triangles), and the modified simplified (S1/S, open circles) 
coupling transformations. Full and dotted lines represent the theoretical values and the values 
obtained from the non-coupled lower-level model (NC), respectively. 
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Figure 8 Attained correlation coefficients of the lower-level variables (Xs

 l
, indicated by the 

block arrows to the left) with the previous lower-level variables (left column) and the next 
higher-level variables (right column) as a function of the mean number of repetitions, for the 
full (F/M, diamonds), the simplified (S/S, triangles), and the modified simplified (S1/S, open 
circles) coupling transformations. Full and dotted lines represent the theoretical values and the 
values obtained from the non-coupled lower-level model (NC), respectively. 
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Figure 9 Attained cross-correlation coefficients of the lower-level variables of the first (left) 
and second (right) subperiod as a function of the mean number of repetitions, for the full 
(F/M, diamonds), the simplified (S/S, triangles), and the modified simplified (S1/S, open 
circles) coupling transformations. Full and dotted lines represent the theoretical values and the 
values obtained from the non-coupled lower-level model (NC), respectively. 
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Appendix – Mathematical derivations (Supplement on microfiche)  

A1 Proof of the Proposition of section 2 

 (a) Firstly, we will prove that (4) preserves means and covariance matrices. Taking average 
values in both sides of (4) we find that E[X] = E[X

 ~
] (because by definition of Y, E[Y] = 

E[Y
~

]), which proves preservation of means. Subtracting means from both sides of (4) we get  

 (X – E[X]) = (X
~

 – E[X
~

]) + h {(Y – E[Y]) – (Y
~

 – E[Y
~

])} (A1) 

Postmultiplying (A1) by its transpose and then taking expected values we get 

 Cov[X, X] = Cov[X
~

, X
~

] – Cov[X
~

, h Y
~

] – Cov[h Y
~

, X
~

]  

  + Cov[h Y
~

, h Y
~

] + Cov[h Y, h Y] (A2) 

where we have omitted covariance terms among Y and Y
~

 or X
~

, because Y is independent of 
both X

~
 and Y

~
. Observing that by definition Cov[Y

~
, Y

~
] = Cov[Y, Y], we can write (A2) as 

 Cov[X, X] = Cov[X
~

, X
~

] – Cov[X
~

, Y
~

] hT – h Cov[Y
~

, X
~

] + 2 h Cov[Y
~

, Y
~

] hΤ  (A3) 

and using the definition of h := Cov[X
~

, Y
~

] {Cov[Y
~

, Y
~

]}–1 and observing that Cov[Y
~

, Y
~

] is 
symmetric, we get 

 Cov[X, X] = Cov[X
~

, X
~

] – Cov[X
~

, Y
~

] {Cov[Y
~

, Y
~

]}–1 Cov[Y
~

, X
~

]  

  – Cov[X
~

, Y
~

] {Cov[Y
~

, Y
~

]}–1 Cov[Y
~

, X
~

]  

  + 2 Cov[X
~

, Y
~

] {Cov[Y
~

, Y
~

]}–1 Cov[Y
~

, Y
~

] {Cov[Y
~

, Y
~

]}–1 Cov[Y
~

, X
~

] (A4) 

which reduces to 

 Cov[X, X] = Cov[X
~

, X
~

] (A5) 

This proves our claim about preservation of covariances.  
 Postmultiplying (A1) by the (Y – E[Y])T and then taking expected values and also omitting 
covariance terms among Y and Y

~
 or X

~
, which are zero because Y is independent of both X

~
 

and Y
~

, we get 

 Cov[X, Y] = Cov[h Y, Y] = h Cov[Y, Y] (A6) 
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Substituting h from (5) we get  

 Cov[X, Y] = Cov[X
~

, Y
~

] {Cov[Y
~

, Y
~

]}–1 Cov[Y, Y] = Cov[X
~

, Y
~

] (A7) 

since Cov[Y
~

, Y
~

] = Cov[Y, Y]. This proves our claim that the covariance matrix of X and Y is 
identical to that of X

~
 and Y

~
. 

 (b) Secondly, we will prove (7) assuming that (6) holds. Taking expected values in (6) and 
then subtracting from (6) we get 

 gΤΧ {X
~

 – E[X
~

]} = gΤY {Y
~

 – E[Y
~

]}  (A8) 

Postmultiplying (A8) by {Y
~

 – E[Y
~

]}T and then taking expected values we find  

 gΤΧ Cov[X
~

, Y
~

] = gΤY Cov[Y
~

, Y
~

]  (A9) 

Postmultiplying (A9) by {Cov[Y
~

, Y
~

]}–1 we get 

 gΤY = gΤΧ h (A10) 

Multiplying both sides of (4) on the left by gΤΧ we find that 

 gΤΧ X := gΤΧ X
~

 + gΤΧ h (Y – Y
~

) (A11) 

or  

 gΤΧ X := gΤΧ X
~

 + gΤY (Y – Y
~

) = gΤΧ X
~

 + gΤY Y – gΤY Y
~

 (A12) 

which, given (6), results directly in (7).  
 (c) If we get covariances as in (A2) above, but conditionally on Y = y, the last term 
Cov[h Y, h Y | Y = y] will now be zero. The other terms are not affected by the condition 
because of independence from Y. Thus, writing (A2) for Y = y, we get 

 Cov[X, X | Y = y] = Cov[X
~

, X
~

] – Cov[X
~

, h Y
~

] – Cov[h Y
~

, X
~

] + Cov[h Y
~

, h Y
~

]  (A13) 

where we have omitted covariance terms among Y and Y
~

 or X
~

, because Y is independent of 
both X

~
 and Y

~
. Equivalently, 

 Cov[X, X | Y = y] = Cov[X
~

, X
~

] – Cov[X
~

, Y
~

] hT – h Cov[Y
~

, X
~

] + h Cov[Y
~

, Y
~

] hΤ  (A14) 

In a similar manner as previously, this becomes 

 Cov[X, X | Y = y] = Cov[X
~

, X
~

] – Cov[X
~

, Y
~

] {Cov[Y
~

, Y
~

]}–1 Cov[Y
~

, X
~

]  (A15) 

which if written for the (i, i)th element of Cov[X, X | Y = y] takes the form of (8). 
 Next, we will show that Var[Xi | Y = y] is identical to the least mean square prediction 
error of Xi from Y. To this aim, we consider the linear prediction model  

 Xi = κΤ Y + U (A16) 
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where κ is a vector of parameters and U is a random variable whose deviation from mean 
represents the prediction error. We seek for the vector κ that minimizes Var[U]. Taking 
expected values in both sides of (A16) and subtracting from (A16) we get 

 (U – E[U]) = (Xi – E[Xi]) – κΤ {Υ – E[Y]} (A17) 

so that 

 Var[U] = Var[Xi] – 2 Cov[Xi, κΤ Υ] + Var[κΤ Υ]  (A18) 

or equivalently, 

 Var[U] = Var[Xi] – 2 Cov[Xi, Y] κ + κΤ Cov[Y, Y] κ (A19) 

To find κ that minimizes Var[U] we take the derivative of the right-hand side of (A19) with 
respect to κ and equate it to 0. This results in  

 – 2 Cov[Xi, Y] + 2 κΤ Cov[Y, Y] = 0 (A20) 

or 

 κ = {Cov[Y, Y]}–1 Cov[Y
~

, X
 ~

i] (A21) 

Substituting this result in (A19) we get 

 Var[U] = Var[Xi] – Cov[Xi, Y] {Cov[Y, Y]}–1 Cov[Y, Xi] (A22) 

Taking into consideration item (a) of the Proposition we conclude that Var[U] is identical to 
Var[Xi | Y = y] given by (8).  

A2 Extension of the Proposition for auxiliary processes dependent on the 
actual higher-level process 

 If Cov[X
~

, Y] and Cov[Y
~

, X] are not zero, as it was assumed for deriving equation (A2), 
then, in addition to the terms already written in the right-hand side of (A2), we will now have 
the following nonzero terms: 

 Cov[X
~

, h Y] + Cov[h Y, X
~

] – Cov[h Y
~

, h Y] – Cov[h Y, h Y
~

] (A23) 

or, equivalently, 

 Cov[X
~

, Y] hT + h Cov[Y, X
~

] – h Cov[Y
~

, Y] hT – h Cov[Y, Y
~

] hT (A24) 

Apparently, under condition (46), the sum of all terms becomes zero.  
 Similarly, in addition to the terms already written in the right-hand side of (A6), we will 
now have the following nonzero terms: 

 Cov[X
~

, Y] – h Cov[Y
~

, Y] (A25) 

which apparently, under condition (46), add up to zero. Thus, item (a) of the Proposition 
remains valid. 
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 For the proof of item (b) of the Proposition we have not used any assumption about the 
dependence of Y on X

~
 or Y

~
; therefore the proof of Appendix A1 remains valid. 

 Similarly, the second part of the proof of item (c) of the Proposition (that concerning the 
minimization of the variance of estimation error U) has been derived without any assumption 
about the dependence of Y on X

~
 or Y

~
 and therefore it remains valid. Because Var[Xi | Y = y] 

cannot be lower than the minimum Var[U], the introduction of nonnegative correlation of Y 
to X

~
 and Y

~
 cannot improve (i.e., reduce) this conditional variance and thus Var[Xi | Y = y] 

keeps the value given by (8).  

A3 Proofs of equations of parameter evaluation (section 4) 

A3.1 Equation (31) 

 Subtracting means from both sides of (3) and then postmultiplying by (Xr – E[Xr])T, with r 
< s, we get  

 Cov[Xs, Xr] = as Cov[Xs – 1, Xr] + bs Cov[Vs, Xr],     s > r  (A26) 

Since s > r, Vs and Xr are uncorrelated and thus the last term of the right-hand side of (A26) is 
zero. Hence, 

 σsr = as σs – 1,r ,     s > r  (A27) 

Applying (A27) recursively (i.e. substituting σs – 1,r with as – 1 σs – 2,r, etc.) we get (31). 

A3.2 Equation (33) 

 Subtracting means from both sides of (32) and then postmultiplying by (Xr – E[Xr])T, with 
r < s we get  

 Cov[Xs, Xr] = as Cov[Xs – 1, Xr] + es Cov[Xs – 2, Xr] + bs Cov[Vs, Xr],     s > r  (A28) 

Since s > r, Vs and Xr are uncorrelated and thus the last term of the right-hand side of (A28) is 
zero. Hence, (33) is derived. 

A3.3 Equation (35) 

 Writing (34) for Xr, subtracting means from both its sides and then postmultiplying by 
(Vs – E[Vs])T we get  

 Cov[Xr, Vs] = ar Cov[Xr – 1, Vs] + br Cov[Vr, Vs] + er Cov[Vr – 1, Vs]  (A29) 

If s > r, then Vr will be uncorrelated to both Xs and Xs – 1, and thus all terms of (A29) are zero. 
If s = r, then (A29) yields Cov[Xr, Vr] = br, since Cov[Xr – 1, Vr] = Cov[Vr – 1, Vr] = O and 
Cov[Vr, Vr] = I. Thus,  

 Cov[Xr, Vs] = br,    s = r   
  (A30) 
 Cov[Xr, Vs] = O,    s > r  
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 Subtracting means from both sides of (34) and then postmultiplying by (Xr – E[Xr])T, we 
get  

 Cov[Xs, Xr] = as Cov[Xs – 1, Xr] + bs Cov[Vs, Xr] + es Cov[Vs – 1, Xr]  (A31) 

If s > r + 1, then from (A30) both the middle and the last term of the right-hand side of (A31) 
will be zero and this proves the second of (35). If s = r + 1, then from (A30) the middle term 
of (A31) will be zero but the last term will be es br

T; this proves the first of (35). 

A3.4 Equation (37) 

 We consider any two variables Xs
 l
 and Xr

 j
, and their logarithmic transformations Xs

 l *
 := 

ln (Xs
 l
 – cs

 l
) and Xr

 j *
 := ln (Xr

 j
 – cr

 j
). Since Xs

 l *
 and Xr

 j *
 are jointly normal (Xs

 l
 and Xr

 j
 are jointly 

lognormal), the variable W*
  := Xs

 l *
 + Xr

 j *
 has normal distribution with η := E[W*

 ] = µs
 l *

 + µr
 j *

 
and θ := Var[W*

 ] = σss
ll *

 + σrr
jj *

 + 2 σsr
lj *

. Taking the characteristic function Φ(ω) of the normal 
distribution (the Fourier transform of its density), i.e., 

 Φ(ω) := Ε[exp(i ω W*
 )] = exp[i η ω – θ ω2 / 2] (A32) 

where i = –1, and setting ω = –i we get 

 Ε[exp(W*
 )] = exp[η + θ / 2] = exp[µs

 l *
 + µr

 j *
 + (σss

ll *
 + σrr

jj *
) / 2 + σsr

lj *
] (A33) 

Combining (38) we get 

 Ε[exp(W*
 )] = (µs

 l
 – cs

 l
) (µr

 j
 – cr

 j
) exp(σsr

lj *
) (A34) 

Besides,  

 Ε[exp(W*
 )]= E[exp(Xs

 l *
) exp(Xr

 j *
)] = E[(Xs

 l
 – cs

 l
) (Xr

 j
 – cr

 j
)] (A35) 

and 

 Cov[Xs
 l
, Xr

 j
] = Cov[Xs

 l
 – cs

 l
, Xr

 j
 – cr

 j
] = E[(Xs

 l
 – cs

 l
) (Xr

 j
 – cr

 j
)] – E[Xs

 l
 – cs

 l
] E[Xr

 j
 – cr

 j
] (A36) 

Thus, 

 Cov[Xs
 l
, Xr

 j
] = (µs

 l
 – cs

 l
) (µr

 j
 – cr

 j
) exp(σsr

lj *
) – (µs

 l
 – cs

 l
) (µr

 j
 – cr

 j
) (A37) 

which proves (37).  


