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Abstract 25 

Generating fine-scale time series of intermittent rainfall that are fully consistent with any given 26 

coarse-scale totals is a key and open issue in many hydrological problems. We propose a 27 

stationary disaggregation method that simulates rainfall time series with given dependence 28 

structure, wet/dry probability, and marginal distribution at a target finer (lower-level) time scale, 29 

preserving full consistency with variables at a parent coarser (higher-level) time scale. We 30 

account for the intermittent character of rainfall at fine time scales by merging a discrete 31 

stochastic representation of intermittency and a continuous one of rainfall depths. This approach 32 

yields a unique and parsimonious mathematical framework providing general analytical 33 

formulations of mean, variance, and autocorrelation function (ACF) for a mixed-type stochastic 34 

process in terms of mean, variance, and ACFs of both continuous and discrete components, 35 

respectively. To achieve the full consistency between variables at finer and coarser time scales in 36 

terms of marginal distribution and coarse-scale totals, the generated lower-level series are 37 

adjusted according to a procedure that does not affect the stochastic structure implied by the 38 

original model. To assess model performance, we study rainfall process as intermittent with both 39 

independent and dependent occurrences, where dependence is quantified by the probability that 40 

two consecutive time intervals are dry. In either case, we provide analytical formulations of main 41 

statistics of our mixed-type disaggregation model and show their clear accordance with Monte 42 

Carlo simulations. An application to rainfall time series from real world is shown as a proof of 43 

concept. 44 

1 Introduction 45 

Rainfall is the main input to most hydrological systems. A wide range of studies 46 

concerning floods, water resources and water quality require characterization of rainfall inputs at 47 
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fine time scales [Blöschl and Sivapalan, 1995]. This may be possible using empirical 48 

observations, but there is often a need to extend available data in terms of temporal resolution 49 

satisfying some additive property (i.e. that the sum of the values of consecutive variables within 50 

a period be equal to the corresponding coarse-scale amount) [Berne et al., 2004]. Hence, rainfall 51 

disaggregation models are required. Both disaggregation and downscaling models refer to 52 

transferring information from a given scale (higher-level) to a smaller scale (lower-level), e.g. 53 

they generate consistent rainfall time series at a specific scale given a known precipitation 54 

measured or simulated at a certain coarser scale. The two approaches are very similar in nature 55 

but not identical to each other. Downscaling aims at producing the finer-scale time series with 56 

the required statistics, being statistically consistent with the given variables at the coarser scale, 57 

while disaggregation has the additional requirement to produce a finer scale time series that adds 58 

up to the given coarse-scale total.  59 

Although there is substantial experience in stochastic disaggregation of rainfall to fine 60 

time scales, most modeling schemes existing in the literature are ad hoc techniques rather than 61 

consistent general methods [see review by Koutsoyiannis, 2003a]. Disaggregation models were 62 

introduced in hydrology by the pioneering work of Valencia and Schaake [1973], who proposed 63 

a simple linear disaggregation model that is fully general for Gaussian random fields without 64 

intermittency. However, the skewed distributions and the intermittent nature of the rainfall 65 

process at fine time scales are severe obstacles for the application of a theoretically consistent 66 

scheme to rainfall disaggregation [Koutsoyiannis and Langousis, 2011]. This paper reports some 67 

progress in this respect. Our model exploits the full generality and theoretical consistency of 68 

linear disaggregation schemes proposed by Valencia and Schaake [1973] for Gaussian random 69 
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variables, but it generates intermittent time series with lognormal distribution that are more 70 

consistent with the actual rainfall process at fine time scales. 71 

The following sections expand on a stochastic approach to rainfall disaggregation in time, 72 

with an emphasis on the analytical description of a model of the mixed (discrete-continuous) 73 

type. Firstly, we generate lognormal time series of rainfall depths with prescribed mean, variance 74 

and autocorrelation function (ACF) based on fractional Gaussian noise (fGn), also known as 75 

Hurst-Kolmogorov (HK) process [Mandelbrot and Van Ness, 1968]. Note that the lognormality 76 

hypothesis and our specific normalizing transformation (see next section) enable the analytical 77 

formulation of the main statistics of the rainfall depth process. Secondly, we obtain the 78 

intermittent rainfall process by multiplying the synthetic rainfall depths above by user-specified 79 

binary sequences (i.e., rainfall occurrences) with given mean and ACF. The resulting stochastic 80 

model is of the mixed type and we derive its summary statistics in closed forms. 81 

We propose herein an evolution of the downscaling model by Lombardo et al. [2012], 82 

which is upgraded and revised to include both a stochastic model accounting for intermittency 83 

and an appropriate strategy to preserve the additive property. The preservation of the additive 84 

property distinguishes indeed disaggregation from downscaling. This modification required to 85 

set up a disaggregation model produces a more realistic rainfall model that retains its primitive 86 

simplicity in association with a parsimonious framework for simulation. In brief, the 87 

advancements reported under the following sections include: 88 

 Background information. A basic review with discussion about some improvements on 89 

the model structure is presented in the next section. 90 

 Intermittency. The main novelty of this paper is the introduction of intermittency in the 91 

modeling framework, which is fully general and it can be used when simulating mixed-92 
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type processes other than rainfall from the real world. The rainfall process features an 93 

intermittent character at fine (sub-monthly) time scales, and thus the probability that a 94 

time interval is dry is generally greater than zero. Generally, the analysis and modeling of 95 

rainfall intermittency relate to the study of the rainfall occurrence process. Then, we need 96 

to introduce the latter in our modeling framework. In order to achieve such an objective, 97 

in Section 3, we describe the entire rainfall process using a two-state stochastic process 98 

comprising a discrete and a continuous component accounting for rainfall occurrences 99 

and non-zero rainfall, respectively. Our modeling framework enables the analytical 100 

formulation of the main statistics of the discrete-continuous rainfall process.  101 

 Additivity constraint. We utilize auxiliary Gaussian variables to disaggregate a given 102 

rainfall amount to a certain scale of interest by means of the linear generation scheme 103 

proposed by Koutsoyiannis [2002]. Nevertheless, rainfall is effectively modelled by 104 

positively skewed distributions, i.e. non-Gaussian. Hence, then an exponential 105 

transformation of the variables is used in a way that the transformed variables follow a 106 

lognormal distribution with some important properties (see Appendix A). However, this 107 

means that the additive property, which is one of the main attributes of the linear 108 

disaggregation scheme, is lost [Todini, 1980]. To overcome the problem we apply an 109 

empirical correction procedure, known as “power adjusting procedure” (Section 4), to 110 

restore the full consistency of lower-level and higher-level variables. This procedure is 111 

accurate in the sense that it does not alter the original dependence structure of the 112 

synthetic time series [Koutsoyiannis and Manetas, 1996]. 113 

 Monte Carlo experiments and comparison to observed data. In Section 5 and 6, we show 114 

respectively some Monte Carlo experiments and a case study in order to test the 115 
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capability of our model to reproduce the statistical behavior of synthetic and real rainfall 116 

time series. We conclude our work with Section 7, where we give an overview on the key 117 

ideas and briefly discuss the applicability aspects of our approach.   118 

2 Basic concepts and background 119 

In rainfall modeling literature, the currently dominant approach to temporal 120 

disaggregation is based on discrete multiplicative random cascades (MRCs), which were first 121 

introduced in turbulence by Mandelbrot [1974]. Despite the fact that more complex scale-122 

continuous cascade models have been introduced [see e.g., Schmitt and Marsan, 2001; Schmitt, 123 

2003; Lovejoy and Schertzer, 2010a, 2010b], discrete MRCs are still the most widely used 124 

approach as they are very simple to understand and apply [Paschalis et al., 2012]. MRCs are 125 

discrete models in scale, meaning that the scale ratio from parent to child structures is an integer 126 

number strictly larger than one. These models are multiplicative, and embedded in a recursive 127 

manner. Each step is usually associated to a scale ratio of b = 2 (i.e. branching number); after m 128 

cascade steps (m = 0, 1, 2, …), the total scale ratio is 2m, and we have:	 129 

௝ܴ,௠ ൌ ܴଵ,଴ෑ ௚ܹሺ௜,௝ሻ,௜

௠

௜ୀ଴

 (1) 

where j = 1, …, 2m is the index of position (i.e., time step) in the series at the cascade step m, and 130 

i is the index of the cascade step. ܴଵ,଴ denotes the initial rainfall intensity to be distributed over 131 

the (subscale) cells ௝ܴ,௠ of the cascade, each cell being associated to a random variable ௚ܹሺ௜,௝ሻ,௜ 132 

(i.e. cascade generator, called “weight”) where ݃ሺ݅, ݆ሻ ൌ ቒ ௝

ଶ೘ష೔ቓ denotes a ceiling function which 133 

defines the position in time at the cascade step i = 0, …, m [see e.g. Gaume et al., 2007]. All 134 

these random variables are assumed non-negative, independent and identically distributed, and 135 
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satisfy the condition 〈ܹ〉 ൌ 1 where 〈∙〉 denotes expectation. A graphical example of a dyadic (b 136 

= 2) multiplicative cascade with four cascade steps (m = 0, 1, 2, 3) is shown in Fig. 1.  137 

As detailed by Lombardo et al. [2012], the application of MRC models is questionable in 138 

the context of rainfall simulation. The random process underlying these models is not stationary, 139 

because its autocovariance is not a function of lag only, as it would be in stationary processes. 140 

This is due to the model structure. For example, it can be shown that for MRCs we may write 141 

lagged second moments after m cascade steps as:  142 

〈 ௝ܴ,௠ ௝ܴା௧,௠〉 ൌ 〈ܴଵ,଴
ଶ 〉〈ܹଶ〉௛ೕ,೘ሺ௧ሻ (2) 

where t is the discrete-time lag; since we have ௝݄,௠ሺݐ ൌ 0ሻ ൌ ݉ for any j and m, then the 143 

exponent ௝݄,௠ሺݐሻ can be calculated recursively by:  144 

௝݄,௠ሺݐሻ ൌ ൞
൫ ௝݄,௠ିଵሺݐሻ ൅ 1൯Θሾ2௠ିଵ െ ݆ െ ሿݐ ݆ ൑ 2௠ିଵ, ݐ ൐ 0

݄ଶ೘ି௝ି௧ାଵ,௠ሺݐሻ ݆ ൐ 2௠ିଵ, ݐ ൐ 0
݄ଶ೘ି௝ାଵ,௠ሺ|ݐ|ሻ ݐ ൏ 0

 (3) 

where Θሾ݊ሿ is the discrete form of the Heaviside step function, defined for an integer n as:  145 

Θሾ݊ሿ ൌ ቄ
0, ݊ ൏ 0
1, ݊ ൒ 0 (4) 

Then, from eqs. (2) and (3), it is evident that the autocovariance for a MRC model 146 

depends upon position in time j and cascade step k. We emphasize that several researchers and 147 

practitioners often neglect this nonstationarity, which is simply inherent to the model structure. 148 

The problem of nonstationarity in processes generated by discrete MRCs is indeed not new in the 149 

literature [see e.g., Mandelbrot, 1974; Over, 1995; Veneziano and Langousis, 2010]. From a 150 

conceptual point of view, it is not always satisfactory to model an observed phenomenon by a 151 

stationary process. Nonetheless, it is important to stress here that stationarity is also related to 152 
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ergodicity, which in turn is a prerequisite to make statistical inference from data. In fact, 153 

ergodicity is a topic dealing with the relationship between statistical averages and sample 154 

averages, which is a central problem in the estimation of statistical parameters in terms of real 155 

data. From a practical point of view, if there is nonstationarity then ergodicity cannot hold, which 156 

forbids inference from data that represent the most reliable information in building hydrological 157 

models and making predictions [Koutsoyiannis and Montanari, 2015]. Even though the two 158 

concepts of ergodicity and stationarity do not coincide in general, it is usually convenient to 159 

devise a model that is ergodic provided that we have excluded nonstationarity [Montanari and 160 

Koutsoyiannis, 2014; Serinaldi and Kilsby, 2015]. 161 

Most of the problems of MRC models reported above might be overcome by other 162 

disaggregation methods in the literature [see e.g., Marani and Zanetti, 2007; Gyasi-Agyei, 2011; 163 

Pui et al., 2012; Efstratiadis et al., 2014]. However, MRC models gain their popularity due to 164 

their ease of use and understanding. 165 

We propose a model characterized by a structure equally simple as that of MRC models, 166 

but it is based on a different approach and it proves to be stationary. Indeed, we emphasize that 167 

this model is not a MRC; for a detailed theoretical and numerical comparison of this model with 168 

discrete MRCs, the reader is referred to Lombardo et al. [2012]. 169 

Our rainfall disaggregation model (see also Appendix B for a step-by-step 170 

implementation procedure) exploits knowledge from an auxiliary Gaussian domain where fGn is 171 

generated by means of a stepwise disaggregation approach based on a random cascade structure. 172 

Then, we assume the given rainfall amount ܼଵ,଴ at the initial largest scale (m = 0) to be 173 

lognormally distributed with a given mean ߤ଴ and variance ߪ଴
ଶ, and we log-transform it into an 174 

auxiliary Gaussian variable ෨ܼଵ,଴ with mean ߤ෤଴ and variance ߪ෤଴
ଶ given by eq. (A11), as follows:  175 
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෨ܼଵ,଴ ൌ
1

ሺ݇ሻߙ
ቀlog ܼଵ,଴ െ  ሺ݇ሻቁ (5)ߚ

where ߙሺ݇ሻ and ߚሺ݇ሻ are two functions given in eq. (A10), that depend on a given 176 

disaggregation step m = k, which is the last disaggregation step of interest. Hence, it is assumed 177 

that the desired length of the synthetic series to be generated is 2k, where k is a given positive 178 

integer. The functions ߙሺ݇ሻ and ߚሺ݇ሻ are introduced to preserve some scaling properties of the 179 

auxiliary Gaussian process, as then better described in Appendix A. 180 

The auxiliary variable ෨ܼଵ,଴ obtained by eq. (5) is then disaggregated into two variables on 181 

subintervals of equal size. This procedure is applied progressively until we generate the series at 182 

the time scale of interest. Since this is an induction technique, it suffices to describe one step. 183 

Consider the generation step in which the higher-level amount ෨ܼ௝,௠ିଵ is disaggregated 184 

into two lower-level amounts ෨ܼଶ௝ିଵ,௠ and  ෨ܼଶ௝,௠ such that (see explanatory sketch in Fig. 2, 185 

where j = 3 and m = 3):  186 

෨ܼଶ௝ିଵ,௠ ൅ ෨ܼଶ௝,௠ ൌ ෨ܼ௝,௠ିଵ (6) 

Thus, we generate the variable of the first subinterval ෨ܼଶ௝ିଵ,௠ only, and that of the 187 

second is then the remainder that satisfies eq. (6). At this step, we have already generated the 188 

values of previous lower-level time steps, i.e. ෨ܼଵ,௠, … , ෨ܼଶ௝ିଶ,௠, and of the next higher-level time 189 

steps, i.e. ෨ܼ௝,௠ିଵ, … , ෨ܼ௦,௠ିଵ where s = 2m–1. Theoretically, it is necessary to preserve the 190 

correlations of ෨ܼଶ௝ିଵ,௠ with all previous lower-level variables and all next higher-level variables. 191 

However, we can obtain a very good approximation if we consider correlations with two lower-192 

level time steps behind and one higher-level time step ahead [Koutsoyiannis, 2002]. This is 193 

particularly the case if we wish to generate fGn with moderate values of the Hurst parameter 194 
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ܪ ∈ ሺ0,1ሻ. In our work we are interested in positively correlated processes, therefore 0.5 ൏ ܪ ൏195 

1. The fGn reduces to white noise for ܪ ൌ 0.5.  196 

Even though the scheme sketched in Fig. 2 is already good for most practical purposes, if 197 

we wish to generate highly correlated time series, i.e. with high values of the Hurst parameter 198 

(e.g. ܪ ൒ 0.9), then we could expand the number of variables that are considered in the 199 

generation procedure. An extensive numerical investigation (not reported here) showed that we 200 

obtain the best trade-off between model accuracy and computational burden if we consider two 201 

more lower-level time steps behind and one more higher-level time step ahead with respect to the 202 

sketch in Fig. 2.  203 

In either case, we use the following linear generation scheme:  204 

෨ܼଶ௝ିଵ,௠ ൌ ࢅ୘ࣂ ൅ ܸ (7) 

where Y is a vector of previously generated variables, θ is a vector of parameters, and V 205 

is a Gaussian white noise that represents an innovation term. All unknown parameters θ and the 206 

variance of the innovation term V needed to solve eq. (7) can be estimated applying the 207 

methodology proposed by Koutsoyiannis [2001] that is based on a generalized mathematical 208 

proposition, which ensures preservation of marginal and joint second-order statistics and of 209 

linear relationships between lower- and higher-level variables:  210 

ࣂ ൌ ሼcovሾࢅ, ,ࢅሿሽିଵcovൣࢅ ෨ܼଶ௝ିଵ,௠൧ (8) 

varሾܸሿ ൌ varൣ ෨ܼଶ௝ିଵ,௠൧ െ covൣ ෨ܼଶ௝ିଵ,௠,  (9) ࣂ൧ࢅ

In short, the generation step is based on eq. (7) that can account for correlations with 211 

other variables, which are the components of the vector Y above. In the example of Fig. 2, we 212 

consider correlations with two lower-level time steps behind and one higher-level time step 213 
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ahead, then ࢅ ൌ ൣ ෨ܼଶ௝ିଷ,௠, ෨ܼଶ௝ିଶ,௠, ෨ܼ௝,௠ିଵ, ෨ܼ௝ାଵ,௠ିଵ൧
୘
 where superscript T denotes the transpose 214 

of a vector. Hence, eq. (7) simplifies as follows:  215 

෨ܼଶ௝ିଵ,௠ ൌ ܽଶ ෨ܼଶ௝ିଷ,௠ ൅ ܽଵ ෨ܼଶ௝ିଶ,௠ ൅ ܾ଴ ෨ܼ௝,௠ିଵ ൅ ܾଵ ෨ܼ௝ାଵ,௠ିଵ ൅ ܸ (10) 

where ܽଶ, ܽଵ, ܾ଴ and ܾଵ are parameters to be estimated and V is innovation whose variance has to 216 

be estimated as well. From eqs. (8) and (9), all unknown parameters can be estimated in terms of 217 

fGn correlations, which are independent of j and m:  218 

ሻݐ෤ሺߩ ൌ corrൣ ෨ܼଶ௝ିଵ,௠, ෨ܼଶ௝ିଵା௧,௠൧ ൌ ݐ| ൅ 1|ଶு 2⁄ ൅ ݐ| െ 1|ଶு 2⁄ െ  ଶு (11)|ݐ|

Therefore, in this case we can write eq. (8) as follows:  219 

൦

ܽଶ
ܽଵ
ܾ଴
ܾଵ

൪ ൌ 

ۏ
ێ
ێ
ۍ

1 ෤ሺ1ሻߩ ෤ሺ2ሻߩ ൅ ෤ሺ3ሻߩ ෤ሺ4ሻߩ ൅ ෤ሺ5ሻߩ
෤ሺ1ሻߩ 1 ෤ሺ1ሻߩ ൅ ෤ሺ2ሻߩ ෤ሺ3ሻߩ ൅ ෤ሺ4ሻߩ

෤ሺ2ሻߩ ൅ ෤ሺ3ሻߩ ෤ሺ1ሻߩ ൅ ෤ሺ2ሻߩ 2ሾ1 ൅ ෤ሺ1ሻሿߩ ෤ሺ1ሻߩ ൅ ෤ሺ2ሻߩ2 ൅ ෤ሺ3ሻߩ
෤ሺ4ሻߩ ൅ ෤ሺ5ሻߩ ෤ሺ3ሻߩ ൅ ෤ሺ4ሻߩ ෤ሺ1ሻߩ ൅ ෤ሺ2ሻߩ2 ൅ ෤ሺ3ሻߩ 2ሾ1 ൅ ෤ሺ1ሻሿߩ ے

ۑ
ۑ
ې
ିଵ

ۏ
ێ
ێ
ۍ

෤ሺ2ሻߩ
෤ሺ1ሻߩ

1 ൅ ෤ሺ1ሻߩ
෤ሺ2ሻߩ ൅ ے෤ሺ3ሻߩ

ۑ
ۑ
ې
	

For the fGn, we can write ߪ෤௠ଶ ൌ varൣ ෨ܼଶ௝ିଵ,௠൧ ൌ ෤଴ߪ
ଶ 2ଶு௠⁄ , where ߪ෤଴

ଶ ൌ varൣ ෨ܼଵ,଴൧ 220 

[Koutsoyiannis, 2002]. Then eq. (9) becomes:  221 

varሾܸሿ ൌ ෤௠ଶߪ ሺ1 െ ሾߩ෤ሺ2ሻ, ,෤ሺ1ሻߩ 1 ൅ ,෤ሺ1ሻߩ ෤ሺ2ሻߩ ൅ ,෤ሺ3ሻሿሾܽଶߩ ܽଵ, ܾ଴, ܾଵሿ୘ሻ (13) 

Then, the two equations above depend solely on the Hurst parameter H and the variance ߪ෤଴
ଶ 222 

given by eq. (A11). 223 

In the implementation of such an approach, it can be noticed that the generation 224 

procedure is affected by changes in eq. (10) that occur at the boundary of the cascade (i.e. edge 225 
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effects, see Fig. 2). In practice for each cascade step, when we generate ෨ܼଶ௝ିଵ,௠ near the start or 226 

end of the cascade sequence, some elements of the vector Y may be missing. In other words, 227 

some terms of eq. (10) are eliminated at the start or end of the cascade sequence, for each 228 

cascade step m, where m = 0, …, k. To overcome this “edge” problem, we found a good solution 229 

by simultaneously disaggregating three independent and identically distributed Gaussian 230 

variables (where ෨ܼଵ,଴ is the one in the middle), as shown in Fig. 3. We use only the synthetic 231 

series pertaining to ෨ܼଵ,଴ and discard the remainder. Then, the effects of the peripheral leakage on 232 

the main statistics are practically negligible. 233 

Finally, the disaggregated series with the desired length 2k generated in the auxiliary 234 

(Gaussian) domain must then be transformed back to the target (lognormal) domain (actual 235 

rainfall) by the following simple exponentiation:  236 

௝ܼ,௞ ൌ exp൫ ෨ܼ௝,௞൯ (14) 

This transformation is simpler than that used by Lombardo et al. [2012]. In fact, we 237 

normalize the given coarse-scale total ܼଵ,଴ by eq. (5) in order to use a simpler inverse 238 

transformation, eq. (14), at the scale k of interest. This is more appropriate for a disaggregation 239 

approach resembling a top-down strategy. As shown in Appendix A, the mean, variance and 240 

ACF of the disaggregated rainfall process so obtained are given respectively by: 241 

௞ߤ ൌ 〈 ௝ܼ,௞〉 ൌ ଴ߤ 2௞⁄  (15) 

௞ߪ
ଶ ൌ varൣ ௝ܼ,௞൧ ൌ ଴ߪ

ଶ 2ଶு௞⁄  (16) 

ሻݐ௞ሺߩ ൌ corrൣ ௝ܼ,௞, ௝ܼା௧,௞൧ ൌ
expቀߪ෤௞

ଶߩ෤ሺݐሻቁ െ 1

expሺߪ෤௞
ଶሻ െ 1

 (17) 
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where ߩ෤ሺݐሻ and ߪ෤௞
ଶ ൌ varൣ ෨ܼ௝,௞൧ respectively denote the ACF (eq. 11) and the variance of the 242 

auxiliary Gaussian process (i.e., HK process or fGn), H is the Hurst coefficient, t is the time lag, 243 

while ߤ଴ and ߪ଴
ଶ are, respectively, the mean and variance of the given coarse-scale total ܼଵ,଴. 244 

Note that the ACFs of the HK process, ߩ෤ሺݐሻ, and the target lognormal process, ߩ௞ሺݐሻ, generally 245 

differ. Nevertheless, for small values of ߪ෤௞
ଶ, as encountered in disaggregation modeling of 246 

rainfall amounts, the experimental ߩ௞ሺݐሻ closely resembles the ideal form of ߩ෤ሺݐሻ. Specifically, 247 

in the small-scale limit of ݇ → ∞ (i.e., very small ߪ෤௞
ଶ), the autocorrelation function of the target 248 

process converges to that of the Hurst-Kolmogorov process, so that ߩ௞ሺݐሻ →  ሻ. 249ݐ෤ሺߩ

In summary, our model assumes lognormal rainfall, and then it is reasonable to use a 250 

(scale-dependent) logarithmic transformation of variables (eq. 5) and perform disaggregation of 251 

transformed variables in a Gaussian (auxiliary) domain, thus exploiting the desired properties of 252 

the normal distribution for linear disaggregation schemes [Koutsoyiannis, 2003a]. Indeed, we 253 

simulate a fGn in the auxiliary domain whose characteristics are modified (by eq. 5) based on the 254 

last disaggregation step of interest k, in order to obtain (by eq. 14) 2k variables in the lognormal 255 

(target) domain with the desired statistical properties given by eqs. (15)-(17). 256 

3 Introducing intermittency 257 

The intermittent nature of rainfall process at fine time scales is a matter of common 258 

experience. In a statistical description, this is reflected by the fact that there exists a finite 259 

nonzero probability that the value of the process within a time interval is zero (often referred to 260 

as probability dry). Intermittency results in significant variability and high positive skewness, 261 

which are difficult to reproduce by most generators [Efstratiadis et al., 2014]. Therefore, 262 

modeling rainfall intermittency is receiving renewed research interest [Koutsoyiannis, 2006; 263 
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Rigby and Porporato, 2010; Kundu and Siddani, 2011; Schleiss et al., 2011; Li et al., 2013; 264 

Mascaro et al., 2013]. 265 

In essence, for modeling rainfall intermittency two strategies are commonly used. The 266 

simplest approach is to model the intermittent rainfall process as a typical stochastic process 267 

whose smallest values are set to zero values according to a specific rounding off rule [see e.g., 268 

Koutsoyiannis et al., 2003]. The second strategy considers in an explicit manner the two states of 269 

the rainfall process, i.e. the dry and the wet state. This is a modeling approach of a mixed type 270 

with a discrete description of intermittency and a continuous description of rainfall amounts 271 

[Srikanthan and McMahon, 2001]. The two-state approach is preferable for our modeling 272 

framework, because it facilitates the analytical formulation of the main statistics of the 273 

intermittent rainfall process. 274 

The rainfall occurrence process (a binary-valued stochastic process) and the rainfall depth 275 

process (a continuous-type stochastic process) can be combined to give rise to a stochastic 276 

process of the mixed type. For simplicity, we assume that the discrete and continuous 277 

components are independent of one another; therefore, we can write the intermittent rainfall as 278 

the product of those two components. 279 

In our modeling framework, we model the intermittent rainfall ௝ܺ,௞ on a single time scale 280 

setting at the last disaggregation step k and time step j (= 1, …, 2k) as: 281 

௝ܺ,௞ ൌ ௝,௞ܫ ∙ ௝ܼ,௞ (18) 

where ௝ܼ,௞	denotes the continuous-type random variable pertaining to our disaggregation model 282 

(given by eq. (14)), which represents the nonzero rainfall process. Whereas, the rainfall 283 

occurrence process is represented by ܫ௝,௞ that is a discrete-type random variable taking values 0 284 
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(dry condition) and 1 (wet condition), respectively with probability ݌଴,௞ and ݌ଵ,௞ ൌ 1 െ  ଴,௞. The 285݌

former denotes the probability that a certain time interval is dry after k disaggregation steps, i.e. 286 

଴,௞݌ ൌ Pr൛ ௝ܺ,௞ ൌ 0ൟ. This is the probability dry at the scale of interest, which is an additional 287 

model parameter. Clearly, this notation reflects a stationarity assumption of rainfall occurrences, 288 

because the probability dry ݌଴,௞ does not depend on the time position j but depends only on the 289 

timescale k. 290 

The above considerations imply the following relationships for the mean and variance of 291 

the mixed-type rainfall process: 292 

〈 ௝ܺ,௞〉 ൌ ൫1 െ  ௞ (19)ߤ଴,௞൯݌

varൣ ௝ܺ,௞൧ ൌ ൫1 െ ௞ߪ଴,௞൯൫݌
ଶ ൅ ௞ߤ଴,௞݌

ଶ൯ (20) 

where ߤ௞ and ߪ௞
ଶ denote the mean and the variance of the series generated by the rainfall depth 293 

model (see eqs. (15) and (16), respectively). 294 

Note that eq. (18) resembles the classical intermittent lognormal β-model based on MRCs 295 

[Gupta and Waymire, 1993; Over and Gupta, 1994, 1996], but it is more general and embedded 296 

into our Hurst-Kolmogorov modeling framework. 297 

Since we aim at modeling a family of mixed-type random variables each representing the 298 

rainfall state at time steps j = 1, 2, …, we need to investigate the dependence structure of this 299 

particular stochastic process. In other words, we analyze the pairwise dependence of two 300 

randomly chosen variables ௝ܺ,௞ and ௝ܺା௧,௞ separated by a time lag t. This is accomplished 301 

through deriving the formulation of the autocovariance function for the intermittent rainfall 302 

process. Let us recall that: 303 
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covൣ ௝ܺ,௞, ௝ܺା௧,௞൧ ൌ 〈 ௝ܺ,௞ ௝ܺା௧,௞〉 െ 〈 ௝ܺ,௞〉ଶ (21) 

where the last term of the right-hand side can be calculated from eq. (19), while the lagged 304 

second moment 〈 ௝ܺ,௞ ௝ܺା௧,௞〉 can be expressed through the following joint probabilities: 305 

଴଴,௞݌ ൌ Pr൛ ௝ܺ,௞ ൌ 0, ௝ܺା௧,௞ ൌ 0ൟ

ଵ଴,௞݌ ൌ Pr൛ ௝ܺ,௞ ൐ 0, ௝ܺା௧,௞ ൌ 0ൟ

଴ଵ,௞݌ ൌ Pr൛ ௝ܺ,௞ ൌ 0, ௝ܺା௧,௞ ൐ 0ൟ

ଵଵ,௞݌ ൌ Pr൛ ௝ܺ,௞ ൐ 0, ௝ܺା௧,௞ ൐ 0ൟ

 (22) 

Therefore, by total probability theorem and eq. (18), we have: 306 

〈 ௝ܺ,௞ ௝ܺା௧,௞〉 ൌ 〉ଵଵ,௞݌ ௝ܼ,௞ ௝ܼା௧,௞〉 (23) 

 For convenience, we express the joint probability ݌ଵଵ,௞ in terms of the probability dry 307 

,௝,௞ܫ଴,௞ and the autocovariance of rainfall occurrences covൣ݌  ௝ା௧,௞൧. The latter is given by [see 308ܫ

also Koutsoyiannis, 2006]: 309 

covൣܫ௝,௞, ௝ା௧,௞൧ܫ ൌ 〈௝ା௧,௞ܫ௝,௞ܫ〉 െ ଶ〈௝,௞ܫ〉 ൌ ଵଵ,௞݌ െ ൫1 െ ଴,௞൯݌
ଶ
 (24) 

The derivation of this equation is based on the relationships 〈ܫ௝,௞〉 ൌ ௝,௞ܫ〉
ଶ 〉 ൌ 1 െ  ଴,௞, and 310݌

〈௝ା௧,௞ܫ௝,௞ܫ〉 ൌ  ଵଵ,௞. Thus, from eq. (24) we obtain: 311݌

ଵଵ,௞݌ ൌ ൫1 െ ଴,௞൯݌
ଶ
൅ covൣܫ௝,௞,  ௝ା௧,௞൧ (25)ܫ

Substituting eqs. (19), (23) and (25) in eq. (21), it follows: 312 

covൣ ௝ܺ,௞, ௝ܺା௧,௞൧ ൌ ቀ൫1 െ ଴,௞൯݌
ଶ
൅ covൣܫ௝,௞, ௝ା௧,௞൧ቁܫ 〈 ௝ܼ,௞ ௝ܼା௧,௞〉 െ ൫1 െ ଴,௞൯݌

ଶ
௞ߤ
ଶ (26) 

Adding and subtracting the term covൣܫ௝,௞, ௞ߤ௝ା௧,௞൧ܫ
ଶ to the right-hand side of eq. (26), yields: 313 
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covൣ ௝ܺ,௞, ௝ܺା௧,௞൧ ൌ

ൌ ቀ൫1 െ ଴,௞൯݌
ଶ
൅ covൣܫ௝,௞, ௝ା௧,௞൧ቁܫ covൣ ௝ܼ,௞, ௝ܼା௧,௞൧ ൅ covൣܫ௝,௞, ௞ߤ௝ା௧,௞൧ܫ

ଶ (27) 

Hence, eq. (27) expresses the degree of dependence of the intermittent rainfall process in terms 314 

of the dependence structures of both the rainfall occurrence and depth processes. 315 

A more common indicator of dependence of a stochastic process is the autocorrelation 316 

coefficient: 317 

ሻݐ௑,௞ሺߩ ൌ
covൣ ௝ܺ,௞, ௝ܺା௧,௞൧

varൣ ௝ܺ,௞൧
 (28) 

Recalling that varൣܫ௝,௞൧ ൌ ଴,௞൫1݌ െ  ଴,௞൯ and substituting eqs. (20) and (27) in eq. (28), after 318݌

algebraic manipulations we obtain: 319 

ሻݐ௑,௞ሺߩ ൌ
൫1 െ ଴,௞݌ ൅ ௞ߪሻݐ௞ሺߩ଴,௞൯݌ሻݐூ,௞ሺߩ

ଶ ൅ ௞ߤ଴,௞݌ሻݐூ,௞ሺߩ
ଶ

௞ߪ
ଶ ൅ ௞ߤ଴,௞݌

ଶ  (29) 

where ߤ௞, ߪ௞
ଶ and ߩ௞ሺݐሻ are given by eqs. (15), (16) and (17) respectively. The only unknown in 320 

eq. (29) is the ACF ߩூ,௞ሺݐሻ of the rainfall occurrence process at the finer characteristic time scale 321 

(i.e., the final disaggregation step k). When deriving the theoretical ACF in eq. (29), note that we 322 

have not made any assumption about the dependence structure or the marginal probability of the 323 

process; the only assumption is that the process is stationary. Eq. (29) is fully general and new, to 324 

the best of our knowledge; it can be used to derive the theoretical ACF of a mixed-type 325 

stochastic process in terms of its discrete and continuous components (provided they are 326 

independent of one another). 327 

In order to quantify the degree of dependence of the intermittent rainfall process we must 328 

assume a model for the dependence structure of rainfall occurrences. Generally, we could 329 
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classify such models into three types: (i) independence, which includes the Bernoulli case, 330 

characterized by one parameter only; (ii) simple dependence, which includes Markov chains 331 

characterized by two parameters; (iii) complex dependence, characterized by more than two 332 

parameters [Koutsoyiannis, 2006].  333 

In early stages of analysis and modeling attempts, the Markov chain model was widely 334 

adopted for discrete time representations of rainfall occurrences, recognizing that they are not 335 

independent in time [Gabriel and Neumann, 1962; Haan et al., 1976; Chin, 1977]. However, 336 

later studies observed that Markov chain models yield unsatisfactory results for rainfall 337 

occurrences, despite being much closer to reality than the independence model [De Bruin, 1980; 338 

Katz and Parlange, 1998]. Moreover, there exist other types of models intended to simulate 339 

more complex dependence structures that are consistent with empirical data, such as positive 340 

autocorrelation both on small scales (short-term persistence) and on large scales (long-term 341 

persistence) [see e.g., Koutsoyiannis, 2006]. For the sake of numerical investigation, hereinafter 342 

we analyze the first two modeling categories of the occurrence processes: 343 

1. Purely random model. 344 

2. Markov chain model. 345 

To summarize, we believe it is worth repeating here a short overview on some of the key 346 

ideas of our model. A continuous model (described in Section 2) to generate finer-scale time 347 

series of lognormal rainfall depths with HK-like dependence structure, and an arbitrary binary 348 

model (e.g. Bernoulli, Markov, etc.) to simulate rainfall intermittency are combined by eq. (18) 349 

to give rise to a complete rainfall disaggregation model characterized by mean, variance, and 350 

ACF as in eqs. (19), (20) and (29), respectively. The preservation of the additive property is 351 

guaranteed by applying eq. (36) to the generated series (see next section). The intermittent 352 
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component refers exclusively to the target scale, and is combined with the continuous component 353 

at that scale. Note that mean and variance in eqs. (19) and (20) are independent of the specific 354 

model, while the ACF in eq. (29) relies on the dependence structures of both the continuous and 355 

binary components. In the following, we show how this ACF specializes for intermittent 356 

components with Bernoulli and Markov structures. 357 

3.1 Random occurrences 358 

The simplest case is to assume that the rainfall process is intermittent with independent 359 

occurrences ܫ௝,௞, which can be modelled as a Bernoulli process in discrete time. This process is 360 

characterized by one parameter only, i.e. the probability dry ݌଴,௞. Then, we can write that: 361 

ሻݐூ,௞ሺߩ ൌ covൣܫ௝,௞, ௝ା௧,௞൧ܫ ൌ 0 (30) 

Substituting eq. (30) in eqs. (27) and (29), we obtain respectively: 362 

covൣ ௝ܺ,௞, ௝ܺା௧,௞൧ ൌ ൫1 െ ଴,௞൯݌
ଶ
covൣ ௝ܼ,௞, ௝ܼା௧,௞൧ (31) 

ሻݐ௑,௞ሺߩ ൌ ൫1 െ ሻݐ௞ሺߩ଴,௞൯݌
௞ߪ
ଶ

௞ߪ
ଶ ൅ ௞ߤ଴,௞݌

ଶ (32) 

3.2 Markovian occurrences 363 

 As a second example, we assume a very simple occurrence process with some 364 

correlation. In this model, the dependence of the current variable ܫ௝,௞ on the previous variable 365 

 ௝ିଵ,௞ suffices to express completely the dependence of the present on the past. In other words, 366ܫ

we assume that the state (dry or wet) in a time interval depends solely on the state in the previous 367 

interval. This is a process with Markovian dependence, which is completely determined by lag-368 

one autocorrelation coefficient ߩூ,௞ሺ1ሻ ൌ corrൣܫ௝,௞,  ௝ିଵ,௞൧. Therefore, the occurrence process is 369ܫ
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characterized by two parameters, i.e. ݌଴,௞ and ߩூ,௞ሺ1ሻ. The autocorrelation of ܫ௝,௞ is (see the proof 370 

in Appendix C): 371 

ሻݐூ,௞ሺߩ ൌ corrൣܫ௝,௞, ௝ା௧,௞൧ܫ ൌ ூ,௞ߩ
|௧|ሺ1ሻ (33) 

Substituting in eq. (29), we derive the autocorrelation of the entire rainfall process as: 372 

ሻݐ௑,௞ሺߩ ൌ
൫1 െ ଴,௞݌ ൅ ூ,௞ߩ

|௧|ሺ1ሻ݌଴,௞൯ߩ௞ሺݐሻߪ௞
ଶ ൅ ூ,௞ߩ

|௧|ሺ1ሻ݌଴,௞ߤ௞
ଶ

௞ߪ
ଶ ൅ ௞ߤ଴,௞݌

ଶ  (34) 

4 Adjusting procedure 373 

A shortcoming of the above-summarized model is that generated, back-transformed 374 

rainfall amounts, ௝ܼ,௞, generally fail to sum to the coarse-scale total, ܼଵ,଴, which is a major 375 

requirement of disaggregation methods. Therefore, analogous considerations apply to the 376 

corresponding intermittent rainfall process ௝ܺ,௞, where the coarse-scale total ଵܺ,଴ ൌ377 

൫1 െ  ଴,௞൯ܼଵ,଴ is known. This is what normally happens when a model is specified in terms of 378݌

the logarithms of the target variables, or some other normalizing transformation. In such cases, 379 

adjusting procedures are necessary to ensure additivity constraints [Stedinger and Vogel, 1984; 380 

Grygier and Stedinger, 1988, 1990; Lane and Frevert, 1990; Koutsoyiannis and Manetas, 1996], 381 

such as: 382 

ଵܺ,଴ ൌ ෍ ௝ܺ,௞

௦ୀଶೖ

௝ୀଵ

 (35) 

A relevant question is how to adjust the generated rainfall time series without unduly 383 

distorting their marginal distribution and dependence structure. Koutsoyiannis and Manetas 384 

[1996] showed that this is possible using appropriate adjusting procedures, which preserve 385 
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certain statistics of lower-level variables. In particular, here we focus on the so-called “power 386 

adjusting procedure” that can preserve the first- and second-order statistics regardless of the type 387 

of the distribution function or the covariance structure of ௝ܺ,௞. This procedure allocates the error 388 

in the additive property among the lower-level variables. Thus, it modifies the generated 389 

variables ௝ܺ,௞ (j = 1, …, 2k) to get the adjusted ones ௝ܺ,௞
ᇱ  according to: 390 

௝ܺ,௞
ᇱ ൌ ௝ܺ,௞ ቆ

ଵܺ,଴

∑ ௝ܺ,௞
௦
௝ୀଵ

ቇ
ఒೕ,ೖ ఎೕ,ೖ⁄

 (36) 

where 391 

௝,௞ߣ ൌ
∑ covൣ ௝ܺ,௞, ௜ܺ,௞൧
௦
௜ୀଵ

∑ ∑ covൣ ௝ܺ,௞, ௜ܺ,௞൧௦
௜ୀଵ

௦
௝ୀଵ

 (37) 

௝,௞ߟ ൌ
〈 ௝ܺ,௞〉

∑ 〈 ௝ܺ,௞〉௦
௝ୀଵ

 (38) 

The power adjusting procedure is more effective and suitable for our modeling 392 

framework than the classical linear and proportional adjusting procedures [see e.g., Grygier and 393 

Stedinger, 1988; Lane and Frevert, 1990]. Indeed, a weakness of the former is that it may result 394 

in negative values of lower-level variables, whereas rainfall variables must be positive. 395 

Conversely, the proportional procedure always results in positive variables, but it is strictly exact 396 

only in some special cases that introduce severe limitations. The power adjusting procedure has 397 

no limitations and works in any case, but it does not preserve the additive property at once. Then, 398 

the application of eq. (36) must be iterative, until the calculated sum of the lower-level variables 399 

equals the given ଵܺ,଴. Although iterations slightly reduce the model speed, the power adjusting 400 

procedure greatly outperforms the other procedures in terms of accuracy. 401 
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5 Numerical simulations 402 

 A Monte Carlo simulation is carried out to assess model performance and analytical 403 

results under controlled conditions. We generate 10000 time series assuming the following 404 

parameters to model rainfall depths as described in Section 2: ݇ ൌ ଴ߤ ,10 ൌ ଴ߪ ,1024 ൌ 362.04, 405 

and ܪ ൌ 0.85. Then, according to eqs. (15) and (16), we obtain the lower-level series, ௝ܼ,௞, of 406 

size s = 2k = 1024, and unit mean and variance ߤ௞ ൌ ௞ߪ
ଶ ൌ 1. In order to simulate rainfall 407 

occurrences described in Section 3, we generate binary sequences, ܫ௝,௞, with Markovian 408 

dependence structure by implementing Boufounos (2007) algorithm with three different values 409 

of probability dry ݌଴,௞ ∈ ሼ0.2, 0.5, 0.8ሽ and the lag-one autocorrelation coefficient ߩூ,௞ሺ1ሻ ൌ 0.7 410 

as an additional model parameter. Then, the three mixed-type (intermittent) processes, ௝ܺ,௞, are 411 

derived by applying eq. (18) to the synthetic series of ௝ܼ,௞ and ܫ௝,௞ for each value of ݌଴,௞. Finally, 412 

we apply the adjusting procedure in eq. (36) to let the generated variables ௝ܺ,௞ satisfy the 413 

additivity constraint in eq. (35). 414 

According to eqs. (19), (20) and the values of ݌଴,௞ given above, the simulated intermittent 415 

rainfall processes have mean 〈 ௝ܺ,௞〉 ∈ ሼ0.8, 0.5, 0.2ሽ and variance varൣ ௝ܺ,௞൧ ∈ ሼ0.96, 0.75, 0.36ሽ. 416 

Fig. 4 shows that the adjusted variables fulfil the additive property, while Fig. 5 confirms that 417 

summary statistics of the generated variables are well preserved by the adjusting procedure. 418 

 Figs. 6 and 7 show empirical vs. theoretical ACFs of two different mixed-type processes 419 

assuming respectively purely random and Markovian occurrences, ܫ௝,௞, with the same parameters 420 

as above (clearly, for random occurrences we have ߩூ,௞ሺ1ሻ ൌ 0). Note that both figures also 421 

depict the case with null probability dry, i.e. ݌଴,௞ ൌ 0, which corresponds to the rainfall depth 422 

process, ௝ܼ,௞. The ACF of the latter is used as a benchmark to compare the two figures together 423 
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in order to investigate the influence of each occurrence model on the dependence structure of the 424 

entire process, ௝ܺ,௞. As expected, both of our occurrence models are generally cause for 425 

decorrelation of the intermittent process with respect to the process without intermittency. This is 426 

particularly the case if we model rainfall occurrences by a white noise as in Fig. 6. For 427 

Markovian occurrences (see Fig. 7), the autocorrelation is higher for small time lags than that for 428 

random occurrences, while it tends to the random case asymptotically (compare Figs. 6 and 7 for 429 

଴,௞݌ ∈ ሼ0.2, 0.8ሽ). 430 

6 Application to observational data 431 

In this section, we compare our model against real rainfall time series in order to show 432 

the capability of the proposed methodology to reproduce the pattern of historical rainfall data on 433 

fine timescales. The dataset consists of 30-minute rainfall time series spanning from 1995 to 434 

2005 from a raingauge in Viterbo, Italy. For further details on the observational data, the reader 435 

is referred to Serinaldi [2010]. 436 

As the rainfall process exhibits seasonality at sub-annual time scales, we focus on rainfall 437 

records from each month of the year separately, in order for the analyses to be consistent with the 438 

stationarity requirement of our model with an acceptable degree of approximation. 439 

As highlighted in Section 3, the dependence structure of the rainfall occurrence process 440 

appears to be non-Markovian (not shown). To a first approximation, we make the simplifying 441 

assumption that the autocorrelation function ߩூ,௞ሺݐሻ of the binary component (intermittency) of 442 

our model is given by eq. (11), where the only parameter H equals the Hurst parameter of the 443 

continuous component (rainfall depth) of our model. 444 
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Concerning the model calibration on observational data, the Hurst parameter H is 445 

estimated by the LSV (Least Squares based on Variance) method as described in Tyralis and 446 

Koutsoyiannis [2011], which is applied directly to each month of the 30-minute rainfall time 447 

series. As this represents a realization of the lower-level intermittent rainfall process, ௝ܺ,௞, with 448 

mean and variance given by eqs. (19) and (20), respectively, such statistical properties can be 449 

therefore estimated directly from data. Once the probability dry, ݌଴,௞, is derived from data, we 450 

can solve eqs. (19) and (20) for the remaining two parameters to be estimated, i.e. the mean ߤ௞ 451 

and variance ߪ௞
ଶ of the rainfall depth process, ௝ܼ,௞ (the higher-level counterparts ߤ଴ and ߪ଴

ଶ are 452 

easily derived from eqs. (15) and (16)). For simplicity, here it is assumed that the desired length s 453 

of the synthetic series to be generated is s = 210, i.e. k = 10, which is similar to sample sizes of 454 

the monthly data series under consideration (i.e., number of 30-minute intervals in each month). 455 

However, the model works equally well (not shown) if one increases s to the next power of 2 and 456 

then discards the redundant generated items before performing the adjusting procedure. Hence, 457 

we have a very parsimonious disaggregation model in time with only four parameters: ݇, ߤ଴, ߪ଴, 458 

and 459 .ܪ 

We perform 10000 Monte Carlo experiments following the procedure described in 460 

sections above. First, we generate correlated series (Section 2) of rainfall amounts, ௝ܼ,௞, with 461 

ACF in eq. (17). Second, we generate correlated binary series of rainfall occurrences,	ܫ௝,௞, with 462 

ACF in eq. (11) (for a detailed description of the simulation algorithm, refer to Serinaldi and 463 

Lombardo [2017]). The outcomes of the two generation steps above are therefore combined by 464 

eq. (18) to obtain the synthetic intermittent series, ௝ܺ,௞, with ACF in eq. (29). Finally, we apply 465 

to ௝ܺ,௞ the procedure in eq. (36) to get the adjusted process, ௝ܺ,௞
ᇱ , that satisfies the additive 466 

property in eq. (35).  467 
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By way of example, Figs. 8 and 9 respectively compare the observed autocorrelograms 468 

for January 1999 and April 2003 data series against the ACFs simulated by our model. The ACF 469 

of the occurrence (binary) process ߩூ,௞ሺݐሻ and that of the intermittent (mixed) process ߩ௑,௞ሺݐሻ are 470 

shown in the left and right panels of each figure, respectively. In either case, the model fits on 471 

average the observed behavior satisfactorily. Other summary statistics such as the mean, variance 472 

and probability dry of the data series are preserved by construction (not shown). 473 

In Figs. 10 and 11, we compare the historical hyetographs for January 1999 and April 474 

2003 to a typical synthetic hyetograph generated by our model. In both cases, we can see that our 475 

model produces realistic traces of the real world hyetograph. Other than similarities in the 476 

general shapes, we showed that our model provides simulations that preserve the statistical 477 

behavior observed in real rainfall time series. 478 

7 Conclusions 479 

The discrete MRC is the dominant approach to rainfall disaggregation in hydrological 480 

modeling literature. However, MRC models have severe limitations due to their structure, which 481 

implies nonstationarity. As it is usually convenient to devise a model that is ergodic provided 482 

that we have excluded nonstationarity, Lombardo et al. [2012] proposed a simple and 483 

parsimonious downscaling model of rainfall amounts in time based on the Hurst-Kolmogorov 484 

process. This model is here revisited in the light of bringing it more in line with the properties 485 

observed in real rainfall. To this aim, we upgrade our model to produce finer-scale intermittent 486 

time series that add up to any given coarse scale total. 487 

Our main purpose is to provide theoretical insights into modeling rainfall disaggregation 488 

in time when accounting for rainfall intermittency. Then, we propose and theoretically analyze a 489 
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model that is capable of describing some relevant statistics of the intermittent rainfall process in 490 

closed forms. The model combines a continuous-type stochastic process (representing rainfall 491 

amounts) characterized by scaling properties with a binary-valued stochastic process 492 

(representing rainfall occurrences) that can be characterized by any dependence structure. 493 

In particular, we adopt to a top-down approach resulting in a modular modeling strategy 494 

comprising a discrete (binary) description of intermittency and a continuous description of 495 

rainfall amounts. A stochastic process with lognormal random variables and Hurst-Kolmogorov 496 

dependence structure gives the latter, while the former is based on a user-specified model of 497 

rainfall occurrences. We provide general theoretical formulations for summary statistics of the 498 

mixed-type process as functions of those of the two components. We stress that these 499 

relationships are fully general and hold true for whatever stationary mixed process independently 500 

of the specific form of the continuous and discrete components. For illustration purposes, it is 501 

shown how formulae specialize for two different models of rainfall occurrences: (i) the Bernoulli 502 

model characterized by one parameter only, and (ii) the Markov chain model characterized by 503 

two parameters. Monte Carlo experiments confirm the correctness of the analytical derivations 504 

and highlight the good performance of the proposed model under controlled conditions. 505 

Since our method utilizes nonlinear transformations of the variables in the generation 506 

procedure, the additivity constraint between lower- and higher-level variables, i.e. the mass 507 

conservation, is not satisfied and must be restored. For this purpose, we use an accurate adjusting 508 

procedure that preserves explicitly the first- and second-order statistics of the generated 509 

intermittent rainfall. Consequently, the original downscaling model by Lombardo et al. [2012] 510 

now becomes a disaggregation model. 511 
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Intermittent rainfall time series from the real world are compared with simulations drawn 512 

from a very parsimonious four-parameter version of the proposed model, confirming its 513 

remarkable potentiality and accuracy in reproducing marginal distributions, correlation structure, 514 

intermittency, and clustering.  515 

In order to make our stationary disaggregation model an operational tool, we need to 516 

account for seasonal fluctuations observed in historical rainfall records at sub-annual time scales. 517 

To a first approximation, Marani [2003] suggests assuming that different stationary stochastic 518 

processes generate the rainfall records from each month of the year. Hence, we should estimate 519 

twelve sets of model parameters and then perform simulations for the entire year accordingly. 520 

Finally, our work provides a theoretically consistent methodology that can be applied to 521 

disaggregate actual rainfall (or model outputs) at fine time scales, which can be used in several 522 

fields that have been significant catalysts for the development of recent hydrological research. In 523 

fact, a wide range of studies concerning e.g. climate change impacts, resilience of urban areas to 524 

hydrological extremes, and online prediction/warning systems for urban hydrology require 525 

accurate characterization of rainfall inputs at fine time scales [Lombardo et al., 2009; Fletcher et 526 

al., 2013; Tabari et al., 2016; McCabe et al., 2017]. Hence, complete rainfall disaggregation 527 

methods with solid theoretical basis together with reliable data series are crucial to meet these 528 

needs.  529 

Appendix A 530 

We assume that the disaggregated rainfall process at the last disaggregation step k is given by: 531 

௝ܼ,௞ ൌ exp൫ ෨ܼ௝,௞൯ (A1) 



 

28 
 

Consequently, its mean ߤ௞ and variance ߪ௞
ଶ are functions of their auxiliary counterparts ߤ෤௞ and 532 

෤௞ߪ
ଶ of the fractional Gaussian noise (fGn) as follows:  533 

ە
ۖ
۔

ۖ
௞ߤۓ ൌ 	exp ቆ

෤଴ߤ
2௞

൅
෤଴ߪ
ଶ

2ଶு௞ାଵ
ቇ

௞ߪ
ଶ ൌ expቆ

෤଴ߤ
2௞ିଵ

൅
෤଴ߪ
ଶ

2ଶு௞
ቇ ቆexpቆ

෤଴ߪ
ଶ

2ଶு௞
ቇ െ 1ቇ

 (A2) 

In fact, recall that ߤ෤௞ ൌ ෤଴ߤ 2௞⁄  and that for the fGn we can write ߪ෤௞
ଶ ൌ ෤଴ߪ

ଶ 2ଶு௞⁄ , where 0 < H < 534 

1 is the Hurst coefficient [Mandelbrot and Van Ness, 1968]. 535 

Then, our primary goal is to let the target process ௝ܼ,௞ follow analogous scaling rules to those of 536 

the auxiliary process ෨ܼ௝,௞. In other words, we want the following laws to hold true for the target 537 

process ௝ܼ,௞: 538 

ቊ
଴ߤ ൌ 2௞ߤ௞
଴ߪ
ଶ ൌ 2ଶு௞ߪ௞

ଶ (A3) 

where ߤ଴ and ߪ଴
ଶ are respectively the mean and variance of the initial rainfall amount ܼଵ,଴ at the 539 

largest scale. 540 

To accomplish our goal, we may write ܼଵ,଴ as: 541 

ܼଵ,଴ ൌ exp ቀߙሺ݇ሻ ෨ܼଵ,଴ ൅  ሺ݇ሻቁ (A4)ߚ

where ߙሺ݇ሻ and ߚሺ݇ሻ depend on the scale k of interest, and they should be derived to preserve 542 

the scaling properties in eq. (A3). 543 

We first recall that eq. (A4) implies: 544 
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ቐ
଴ߤ ൌ expቆߚሺ݇ሻ ൅ ෤଴ߤሺ݇ሻߙ ൅ ଶሺ݇ሻߙ

෤଴ߪ
ଶ

2
ቇ

଴ߪ
ଶ ൌ expሺ2ߚሺ݇ሻ ൅ ෤଴ߤሺ݇ሻߙ2 ൅ ෤଴ߪଶሺ݇ሻߙ

ଶሻሺexpሺߙଶሺ݇ሻߪ෤଴
ଶሻ െ 1ሻ

 (A5) 

Substituting equation (A2) in (A3), equating the latter to eq. (A5) and then taking the natural 545 

logarithm of both sides, we obtain respectively: 546 

݇ log 2 ൅
෤଴ߤ
2௞

൅
෤଴ߪ
ଶ

2ଶு௞ାଵ
ൌ ሺ݇ሻߚ ൅ ෤଴ߤሺ݇ሻߙ ൅ ଶሺ݇ሻߙ

෤଴ߪ
ଶ

2
 (A6) 

݇ܪ2 log 2 ൅
෤଴ߤ
2௞ିଵ

൅
෤଴ߪ
ଶ

2ଶு௞
൅ log ቆexpቆ

෤଴ߪ
ଶ

2ଶு௞
ቇ െ 1ቇ ൌ

ൌ ሺ݇ሻߚ2 ൅ ෤଴ߤሺ݇ሻߙ2 ൅ ෤଴ߪଶሺ݇ሻߙ
ଶ ൅ logሺexpሺߙଶሺ݇ሻߪ෤଴

ଶሻ െ 1ሻ
 (A7) 

Solving eq. (A6) we obtain: 547 

ሺ݇ሻߚ ൌ ݇ log 2 ൅ ෤଴ߤ ቆ
1
2௞

െ ሺ݇ሻቇߙ ൅
෤଴ߪ
ଶ

2
ቆ

1
2ଶு௞

െ  ଶሺ݇ሻቇ (A8)ߙ

Substituting equation (A8) in (A7), after algebraic manipulations, we have: 548 

2ሺ݇ሻߙ ൌ
1

෥0ߪ
2 log ൭2

2݇ሺܪെ1ሻ ൭exp൭
෥0ߪ
2

݇ܪ22
൱ െ 1൱ ൅ 1൱ (A9) 

Without loss of generality we assume ߙሺ݇ሻ ൐ 0, then we derive the following relationships for 549 

the functions ߙሺ݇ሻ and ߚሺ݇ሻ: 550 
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 (A10) 
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Finally, we recall that ߤ෤଴ and ߪ෤଴
ଶ respectively denote the mean and variance of the highest-level 551 

auxiliary variable ෨ܼଵ,଴. It can be easily shown that they can be expressed in terms of the known 552 

statistics ߤ଴ and ߪ଴
ଶ of the given rainfall amount ܼଵ,଴ at the largest scale, such as: 553 

ە
ۖ
۔

ۖ
෤଴ߤۓ ൌ 2௞ 	ቆlog

଴ߤ
2௞

െ
1
2
log ቆ2ଶ௞ሺଵିுሻ
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ଶ

଴ߤ
ଶ ൅ 1ቇ

 (A11) 

Appendix B 554 

We provide herein some basic instructions to improve understanding of the implementation steps 555 

of our model. 556 

1. Input parameters 557 

 Hurst coefficient H: it is dimensionless in the interval (0, 1), but rainfall models 558 

require positively correlated processes, therefore 0.5 ൏ ܪ ൏ 1. 559 

 Last disaggregation step k: it is assumed that the desired length of the synthetic 560 

series to be generated is 2k, where k is a positive integer. 561 

 Probability dry ݌଴,௞: probability that a certain time interval is dry after k 562 

disaggregation steps. 563 

 Mean ߤ଴ and variance ߪ଴
ଶ of the rainfall amount ܼଵ,଴ to be disaggregated in time, 564 

which are related to their counterparts of the higher-level intermittent rainfall ଵܺ,଴ 565 

by eqs. (19) and (20). 566 

Estimating such parameters from rainfall data series is relatively straightforward [see 567 

also Koutsoyiannis, 2003b]. In addition, it should be emphasized that our model 568 
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fitting does not require the use of statistical moments of order higher than two, which 569 

are difficult to be reliably estimated from data [Lombardo et al., 2014]. 570 

2. Auxiliary domain 571 

By eq. (5) we transform the initial lognormal variable ܼଵ,଴ into the auxiliary Gaussian 572 

variable ෨ܼଵ,଴  with mean ߤ෤଴ and variance ߪ෤଴
ଶ given by eq. (A11).  573 

3. Disaggregation scheme 574 

This is based on a dyadic random cascade structure (see e.g. Fig. 2) such that each 575 

higher-level amount is disaggregated into two lower-level amounts satisfying the 576 

additivity constraint in eq. (6). The generation step is based on eq. (7) that can 577 

account for correlations with other variables previously generated. By eq. (14), we 578 

transform lower-level variables generated in the auxiliary (Gaussian) domain back to 579 

the target (lognormal) domain, but the additive property is not satisfied anymore. 580 

4. Intermittency 581 

By eq. (18), we introduce the intermittent character in the (back-transformed) 582 

synthetic series at the “basic scale”, which is represented by the last disaggregation 583 

step k. 584 

5. Adjusting procedure 585 

To ensure the full consistency between lower- and higher-level variables, we apply 586 

the power adjusting procedure to the disaggregated intermittent series. Then, the 587 

additive property is restored without modifying the summary statistics of the original 588 

variables. 589 
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Appendix C 590 

Let rainfall occurrences, ܫ௝,௞, evolve according to a discrete-time Markov chain with state space 591 

ሼ0, 1ሽ. This Markov chain is specified in terms of its state probabilities: 592 

ቊ
଴,௞݌ ൌ Pr൛ܫ௝,௞ ൌ 0ൟ

ଵ,௞݌ ൌ Pr൛ܫ௝,௞ ൌ 1ൟ ൌ 1 െ ଴,௞݌
 (C1) 

and the transition probabilities (based on Koutsoyiannis [2006, eq. (13)]): 593 

ە
ۖ
۔

ۖ
଴଴,௞ߨۓ ൌ Pr൛ܫ௝,௞ ൌ 0หܫ௝ିଵ,௞ ൌ 0ൟ ൌ ଴,௞݌ ൅ ଵ൫1ߩ െ ଴,௞൯݌

଴ଵ,௞ߨ ൌ Pr൛ܫ௝,௞ ൌ 0หܫ௝ିଵ,௞ ൌ 1ൟ ൌ ଴,௞ሺ1݌ െ ଵሻߩ

ଵ଴,௞ߨ ൌ Pr൛ܫ௝,௞ ൌ 1หܫ௝ିଵ,௞ ൌ 0ൟ ൌ 1 െ ଴଴,௞ߨ
ଵଵ,௞ߨ ൌ Pr൛ܫ௝,௞ ൌ 1หܫ௝ିଵ,௞ ൌ 1ൟ ൌ 1 െ ଴ଵ,௞ߨ

 (C2) 

where ߩଵ ൌ  ଴,௞ is the 594݌ ூ,௞ሺ1ሻ is the lag-one autocorrelation coefficient of the Markov chain, andߩ

probability dry. Both are model parameters. Clearly, we assume that the parameters are such that 595 

the probabilities in (C2) are all strictly positive. Then, the Markov chain is ergodic, and, 596 

therefore, it has a unique stationary distribution. Hence, we can derive its autocorrelation 597 

function (ACF). 598 

For a Markov chain, we can say that, conditional on the value of the previous variable ܫ௝ିଵ,௞, the 599 

current variable ܫ௝,௞ is independent of all the previous observations. However, since each ܫ௝,௞ 600 

depends on its predecessor, this implies a non-zero correlation between ܫ௝,௞ and ܫ௝ା௧,௞, even for 601 

lag t > 1. In general, conditional independence between two variables given a third variable does 602 

not imply that the first two are uncorrelated. 603 

To derive the ACF of our process, it can be easily shown that the correlation between variables 604 

one time period apart is given by the determinant of the one-step transition matrix P in (C2), 605 

such that:   606 
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detሺ۾ሻ ൌ ଵߩ ൌ  ூ,௞ሺ1ሻ (C3)ߩ

Similarly, the correlation between variables t time periods apart is given by the determinant of 607 

the t-step transition matrix P[t], i.e.: 608 

detሺ۾ሾݐሿሻ ൌ  ሻ (C4)ݐூ,௞ሺߩ

Recall that the Markov property yields [see Papoulis, 1991, eq. (16-114), p. 638]: 609 

ሿݐሾ۾ ൌ  ௧ (C5)۾

and that the basic properties of determinants imply: 610 

detሺ۾௧ሻ ൌ ൫detሺ۾ሻ൯
௧
 (C6) 

Substituting eqs. (C5), (C4) and (C3) in eq. (C6), we obtain eq. (33). 611 
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Figure captions 768 

Figure 1. Sketch of a dyadic (b = 2) multiplicative random cascade. 769 

Figure 2. Sketch of the disaggregation approach for generation of the auxiliary Gaussian process. 770 

Grey boxes indicate random variables whose values have been already generated prior to 771 

the current step. Arrows indicate the links to those of the generated variables that are 772 

considered in the current generation step [adapted from Koutsoyiannis, 2002]. 773 

Figure 3. Illustrative sketch for simulation of the auxiliary process ෨ܼ௝,௠. To eliminate “edge 774 

effects” in the generation procedure, we produce three (or five in case of ܪ ൒ 0.9) 775 

parallel cascades, then use only the one in the middle for simulations, and discard the 776 

remainder. 777 

Figure 4. Scatter plot of the calculated sum of disaggregated variables Xj,k (see eq. (35)) vs. the 778 

corresponding values of the higher-level variables X1,0, generated with model parameters 779 

݇ ൌ ଴ߤ ,10 ൌ ଴ߪ ,1024 ൌ ܪ ,362.04 ൌ ଴,௞݌ ,0.85 ൌ 0.2 and ߩூ,௞ሺ1ሻ ൌ 0.7 for all 10000 780 

Monte Carlo experiments. “Empirical” and “adjusted” stand for original synthetic series 781 

and modified ones according to eq. (36), respectively. 782 

Figure 5. Ensemble mean, standard deviation and autocorrelogram (from left to right, 783 

respectively) of the example disaggregation process Xj,k as a function of the time step j 784 

and lag t. Same simulations as in Fig. 4. Note the clear consistency between summary 785 

statistics of the original process Xj,k and those of the adjusted process X’j,k. The theoretical 786 

values of the statistics are given respectively by eq. (19) for the mean, the square root of 787 

eq. (20) for the standard deviation, and eq. (34) for the ACF of Markovian occurrences. 788 
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Figure 6. Theoretical and empirical autocorrelograms of the entire rainfall process, Xj,k, for three 789 

values of probability dry, i.e. ݌଴,௞ ∈ ሼ0.2, 0.5, 0.8ሽ, in case of purely random occurrences. 790 

The theoretical ACF of the process Xj,k is derived from eq. (32) for random occurrences. 791 

Note that the ACF for ݌଴,௞ ൌ 0 equals that of the rainfall depth process, Zj,k. 792 

Figure 7. Theoretical and empirical autocorrelograms of the entire rainfall process for three 793 

values of probability dry, i.e.  ݌଴,௞ ∈ ሼ0.2, 0.5, 0.8ሽ, in case of Markovian occurrences. 794 

The theoretical ACF of the process Xj,k is derived from eq. (34) for Markovian 795 

occurrences. The autocorrelation function for Zj,k (i.e., ݌଴,௞ ൌ 0) is used as a benchmark 796 

to compare the Figs. 6 and 7 together in order to investigate the influence of each 797 

occurrence model on the dependence structure of the entire process, Xj,k. 798 

Figure 8. Comparison between the simulated (average, 1st and 99th percentiles) and empirical 799 

autocorrelograms for the data series recorded at Viterbo raingauge station in January 800 

1999. In the left and right panels, we show respectively the ACF of the occurrence 801 

(binary) process ߩூ,௞ሺݐሻ and that of the intermittent (mixed) process ߩ௑,௞ሺݐሻ. Estimated 802 

model parameters are: ߤ଴ ൌ 736.3, ଴ߪ ൌ 320.2, ଴,௞݌ ൌ 	0.96, ܪ ൌ 0.83. 803 

Figure 9. Same as Fig. 8 for the data series recorded at Viterbo raingauge station in April 2003. 804 

Estimated model parameters are: ߤ଴ ൌ 626.7, ଴ߪ ൌ 83.8, ଴,௞݌ ൌ 	0.95, ܪ ൌ 0.7. 805 

Figure 10. Hyetograph of the rainfall data recorded at Viterbo raingauge station in January 1999 806 

(left panel) along with the synthetic time series of equal length generated by our model 807 

(right panel). 808 
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Figure 11. Hyetograph of the rainfall data recorded at Viterbo raingauge station in April 2003 809 

(left panel) along with the synthetic time series of equal length generated by our model 810 

(right panel). 811 

 812 
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