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{ Abstract }

Clustering of extremes is a statistical behavior often observed in geophysical
timeseries. However, it Is usually studied independently of the theoretical
framework of Long-Range Dependence, or the Hurst-Kolmogorov behavior,

which provides consistent theoretical and practical tools for identifying it and
understanding it. Herein, a dataset of daily rainfall records spanning more than
150 years Is studied in order to investigate the dependence properties of extreme
rainfall at the annual and seasonal timescale. The same investigation is carried out
for mean rainfall at the annual scale. The research question is focused on
Investigating the link between the Hurst behavior in the mean rainfall, which is
already acknowledged in literature, and the Hurst behavior in extreme rainfall
timeseries, which is also to be testified.
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{ 1. 150 years of rainfall extremes daily data |

= 27 rainfall records with more than 150 years of daily
data

= Collected from global databases (NOAA, ECA) Croatia 1)
and via personal contact Czech Republic (1)
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3. LRD In Seasonal and Annual Maxima
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Seasonal identification is achieved following lliopoulou et. al (2016)):

w
4}

» We identify the optimal temporal partition for a given number of
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seasons as the one that minimizes the Sum of Squared Deviations:
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» And select the number of season by applying AIC to the mixture
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seasonal probability model
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5. Does LRD propagate from average

. behaviour to extreme behaviour? )
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| 2. Identifying LRD In extremes ]

= Clustering of extremes in geophysical processes has been recursively studied
In literature (see Serinaldi and Kilsby, 2016 for a brief review).

= Here we evaluated the LRD properties of rainfall extremes derived from long
rainfall records, by estimating the Hurst exponent, already shown to be present
in annual rainfall (e.g. lliopoulou et al. 2016)
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= [For estimating the Hurst exponent H we employ the mean aggregated
variance method: 5 — %
where o the variance of the process aggregated and averaged at scale k

= Although the variance estimator is biased (Koutsoyiannis, 2003), in cases of
weak presence of LRD the bias, such as in annual rainfall, the bias is
negligible.

==+ Upper 5% MC quantile for Max Occ.

Number of occurrences

10

[ 4. Are Peaks Over Threshold Poisson-distributed? ]

A simple Monte Carlo experiment

» We select the average number of events A per interval equal to the number of years in the interval, e.g. 10 for decade.

» We sample the An maximum daily rainfall values from the whole record, where n the available number of intervals. Therefore,

approximately the same POT sample is partitioned in all cases, except for cases of intervals affected from missing values and excluded.

» We generate 10000 samples of Poisson distribution with the same A and equal length and estimate the sample minimum and maximum for

each.

» Below, the upper 5% of the sample maxima values is plotted along with the lower 5% of the minima, and both used to form confidence

regions for Poisson distribution.

Lisbon, Portugal
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= POT occurrences show small variability from the designed mean, which is significantly smoothed out as timescale of aggregation increases
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Palermo, Italy

I_IAnnuaI Maxima — 0.7
= POT occurrences show larger variability from the designed mean, which persists at larger timescales as well
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{ 6. Implications for the statistical inference ]7

12 records exhibit at least one
exceedance of the Poisson MC
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Number of

limits during the examined stations with

period; among which, 9 show at  exceedances

least one exceedance of the upper Upper limit { 5 6 5
exceedances

limit.

= It is known that the limiting distribution of maxima is unaltered even in cases of
weakly dependent occurrences of extreme events (Leadbetter, 1983).

= Dependence does not alter either the classical Return Period mathematic
formulation as the mean inter-arrival time between two extreme events; yet it may
affect the corresponding probability of failure, which is significantly increased in
strongly correlated processes, p > 0.5 (Molpi et al. 2015).
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| Conclusions ]
» Weak presence of LRD in annual and seasonal extremes.

» Evidence on links between LRD in mean and LRD in extreme behaviour.

» Record length is pivotal as it enables the exploration of clustering at larger
scales

» Violations of the Poisson distribution of extremes are present at these
timescales; yet they do not challenge probabilistic concepts of Extreme Value
Theory.

» If existing, clustering behaviour may be exploited to condition the waiting time
to the next occurrence.
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