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1. Abstract
We perform an extensive comparison between four stochastic and two

machine learning (ML) forecasting algorithms by conducting a multiple-case

study. The latter is composed by 50 single-case studies, which use time series

of total monthly precipitation and mean monthly temperature observed in

Greece. We apply a fixed methodology to each individual case and,

subsequently, we perform a cross-case synthesis to facilitate the detection of

systematic patterns. The stochastic algorithms include the Autoregressive

order one model, an algorithm from the family of Autoregressive Fractionally

Integrated Moving Average models, an Exponential Smoothing State Space

algorithm and the Theta algorithm, while the ML algorithms are Neural

Networks and Support Vector Machines. We also use the last observation as a

Naive benchmark in the comparisons. We apply the forecasting methods to the

deseasonalized time series. We compare the one-step ahead as also the multi-

step ahead forecasting properties of the algorithms. Regarding the one-step

ahead forecasting properties, the assessment is based on the absolute error of

the forecast of the last observation. For the comparison of the multi-step ahead

forecasting properties we use five metrics applied to the test set (last twelve

observations), i.e. the root mean square error, the Nash-Sutcliffe efficiency, the

ratio of standard deviations, the index of agreement and the coefficient of

correlation. Concerning the ML algorithms, we also perform a sensitivity

analysis for time lag selection. Additionally, we compare more sophisticated

ML methods as regards to the hyperparameter optimization to simple ones.

2. Introduction 3. Methodology outline
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1 prec_1 Agrinion 384 0.48

2 prec_2 Alexandroupoli 480 0.59

3 prec_3 Aliartos 1008 0.53

4 prec_4 Anogeia 252 0.52

5 prec_5 Anogeia 360 0.53

6 prec_6 Araxos 624 0.51

7 prec_7 Athens 264 0.48

8 prec_8 Athens 1428 0.53

9 prec_9 Athens 204 0.52

10 prec_10 Fragma 780 0.54

11 prec_11 Heraklion 540 0.50

12 prec_12 Igoumenitsa 480 0.49

13 prec_13 Ioannina 480 0.58

14 prec_14 Kalamata 180 0.51

15 prec_15 Kalo Chorio 420 0.50

16 prec_16 Kastelli 336 0.55

17 prec_17 Kerkyra 540 0.51

18 prec_18 Kythira 276 0.48

19 prec_19 Kos 396 0.49

20 prec_20 Kozani 396 0.57

21 prec_21 Larissa 564 0.55

22 prec_22 Lemnos 600 0.52

23 prec_23 Methoni 492 0.49

24 prec_24 Milos 480 0.57

25 prec_25 Mytilene 468 0.55

4. Time series
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s 26 prec_26 Naxos 204 0.46

27 prec_27 Patra 1008 0.52

28 prec_28 Sitia 288 0.56

29 prec_29 Skyros 396 0.50

30 prec_30 Thessaloniki 804 0.58

31 prec_31 Thessaloniki 120 0.56

32 prec_32 Trikala 480 0.56

33 prec_33 Tripoli 420 0.53
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34 temp_1 Araxos 360 0.66

35 temp_2 Athens 1416 0.67

36 temp_3 Athens 156 0.68

37 temp_4 Athens 744 0.65

38 temp_5 Heraklion 792 0.69

39 temp_6 Kalamata 720 0.74

40 temp_7 Kerkyra 792 0.67

41 temp_8 Larissa 1416 0.64

42 temp_9 Lemnos 576 0.75

43 temp_10 Methoni 264 0.59

44 temp_11 Methoni 312 0.61

45 temp_12 Patra 468 0.69

46 temp_13 Samos 180 0.64

47 temp_14 Samos 360 0.64

48 temp_15 Souda 660 0.71

49 temp_16 Thessaloniki 1500 0.71

50 temp_17 Thessaloniki 120 0.67

* The Hurst parameter H is estimated for the deseasonalized time series.

5. Forecasting methods

Benchmark

Naive

(last observation)

Stochastic

AR(1)

auto_ARFIMA

BATS

Theta

ML

NN

SVM

6. Comparison on precipitation time series

(1) one-step ahead forecasting - AE

(2) multi-step ahead forecasting - RMSE

(3) multi-step ahead forecasting - NSE

(4) multi-step ahead forecasting - rSD

(5) multi-step ahead forecasting - d

(6) multi-step ahead forecasting - Pr

Notes

� The results of the single-case studies 

vary significantly.

� There is no best or worst forecasting 

method regarding all the criteria set 

simultaneously. 

� The former observations apply equally 

to the stochastic and the ML forecasting 

methods.

� The Naive benchmark is as competent 

as the forecasting methods regarding all 

the criteria set.

� The forecasting methods AR(1) and 

auto_ARFIMA are the least proper to 

use on our precipitation data.

Heatmaps for the comparison 

between the stochastic and ML 

methods on the precipitation 

time series. The darker the colour 

the better the forecasts.

7. Comparison on temperature time series

(1) one-step ahead forecasting - AE

(2) multi-step ahead forecasting - RMSE

(3) multi-step ahead forecasting - NSE

(4) multi-step ahead forecasting - rSD

(5) multi-step ahead forecasting - d

(6) multi-step ahead forecasting - Pr

Heatmaps for the comparison 

between the stochastic and ML 

methods on the temperature time 

series. The darker the colour the 

better the forecasts.

Notes

� The first four notes of 6 also 

apply to 7.

� The forecasting methods 

AR(1) and auto_ARFIMA are 

competent on the temperature 

time series data. 

� By studying the numerical 

results we note that the 

forecasts for temperature are 

remarkably better than the 

forecasts for precipitation.

8. Time lag selection: NN algorithm
Heatmaps for 

the sensitivity 

analysis on 

the time lags 

in time series 

forecasting 

using the NN 

algorithm.

The darker 

the colour

the better

the forecasts.

Notes

� We observe 

significant 

variations in the 

results across the 

individual cases, to 

an extent that it is 

impossible to decide 

on a best or worst 

ML forecasting 

method among the 

single-case studies.

� The left parts of the 

heatmaps are 

smoother with no 

white cells.

9. Time lag selection: SVM algorithm
Heatmaps for 

the sensitivity 

analysis on 

the time lags 

in time series 

forecasting 

using the SVM 

algorithm.

The darker 

the colour

the better

the forecasts.

Notes

� The first note 

of 8 also 

applies to 9.

� We observe 

no systematic 

patterns and 

the variations 

are rather 

random.

10. Hyperparameter optimization

Notes

� The results vary across 

the single-case studies in 

a rather random manner.

� The hyperparameter 

optimization does not 

necessary lead to better 

forecasts for the NN and 

SVM algorithms.

Heatmaps for the 

investigation of the

effect of hyperparameter 

optimization on the forecast 

quality. The darker the colour 

the better the forecasts. The 

symbol * in the name of

a forecasting method

denotes that the model’s 

hyperparameters have

been optimized.
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11. Summary and conclusions References
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� We compare four stochastic and two ML forecasting algorithms by conducting a

multiple-case study, which is composed by 50 single-case studies.

� The latter use time series of total monthly precipitation and mean monthly

temperature observed in Greece.

� We compare the one- and multi-step ahead forecasting properties of the

algorithms.

� Regarding the ML algorithms, we also perform a sensitivity analysis for time lag

selection.

� Furthermore, we compare more sophisticated ML methods as regards to the

hyperparameter optimization to simple ones.

� The present study must be encountered as a contingent empirical evidence on

several issues that have drawn the attention in the field of time series forecasting.

� The findings suggest that the stochastic and ML methods can perform equally

well, but always under limitations.

� The best forecasting method depends on the case examined and the criterion of

interest, while it can be either stochastic or ML. However, the ML methods are

computationally intensive.

� Regarding the time lag selection, the best choice seems to depend mainly on the

case, while the ML algorithm might has also some effect.

� Finally, for the algorithms used in the present study hyperparameter optimization

does not necessarily lead to better forecasts.

� We apply the benchmark and stochastic algorithms using the forecast R package (Hyndman

2016; Hyndman and Khandakar 2008) and the ML using the rminer R package (Cortez 2010,

2015).

� The Naive, AR(1), auto_ARFIMA and BATS algorithms apply Box-Cox transformation to the

input data before fitting a model to them.

� While the stochastic forecasting methods are simply defined by the stochastic algorithm, the ML

methods are defined by the set {ML algorithm, hyperparameter selection procedure, time lags}.

� We compare two procedures for hyperparameter selection, i.e. predefined hyperparameters or

defined after optimization, and 21 regression matrices, each using the first n time lags, n = 1, 2,

…, 21. The hyperparameter optimization is performed with the hold-out method.

� Hereafter, we consider that the ML models are used with predefined hyperparameters and that

the regression matrix is built only by the first time lag, unless mentioned differently.

� We use two ML forecasting methods (one for each algorithm) in the comparisons conducted

between stochastic and machine learning.

� We also use 42 forecasting methods (21 for each algorithm) to perform a sensitivity analysis for

time lag selection and four ML forecasting methods (two for each algorithm) for the

investigation of the effect of the hyperparameter optimization.

� Machine learning (ML) algorithms are widely used for the forecasting of geophysical processes as

an alternative to stochastic algorithms.

� Popular ML algorithms are the Neural Networks (NN) and the Support Vector Machines (SVM).

The large number of the relevant applications is imprinted in Maier and Dandy (2000) and

Raghavendra and Deka (2014).

� The research in geophysical sciences often focuses on comparing stochastic to ML forecasting

algorithms.

� The comparisons performed are usually based on single-case studies (e.g. Koutsoyiannis et al.

2008; Valipour et al. 2013).

� Single-case studies offer the benefit of studying the phenomena in detail as also in their context.

On the other hand, they do not allow generalizations in any extent (Achen and Snidal 1989).

� Generalizations could be derived by examining a sufficient number of different cases, as

implemented in Papacharalampous (2016) and Papacharalampous et al. (2017).

� Here we conduct a multiple-case study composed by 50 individual cases, each of them based on

geophysical time series data from Greece.

� In more detail:

� We apply a fixed methodology to each individual case for the comparison between several

stochastic and ML methods regarding their one-step ahead and multi-step ahead forecasting

properties.

� Concerning the ML methods, we also perform a sensitivity analysis for time lag selection.

Additionally, we compare more sophisticated ML methods as regards to the hyperparameter

optimization to simple ones.

� Finally, we perform a cross-case synthesis to facilitate the detection of systematic patterns.

� The multiple-case study method can provide a form of generalization named “contingent

empirical generalization”, while retaining the immediacy of the single-case study method (Achen

and Snidal 1989).

� We use 50 time series of total monthly precipitation (data source: Peterson and Vose 1997) and mean

monthly temperature (data source: Lawrimore et al. 2011) observed in Greece (see 4).

� We select only those with few missing values (blocks with length equal or less than one).

Subsequently, we use the Kalman filter algorithm from the zoo R package (Zeileis and Grothendieck

2005) for filling in the missing values.

� We use the deseasonalized time series for the application of the forecasting methods (see 5), as

suggested in Taieb et al. (2012).

� To describe the long-term persistence of the deseasonalized time series, we estimate the Hurst

parameter H for each of them using the maximum likelihood method (Tyralis and Koutsoyiannis

2011) implemented with the HKprocess R package (Tyralis 2016).

� We apply the following methodology to each time series:

� First, we split the time series into a fitting and a test set. The latter is the last observation for

the one-step ahead forecasting experiments and the last 12 observations for the multi-step

ahead forecasting experiments.

� Second, we fit the models to the deseasonalized fitting set and make predictions corresponding

to the test set.

� Third, we add the seasonality to the predicted values and compare them to their corresponding

observed using several metrics (see bellow).

� Regarding the one-step ahead forecasting properties, the assessment is based on the absolute

error (AE) of the forecast of the last observation.

� For the comparison of the multi-step ahead forecasting properties we use the Root Mean

Square Error (RMSE), the Nash-Sutcliffe efficiency (NSE), the ratio of standard deviations (rSD),

the index of agreement (d) and the coefficient of correlation (Pr) applied to the test set. The

definitions of the metrics NSE, d and Pr are available in Krause et al. (2005), while the

definition of the rSD in Zambrano-Bigiarini (2014).

� Finally, we conduct the cross-case synthesis to demonstrate similarities and differences

between the single-case studies conducted.

Achen, C.H., and Snidal, D., 1989. Rational deterrence theory and comparative case studies. World Politics, 41 (2), 143-169.

doi:10.2307/2010405

Cortez, P., 2010. Data Mining with Neural Networks and Support Vector Machines Using the R/rminer Tool. In: P. Perner, eds. Advances

in Data Mining. Applications and Theoretical Aspects. Springer Berlin Heidelberg, pp 572-583. doi:10.1007/978-3-642-14400-4_44

Cortez, P., 2015. rminer: Data Mining Classification and Regression Methods. R package version 1.4.1.

Hyndman, R.J., O'Hara-Wild, M., Bergmeir, C., Razbash, S., and Wang, E., 2017. forecast: Forecasting functions for time series and linear

models. R package version 7.1.

Hyndman, R.J., and Khandakar, Y., 2008. Automatic time series forecasting: the forecast package for R. Journal of Statistical Software, 27

(3), 1-22. doi:10.18637/jss.v027.i03

Koutsoyiannis, D., Yao, H., and Georgakakos, A., 2008. Medium-range flow prediction for the Nile: a comparison of stochastic and

deterministic methods. Hydrological Sciences Journal, 53 (1), 142-164. doi:10.1623/hysj.53.1.142

Krause, P., Boyle, D.P., and Bäse F., 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in

Geosciences, 5, 89-97.

Lawrimore, J.H., Menne, M.J., Gleason, B.E., Williams, C.N., Wuertz, D.B., Vose, R.S., and Rennie, J., 2011. An overview of the Global

Historical Climatology Network monthly mean temperature data set, version 3. Journal of Geophysical Research: Atmospheres, 116

(D19121). doi:10.1029/2011JD016187

Maier, H.R., and Dandy, G.C., 2000. Neural networks for the prediction and forecasting of water resources variables: a review of

modelling issues and applications. Environmental Modelling & Software, 15 (1), 101-124. doi:10.1016/S1364-8152(99)00007-9

Papacharalampous, G.A., 2016. Theoretical and empirical comparison of stochastic and machine learning methods for hydrological

processes forecasting. MSc thesis.

Papacharalampous, G.A., Tyralis, H., and Koutsoyiannis, D., 2017. Comparison of stochastic and machine learning methods for multi-step

ahead forecasting of hydrological processes. In preparation.

Peterson, T.C., and Vose, R.S., 1997. An overview of the Global Historical Climatology Network temperature database. Bulletin of the

American Meteorological Society, 78 (12), 2837-2849. doi:10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2

Raghavendra, N.S., and Deka, P.C., 2014. Support vector machine applications in the field of hydrology: a review. Applied Soft Computing,

19, 372-386. doi:10.1016/j.asoc.2014.02.002

Taieb, S.B., Bontempi, G., Atiya, A.F., and Sorjamaa, A., 2012. A review and comparison of strategies for multi-step ahead time series

forecasting based on the NN5 forecasting competition. Expert Systems with Applications, 39 (8), 7067-7083.

doi:10.1016/j.eswa.2012.01.039

Tyralis, H., 2016. HKprocess: Hurst-Kolmogorov Process. R package version 0.0-2.

Tyralis, H., and Koutsoyiannis, D., 2011. Simultaneous estimation of the parameters of the Hurst–Kolmogorov stochastic process.

Stochastic Environmental Research & Risk Assessment, 25 (1), 21-33. doi:10.1007/s00477-010-0408-x

Valipour, M., Banihabib, M.E., and Behbahani, S.M.R., 2013. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural

network models in forecasting the monthly inflow of Dez dam reservoir. Journal of Hydrology, 476 (7), 433-441.

doi:10.1016/j.jhydrol.2012.11.017

Zambrano-Bigiarini, M., 2014. hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series.

R package version 0.3-8.

Zeileis, A., and Grothendieck, G., 2005. zoo: S3 infrastructure for regular and irregular time series. Journal of Statistical Software, 14 (6),

1-27. doi:10.18637/jss.v014.i06


