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This file provides supporting information for: 

1. the analysed datasets, including (a) hydrometeorological and (b) ecosystem variables, as well as 
(c) simulation results with process-based ecosystem models (TRENDY model output); 

2. the estimation of the composite continuum of hydrometeorological and ecosystem variability 
based on several datasets (empirical climacograms); 

3. the fitting procedure of theoretical and empirical climacograms used to describe the continuum 
of hydrometeorological and ecosystem variability; 

4. the analytical derivation of standard deviation as a function of averaging time scale for a single 
harmonic function.  
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S1! Detailed data description 

The analysed datasets, used as proxies for ecosystem functioning, and the resulting ecosystem 
variability, are summarized in Table S1, while the datasets used for the hydrometeorological 
variability are reported in Table S2. 

S1.1! Micrometeorological and eddy covariance data 
Micrometeorological and eddy covariance flux measurements [e.g., Baldocchi, 2003, 2008, 2014] 
from the FLUXNET2015 dataset (December 2015 release) are used 
(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/fullset-data-product/). This dataset consists 
of half-hourly data (level 4) of precipitation, air temperature, incoming shortwave radiation, 
vapour pressure deficit (VPD), and net ecosystem exchange (NEE), which are averaged to hourly 
time step. 

Table S1.  Datasets used for the analysis of ecosystem variability across time scales. 

Measurement type Variable
Temporal 
resolution 1 Source

Eddy covariance flux Net Ecosystem Exchange (NEE) hourly FLUXNET2015 2

Remote sensing FAPAR monthly MODIS TIP 3 , GIMMS 4

LAI monthly MODIS TIP 3 , GIMMS 4

Dendrochronological Tree ring width annual Babst et al., 2014a,b
Above-ground woody biomass annual Babst et al., 2014a,b

1  It refers to the temporal resolution used in the analysis and not necessarly to the original temporal resolution of each dataset.
2  One site with long-term measurements from the LaThuile Dataset that was not included in 
the FLUXNET2015 dataset (December 2015 release) is also incorporated in the analysis 
(see Table S3).
3  Pinty et al., 2011
4  Zhu et al., 2013  

S1.1.1!Sensitivity to the pre-processing method of NEE 
Estimates of NEE based on different pre-processing procedure (Ustar thresholds, where Ustar is 
the surface friction velocity threshold used for assessing the mixing condition of the air), as 
provided by the FLUXNET2015 dataset, are analysed†. This allows us to quantify the sensitivity 
of the log σNEE – log k relation, where σNEE is the standard deviation of NEE at different averaging 
scales k, to different NEE products. Figure S1 illustrates the results for five European sites (similar 
is the case also for the other sites; results not shown). The following variables are used (detailed 
documentation is provided in the FLUXNET2015 dataset): NEE_[UT]_REF: reference NEE 
estimated with the model efficiency approach using method UT (Constant Ustar Threshold, CUT 
or Variable Ustar Threshold, VUT). NEE_[UT]_USTAR50: NEE estimated using method UT 
(CUT, VUT) for each year from 50 percentile of USTAR threshold. NEE_[UT]_MEAN: NEE 
estimated using method UT (CUT, VUT) across years, average from 40 NEE_[UT]_50 versions, 

                                                   
† Note that for the site FR-LBr (Table S3) that is not included in the FLUXNET2015 dataset (December 2015 release), 
the variables provided by the LaThuile2007 dataset are used, namely: Ta_f, VPD_f, Precip, Rg_f, NEE_st_fANN. 
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where NEE_[UT]_50 is the 50-percentile of the NEE estimates. The analysed estimates of NEE 
lead to very similar log10 σNEE – log10 k patterns, thus supporting the robustness of our findings. 

Table S2. Climatic datasets used to describe the hydrometeorological envelope of variability across time scales. 

Dataset Variable
Temporal 
resolution

Source

Air temperature 1 h
Precipitation 1 h
Shortwave radiation (incoming) 1 h
Vapour pressure deficit 1 h
Air temperature 6 h
Precipitation 6 h
Shortwave radiation (incoming) 6 h
Vapour pressure deficit 1 6 h
Air temperature 1 d
Precipitation 1 d
Shortwave radiation (incoming) 1 d
Vapour pressure deficit 1 1 d
Air temperature 6 h
Precipitation 6 h
Shortwave radiation (incoming) 6 h
Vapour pressure deficit 1 6 h
Air temperature 3 h
Precipitation 3 h
Shortwave radiation (incoming) 3 h
Vapour pressure deficit 1 3 h
Air temperature 1 mon
Precipitation 1 mon
Vapour pressure deficit 1 1 mon
Air temperature 1 mon
Precipitation 1 mon
Vapour pressure deficit 1 1 mon

https://crudata.uea.ac.uk
/cru/data/hrg/timm/grid/C
RU_TS_1_2.html

CRU TS 1.2

CRU TS 3.23 https://crudata.uea.ac.uk
/cru/data/hrg/cru_ts_3.2
3/

1  Calculated with the Clausius-Clapeyron equation.

CRU-NCEPv4 http://dods.extra.cea.fr/d
ata/p529viov/cruncep/

http://apps.ecmwf.int/dat
asets/data/interimDfullD
daily

http://www.esrl.noaa.gov
/psd/data/gridded/reanal
ysis/

20th Century 
Reanalysis Version 
v2c

NCEP I, II

ERA Interim

Micrometeorological

http://www.esrl.noaa.gov
/psd/data/20thC_Rean/

http://fluxnet.fluxdata.org
/2015/12/31/fluxnet2015D
datasetDrelease/

 

S1.1.2!Sensitivity to data-gaps and gap-filling method 
For the case of micrometeorological variables, the sensitivity of the log σ – log k relation to data 
gaps is assessed by examining different gap-filling approaches. Figure S2 illustrates the results for 
five European eddy covariance flux towers when different gap-filling methods, available from the 
FLUXNET2015 dataset, are applied. The results are very similar for all the examined locations 
(results not shown). The following variables are used (for more details see the complete 
documentation of the FLUXNET2015 dataset): TA_F_MDS: air temperature, gap-filled using 
Marginal Distribution Sampling (MDS) method; TA_ERA: air temperature, downscaled from 
ERA, linearly regressed using measured only site data; TA_F: air temperature, consolidated from 
TA_F_MDS and TA_ERA. SW_IN_F_MDS: shortwave radiation, incoming, gap-filled using 



4 
 

MDS; SW_IN_ERA: shortwave radiation, incoming, downscaled from ERA, linearly regressed 
using measured only site data; SW_IN_F: shortwave radiation, incoming consolidated from 
SW_IN_F_MDS and SW_IN_ERA. VPD_F_MDS: vapour pressure deficit, gap-filled using 
MDS; VPD_ERA: vapour pressure deficit, downscaled from ERA, linearly regressed using 
measured only site data; VPD_F: vapour pressure deficit consolidated from VPD_F_MDS and 
VPD_ERA. P: precipitation; P_ERA: precipitation, downscaled from ERA, linearly regressed 
using measured only site data; P_F: precipitation consolidated from P and P_ERA. Different gap-
filled data lead to fairly similar patterns of confirming the robustness of our findings. 

 

Figure S1. Standard deviation of Net Ecosystem Exchange (σNEE) as a function of the averaging time scale, k, for five 
European sites (subplots a-e; see Table S3). Different colours and point sizes correspond to NEE estimates based on 
six different pre-processing methods (see supporting text). For the sake of clarity, for averaging scales from one hour 
to one day, one day to one month, and larger than one month, hourly, daily, and monthly averaging time steps are 
used, respectively. All six pre-processing methods lead to very similar estimates of the log σNEE – log k relation.  
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Table S3. Site description of the 23 analysed micrometeorological and eddy covariance flux tower data. 1DBF: Deciduous Broadleaf Forest; EBF: Evergreen 
Broadleaf Forest; ENF: Evergreen Needleleaf Forest; MF: Mixed Forest. 2Sites where tree-ring and above ground woody biomass estimates are available. 3Data 
from the La Thuile 2007 database, while the data from all the other sites are from the FLUXNET2015 release. *Data-gap in 2003. **Data-gap in 1998. &Data-gap 
in 2009. &&Data-gap in 2009, 2010, and 2011. #Data-gap in 2007, 2008, and 2009. ##Data-gap in 1999. 

Site ID
Longitude 
[deg]

Latitude 
[deg]

Elevation 
[m a.s.l.]

Length 
[yr]

From 
[yr]

To 
[yr]

Vegetation 
type1 Site name Reference

AU-Tum -35.66 148.15 932 13 2001 2013 EBF Tumbarumba Leuning et al.,  2005
BE-Bra2 51.31 4.52 16 17* 1996 2013 MF Brasschaat (De Inslag Forest) Carrara et al.,  2003
BE-Vie 50.31 6.00 493 19 1996 2014 MF Vielsalm Aubinet et al.,  2002

CA-Gro 48.22 -82.16 340 12 2003 2014 MF
Ontario - Groundhog River 
Boreal Mixedwood Forest

McCaughey et al.,  2006

CZ-BK1 49.50 18.54 908 13 2000 2012 ENF Bily Kriz - Beskidy Mountains Marek et al.,  2011
DE-Hai 51.08 10.45 430 13 2000 2012 DBF Hainich Knohl et al.,  2003
DE-Tha2 50.96 13.57 380 19 1996 2014 ENF Anchor Station Tharandt Grünwald and Bernhofer 2007
DK-Sor2 55.49 11.64 40 17 1996 2012 DBF Soroe - LilleBogeskov Pilegaard et al.,  2011
FI-Hyy2 61.85 24.30 181 19 1996 2014 ENF Hyytiala Suni et al.,  2003
FR-Pue 43.74 3.60 270 14 2000 2013 EBF Puechabon Allard et al.,  2008
IT-Lav 45.96 11.28 1353 10 2003 2012 ENF Lavarone Marcolla et al.,  2003
IT-Ren 46.59 11.43 1730 15** 1998 2013 ENF Renon/Ritten (Bolzano) Montagnani et al.,  2009
IT-Ro2 42.39 11.92 160 10& 2002 2012 DBF Roccarespampani 2 Tedeschi et al.,  2006
IT-SRo2 43.73 10.28 6 14 1999 2012 ENF San Rossore Chiesi et al.,  2005
NL-Loo 52.17 5.74 25 19 1996 2014 ENF Loobos Dolman et al.,  2002

RU-Fyo 56.46 32.92 265 16 1998 2013 ENF
Fyodorovskoye wet spruce 
stand

https://fluxnet.ornl.gov/site/709

US-Blo 38.90 -120.63 1315 11 1997 2007 ENF Blodgett Forest Goldstein et al.,  2000
US-Ha1 42.54 -72.17 340 22 1991 2012 DBF Harvard Forest EMS Tower Urbanski et al.,  2007
US-MMS 39.32 -86.41 275 16 1999 2014 DBF Morgan Monroe State Forest Schmid et al.,  2000
US-Oho 41.55 -83.84 230 10 2004 2013 DBF Oak Openings DeForest et al.,  2006
US-Syv 46.24 -89.35 540 11&& 2001 2014 MF Sylvania Wilderness Area Desai et al.,  2005
US-WCr 45.81 -90.08 520 13# 1999 2014 DBF Willow Creek Cook et al.,  2004
FR-LBr3 44.72 -0.77 61 12## 1996 2008 ENF Le Bray Berbigier et al.,  2001  
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Figure S2. Standard deviation (σ) of the analysed hydrometeorological variables (columns) as a function of the 
averaging time scale, k, for five European sites (rows; see Table S3). Different colours correspond to products with 
different gap-filling methods. MDS stands for Marginal Distribution Sampling [Moffat et al., 2007], ERA corresponds 
to values downscaled from the ERA reanalysis product, while ‘Combined’ refers to the final gap-filled product 
consolidated from MDS and ERA estimates. For the sake of figure’s clarity, for averaging scales from one hour to 
one day, one day to one month, and larger than one month, hourly, daily, and monthly averaging time steps are used, 
respectively. Differently gap-filled data lead to fairly similar estimates of the log σ – log k relation. 

S1.1.3!Variability continua of eddy-covariance-derived GPP and RECO 
Together with NEE, the variability of other ecosystem variables, related to the terrestrial carbon 
cycle is also analysed. More specifically, eddy covariance measurements of NEE can be 
partitioned to Gross Primary Productivity (GPP) and ecosystem respiration (RECO) using various 
assumptions and numerical algorithms [e.g., Reichstein et al., 2005]. The variability continua of 
NEE, GPP, and RECO are presented in Figure S3. For the sites included in the FLUXNET2015 
dataset the following variables are used: NEE_VUT_MEAN, GPP_NT_VUT_MEAN, 
RECO_NT_VUT_MEAN, while for the site from the la Thuile dataset NEE_st_fANN, 
GPP_st_ANN, and Reco_st are used. 

However, for the composite ecosystem variability continuum, we use NEE data since this variable 
is a direct measurement rather than a modelling result (cf. GPP, RECO) and is close related to the 
additional proxy variables used for extrapolating the ecosystem variability continuum at longer 
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time scales. Partitioning the different components of the observed ecosystem carbon fluxes (GPP, 
RECO) introduces additional assumptions and uncertainties [e.g., Wehr et al., 2016]. Thus within 
the frame of our analysis NEE is selected. 

 

Figure S3. Variability of carbon fluxes measured (i.e., NEE; subplot a) and inferred (GPP, RECO; subplots b and c, 
respectively) with the eddy covariance technique at the 23 analysed sites. Standard deviation is illustrated as a function 
of the averaging time scale from hourly to interannual scales. Data are standardized, i.e., zero mean and unit variance, 
at the hourly time scale, so that patterns of variability can be compared across sites. Different colours correspond to 
different forest types. 

S1.2! Reanalysis hydrometeorological data 

S1.2.1!ERA Interim 
ERA Interim product [Dee et al., 2011] is a global gridded dataset that provides daily values of 
several climatological variables with a spatial resolution of 0.125o x 0.125o. Data for the period 
1974 to 2014 downloaded from http://apps.ecmwf.int/datasets/data/interim-full-daily. The 
following variables are used in our analysis: 2-metre dew point temperature, surface pressure, 
surface net solar radiation, 2-metre temperature, and precipitation. VPD is calculated using air 
temperature, and dew point temperature, following Clausius-Clapeyron equation, as described in 
Bolton, 1980. 
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S1.2.2!NCEP I, II 
NCEP I [Kalnay et al., 1996] and NCEP II [Kanamitsu et al., 2002] products have a spatial 
resolution of 2.5° x 2.5° and a temporal resolution of 6 h. NCEP I covers the period 1948 till 
present (data till 2015 are used in our analysis), while NCEP II the period 1979 till present (data 
till 2015 are used in our analysis). For both datasets the following variables are used: precipitation, 
air temperature, downward solar radiation, air specific humidity, and air pressure. VPD is 
calculated using air temperature, air pressure, and air specific humidity, following Clausius-
Clapeyron equation, as described in Bolton, 1980. Data provided by the NOAA/OAR/ESRL PSD, 
Boulder, Colorado, USA and downloaded with the R package RNCEP [Kemp et al., 2012]. 

S1.2.3! 20th Century Reanalysis Version v2c 
The 20th Century Reanalysis [Whitaker et al., 2004; Compo et al., 2006, 2011] Version v2c has a 
spatial resolution of 2.0° x 2.0° and a temporal resolution of 3 h. It provides climatological data 
for the period 1851 to 2014. The following variables are used: 2-metre temperature, downward 
solar radiation, precipitation, air pressure at the surface, and specific humidity. VPD is calculated 
using air temperature, air pressure, and air specific humidity, following Clausius-Clapeyron 
equation, as described in Bolton, 1980. Data provided by the NOAA/OAR/ESRL PSD, Boulder, 
Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/. 

S1.2.4!CRU TS 1.2 
CRU TS 1.2. product [Mitchell et al., 2004] provides monthly gridded time series of climate data 
for the period 1901 to 2000 with a spatial resolution of 10'. The following variables are used: 
precipitation, air temperature, and vapour pressure. VPD is calculated from vapour pressure and 
air temperature, following Clausius-Clapeyron equation, as described in Bolton, 1980. Data 
downloaded from: https://crudata.uea.ac.uk/cru/data/hrg/timm/grid/CRU_TS_1_2.html. 

S1.2.5!CRU TS 3.23 
The CRU TS 3.23 dataset [Harris et al., 2014] consists of monthly gridded climatological data 
from the period 1901 to 2014 with a spatial resolution of 0.5o x 0.5o. The following variables are 
used: precipitation, air temperature, and vapour pressure. VPD is calculated from vapour pressure 
and air temperature, following Clausius-Clapeyron equation, as described in Bolton, 1980. Data 
downloaded from https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.23/. 

S1.2.6!CRU-NCEPv4 
The CRU-NCEPv4 product (available online: http://dods.extra.cea.fr/data/p529viov/cruncep/) is a 
combination of CRU TS3.21 (Harris et al., 2014; 0.5°x0.5° monthly climatology covering the 
period 1901 to 2009) and NCEP I reanalysis product [Kalnay et al., 1996]. It provides 
hydrometeorological data for the period 1901-2010 with a temporal resolution of six hours and a 
spatial resolution of 0.5o x 0.5o. The following variables are used: precipitation, air temperature, 
incoming shortwave radiation, air specific humidity, and air pressure. VPD is calculated using air 
temperature, air pressure, and air specific humidity, following Clausius-Clapeyron equation, as 
described in Bolton, 1980.  
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Figure S4. Standard deviation of shortwave radiation, air temperature, precipitation, and VPD, (y-axes; rows) as a function of the averaging time scale (x-axes) 
for different hydrometeorological datasets (columns and different colours; see Table S2) for the five European sites (BE-Bra, DE-Tha, DK-Sor, FI-Hyy, and IT-
SRo; see Table S3).
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S1.3! Remote sensing data 

S1.3.1!MODIS TIP LAI and FPAR 
Monthly values of Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation 
(FPAR) from 2001 to 2014 (Figure S5), derived from MODIS and the Joint Research Centre Two!
stream Inversion Package (JRC!TIP), are used [Pinty et al., 2011].  The original data have a time 
step of 15 days and have been gap-filled for the cutouts at the FLUXNET stations according to a 
two-step procedure. First, we used distance correlations to identify nearby pixels with similar 
FPAR dynamics and used these values as estimates for the central pixel, if the distance correlations 
are ≥0.85. The remaining gaps were filled using the procedure proposed by Kondrashov and Ghil, 
2006 in the exact setting as described by Buttlar et al., 2014. More details on this product can be 
found in http://www.qa4ecv.eu/ecv/laifapar. 

 

Figure S5. Standard deviation of the Fraction of Photosynthetically Active Radiation (FPAR; subplot a) and Leaf 
Area Index (LAI; subplot b) as a function of the averaging time scale, for the 20 sites based on the MODIS TIP dataset 
(sites AU-Tum, IT-SRo, and US-Blo are excluded due to low quality data of the corresponding grid cells; Table S3). 
Different colours depict different forest types. Note that time series are standardized (i.e., zero mean and unit variance) 
at the monthly time scale. 

S1.3.2!GIMMS LAI3g and FPAR3g 
Monthly values of Leaf Area Index (LAI 3g product) and Fraction of Photosynthetically Active 
Radiation (FPAR 3g product) for the period 1981-2011, are used [Zhu et al., 2013]. LAI 3g and 
FPAR 3g show very similar patterns of change of variance as a function of the time scale (Figure 
S6). LAI 3g and FPAR 3g are derived from the Global Inventory Modelling and Mapping Studies 
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(GIMMS) Normalized Difference Vegetation Index (NDVI3g) [see Zhu et al., 2013 for a detailed 
description]. 

 

Figure S6. Standard deviation of the Fraction of Photosynthetically Active Radiation (FPAR 3g; subplot a) and Leaf 
Area Index (LAI 3g; subplot b) as a function of the averaging time scale, for the 23 sites (summarized in Table S3), 
based on the GIMMS dataset. Different colours depict different forest types. Note that the time series are standardized 
(i.e., zero mean and unit variance) at the monthly time scale. 

S1.4! Tree-ring width and biomass data 
To further investigate ecosystem variability at the interannual to decadal time scales, we 
incorporate in our analysis dendrochronological records available at five European forest sites 
covering different climatic zones and vegetation characteristics (Table S3; Babst et al., 2014a, 
2014b). More specifically, tree-ring width measurements and biometric data (Diameter at the 
Breast Height, DBH, tree height) were obtained from all trees with DBH > 5.6 cm (N ~50) within 
fixed-size plots located within the footprint area of the eddy covariance flux tower at these five 
European forests, as described in Babst et al., 2014a, 2014b (Table S3). 

Tree-ring width measurements provide a direct quantification of annual radial stem growth at each 
site (Figure S7). Furthermore, above ground woody biomass estimates, derived by Babst et al., 
2014a, 2014b, using tree-ring widths, biometric measurements, and species-specific allometric 
equations, provide an ecosystem-level description of the annual forest biomass dynamics (Figure 
S8). Babst et al., 2014a, 2014b investigated and confirmed the regional representation of the 
identified tree growth dynamics as quantified by the tree-ring chronologies. The tree-ring width 
chronologies are derived using the dplR package [http://cran.r-project.org/package=dplR; Bunn, 
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2008, 2010]. The shortest chronology covers the period 1969 to 2009 (FI-Hyy), while the longest 
one covers a period of 111 years (1899-2009; DE-Tha), Figure S7Figure S8. 

 

Figure S7. Tree-ring derived chronologies (original and detrended time series) for the five locations across Europe 
with eddy covariance flux towers (see Table S3). Tree-ring width indices (RWI) are shown on the left-hand side while 
the sample depth is on the right-hand side of the vertical axes. The solid red line highlights the cubic smoothing spline 
(50% frequency cutoff response at 30 years) that is applied for the detrending. 

A common practice in dendroclimatology is to derive tree-ring index chronologies after detrending 
the tree-ring width measurements (Figure S7; Fritts, 1976). Detrending is the post-processing of 
the tree-ring width measurements to remove age/size related signals from tree-ring width 
measurements [Figure S9; Fritts, 1976]. It has been observed that ring width generally decreases 
with tree age/size, leading to a biological and/or geometric age trend [Fritts, 1976; Mencuccini et 
al., 2005]. A robust statistical description of age-related trends remains still challenging and 
different methods may lead to significantly different results [e.g., Esper and Frank, 2009; Bowman 
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et al., 2013]. Peters et al., 2015 provide a review of commonly applied detrending methods. 
However, when the focus is on understanding the variability in tree growth, and the resulting 
ecosystem variability, any age-related trend could also be seen as an ontogenetic pattern, that 
reflects an inherent property of plant development. Thus, the original tree-ring width data are used. 
Our study uses two metrics for tree growth: the raw tree-ring width and the derived biomass data.  

 

Figure S8. Annual increments of aboveground woody biomass of selected trees located at the footprint of five eddy 
covariance flux towers across Europe (Table S3). Black lines illustrate biomass estimates with various biomass 
allometric functions as detailed in Babst et al., 2014a, 2014b, while red lines correspond to the mean of the distribution. 
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Figure S9. Standard deviation of the tree-ring width chronologies (subplot a) and above-ground woody biomass 
(subplot b) as a function of the averaging scale (x-axes) for the five examined locations (Table S3). Subplot (a) includes 
both the raw data (solid coloured lines) and the detrended chronologies (solid coloured lines with a white line in the 
middle). The median of the distributions across sites is depicted with a black line. Note that the time series are 
standardized (i.e., zero mean and unit variance) at the annual time scale. 

S1.5! Agreement of ecosystem variability at the overlapping time scales of remote sensing 
and tree-ring width data  

 

 

Figure S10. Boxplots of root mean square error (RMSE; subplot a) and correlation coefficient (ρ; subplot b) between 
the variability (standard deviation) of individual ecosystem variables (i.e., net ecosystem exchange, NEE, leaf area 
index, LAI from GIMMS 3g, and tree-ring widths, TRW) at the overlapping time scales of the ecosystem variability 
continuum for the 23 analysed sites. Note that while NEE and LAI data are available for all the analysed locations, 
TRW data are available only for five sites (see Table S3 and Figure 1 of the main text). Boxes are extended from 25% 
lower quartile (q0.25) to 75% upper quartile (q0.75) while whiskers represent the range of [q0.5 - 1.5 IQR, q0.5 + 1.5 IQR], 
where q0.5 is the median and IQR is the interquartile range (q0.75 - q0.25). 
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S1.6! TRENDY multi-model outputs 
Monthly values of terrestrial CO2 exchange from the multi-model output of the TRENDY project 
(Trends in net land atmosphere carbon exchanges, Le Quéré et al., 2013; Piao et al., 2013; Sitch 
et al., 2015; http://dgvm.ceh.ac.uk/) are analysed. The data are available from http://www-
lscedods.cea.fr/invsat/RECCAP/. The analysed results correspond to simulations with changing 
CO2 and climate for the period 1901-2010 (S2 experiment). The following DGVMs participated 
in the TRENDY project: Hyland, TRIFFID/JULES, LPJ, LPJ-GUESS, NCAR-CLM4, 
ORCHIDEE, OCN, SDVGM, VEGAS. However, for our analysis, simulation results with Hyland 
are discarded since they have annual time step, while all the other models provide monthly outputs. 
The analysed results correspond to the period is from 1901 to 2010 (i.e., spin up and historical 
period), with the exception of ORCHIDEE that the analysed period is from 1981 to 2010. In 
addition, the coordinates of two of the examined sites (BE-Bra and DK-Sor; see Table S3) fall out 
of the terrestrial grid in the simulations with TRIFFID/JULES due to its coarse spatial resolution 
(3.75o x 2.5o). Thus, for these two specific sites, simulation results with TRIFFID/JULES are 
discarded. 

The CRU-NCEPv4 product (http://dods.extra.cea.fr/data/p529viov/cruncep/; see section S1.2.6 
for a detailed product description) is used as climate forcing (e.g., precipitation, air temperature, 
radiation) for the TRENDY multi-model simulations (Figure S11). Net Biospheric Production 
(NBP; NBP=-NEE) simulated with several Dynamic Global Vegetation Models (DGVMs), part 
of TRENDY v1 output, is used for describing the simulated continuum of ecosystem variability 
since it is closely related with the observed ecosystem variables used in the composite ecosystem 
variability continuum (Figure S12 and Figure 5 of the main text). 

 

Figure S11. Standard deviation of the climate input (TRENDY meteorological forcing; precipitation, shortwave 
incoming radiation, air temperature, and vapour pressure deficit, VPD from the CRU-NCEPv4 product) as the function 
of the averaging time scale, from one month to about one decade. The data correspond to five of the examined sites 
(BE-Bra, DE-Tha, DK-Sor, FI-Hyy, IT-SRo; see Table S3). Note that the time series are standardized (i.e., zero mean 
and unit variance) at the monthly time scale. 
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Figure S12. Standard deviation of NEE as a function of the averaging time scale (from one month to about one decade) 
for five European sites (see Table S3) based on the TRENDY multi-model simulation results. Different colours depict 
different Dynamic Global Vegetation Models (DGVMs). Note that the time series are standardized (i.e., zero mean 
and unit variance) at the monthly time scale. 

In addition, the variability of individual components of NEE, consisting of simulated Gross 
Primary Productivity (GPP), Net Primary Productivity (NPP), and heterotrophic respiration (RH) 
is also illustrated in Figure S13 (see Chapin et al., 2006 for detailed definitions of variables 
describing terrestrial carbon fluxes and stocks). GPP and NPP show similar patterns of variability, 
highlighting the carbon-centric structure of DGVMs in simulating forest growth [e.g., Sala et al., 
2012; Pappas et al., 2013; Fatichi et al., 2014; Körner, 2015], while RH follows closely the pattern 
of variability of temperature (upper limit of the hydrometeorological envelope), as a result of the 
close dependence of RH to temperature that is incorporated in DGVMs [e.g., Sitch et al., 2003; 
Oleson et al., 2013; Ballantyne et al., 2017]. 
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Figure S13. A comparison of observed (subplot a) and simulated (TRENDY multi-model mean simulated NEE; 
subplot b) ecosystem variability across the five European sites (see Table S3; coloured lines), as well as additional 
simulated ecosystem variables, namely GPP (subplot c), NPP (subplot d), and RH (subplot e). The shaded area denotes 
the hydrometeorological envelope of the TRENDY climate forcing (CRU-NCEPv4). For figures’ clarity, data are 
standardised so that they have zero mean and unit variance at the monthly time scale. Standard deviation of NEE as a 
function of the averaging time scale (from one month to about one decade) based on the TRENDY multi-model 
simulation results. Different colours depict different Dynamic Global Vegetation Models (DGVMs). Note that the 
time series are standardized (i.e., zero mean and unit variance) at the monthly time scale. Note that subplots a and b 
are the same as Figure 5a,b of the main text. 

S2! Empirical climacograms 

S2.1! Mean climacograms of hydrometeorological variables 
The climacogram of each hydrometeorological variable (precipitation, air temperature, radiation, 
VPD) is calculated as the mean over micrometeorological and reanalysis data with fine temporal 
resolution (CRU-NCEPv4 and 20th century reanalysis products; Figure S14). 
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Figure S14. Mean empirical climacograms (black dots) of the analysed climatic variables for an exemplary site (DE-
Tha, see Table S3), namely (a) shortwave radiation, (b) air temperature, (c) precipitation, and (d) VPD. Coloured lines 
indicate different datasets: micrometeorological data with hourly time step, reanalysis data clipped at the DE-Tha site 
with six- and three-hour time step, CRU-NCEPv4 and 20th century reanalysis, respectively. 

S3! Model fitting 

The model structure that describes best the observed dynamics of the hydroclimatic and ecosystem 
variability (i.e., the relation of standard deviation as a function of averaging time scale; !"

# ) is the 

linear combination the diurnal (T1=24 h) and seasonal (T2=1 yr) cycle harmonics (!
$%

&  and !
$'

& , 

respectively) and a process with long-term persistence (!
()

& ), i.e., 

!"
#
= +!

,1

#
+ /!

,2

#
+ 1!

HK

#  

where a, b, and c are weighting factors (Figure 6c, d, in the main text).  

Figure S15 summarizes the distribution of the slopes in the climacograms of hydrometeorological 
and ecosystem variables, θ, where θ=H-1 with H denoting the Hurst coefficient across the 23 sites 
(Table S3). 
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Figure S15. Distribution of the slopes of the climacograms (θ=H-1, where H is the Hurst coefficient), for the 23 
analysed sites (Table S3) for climate forcing (air temperature, T, shortwave radiation, R, vapour pressure deficit, D, 
and precipitation, P) and ecosystem response. For the five sites where tree rings are available the fitting was made to 
NEE, LAI 3g, and TRW data, while for the remaining sites the fitting was made only to NEE, and LAI 3g data. 

S4! Standard deviation of a deterministic single harmonic process as a function of the 
averaging time scale 

Given a deterministic periodic process, 4(6), of a single harmonic with period T 

 2π
( ) 2 cos

t
x t b

T
⎛ ⎞= +⎜ ⎟⎝ ⎠

 (S.1) 

where t is time and b∈[0, π] is the phase (horizontal shift in Figure S16), we can derive analytically 
how the standard deviation (σ) of this process (and also that of other structurally similar processes) 
changes as a function of the averaging time scale (k).  

Here, we will revise the proof presented by Markonis and Koutsoyiannis, 2012, in order to show 
that for a single harmonic process, described by Equation (S.1), there is:  

(i) a drop in σ at averaging time scales of k=aT, where a∈N (as predicted by Markonis and 
Koutsoyiannis, 2012), 

(ii) but also a discontinuity in σ at specific averaging time scales, corresponding to k=(m+1/2)T 
where m∈N0. This discontinuity can be explained by either the symmetric shape of the harmonic 
function (leading to a local abrupt drop in σ) or due to the starting point of the integration of the 
harmonic signal, i.e., caused by the horizontal drift (parameter b) or the data availability (parameter 
c, see below), leading to local abrupt changes of σ at averaging scales of k=(m+1/2)T. 

 



20 
 

 

Figure S16. Time series of a deterministic periodic process of a single harmonic with period T=1, described by 
Equation (S.1)  and the time series of the averaged process at selected time scales corresponding to T/4, T/2, and T. 
Subplots (a), (b), and (c) correspond to different values of parameter b (horizontal phase shift; see Equation (S.1)). 
For illustration purposes t ∈[0,4] and the amplitude of the harmonic is √2. At averaging scales of k=aT, where a ∈N+, 
the standard deviation of the averaging process (red solid line) is minimum (flat line). Furthermore, for b=0 (subplot 
(a)) the standard deviation at averaging scales of k=(m+1/2)T where m ∈N0 coincides with that of averaging scales of 
k=aT, where a ∈ N+ (i.e., minimum; solid blue line). Interestingly, for b=π/4 or b=π/2 the standard deviation of the 
averaging process for scales of k=(m+1/2)T is greater than zero (solid blue lines in subplots (b) and (c)). Note that in 
subplot (c) green and blue lines overlap. 

After integrating Equation (S.1) at time scale T/2 (solid blue line in Figure S16),  denoting 
1

( /2)k T
tx

=  

the average of 4(6) in [c, c+T/2], 
2

( /2)k T
tx

=  the average of ( )x t  in [c+T/2, c+T], ..., ( /2)
N

k T
tx

=  the average 

of 4(6) in [c+NT/2, c+(N+1)T/2], where c∈[0, T/2], and N∈N+, we obtain: 
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Equation (S.2) implies that the mean of ( /2)
i

k T
tx

=  is equal to zero, i.e., ( /2) 0k T
tx

µ = = . The standard 

deviation of the averaged process at the time scale of k=T/2 is then given by: 
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 ( /2) 2 2 2πsin
π

k T c b
T

σ = ⎛ ⎞⇒ = +⎜ ⎟⎝ ⎠
 (S.3) 

Equation (S.3) predicts the change in standard deviation of a periodic process with period T, as 
described by Equation (S.1), at averaging scales of k=T/2, 3T/2, 5T/2,..., (m+1/2)T where m∈N0. 
Equation (S.3) has a minimum equal to zero and a maximum equal to 2√2/π. The dependence of 

( )( /2,..., 1/2 )k T m Tσ = +  to the parameters b and c is illustrated in Figure S17. 
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Figure S17. Standard deviation (σ) of deterministic periodic process, with period T, described by Equation (S.1), at 
averaging time scales of k=T/2, 3T/2, 5T/2,..., (m+1/2)T where m∈N0 as a function of parameters b and c, illustrated 
in the three- (subplot (a)) and two-dimensional space (subplot (b)). Note that depending on the parameters b and c the 
standard deviation at scales k=T/2, 3T/2, 5T/2,..., (m+1/2)T, can vary from 0 (i.e., min(σ(k))) to 2√2/π (i.e., max(σ(k))). 
For example, in the exemplary time series presented in Figure S16, for c=0, σ(k) is minimum for b=0 (Figure S16a) or 
b=π, and σ(k) is maximum for b=π/2 (Figure S16c). 

In order to illustrate how the aforementioned findings are reflected in our analysis, we generated 
synthetic time series of hourly values with 10 years length (i.e., 86400 data points) using Equation 
(S.1), with period T=24. Thus, we mimic the diurnal harmonic that is also present in the data we 
analysed. In real case applications parameters b and c can have similar effects, i.e., a horizontal 
phase shift (reflected in parameter b) has the same effect in our averaging procedure as ignoring 
few values at the beginning of the time series and starting the integration at a time step t+c. 
Therefore, since in our analysis the averaging of the time series at different time scales starts 
always from the first available observation, we assume c=0 and we focus on the parameter b. Three 
different time series of a single harmonic with parameter b equal to π, π/2, and π/4, respectively, 
are generated and the relation between the standard deviation of these three time series as a 
function of the averaging scale is illustrated in Figure S18.  

Markonis and Koutsoyiannis, 2012 have shown that for a periodic process described by Equation 
(S.1) the standard deviation of the averaging process as a function of the averaging time scale is 
given by: 

 ( ) πsin
π

k T k
k T

σ =  (S.4) 
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This relation describes the drop in standard deviation of periodic processes at averaging scales 
k=aT, where a∈N. Our analysis revises their proof in order to account for a discontinuity in 
standard deviation at averaging time scales of k=(m+1/2)T where m∈N0 (Equation (S.3)). The 
theoretical relation provided by Markonis and Koutsoyiannis, 2012 (solid black line; Figure S18) 
captures the exact pattern illustrated by the empirical estimates based on the synthetic data 
(coloured points) with the exception of specific averaging scales of k=T/2, 3T/2, 5T/2,..., (m+1/2)T 
where m∈N0. For these specific averaging time scales the standard deviation of the averaging 
process varies in [0, 2√2/π]. 

 

Figure S18. Standard deviation of synthetic time series of a deterministic single harmonic process described by 
Equation (S.1) for period T=24 h as a function of the averaging time scale for different values of parameter b (coloured 
points). The generated synthetic time series have hourly time step and length 10 years (i.e., 86400 data points). For 
the sake of clarity, the averaging time scale is extended up to 50 h (horizontal axis; log scale). The theoretical decay 
of the standard deviation with time scale based on Markonis and Koutsoyiannis, 2012 is also included (solid black 
line). 

Parameters b and c in Equation (S.3) can be substituted by a single parameter u as follows:  
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 and C = 1 + /′, C ∈ 0, , . Therefore, for a periodic process described by Equation 

(S.1) the standard deviation of the averaging process as a function of the averaging time scale is 
given by: 
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