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Abstract

Fractal-based techniques have opened new avenues in the analysis of geophysical data.
On the other hand, there is often a lack of appreciatiorf both the statistical uncertainty

in the results, and the theoretical properties of the stochastic concepts associated with
these techniques. Several examples are presented which illustrate suspect results of
fractal techniques. It is proposed that concets used in fractal analyses are stochastic
concepts and the fractal techniques can readily be incorporated into the theory of
stochastic processes. This would be beneficial in studying biases and uncertainties of
results in a theoretically consistent frameavork, and in avoiding unfounded conclusions.
In this respect, a general methodology for theoretically justified stochastic processes,
which evolve in continuous time and stem from maximum entropy production
considerations, is proposed. Some important modihg issues are discussed with focus
on model identification and fitting, often made using inappropriate methods. The
theoretical framework is applied to several processes, including turbulent velocities
measured every several microsecondsand wind and temperature measurements. The
applications shows that several peculiar behaviours observed in these processes are
easily explained and reproduced by stochastic techniques.

| regard intuition and imagination as immensely important: we need them to inventtreeory. But

intuition, just because it may persuade and convince us of the truth of what we have intuited, may

badly mislead us: it is an invaluable helper, but also a dangerous helfar it tends to make us

uncritical. We must always meet it with respgcwith gratitude, and with an effort to be severely

critical of it. (Karl Popper,D OA ZAAA O1 O4EA / PAT 51 EOAOQA®2.! 1T 1| OCOI

1. Introduction

Over the past 30 years ormore, considerable literature highlighted the fractal (sel
similar, self-affine, multifractal) characteristics of many of complex patterns that
characterize geophysical processe$ractal literature provides a framework in which a
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simple process involving abasic operation repeated many timesgan represent natural
patterns that can be of extraordinary complexity (Falconer, 2014; Scholz and
Mandelbrot, 1989). In a variety of applications geophysicalsystems are viewed as
fractals that follow certain scaling rules over a broadeven unlimited) range ofscales
implying that the degree of their irregularity and/or fragmentation is identical at all
those scalesMathematically, these rules are power laws with exponents being related to
a fractal dimension. Roughly speaking,the fractal dimension is a measure of the
prominence of complexity of a pattern when viewed at very small scales. Therefore, the
fractal dimension is originally a local property, notwthstanding the fact that in fractal
literature the local properties are reflected in the global one@Mandelbrot, 1982).

Finding that a complex system is characterized by fractgbr multifractal) behaviour
with particular scaling exponents represents a desideratum for many practicing
geophysicids and engineers yon Karman, 1940) becausethis finding will help in
describing the system dynamics with very simple formulae and few parameters, in order
to obtain predictions on the future behaviour of the system.Such dynamicsis usually
denoted as factal or multifractal, depending onwhether it is characterized by one
scaling exponentor by a multitude of scaling exponents.

However, if we agree thatscientific theories are mental constructs rather than the
physical reality per se then we should also agree that there are no true fractals in
nature. Although there are natural phenomena that have been explained in tesrof
fractal mathematics,OT AOOOAT AOAAOAI 66 j OOAE AO Al AOOI
boundaries, etc.) can usefully be regded as suchonly over an appropriate range of
scales, with the fractal description inevitably ceasing to be validl they are viewedout of
this range ofscales

Since asymptotic properties of geophysical processes are crucial for the
quantification of future uncertainty, as well asfor planning and design purposes many
applications of fractal theory tend to be descriptive rather than predictive (Falconer,
2014; Kantelhardt, 2009). In the foundational treatise on fractals, Mandelbrot (1982)
madesuch a distinctionclear, but it has become somewhat blurred in recent literature.

We maintain and show in the following that areful use of stochastic§which includes
probability theory, statistics and stochastic processesgan deal with all problemsabout
complex geophysical processs in a more rigorous manner and more effectivelythan
fractals can do

2. Why not to prefer fractals over stochastics

In spite of the difficulty even mathematicians have in formally defining fractals
(Falconer, 2014; Mandelbrot, 1982), thar wide popularity stems from the concept of
symmetry? in particular, expanding symmetry From the birth of science and
philosophy, symmetry has beenclosely related to harmony andbeauty, and this was to
prove decisive for its role in theories of nature.Both ancients and moderns often
believed indeedthat there is a close associationn mathematics between beauty and
truth .



A common research theme in the study of complex systenssthe pursuit of universal
properties that transcend specificsystem details.In this way, fractal-based techniques
have opened new avenues in the analysis of geogdical data. According to Scholzand
Mandelbrot (1989):

One possible broad explanation dfe role of fractals in geophysics may be found in
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related to them. The reason is illustrated by the following fact. Wiener's scalar
Brownian motion process W(t) is théimit of the linearly rescaled random processes

that belong to its very wide domain of attraction. Therefore, it is itself the fixed point of

the rescaling process. That is, its graph is a -sdfine fractal set, a curve. The argument
suggests that geontdc shapes relative to probabilistic limit theorems can be expected

to befractal sets

On the other handthe concept of fractals has been closely associatédm the outset
with  mathematical constructions involving infinite operations on simple,
deterministically defined, objects. Simple nonlinear dynamical systems were also
enrolled in illustrating the emergence of fractal structures. Thisassociation with
determinism and simplicity has been prominent andshapedthe evolution of the fractal
literature .

Even when studying more complex systems, such as the evolution of geophysical
processes, the intuitive zeal was to make them comply with the simplicity of the
archetypal fractal mathematical objects. Thusseveral studies attempted to demonstrate
that irregular fluctuations observed in natural processes arewu fond manifestations of
underlying deterministic dynamics with low dimensionality, hence rendering
probabilistic descriptions unnecessary. If we assume, for example, that the evolutions of
all temporal and spaial patterns of geophysics result from deterministic chaos, then we
may derive the underlying deterministic rules on the basis of their strange attractors,
which have a fractal structure(Grassberger and Procaccial983). However, such an
approach is questionable in geophysics (Koutsoyiannis, 2006).

The opposite readingof the same finding would be more sensible, in our view.
Specifically, if simple underlying ¢namics can produce irregular fluctuations and
eventually, unpredictable trajectories, then,a fortiori, more complex systems are even
more unpredictable. In this line of thought,Koutsoyiannis (2010b) used acaricature
geophysical system, which is low diransional deterministic by construction, and
showed that we cannot get rid of uncertainty Hence probability theory and its
extension, stahastics, becomeabsolutely necessary even foithe simplest systems This
argument may also be used in order to critize the determinist point of view that
probability considerations enter into science only if our knowledge is insufficient to
enable us to make predictions with certainty (Popper, 1982).

Sochastics ha its own rules of calculations and estimations, whiclgo far beyond
classical calculus in order to deal with uncertain quantities represented as random
variables and stochastic processe&ractal studies often fail to appreciate this and apply
algorithms referring to uncertain quantities with standard mathematical calculations.



They do so even when using stochastic conceptsuch as statistical moments,
(auto)correlations and power spectra.Thus, they produceresults which not only fail to
recognize the statistical uncertainty but may be fundamentally flawed i.e. inconsistent
with theory. In the subsections below we summarize some of the problems often
characterizing fractal studies which make us advocate the dedication to proper
theoretical concepts, offered by the theory of stochastics.

Ambiguity

Even the very terms fractal and multifractal remain without an agreed mathematical
definition. This is a severe drawbackas without proper definitions we cannot build a
scientific theory. The importance of definitions in science has been emphasized in the
followi ng philosophical note by the great Russian mathematiciadikolai Luzin:

Each definition is a piece of secret ripped from Nature by the human spirit. | insist on
this: any complicated thing, being illumined by definitions, being laid out in them,
being broken up into pieces, will be separated into pieces completely transparent
even to a child, excluding foggy and dark parts that our intuition whispers to us while
acting, separating into logical pieces, then only can we move further, towards new
successes due definitions(from Graham and Kantor, 2009).

This is not the case with fractalslnstead, fractals are usually identified intuitively, for
example, Falconer (2014) refers to a sdtas a fractal, when:

() F has afine structure, i.e. detail on arbitragmall scales;

(i) F is too irregular to be described in traditional geometrical language, both
locally and globally;

(i) F has some form of dedimilarity, perhaps approximate or statistical;
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topological dimension;

(v) in most cases of interest, F is defined in a very simple way, perhaps recursively.

Mandelbrot, who coined the termfractal in 1975, tried to theorize about the absence
of a definition, arguingjust opposite of Luzin:

Let me argue that this situation ought not create concern and steal time from useful
work. Entire fields of mathematics thrive for centuries with a clear but evolving self
image, andnothing resembling a definitior(Mandelbrot, 1999, p. 14).

One may indeedrecall cases where mathematical concepts did not have proper
definitions for centuries, probability is a characteristic example However, the
expressionMothing resembling a definitiod | b& B goss exaggeration: In the example
of probability there never was lack of definitions; the problem was that the definitions
were problematic (e.qg, suffering from circular logic, like in the previous sentencg Once
Kolmogorov (1933) gave a proper definition to probability, he opened new avenues.
Certainly, absen@ of a definition entails domination of intuition over logic, dark over
light, or uncritical acting over critical thinking (cf. the excerpt by Luzin above and that by
Popper in theopening motto of the paper).
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where clear definitions exist, Mandelbrotencouragesneglecting themand preferring
intuitive notions. The following excerpt provides an example for the weldefined
concept of stationarity, which is central in stochastics (see Koutsoyiannis and
Montanari, 2016):
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combine (a) diverse intuitive meanings,egendent on the user, and (b) formal
definitions, each of which singles out one special meaning and enshrines it
mathematically. The terms stationary and ergodic are fortunate in that
mathematicians agree on them. However, experience indicates that mamgyneers,
physicists, and practical statisticians pay lip service to the mathematical definition,
but hold narrower views." That is, many mathematically stationary processes are not
intuitively stationary. By and large, those processes exemplify wild randess, a
circumstance that provides genuine justification for distinguishing a narrower and a
wider view of stationarity(Mandelbrot, 1999, p.7)

Even whenMandelbrot attempts to provide a definition for the central concept of a

multifractal , he bases thatlefinitiononOE A ET O OE OE @ditibdkcdrtdo®dB[O0 T £ A

Definition. The term multifractal denotes the most general category of multibox
cartoons. It allows the generator to combine axial boxes and diagonal boxes with
non-identical values of Hfrom Hmin > 0 to Hhax | Mandelbrot, 1999, p. 45 see
section 3 below about the meaning oH).

The ambiguity does not concern merely definitios8 Peéceful coexistenée | £ AE EAA O/
numerical values for the same mathematical concept has also been advochte

We are done now with explaining the peaceful coexistence of two values of D: the
dimension D=1/ H = 2 applies to that threedimensional curve, as well as to the trail
obtained by projecting on the plane (X, Y). However, the projections of the three
dimensional curve on the planes () and (t,Y) are of dimension B2z H= 1.5
(Mandelbrot, 1999, p. 45)

In fact, when dealing with geophysical processes, one can easily get rid of ambiguity
through stochastics. Careful use of stochastics can deal withl @roblems involving
fractals of non-deterministic type in a more rigorous manner and more effectively.

Confusion between local and global properties of processes

Indeed, attemps to remove ambiguitybased on stochastics are natare, as indicated by

the following excerpt:
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generally agreed on is that the Hausdorff measure and Hausdorff dimension play a

key role. One possible definition of a fractal is then for example thag @ set AP R«
whose Hausdorff dimensiodimuausA is not an intege(Beran et al., 2013, p. 178)



Other researchers who seek for clarity also agreen this; for example Veneziano and
Langousis (2010, p. 4) state thathe most general and mathematicallysatisfactory

definition of fractal dimension is the Hausdorff dimension. Heretiis important to note

that the Hausdorff dimension expresses a local propertygn asymptotic measureas a
radius | for covering the setA tends to zero. This is more evident irthe so-called box

counting dimension which is an upper bound forDxaus (Beran et al., 2013, p. 181182)

and is defined asAET 0 1 Ed 1 T0CFI 17 Gvhere N, is the minimal number of

setsU needed for aj-cover of A.

However, as in thefractal literature it is intuitively believed that the local properties
repeat themselvesat bigger and bigger scales, and given the general frame of ambiguity,
the local properties have been confused with global ones, such as the lenagge
dependence. Indeed:

In the context of time series analysis, fractal behaviour is often mentioned as
synonym for longrange dependence. Though there are strong connections between
the two notions, they are also isome sense completely differef@eran et al., 2013,

p. 178).

Even Mandelbrot (1999, p.3) referred to the difference of locality and globalitybut in a
rather obscure way:

The importance of the contrast between mildness and wildness is in part due to its
links with a contrast between locality and globality.

However, this was not enough to hinder thefractal literature from confusing fractal
behaviour with long-range dependence.

Gneiting and Schlather (2004were perhaps the firstto clarify the issueand highlight
the fact that fractal properties and longrange dependenceare independent of each
other. They useda process with Cauchytype autocovariance function which wasfirst
proposed by Yaglom (1987, p. 365) and also referred to by Wackernagel @3 p. 219;
1998, p. 246), while a similarone was used by Koutsoyiannis (2000)n discrete time.
Using this processthey demonstrated that the fractal and Hurst properties (longrange
dependence) are two different things independent to each otherThe fractal parameter
determines the local properties(the roughness of the process(astime t ©  mwhjle the
Hurst parameter determines the global propertiesof the process(ast©® Hb(Q

Use of the abstract mathematical objects as if theaye natural objects

In mathematical processes the local and global properties can be the sani&e obvious
example isthe Hurst-Kolmogorov (HK) process (see below), also known asfractional
Gaussian noisgMandelbrot and Van Ness1968), which is described by a single scaling
exponent applicableto all scales Scale independence or absence of characteristic scales
in a process or a phenomenon is mathematicallgnd intuitively attractive. Indeed it
would imply that simple physical dynamics could produce complex phenomenathat
exhibit startling similarities over all scales However, in Naturecomplex phenomena are
influenced by different mechanisns and agents, each one acting at a different



characteristic scale, and therefore absence of characteristic scales is only a dream.
Besides, the assumption of absence of characteristic time scales would have
consequences that woulde absurd.Someexamples follow:

1 The speculation that rivers are fractals with fractal dimensiorn> 1 (e.g.1.2) has
been very popular. However, if thatvere the case, it would mearthat the number
of sets of itsy-cover would be a power law of] with exponent > 1 for arbitrary
low 1. As a direct consequencehe geometrical length of the river would be
infinite (a curve with dimension >1 has infinite length; Falconer2014) and any
particle of water would take infinite time to reach the sea.

1 If a HurstKolmogorov process(whose variance is a power law of time scale;
equation (16) below) were applicable for arbitrary short time scales, it would
entail infinite variance of the instantaneous, continuoudime process whch
would imply infinite energy.

1 If an antipersistent Hurst-Kolmogorov process (with Hurst exponentH < 0.5 see
below) were applicable for arbitrary short time scales, it would entail negative
autocovariance (anttcorrelation) for arbit rary small lags which is absurd Forin
a natural processthe autocorrelation shoud tend to 1 as lag tends to 0

All these paradoxes are easily resolved if we abandon the idea absence of
characteristic scales and admit that below (or above) a certain characteristic scale the
respective power laws cease to hold.

Hasty use of stoch#éis concepts

Stochastic concepts such as statistical momengmarginal or joint, e.g. covariances), and
spectral densities have been widely used in the fractal literature, usually by making
calculations using data and at the same time ignoring the theoretl properties of those
concepts. A typical example is the powespectrum,i 0 , where w denotes frequency
(inverse time scale, and its loglog slopei™ 0 . The latter represents the loglog
derivative, which for any functionf(x) is defined as:

AT Qe o'aw
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The HK process is used as a benchmaalk it has a power spectrum with constant slope,

i.e.i 0 ©® 0 ,where the constant slopef i™ 0 is relatedto the Hurst parameter H

(equation (16) below) byf p ¢'Q The special casel = 0.5, which signifies the white
noise, corresponds to = 0, thus complyingwith the fact that the white noise spectrum
is flat ((w) = constant).AsHO ph xEEAE EO OEA [PECEADEO DI OO0F
the lowest possible value for a stationary and ergodic process.
However, a huge number of studies exploring several data sets have reported steeper
constant slopes, i.ef <z1, also suggestindgd > 1, which is absurd. Other studies assume
that slopesy <z1 aretheoretically consistent,also claiming thatthe particular value| =
Z2 corresponds to the power spectrum of theBrownian motion (the integral over time
of white noise), which is a nonstatnary process This line of thought is extended



further, in the characterization of processes. Specifically, the power spectrum has been
often regarded as a tool to identify whether a process is stationary or nonstationary:
valuesy >z1 arethought to suggest a stationary process while valugs< z1 are thought

to confirm the nonstationarity of the process.The fact is, however, that the entire line of
thought is theoretically inconsistent and such numerical resultsusually reported, are
artefactsdue to insufficient data or inadequateestimation algorithms.

Before we describe the details for recovering from the incorrect application of the
power spectrum, it would be informative to trace how incorrect results can appear. In
the example of Figure 1, 1024 data points have been generated from atationary
stochastic processand the empirical power spectrum calculated from these datahas
been plotted. To apply some smoothingf AO DPAO " AOOI ANtGdedpiricad wt ¢ q |
power spectrumwas constructed by averaging from 8 segments, in which the data were
separated gincewithout smoothing the power spectrum would be exceptionally rough).
The stochastic processhas the theoretical power spectrum with the indicated varying
slope (specifically, it is an HHK processdefined in equaion (17) below, with parameters
M= 0.5,H=0.8,] =1 = 1, seealso Koutsoyiannis, 2014) On its right tail the power
spectrum has an asymptotic slope of2, which is not inconsistent nor doest indicate
nonstationarity (actually, a right-tail slope of z2 is precisely the slope of a stationary
Markov model; see below). In contrast, on its left tail the power spectrum has an
asymptotic slope 0fz0.6, which is strictly>z1 (were it not, it would be inconsistent with
theory, as will be detailed below).
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Figure 1 lllustration of inconsistent results derived by hasty use of the power spectrum.



From the shape of the theoretical power spectrum it caie imagined that if the
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0.1, then we would conclude that we have a constant slope z## and, if we followed the
standard fractal line of thought, we would claim that the process is (nonstationary)
Brownian motion. Of course, all these would be incorrect ashé model is purely
stationary and not at all related toBrownian motion.

Even with the given data set, which allows us t©0 OAA6 AOANOAT AEAO 1 OA
0.1 (by an order of magnitude or more), the empirical power spectrum may again
mislead us. For, evenafter the aforementioned smoothing, the empirical power
spectrum is too rough to recover the underlying model and its parameterg-urthermore,
it involves high bias andit suggestsa misleading constant slope o0f1.5.Just knowing the
theoretical properties, as well as the uncertainty and bias of the power spectrum as a
stochastic tool, we would avoid making erroneous claims, even though it is doubtful if
this would help us to identify the correct model (see Dimitriadis and Koutsoyiannis,
2015). Nonetheles, identifying the model from data and recovering hie theoretically
consistent asymptotic slopes £0.6 andz2) are possiblebut need other methods (&
see below).

The theoretical properties of the power spectrum which we need to know to avoid
false clainsinclude the following:

1 Once we make the power spectrunof a processas a function of frequency, we
have tacitly assumed a stationary processdn a nonstationary processboth the
autocovariance and the spectral density i.e. the Fourier transform of the
autocovariance, AOA £O0T ACETT O 1T &£ Oxi OAOEAAI AdOh 1
time (see e.g. Dechant and Lutz, 2015)hus, there is no meaning in using a
stationary representation (setting the power spectrum asa function of frequency
only) and, at the ame time, claiming nonstationarity . Even thoughthis tactic has
been very common it is inconsistent Furthermore, we should be aware thatthe
customary WienerKhinchin theorem relating autocovariance and power
spectrum pertains to stationary processes This theoretical knowledge will
prevent us from making claims of nonstationarity while using formulations and
tools pertaining to stationary stochastic processeslin addition, we should be
aware that claiming nonstationarity based solely on inductive reasoing is
absurd (Koutsoyiannis and Montanari, 2015).

1 Once we use the power spectrum of a process for inference, as aleays do, we
should be aware that inference from data is only possible when the process is
ergodic. As shown in the Appendipd, in an egodic process, the asymptotic slope
on the lefttail of the power spectrumcannot be steeper thargl. Thus, there is no
meaning inreporting slopes in empirical power spectrai p(e.g.i" pd,
as in the example ofigure 1) and at the same timemaking any claim about the
process properties (e.g. of nonstationarity) based on the power spectrum.
Actually, such a steep slope, when emerging from processing of datimes not
suggest that a process is noerrgodic, it rather identifies inconsistent estimation.
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1 We should be aware of the close relationship of ergodicity and stationarity
(Koutsoyiannis and Montanari, 205). In particular, a nonstationary process is
nonergodic and thus any estimates from data (including those of the power
spectrum) are meaningless when we claim nonstationarity.

1 As a result of the above listed theoretical points, constant slopgs< z1 of the
power spectrum are invalid and indicate either iradequate length of data or
inconsistent estimation algorithm. Likewise, nonconstant slopes of power
spectrum steeper thanz1 (i 0 p) for small frequencies(w©  7arg equally
invalid. We note that step slopes (i™ 0 p) are mathematically and
physically possible formedium andlarge w? actually they are quite frequent in
geophysical processes (see als&outsoyiannis, 2013a,b; Koutsoyiannis et al.,
2013; Dimitriadis and Koutsoyiannis, 2015).

Misspecification / misinterpretation of scaling laws

The applicability of fractal analysesto complex phenomena of the real worldessentially
relies on the empirical detection of power-law relationships in observational data.
Therefore, such analyses heavily rely on available data seriesnd their statistical
processing; and since they ask statisticajuestions, they mustrely on probability theory
(Stumpfand Porter, 2012).

However, as the inference from data obeys statistical laws and iaffected by
statistical uncertainty and bias, we should respect these laws in making inference. Some
examples can demonstrate that such respect is often not paid in fractal studies. The
interested reader could perform a Google search withrelated terms (e.g. universal
multifractal rainfall ? see also Koutsoyiannis, 2018) and several studies will be listed
that identify multifractal behaviour of rainfall. This is usually done in terms of scaling
relationships between raw moments of the averaged procesx® at time scale k, i.e.
E[(x(¥)d] (or inverse time scalel := 1/k), for several orders of momentsg. Such scaling
relationships are graphically identified onlog-log plots and then the relationship of the
scaling exponent(slope) K as a functionq (the function K(q)) is empirically constructed
(even though acording to universal multifractals, there exists a theoretical model for
K(q) that one can fit to empirical data; cf. egn. (2.12) in Tessier et al., 1993).

A graphical example is provided irFigure 2 to illustrate that the entire procedure is
problematic from the outset. A time series with lengthN =213 = 8192 was generated
from the HK process with Hurstparameter H = 0.8 and Gaussian distributionN(1,1).
Some scaling laws sam to appear at a range of time scales. One could be led to assume a
multifractal behaviour and specify aK(q) function. All these, however, are spurious. The
truth is that there is no multifractal behaviour here. As shown theoretically by
Lombardo et al. (2014)for g = 2, there is no constant slop& but, asl © 1 kj°oT ®bQh
the slope decreases t&(qg) = 0. Also the slope empirically estimated for smak (large 1)
is too low compared to its theoreical value.
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Figure 2 lllustration of spurious scaling laws betweenraw moments and inverse time scale

Neglect of statistical bias and variation

The above example illustrates a symptom of a more general tendency in the fractal
literature to treat observations (time series) deterministically, confusing random
variables with their realizations and ignoring statistical bias and variation.In the
example of Figure 2, high-order moments up to q = 7 have been usedas actually
happens is several multifractal studies (his can be verified in studiesthat could be
located with the Google search mentioned above)

However, high-order moments, which have been popular in multifractal studiesare
well known in statistics to have minimal information content and therefore are avoided.
This is further illustrated in Figure 3, constructed afterMonte Carlo simulationof the
fifth moment of a Pareto distribution with shape parameter 0.15and for sample sizen =
100 (Papalexiou et al. 2010; see also Lombardo et al., 2014).

Here the theory guarantees that there is no estimation bias but the distribution
function is enormously skewed.The mode is nearly two orders of magnitude less than
the mean and the probability that a calculation, based on data, will reach the mean is
two orders of magnitude lower than the probability of obtaining the mode.Therefore,
there is no meaning in using such uncertain quantitywith so skewed distribution,in any
type of inference.

Confusion between different scaling behaviours

Scaling relationships, expressed as pav laws between involved quantities, have been
central in fractal studies. Yet their meaning has been obscure, while quite different
scaling laws with different meanings are confused and regarded to be of the same
nature. This is like regarding the differat physical laws that involve the product of two
guantities (e.g.F=m a W = F sm =mV, whereF, m, a, W, s, mand V denote force, mass,
acceleration, work, displacement, density and volume) as a manifestation of the same
magical law of multiplicative quantities.
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Figure 3 lllustration of the statistical distribution of the estimated of the fifth moment ms of
the Pareto distribution (pdf stands for probability density function).

It is thus important to differentiate the unlike types of scaling met in geophysical

processes and clarify their meaning. We can distinguish the following typeds ecaling
(where the formal definitions of the various terms are given in sectior3):

T

Temporal scalingindicates dependence in time and is expressed aspower law of
some second order property(marginal or joint second centralmoment) of a process
with respect to a quantity related to time. We can further subdivide temporal scaling
into:

0 Hurst behaviour, which isexpressedas a power function ofautocorrelation vs.
time lagor climacogram vs. time scale;

o fractal (local) behaviour, which is expressed as a power function dftructure
function vs. time lag orclimacogram-based structure function(see below)vs. time
scale.

Spatial scalings similar to temporal scaling but indicating dependence in space.
State scalingis totally irrelevant to temporal and spatial scaling; it is related to the
marginal distribution of the process and indicatesa heavytailed distribution (a
power law of probability of exceedence vs. state).

Scaling of (high-order) moments with time scale; while in theory this cannot be
excluded, in most empirical studiestiperhapsis an artefact related to other types of
scaling and, as explained abovat, is usually spurious becausehigh-order moments
are not reliably estimated from data.

As already mentioned,n real world systemsscaling laws never extend to the entire

range of scalesUsually they are asymptotic laws, with dferent exponents at each edge.
Asymptotic scaling lawsabound becausein our view,they are a mathematical necessity
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(Koutsoyiannis, 2014). The asymptotic behaviour ofstochastic properties of processes
(such assurvival function, autocovariance structure function, climacogram, etc.) should
necessarily tendto zero at one edge (e.g. at infinity) and the decay to zero can be
exponential (fast decay) orof power-type (slow decay). In the latter casethe emergence
of an asymptotic power law is obvious whether it holds in the form of scaling in state
(heavy-tailed distributions) or in time (long-term persistence). Both cases havdeen
verified in geophysical time series (e.g./ 6 # 1 1 ét Aal, 12016; Markonis and
Koutsoyiannis, 2016, 2013 Dimitriadis and Koutsoyiannis 2017. According to this
view, scaling behaiours are just manifestations of enhanced uncertainty and are
consistent with the principle of maximum entropy (Koutsoyiannis, 2011 see also
below). The connection of scaling with maximum entropy constitutes also a connection
of stochastic representationsof natural processes with statistical physics.

Fundamentals of stochastics for geophysics

In this section, we give a very brief presentation of the most fundamental concepts of
stochastics. Later, in sectio® we will show that these concepts suffice to model complex
phenomenawithout making any use of the fractal nomenclaturgeven thoughsome of
these phenomenaare thought to belong to the prefeential domain of the fractal
literature (e.g. turbulence).

The meaning of randomness and stochastics

A deterministic world view is founded on a concept oflgarp exactness A deterministic
mathematical description of a system uses regular variables (e.g. X) which are
represented asnumbers. The change of the system state is represented asrajectory
x(t), whichisOEA OANOAT AA | sashAmeddhadded i 6 O OOAOAO

In anindeterministic world view there is uncertainty or randomness, where the latter
term does not mean anything more than unpredictability or intrinsic uncertainty. A
system® description is done in terms of andom variables. A random variablex is an
abstract mathematical entity whose realizationsx belong to a set of possible numerical
values. A random variable x is associated with a probability density (or mass) function
f(x). Notice the different notation of random variables (underlined according to the
Dutch notation; Hemelrijk, 1966) from regular ones.The evolution ofa system over time
is no longer sufficient to be represented as &rajectory but asa gochastic processx(t),
which is a collection of (usually infinitely many) random variables x indexed by t
(typically representing time). A redization (sample) x(t) of x(t) is a trajectory; if it is
known at certain pointst;,i E  p h it ig ahtimé& deries.

The mathematics of random variables and stochastic processisstermed stochastics
and is composed ofprobability theory, statistics and stochastic processesMost natural
processes evolve in continuous time but they are observed in discrete time,
instantaneously or by averaging Accordingly, the stochastic processes devised to
represent the natural processes should evolve in continuousrtie andbe converted into
discrete time, asillustrated in Figure 4.



14

While a stochastic process denotes, by conception, change (process = change), there
should be some properties that are unchanged in time. This implies the concept of
stationarity (Koutsoyiannis and Montanari 2015), which is central in stochastics. For the
remaining part of this article, the processes are assumed to be stationary, noting that
nonstationary processes should be converted to stationary before their study (for
example, the cumulative proces(t) in Figure 4 is nonstationary, but by differentiating
it in time we obtain the stationary processx(t)). The most customary propertiesof a
stationary stochastic processare its second order properties.

1 Autocovariarce function c(h) := Covk(t), x(t + h)].

9 Power spectrum(also known asspectral density, s(w); it is defined as the Fourier
transform of the autocovariance function, i.e., by equatiof®).

{ Structure function (also known as semivariogram or variogram), U 'Q h
pIc 6 A®O O Q.

1 Climacogram r (k) := Var[w ], wherew is the averaged process over time scale
(seeFigure 4 and substitute a varying time scald for the constant time interval D).

X(t) i [ x(€)d¢

(cumulative, nonstationary)

X(t) (instantaneous,
continuous-time process)

X :=X(iD)
(instantaneous process
sampled at spacind)

51:2;.':1&

Ny,

> (cumulative sampled at
spacingD, nonstationary)

0 D 2D 8 (iz1)D iD

- A N\ N

fA\./ MR A 1 '
\ P :M\\/EVVVNJ &(D)i = Jit 1yp XWdu =
1

1
! ! =5 (X(iD) zu((iz 1)D)
0 D 2D 8 (iz1)D iD ,t (averagedat time scaleD)

Figure 4 Explanatory sketchfor a stochastic process in continuous time and twalifferent
representations in discrete time.Note that the graphs display a realization of the proces§t is
impossible to display the process as suchyhile the notation is for the process per se.
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For time-related quantities, in the above notation and in the next part of this article
we use the following symbols, wherelLatin letters denote dimensional quantities and
Greek letters dimensionless ones where the latter are convenient when using the
discrete-time variants of a process

1 Time unit (time step in case of sampling or time scale in case of aggregating or
averaging), D.

 Time, t =z D (alternatively for strictly integer i E  p h,t =i B whgre t is continuous
time andi discrete time).

1 Timelagh=gD.

1 Time sc#de k= [ D.

1 Frequency, w=35/ D, related to time scale byv = 1/k ,5 = 1/{.

All these properties are transformations of one another, i.e.:

. . (2)
(0 1T QAT ONQACh ©'Q i 0 AT OV QAD
00 onm OQ, OQ onm L'Q (3)
. v e pA Qr Q
Q¢ p Fwi@&h w7Q c T kg (4)

where equation (3) is valid when the variance of the instantaneous process is finite
(ro:=r(0)k c(O)E HQ83

The climacogram is not aspopular as the other tools but it has several good
properties due to its simplicity, close relationship to entropy (see below), andnore
stable behaviour, which is an advantagein model identification and fitting from data. In
particular, when estimated from data, the climacogram behaves better than all other
tools, which involve high bias and statistical variation (Dimitriadis and Koutsoyiannis,
2015; Koutsoyiannis, 2016). The climacogram involves bias too, but this can be
determined analytically and included in the estimation. Furthermore, itenables the
definition of addition al usefultools as shown inTable 1.

Table 1 Climacogram based metrics of stochastic processes

Metric / Usefulness Definition Comments

Climacogram r(k)h Var[x®] For an ergodic process for
Useful for the global asymptotic kO HkQ Secessarily
behaviour (k® HQ

Climacogrambased structure w(kq a7 r(k) The definition presupposes
function (CSh that the variancer is finite

Useful fr the local asymptotic

behaviour (k© 1 (Q

Climacogrambased spectrunfCs) ro h —r pjo, pjv It combines the climace
Useful for both the global and local j j gram and the CSE valid
asymptotic behaviour P even forinfinite variance
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The CSEuk), behaves likethe structure function 0 "Q and is related to the latter by
the same way as thelimacogramr (k) is related to the autocovariance functiorc(h):
e PATIQ . pAQ Q

- - - 5
®'Q xq 0 Q o) (5)
The G5,6 (w), behaves like the power spectrum; it has same dimensions, and in most

cases has precisely the same asymptotic behaviour as the powssectrum, but it is
smoother and more convenient in model identification and fitting (see sectioB).

Second order properties at discrete time

Once the continuoustime properties are known, the discretetime ones can bereadily
calculated.For example,and assuming a time intervaD for discretization, as inFigure 4,
the autocovariance of the averaged process is:

& 410 oﬂ ws pO CU.) $ pO o 0 (6)

where 3(DQ  h X§DY ©B2r (D). Also, the power spectrum of the averaged process can
be calculated from:

i ¢c® 1 @ Al Oa (7)
where i 1 hi 0 FO (nondimensionalized spectral density) whereas the
discrete-time power spectrum i 0 is related to the continuoustime one by
(Koutsoyiannis, 2016)

, QL
i i 0 5 ORI* 0O Q (8)

More details and additional cases can be found in Koutsoyiannis (2013b, 2016).

Cautionarynotes for model fitting

Model identification and fitting is much more important than commonly thought. Even
the statistical literature has paid little attention to the fact that drect estimation of any
statistic of a process (except perhaps for the mean) is not possible merely from the data
We always need to assume a modtd estimate statistics

Any statistical estimator i Hf a true parameter s is biased either strictly (meaning:
%iH i) or loosely (meaning | T Ai&U i). Model fitting is necessarily based on
discrete-time data and needs to consider the effects of (a) discretization and (b) bias.

It is commonly thought that the standard estimator of the variance from a sample of
sizenis unbiased if we divde the sum of squared deviations from mean by z 1 instead
of n (equation (9)). This is correct only if the assumed model is the white noise.
Otherwise, the estimation is biased and, if the process has lengnge dependence, the
bias can be substantialThe climacogram which is none other than the varianceneeds
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to consider thisbias. Actually, it is easyto analytically estimatethe bias and the effect of
discretization, once a model has been assuméucontinuous time.

Let us consider a process with climacogranmi "Q, from which we have a time series
for an observation period T (multiple of the time step D), each one giving the averaged

processw at a time stepD. We form time series for scales that are multiples @, i.e.k
=[D,JE p h, amdhve Wish to estimate the variance at any such scale (including that

at scaleD, for [ =1). The standard estimator_ "Q of the variance’ Qis
]

e P o p o
Oh —— o — O (9
RhE 22 e, @ ¢

where by inspection it is seen thatw is the sample meanwhile it was assumed thafl
is a multiple of k so that the sample size isn = "Y O (if not, we should replaceT with
WA where &0 denotes the floor of a real number).It can be then shown
(Koutsoyiannis, 2011, 2016)that the bias can be calculated from

_ e - . e uY' '?'Q ~, Ay "TQ
% o .o oh @ P Ir P2 o o

g G G (10

Entropy and entropy production

As already mentioned, he emergence of scaling from maximum entropy considerations
may provide the theoretical background in modelling complex natural processes by
scaling laws.

The BoltzmannGibbsShannon entropy of a cumulative procesX(t) with probability
density function f(X; t) is a dimensionless quantity defined as:

. 0em oY
Bwo hezl = | Qoo Qe (11)

where m(w) is the density of a background measure (typically Lebesguefhe entropy
production in logarithmic time (EPLT) is adimensionless quantity, the derivative of
entropy in logarithmic time (Koutsoyiannis, 2011):
3Dk 3XOIh BAXD]tk BAXD)]/d(Int) (12)
For a Gaussian proceswith constant density of background measurem(u g, the
entropy depends on its variances(t) only and is:

BX(1)] = (1/2) In(2 Ae 3(t)/ m2), 3(t) =3 () t/23(t) (13)
When the past { < 0) and the present { = 0) are observed, instead of the unconditional
variance 3(t) we should use a variancad(t) conditional on the past and present:
WCo . @ 00 W ® 0
P0R .y 200 8 @ (14)
S Cw O TWwo wco

WO GCwoZ
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Resulting processes from maximizing entropy production

Koutsoyiannis (2011) assumed that the behaviourseen in natural processes is
consistent with extremization of entropy production and provided a framework to
derive processes maximizing entropy production. Using simple constraints in
maximization, such as kown variance at the scal&k =D = 1, and lag onewutocovariance
for the same time scale, the following processes extremizing the EPE{t) and 3t) can
be derived, which are also depicted ifrigure 5 in terms of their EPLT and climacograms.

2
= = Markov, unconditional
\? 1.75 Markov, conditional
= 15 e {K, unconditional+conditional
Y TS T T = HHK, unconditional
1.25 S - \\— = HHK, conditional
N
1 N \
\k \
o \ |
\s—
0.5 S
Hurst parameterH
0.25
0
0.00001 0.001 0.1 10 1000 100000
t
100 -
< 10 -
< 1 —
g -
0.1 e = N~ -
7 S - d
7 ™ o~
0.01 2 -3
7 \ =~ o
Pl \
0.001
7
7
0.0001 s
7 7 \
0.00001
0.00001 0.001 0.1 10 1000 K 100000

Figure 5 EPLTs(upper) and climacograms (lower) of the three processesextremizing entropy
production. At time scalek = 1 all three processes have the same variancgl) = 1, and the same

autocovariance for lag 13F = 0.5. Their parameters are (see text for their definitions): for the
Markov process| = 0.8686,1 = 1.4176; for the HK process = 0.0013539,} = 15.5(2, H =
0.7925; for the HHK processa = 0.0013539,1 = 15.5093,M = 0.5,H = 0.7925 (adapted from
Koutsoyiannis 2016).
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1 AMarkov process:

oo AT —op J—J (15)
maximizesentropy production for small times but minimizes it for large times.

1 AHurst-Kolmogorov(HK) process:

rQ _|1TQ (16)

maximizes entropy production for large times but minimizes it for small times
1 AHybrid HurstKolmogorov(HHK) process

rQ e Q T (17)
maximizes entropy production both at small and large time scales.

In these definitions | and 1 are scale parameterswith dimensions of [t] and [x?],
respectively. The parameter H (in honour of Hurst) is the Hurst parameter which
determines theglobal properties of the procesgas’Q® Hy). The parameterM (in honour
of Mandelbrot) is the fractal parameter which determines the local properties(as Q°
). Both H and M are dimensionless numbers in the inteval 1ip . In the HHK process,
locality and globality are clearly independent of each othereach onecharacterized by
an asymptotic power law. Hence, it allows explicit control of both asymptotic
logarithmic slopes of theCS ™ 'Q and the power spectrumi™ O . @ the special case
where H = M = 0.5, HHK is practically indistinguishablgrom a Markov process even
though not preciselyidentical. Furthermore, asy © mnh OEA b Ola AukeCHE
process with the same Hurstparameter H. Also, for any speciic parameter set, HHK
exhibits Markov behaviour for small time scales (ifM = 0.5, orsimilar to Markov if M E
0.5) and Hurst behaviour forlarge time scales, as seen rigure 5.

The HHK process is consistent with natural behaviours and remedies known
inconsistencies of the HK process (discussed E 1 O O A OUs& OfEthel abstact
mathematical objects as if thegre natural object), while retaining the persistence or
antipersistence properties. Secifically, the variance of the instantaneous process is
always finite (ro = r(0) = 1), while even for 0 <H < 0.5 the initial part of the
autocovariance function for small lags ispositive for all variants of the process
(continuous time, discrete time, either sampled or averaged, for a smalme interval D).

4. Simulation of stochastic processes respecting their fractal properties

Monte Carlo (stochastic) simulation is an important numerical method for resolving
problems that have no analytical solution. Obviously, simulation is performed in discrete
time, at a convenientdiscretization step. The following method based on theo-called
symmetric moving average (SMAjcheme (Koutsoyiannis, 2000, 2016) can be used to
exactly simulate any Gaussian process, with angrbitrary autocovariance function
(provided that it is mathemaically feasible). It can alsoapproximate, with controlled
accuracy,any non-Gaussian processvith any arbitrary autocovariance function and any
marginal distribution function.
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The symmetric moving average scheme

The SMAscheme can directly generate timeseries x; (where for simplicity we have
omitted the time interval D in the notation) from any processx with any type of
dependence by

® (G ¥E)) (18)
where a are coefficients calculated from the autocovariance function ang; is white

noise averaged in discretdime. Assuming that the power spectrumi 71 of the
averaged discretetime processis known (from the equations listed above)jt has been
shown (Koutsoyiannis 2000) that the Fourier transform i 7 of the a series of
coefficients is related to the power spectrum of the discrete time process as

[ ¢l 1 (19)
Thus, to calculatea we first determinei 7 from the power spectrum of the process
and then we invett the Fourier transform to estimate alla.

Handling of truncation error

It is expected that the coefficientsy will decrease with increasingl and will be negligible
beyond someq (I >q), so that we can truncatg18) to

w Q0 (20)
This introduces some truncation error in the resulting autocovariance function. To
adjust for this on the variance, we calculate tha from
®w W W (21)
where the coefficientsw are calculated frominverting the Fourier transform of either

i 1 TO71 p OEKA i (two options; Koutsoyiannis, 2016).
The constantw is determined so that the variance is exactly preserved:

BT - S @2)

Solving forw , this yields:

O tdee t e t e
(e [ : y - (23)
¢n p ¢n p ¢n p

wheret® h B (bésAT #eeh B e




21

Handling of moments higher than secomualder

In addition to being general for any second order properties (autocovariance function),
the SMA method can explicitly preserve higheorder marginal moments.Here is should
be made clear that, while as already mentioned, higkorder moments cannot be
estimated reliably from data, nonGaussianity is very commonly verified empirically and
also derived by theoretical reasoning (Koutsoyiannis 2005, 2014)An easy manner to
simulate non-Gaussian (e.gskewed) distributions is to calculate theoretically (not fran
the data) their moments and then explicitly preserve these moments in simulation.
Preservation of three or four central moments usually provide good approximations to
the theoretical distributions. Apparently, by preserving four moments a nornrGaussian
distribution is not precisely preserved. What canbe assumed to bepreserved is a
Maximum Entropy (ME) approximation of the distribution constrained by the known
moments. For four known moments of the variablex this approximation should bean
exponentiated fourth-order polynomial of x (Jaynes, 1957Papoulis, 1991) which can be
written as

Qo h 2A T (24)
where _ are parameters allwith dimensions [x] (with _ T .
The third and fourth moments are moreconveniently expressed in terms of the
coefficients of skewness and kurtosis, respectively.olproduce a discretetime processx;
with coefficient of skewnesso ;; we need to use a whitenoise processy; with coefficient

of skewness(Koutsoyiannis, 2000}

v T
. (25)
B«
Likewise, to produce a process; with coefficient of kurtosis 0 ; the processyv should
have coefficient of kurtosis(Dimitriadis and Koutsoyiannis, 2017)

0 0

0fp B Gy (pB" B 05 & 5 (26)
B @,

Four-parameter distributions are needed to preserve skewness and kurtosigletails
are provided by Dimitriadis and Koutsoyiannis (2017). lllustration of the very good
performance of the methodin the generation of nonGaussian white noisas provided in
Figure 6 for popular distribution functions such as Weibull, gamma, lognormal and
Pareto.

It is finally noted that the method can also be used in multivariate processes,
represented by vectorsof random variables(Koutsoyiannis, 2000).

0
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Figure 6 Various two-parameter probability density functions along with their fited ME
approximations and the empirical probability density from a single synthetic time series withn
= 10 (from Dimitriadis and Koutsoyiannis,2017).

5. Applications

Application 1:Turbulence

Estimation of high-order moments involves large uncertainty and cannot be reliable in

the typically short time series of geophysical processesHowever, in laboratory
AGbAOEI AT OO AO OAI| wiy BEigeCsantplesoah GéfAringd wiick can O
support the reliable estimation of high-order moments. Here we use gridturbulence

data made available on the Internet by the Johns Hopkins University
(http://www.me.jhu.edu/meneveau/datasets/datamap.html). This dataset consists of

40 time series withn E o @®glgiarpoints of longitudinal wind velocity along the flow
AEOAAOGET T h All 1T AAOOOAA AO A -wdjprddbésplaced OEI A
downstream of the grid (Kang et al., 2003).

By standardizing all series (see Dimitriadis et al., 2016; Dimitriadis and
Koutsoyiannis, 207) x A &l O1 AA A OAI ®H Ap & tMwalugsdorpstinmte p p T
OEA T AOCET Al AEOOOEAOOEITTh AT A AfT6valués@Ai Al A
estimate the dependence structure through the @hacogram.Based on this dataset we
built a stochastic model of turbulence, which to verify weperformed stochastic



23

simulation using the SMA framework withn =108 values and compared the synthetic
data with the measurements using several tools.

In terms of the marginal distribution, the time series are nearlyGaussian but not
exactly GaussianThere are slight deviations fromnormality toward positive skewness,
as indicated by the coefficient ofkewness which is 0.2instead of 0, and that okurtosis,
which is 31 instead of 3, as well as from the plot of the probability function shown in
Figure 7. This divergence of fully developed turbulent processes froomormality has
been also justified theoretically (Wilczek et al., 2011). Interestingly, these slight
differences from normality result in highly non-normal distribution of the white noise v;
of the SMA model (skewnes{y = 3.26; kurtosis Gy = 12.30!); this should have
substantial effects in some aspects of turbulence.

For the stochastic dependence of the turbulentvelocity process after some
exploratory analysis, we assumed a model consisting of them of two equally weighted
processes, an HHK and a Markovian:

7 = '-‘ — = p A J
0 = _ _ 27
F c P @ g P Q| 27)
X = (W - W)/ Wg
6 4 -2 0 2 4 6
1.E+00 ] ] ] 1 1 J
1.E02 - /i —— observed
oS -==N(0,1)
1.E04 - K/ S skew-normal
Il 1 - 1’[0:25,111:5,1122147,
/’ ! ) 1’[3:'3.5;1’1426 \\
I§ . . \
1 E06 - i — — simulation \

Figure 7 Probability density function of the measuredturbulent velocity w standardized, in each
time series, by the meanwn, and standard deviationws, compared to that of a single simulation
using the SMA scheme preserving the first four moments; the standard noahdistribution
N(0,1) and the skew normal (both not used in simulation)are also shown. The ME
approximation, also shown in the figure, is the one used in simulations.
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Figure 8 Empirical, true and expected values of the climacgram (upper left), CSKHupper right),
CS (ower left) and power spectrum (lower right). 4 E fobséved is the average from the 40
time series.

We fitted the modelto the climacogram, the structure function, the CS and the power
spectrum, calculated as the average of the 40 series. The fitting is showrFigure 8; the
four parameters of the model are estimated as: = 1,] = 14 ms,M = 1/3, H= 5/6. As
seen inFigure 8, the model is indistinguishable from the data, measured or synthesized,
when the climacogram or its derivatives CSF and CS are used. Note that the comparison
of the empirical quantities is not made with the true ones but with the expected, in order
to take account of the bias.
The power spectrum is much rougher than the other tols, yeta good model fit can be
clearly see8 +1 1 11 CT O 6860 Ovu ¥ o K41l gelksimilar Anmod&,O0 OA O
Kolmogorov, 1941)is also evident in the power spectrum foiw > 10 Hz. Steepening of
the power spectrum slope for even larger frequenciesw > 1000 Hz), which has also
reported in several studies, is also apparent irfrigure 8. This, however seems to be a
numerical effect (resulting from discretization and bas), as the same behaviour appears
also in the simulated data from a model whose structure (equatiorf27)) does not
include anything that would justify steepening of the Bpe.
It is extremely insightful to investigate the highorder properties of the velocity
increments, i.e., differences of velocities at adjacent times with a certain time distance
(lag) h. In particular, the variation of high-order moments of the velocityincrements
with increasing h (i.e., the momentsd h % &0 0

wo for p > 2) has been
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associated with the intermittent behaviour of turbulence and has beementioned as the
intermittent effect (Frisch, 2006, sect. 8.3), first discovered in turbulencéy Batchelor
and Townsend (1949) Therefore it is important to preserve this variation. The model in
equation (27) does not make any effort for such preservation. Howeveas seen in
Figure 9, these are preserved well and effortless. Therefore, i no longer puzzlingto
have large kurtosis (even > 5) in velocity increments, even tlugh the velocity is almost
normal. No additional assumption, model component, or even model parameter is
necessary. Similar good preservation appears also for the skewness of velocity
increments (Figure 9).

The huge data size in this application allowsvaluation of even higher moments and
construction of a plot (Figure 10) of the exponenty, vs. moment orderp of an assumed
scaling relationship

L h %o wo Q Q (28)
which has been very common in the literature. Again the agreement between the
simulated and measured data is impressive, particularly if we bear in mind the fact that
no provision has beenmade to this aim. Some more simulations have beensed to
investigate this further and a number of additional curves have been plotted ifrigure
10. It is thus seen that the HHK modehlone fails to preserve thisactual behaviourif a
Gausian distribution is assumed it rather approached the K41 selfsimilar model
(Kolmogorov, 1941) as reproduced by Frisch (2006, Fig. 8.8) Similar results are
obtained if a Markov dependence structure is assumed along with the modelled
marginal distribution based on the empirical moments Kigure 7). Interestingly, if we
combine the modelleddistribution (Figure 7) and the modelled climacogram équation
(27)), then we adequately preserve the intermittert effect without the need for any
other mono-fractal (such as theg -model) nor multi -fractal models(cf., Frisch, 2006, sect.
8.5) and not even the Shdéeveque model (1994) which is also plottedin Figure 10
(Frisch, 2006, sect. 8.6.4, 8.6.8nd behavesalsowell against the empirical data
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Figure 9 Empirical and simulated coefficients of skewness (éft) and kurtosis (right) of the
velocity increments vs. lag.
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Figure 10 Empirical values of the scaling exponent, vs. moment order p of the scaling
relationship (28).

In conclusion, this application shows that all important properties of turbulence,
including its short- and longterm characteristics, as well as intermittency, can be very
well modelled without any mystery but using a parsimonious stochastic mode]
theoretically justified on the basis of the maximization of entropy production
(Koutsoyiannis, 2011),with both Hurst and fractal behaviours and slightly non-Gaussian
distribution (with skewnessof 0.2and kurtosis of just 3.1).

Application 2: Wind

Understanding atmospheric motion in the form of wind is essential to many fields in
geophysics. Wind is considered one of the most important processes in
hydrometeorology since, along with temperature, it dries climate dynamics. Currently,
the interest for modelling and forecasting of wind has increaseddue to the importance
of wind power production in the frame ofrenewable energy resourceslevelopment
For the investigation of the large scale of atmospheriwind speed, we use over 15000
meteorological stations around the globe Kigure 11, upper) recorded mostly by
anemometers and with hourly resolution (Integrated Surfece Database ISD
http ://www.ncdc.noaa.gov/isd). In total, we analysealmost 4000 stations from different
sites and climatic regimes by selectinggme seriesthat are still operational, with at least
one year length of data,at least onenon-zero measurement per three hourson average
and at least 80% of norzero valuesfor the whole time series (Figure 11, middle). This
AAOA OAO EO OAEAGBAA O1 AAIT T x AO OCITAAI
"U OOAT AAOAEUET C Al 1l OAOEAYaluedto eFlimate théd A OA
marginal distribution, and an ensemble of 3886series, each with ~1® values on
average, to estimate the dependence structure through the climacogram known
problem of field measurementsof wind (particularly those originating from over 70
years ago, is that the technology of measuring devices has been rapidly changed
(Manwell et al., 2010, sect. 2.8.3).
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For example,in Figure 11 (lower) we illustrate a rather virtual increase of extreme
wind events after the 1970s which is mainly due to the inability of older devices to
properly measure wind speeds over 30 m/s (i.e., category | of SaffiSBimpson hurricane
wind scale). Furthermore, in common anemometer instrumentation there is a lower
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www.pce-instruments.com). It should be noted that, as the recorded wind speed
decreases, so does the instrumentaccuracy and it may be a good practice to always set
the minimum threshold to 0.5 m/s to avoid measuring the errors of the instrument (e.g.,
zero or extremely low values) in place of the actual wind speed that can never reach an
exact zero value.

In an attempt to incorporate smaller scales, starting from the microscale of
turbulence, we include again he dataset ofthe previous application of turbulence, using
it as an indicator of the similar statistical properties of small scale wind (Castaing et al.,
1990). In addition to the 40 time series of the longitudinal turbulent velocity, here we
also useanother 40 time series of transverse velocity, measured at the same points with
the longitudinal one; againeachtime series hasn E ¢ ¢fglgiarpoints with asampling
interval of 25 t s. Thecoefficients of skewness and kurtosis are estimate@s0.1 and 3.1
for the transverse velocity, respectively. Stochastic similarities between small scale
atmospheric wind and turbulent processes abound in the literature asor example in
terms of the marginal distribution (Monahan, 2013 and references therein), of the

s 2 oA N s oA N A s owoA ~N N A N oA s A

AEOOOEAOQGOET T 1T £ £l OA G @terericed thereing, 6fthd sedoad AO Al

order dependence structure (Dimitriadis et al., 2016 and referencesherein) and of
higher-order behaviour such as intermittency(e.g., Mahrt, 1989)

Finally, to link the large and small scale of atmospheric wind we analyse additional
time seriesh OAZAOOAA (Ofovidddby KGAR/E@E @f oddnonth length and
with a 10 Hz resolution. This timeseries has been recorded by a sonic anemometer on a
meteorological tower located at Beaumont KS and £ET A1l OAA O {ldddit@linad v p p 1
and transverse wind speed measurementshftp://data.eol.ucar.edu/ ; Doran, 2017).

The statistical characteristics based on moments up to fourth order are shown in
Figure 12; interestingly, there appears to be a rather well defined relationship beteen
mean and standard deviation. The plot ofcoefficient of kurtosis vs. coefficient of
skewnessindicates that Weibull distribution falls close to the lower bound of the scatter
of empirical points.

Numerous works have been conducted for the distributiorof the surface wind speed
(see Appendix B for a sample of recent studiesThe Weibull distribution has proven
very useful in describing the wind magnitude distribution for over three decades
(Monahan, 2006and references therein) However, various studiesillustrate empirical
as well as physicallybased deviations from the Weibull distribution (Drobinski and
Coulais, 2012and references therein). Due to the discussed limitations of properly
measuring wind speed most studies have focused on a local or smadhle. In such cases
where there is limited empirical evidence, we could search for a physical justification for
the left and right tail of the probability function.

(
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Figure 12 Standard deviation vs mean (upper) and coefficianof kurtosis vs. coefficient of
skewness of all time series used in Application 2.

It can easily be proven that the length (norm) of a vector of random variables with
uncorrelated Gaussian distributions with zero mean and equal variance follows the
Rayleigh distribution. However, there is empirical and theoretical evidence (Application
1) that the smaltscale distribution of turbulence is not Gaussiamnd it is expected that
this should also be the case for the components of wind speed. Through Moi@arlo
experiments we illustrate that correlated nonGaussian components result in a
distribution close to Weibull and is in agreement with small and medium scale
observations (an example is shown ifrigure 13).

The distribution T £ QlébAld OO E | Aapped @Hdviatefrom Weibull, gamma
and lognormal distributions, andis closer toa distribution with a much heavier tail:

\ T
U

‘ (29)
| U

o0 p P
where 0  Ttis the wind speed,b is the standard deviation of thewind speedprocess |
is a scale parameter andb and ware the shape parameters of the marginalistribution ,
all three dimensionless.For this distribution we use the name PareteBurr-Feller (PBF
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to give credit to the engineer V. Pareto, whodiscovered a family of power-type
distributions for the investigation of the size distribution of incomes in a society (Singh
and Maddala, 1976), to Burr (1942)who identified and analysed(but without giving a
justification) a function first proposed as an algebraic form by Bierens de Haan, and to
Feller (1971) who linked it to the Beta function and distribution.Other names such as
Pareto type IV or Burr type VII are alsan use for the samedistribution. Interestingly,
the PBF distribution has two different asymptotic properties i.e., the Weibull
distribution for low wind speeds and the Pareto distribution for large ones The
derivation of PBF from maximum entropy has been studiedin Yari and Borzadaran
(2010). The PBF has been used in a variety of independent fields (see Brouers, 2015).
Therefore, it seems that there is a strong physical as well as empirical justification for
applying the PBF to the analysis of the wind process.

The distribution fitted to all data sets is shown inFigure 14 and the fitted parameters
are | =3.5,b=1.9,c=8.5. The mean estimated climacogrars from the data Figure 15)
indicate that the model of equation(27) is also applicablefor the wind speed at all scales
with parameters estimated a3 ® M=$11/3, H=5/6 and | =6 h.

Figure 13 Probability density function of the medium scale time series along with theoretical
and Monte Carlo generated distributions.

Figure 14 Probability density function of the velocity of grid-turbulent data (small) and of the
wind speed of the medium and global scale time series along withfitted theoretical
distributions .






