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Abstract: The long-range dependence (LRD) is considered an inherent property of 

geophysical processes, whose presence increases uncertainty. Here we examine the 

spatial behaviour of LRD in precipitation by regressing the Hurst parameter estimate of 

mean annual precipitation instrumental data which span from 1916-2015 and cover a 

big area of the earth’s surface on location characteristics of the instrumental data 

stations. Furthermore, we apply the Mann-Kendall test under the LRD assumption (MKt-

LRD) to reassess the significance of observed trends. To summarize the results, the LRD 

is spatially clustered, it seems to depend mostly on the location of the stations, while the 

predictive value of the regression model is good. Thus when investigating for LRD 

properties we recommend that the local characteristics should be considered. The 

application of the MKt-LRD suggests that no significant monotonic trend appears in 

global precipitation, excluding the climate type D (snow) regions in which positive 

significant trends appear. 

Keywords: Hurst; long-range dependence; Mann-Kendall test; precipitation; random 

forests; trend analysis 

1. Introduction	

The long-range dependence (LRD), also known in hydrological science as the Hurst 

phenomenon, is a behaviour observed in geophysical processes in which wet years or 

dry years are clustered to respective long time periods (Koutsoyiannis, 2002). A 

common practice for evaluating the presence of the LRD is to model the geophysical 

time series with the Hurst-Kolmogorov process (HKp) and estimate its Hurst parameter 
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H (Koutsoyiannis, 2003; Tyralis and Koutsoyiannis, 2011) where high values of H 

indicate strong LRD. 

The estimation of H is of great importance in engineering practice (Lins and Cohn, 

2011). As indicated by Koutsoyiannis (2006), Koutsoyiannis and Montanari (2007) and 

Tyralis and Koutsoyiannis (2014) the uncertainty increases substantially when LRD is 

present. Furthermore, due to the increase in uncertainty, observed trends in data, even 

if they seem significant using classical statistical testing, can be insignificant under the 

LRD assumption as shown by Hamed (2008). 

Most studies on the assessment of the magnitude of precipitation LRD using 

instrumental data are local (e.g. Liu et al., 2012; Munshi, 2015; Valle et al., 2013). 

However, some studies including Fatichi et al. (2012) and Iliopoulou et al. (2017) 

estimated the magnitude of the precipitation LRD from instrumental measurements in 

global spatial scale and argued for its weak existence although the evidence for its 

presence in annual precipitation records is inconclusive (O’Connell et al., 2015). Similar 

global studies based on dissimilar datasets include Kumar et al. (2013) who estimated 

the H parameter of Coupled Model Intercomparison Project (CMIP5) twentieth-century 

precipitation simulations, Sun et al. (2014) who used reanalysis datasets and Bunde et 

al. (2013) who used instrumental measurements, climate model simulations and 

precipitation reconstructions to infer the significance of LRD in precipitation. 

The Mann-Kendall test is frequently used in hydrology to evaluate the significance of 

trends. However, the Mann-Kendall test under the LRD assumption (MKt-LRD) (Hamed, 

2008), in which a possible presence of LRD is considered, has been less frequently 

adopted. A few local case studies, in which the authors applied the Mann-Kendall test 

considering the presence of LRD include the investigation of precipitation (Dinpashoh et 

al., 2014), stream flows (Ehsanzadeh and Adamowski, 2010; Khaliq et al., 2009; Kumar 

et al., 2009; Sagarika et al., 2014; Zamani et al., 2017) and both (Fathian et al., 2016). 

The analysis of point precipitation at a global setting is an important topic in 

hydrology (for instance see de Lima et al., 2012). It can be supported by the analysis of 

precipitation instrumental data from stations that spatially cover the globe, which has 

become a common subject in the recent literature and is supported by the increasing 

availability and accessibility of global data sets (Bierkens, 2015) while it is an important 

constituent of global-scale hydrology whose emergence was highlighted by Eagleson 
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(1986; 1994). Such studies include the analysis of extremes (Alexander et al., 2006; 

Asadieh and Krakauer, 2015; Koutsoyiannis, 2004; Papalexiou and Koutsoyiannis, 

2013), droughts (Nasrollahi et al., 2015), analysis of trends (van Wijngaarden and Syed, 

2015), the temporal concentration of precipitation (Monjo and Martin-Vide, 2016) and 

reconstruction of past precipitation (Smith et al., 2012). Although the instrumental data 

need some processing to be used, they could be considered more reliable compared to 

climate simulations or reconstructions. However, the coverage of the earth’s surface by 

rain gauges is not high, while it decreases considerably when the analysis demands a 

sufficient long time period to obtain more reliable results (New et al., 2001). In such 

cases, several alternative methods have been proposed including the use of satellite data 

(Kidd and Huffman, 2011). 

The spatial analysis of precipitation based on instrumental measurements can be 

applied in local case studies, because the areas of interest are uniformly covered by the 

stations. This is the case, e.g. in Blanchet et al. (2009) who study the extreme statistics of 

snowfall, Villarini and Smith (2010) who investigate flood peak distributions, Li et al. 

(2011) who study precipitation trends and Dyrrdal et al. (2016) who analyse the 

extreme precipitation. 

In this study, we estimate the H parameter of the mean annual precipitation from 

instrumental data from a large part of the earth. The database used in this study (Menne 

et al., 2012a,b) includes stations that cover the largest part of the inhabited earth 

surface. However, for statistical reasons we examine stations with data, which span the 

hundred-year period 1916-2015 and thus the coverage decreases considerably. 

However, we prefer to use this reduced dataset instead of reanalysis datasets, because 

the artificial nature of the latter can alter considerably the results, particularly when 

using reanalysis data from uncovered areas at early time periods. 

The primary aim of our study is to investigate the relationship between H and 

locations features, which has been suggested for further research in Iliopoulou et al. 

(2017), while Fatichi et al. (2012) did not identify the presence of a particular 

geographical pattern. The results of Sun et al. (2014) and Markonis and Koutsoyiannis 

(2016, Figure S3) indicate that H varies considerably with the location of the stations; 

however they were obtained by reconstructions of past precipitation. Classical spatial 

statistical analysis cannot be applied, because the coverage of the earth’s surface by the 

examined stations is low and strongly non-uniform. In such cases machine learning 
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methods are a useful alternative (e.g. Alobaidi et al., 2015; Leuenberger and Kanevski, 

2015), as well as a complementary option (Kanevski and Demyanov, 2015). Therefore, 

to overcome the problem of non-uniform coverage an alternative approach is to regress 

the H parameter estimates on spatial characteristics of the stations, i.e. their 

coordinates. However, location characteristics of the stations such as their elevation and 

their Köppen-Geiger climate class (Kottek et al., 2006) may also be related to H. The 

ability to include predictor variables beyond the coordinates is another advantage of 

machine learning methods compared to classical statistical spatial analysis methods. To 

find all possible relationships, we apply both linear regression models and random 

forests algorithms (Breiman, 2001). The latter are classified as machine learning 

methods and they are particularly useful to model non-linear relationships between the 

dependent and the predictor variables, even when the latter are correlated. 

Furthermore, they have been applied in spatial analyses with better results compared to 

other machine learning methods (Cracknell and Reading, 2014). 

A secondary aim of our study is to assess the significance of precipitation trends by 

applying the MKt-LRD test along with an exploratory analysis, in which we can present 

the relationship between the magnitude and significance of trends and the location 

characteristics. Morin (2011) also applied the MKt to the mean annual precipitation, but 

using a gridded dataset and pre-whitening to account for the presence of serial 

correlation. Additionally, Van Wijngaarden and Syed (2015) already examined the 

precipitation trends using nearly 1 000 stations for the time period 1700-2013. They 

assessed the significance of the trends using the statistical t-test at the 5% level and they 

concluded that “some caution is warranted about claiming that large changes to global 

precipitation have occurred during the last 150 years”. Zhang et al. (2007) also examined 

the trends in global precipitation using instrumental measurements, and compared 

them to projections of climate models with the aim to find how anthropogenic forcing 

influences the precipitation. 

In most studies, global precipitation and possible changes in the hydrological cycle 

are examined by extended use of General Circulation Models (for instance Allan et al., 

2014; Allen and Ingram, 2002; Gu and Adler, 2015), or gridded datasets (for instance 

Hartmann et al., 2013; Gu and Adler, 2015; Morin, 2011). Climate models’ outputs are 

not used here because they contain large errors in precipitation simulations (Trenberth, 

2011). Gridded datasets are not used here because they are constructed using 
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observations of temporally varying spatial density, which may lead to inaccurate 

estimates of parameters used in climate modelling (Beguería et al., 2016; Sun et al., 

2014), while they may also be based on climate models (reanalysis datasets). In 

particular, the present study examines large areas, thus temporal variations of the 

spatial density of the observations would be even higher. Instead, here we use a set of 

stations with constant spatial density during the study period. Furthermore, due to the 

long time period only instrumental measurements can provide sufficient data for the 

investigation of possible trends (New et al., 2001). 

There is also a discussion on the relationship between the precipitation and 

temperature changes with the aim to find constraints of the maximum precipitation 

change conditionally as a function of temperature change with contradictory results. 

Allan et al. (2014) estimate an increase in precipitation approximately 2-3%/K, Lambert 

et al. (2008) estimated an increase approximately equal to 6%/K, while Wentz et al. 

(2007) estimated an increase equal to 7%/K. 

The assessment of the significance of trends, under the assumption of LRD has been 

proposed for research by Morin (2011). The significance of trends has been also 

examined using instrumental measurements in Van Wijngaarden and Syed (2015) and 

using gridded datasets in Hartmann et al. (2013); however, they did not use the LRD 

assumption. There have been attempts to link the precipitation changes with the 

temperature; however, the statistical significance is a concept, which cannot be 

incorporated in such framework. A trend may be small but can be statistically significant 

and vice versa. Furthermore, Koutsoyiannis and Montanari (2014) noticed that 

geophysical processes can be modelled using non-stationary models if there is a well-

defined deterministic relationship constructed by deduction. Therefore, changes in 

precipitation related to temperature, could be useful in such setting, i.e. if a 

deterministic function for the changes of the temperature could be also constructed by 

deduction. In our opinion, this is not possible (see also Koutsoyiannis, 2010). On the 

other hand, the assessment of the significance of trends can be incorporated in a 

stationary and completely stochastic framework, because it can test whether the 

particular stochastic framework is suitable to model the geophysical process of interest. 
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2. Data	

We used daily precipitation data from the Global Historical Climatology Network (GHCN, 

Menne et al., 2012a,b). Time periods of precipitation records for each station differ. The 

length of the time series affects the bias and uncertainty related to the parameters 

estimation when the Maximum Likelihood Estimator (MLE) is used (Tyralis and 

Koutsoyiannis, 2011, see also Section 3.1). Therefore, we preferred to use the common 

time period 1916-2015, while we discarded data out of this period, even when the 

instrumental data were covering a longer time period. The code and the datasets used in 

the present study are available online (see Appendix A). 

2.1 Station and data selection 

The initial dataset included time series with missing or flagged (i.e. data of low quality 

for reasons explained in Menne et al., 2012a) values. We processed the dataset 

according to the following briefly described sequence of actions. 

 A. Flagged values were considered as missing values. 

 B. We used the values 0.34 and 0.83 to differentiate between the months. Months 

with a percentage of observations higher than 0.83 (i.e. with more than 25/30 or 26/31 

daily observations) are considered good, while months with a percentage of recorded 

values less than 0.34 (i.e. equal or less than 10/30 and 10/31 daily observations) are 

considered of poor quality. The reason for the differentiation is that we first aggregate to 

the monthly time scale and then to the annual time scale. Thus even if all values in a 

month are missing we can fill the monthly value after the first aggregation as described 

in step C. 

 B1. Missing values within months with observed values more than 83% were filled 

using linear interpolation. 

 B2. All values within months with observed values less than 34% were considered 

as missing. 

 B3. For the rest of the months the missing values were filled using linear 

interpolation and then these months were considered as missing. The reason is 

explained in step D. 
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 C. Missing months corresponding to steps B2 and B3 (the latter after the 

substitution with missing values) were filled using a seasonal Kalman filter, 

implemented in the R package zoo (Zeileis and Grothendieck, 2005). 

 D. Mean monthly values for months in which both steps B3 and C (i.e. months with 

missing values more than 34% and less than 83%) were applied, were calculated with 

the mean of monthly values of steps B3 and C. 

 E. From the mean monthly values we obtained the mean annual values. 

 F. Finally we discarded annual time series if one of the following constraints was 

satisfied: 

 F1. Two or more missing years. 

 F2. H
˄

 ≥ 0.95, mean annual rainfall μ
˄

 ≥ 3000 mm, standard deviation of annual 

rainfall σ
˄

 ≥ 750 mm, coefficient of variation of annual rainfall c
˄

v ≥ 0.8. We set these 

constraints on the estimated parameters because a preliminary analysis showed that 

higher values were outliers. 

 F3. Four or more years with less than 60% of observed daily values. 

The estimated parameters of the annual time series of step F2 are described in 

Section 3.1. The interested reader is referred to Part 3 of the Supplementary Information 

for more details regarding the use of selection algorithms, constraints for data inclusion 

and other details. In Part 4 of the Supplementary Information we present boxplots for 

every parameter of Step F2. Despite the removal of outliers based on the preliminary 

analysis in step F2, some outliers remained. This will not constitute a problem in our 

analysis, due to the robustness of the random forests (see Section 3.2) to outliers 

(Breiman 2001). One may argue that high values observed in step F2 may also be 

representative of the parameters’ population, therefore they should not be removed (e.g. 

see the textbooks of Aggarwal, 2017; Barnett and Lewis, 1978; Hawkins, 1980). Since 

the aim of our study is to investigate the relationship between H and location features, 

and due to the low number of outliers found in step F2, their removal will not affect the 

analysis. 

We present the locations of the subset of stations, which remained after the initial 

procedure, in Figure 1. 1 535 stations remained, most of which are located in Australia, 

Europe and North America. Data for each station include its geographic coordinates, i.e. 
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elevation, longitude and latitude. We calculated the Cartesian coordinates of stations 

under the assumption of a spherical earth using eqs (1)-(3) to model the proximity of 

stations, which appear to be algebraically distant when considering their longitudes. 

 x = R cos(lat) cos(lon) (1) 

 y = R cos(lat) sin(lon) (2) 

 z = R sin(lat) (3) 

R denotes the radius of the earth. The x and y axes of the Cartesian coordinate system 

define a plane which includes all points with zero latitude, while the z axis is 

perpendicular to the plane. E.g. for given lat = 0°, stations with longitudes -180° and 

180° are coincident. The coincidence can be reproduced by the transformations (1)-(3). 

 
Figure 1. Map of locations for the 1 535 stations used in the analysis. 

2.1.1 Grouping of stations to Köppen-Geiger climate classes 

The stations are grouped based on the climate classification of Köppen-Geiger (Kottek et 

al., 2006). Table 1 presents the classes, whose combination gives the climatic types. We 

grouped the stations according to the climate type of the nearest point of the grid 

provided by Kottek et al. (2006). We calculated distances between stations and grid 

points using the Haversine ('half-versed-sine') formula as implemented in the R package 

geosphere (Hijmans, 2016a). Table 2 presents the 20 climate types of the stations. 

Twelve more climate types in Kottek et al. (2006) were not represented by the spatial 

distribution of the stations. The model calibration presented in Section 3.2 cannot be 

applied to the initial classification, because some climate types include a low number of 

stations. We regrouped the stations in the three groupings presented in Table 2. 

Grouping 1 included types with low number of stations together, considering their main 
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climate and precipitation type. Grouping 2 classified stations according to their main 

climate. Grouping 3 is similar to that of Ragulina and Reitan (2017), who regrouped the 

stations according to precipitation conditions. 

Table 1. Köppen-Geiger climate classes (Adapted from Figure 1 in Kottek et al. 2006). 

Main climate Precipitation  Temperature 

A equatorial W desert h hot arid 

B arid S steppe k cold arid 

C warm temperate f fully humid a hot summer 

D snow s summer dry b warm summer 

E polar w winter dry c cool summer 

  m monsoonal d extremely continental 

    F polar frost 

    T polar tundra 

Table 2. Köppen-Geiger climate types of stations in Figure 1 and their regroupings. 

Climate class Number of stations Grouping 1  Grouping 2  Grouping 3 

Am 5 A A Am 

As 4 A A As 

Aw 9 A A Aw 

BSh 65 BS B steppe 

BSk 223 BS B steppe 

BWh 21 BW B BWh 

BWk 6 BW B without dry season 

Cfa 419 Cfa C without dry season 

Cfb 206 Cfb C without dry season 

Csa 41 Ca C summer dry 

Csb 125 Csb C summer dry 

Cwa 5 Ca C winter dry 

Dfa 181 Dfa D without dry season 

Dfb 148 Dfb D without dry season 

Dfc 52 Dfc D without dry season 

Dsb 8 Dsw D summer dry 

Dsc 1 Dsw D summer dry 

Dwb 3 Dsw D winter dry 

Dwc 4 Dsw D winter dry 

ET 9 E E polar tundra 

3. Methods	

Here we present a minimum theoretical background of the methods, because they are 

established in the scientific literature. 
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3.1 Hurst-Kolmogorov process 

We modelled the annual time series of Section 2.1 with the HKp. Let {xt}, t = 1,2,… be a 

HKp. The HKp is a three-parameter normal stationary stochastic process in discrete 

time. Its parameters μ, σ, H are defined by eqs (4)-(6) (Tyralis and Koutsoyiannis, 2011). 

 μ := E[xt] (4) 

 σ := (Var[xt])1/2 (5) 

 ρk := Corr[xt, xt + k] = |k + 1|2H / 2 + |k − 1|2H / 2 − |k|2H, k = 0, 1,…, H ∊ (0, 1) (6) 

The parameter μ is the mean of the stochastic process and the parameter σ is its 

standard deviation. The parameter Η represents the magnitude of LRD, i.e. the tendency 

of wet or dry years to be clustered in long time periods (persistence), while the 

autocorrelation function ρk increases with H. High values of H denote strong long-term 

persistence, while when H < 0.5, the resulting stochastic process is antipersistent, but 

still stationary. H = 0.5 is equivalent to a stochastic process of independent variables. 

The implementation of the Maximum Likelihood Estimator in the R package HKprocess 

(Tyralis 2016) was applied for estimating μ, σ and H. Furthermore, we computed the 

maximum likelihood estimate of the coefficient of variation, defined as: 

 cv = σ/μ (7) 

The maximum likelihood estimate of cv can be obtained from eq (7) after substitution 

of μ and σ with their maximum likelihood estimates due to the invariance properties of 

the MLE. From hereinafter μ, σ and H will denote the estimates of the respective 

parameters (we will not use hats as in step F.2 in Section 2.1). 

The maximum likelihood estimator of the HKp parameters has excellent properties 

when compared to other estimators as shown in the simulation experiments in Tyralis 

and Koutsoyiannis (2011), while similar simulation experiments can be found in Taqqu 

et al. (1995), Jeong et al. 2007 and Rea et al. (2013). The latter three studies mostly 

implement estimators presented in Tyralis et al. (2011). 

3.2 Model fitting and testing 

We regressed H on combinations of other available variables related to local 

characteristics of the stations, i.e. their geographic coordinates, Cartesian coordinates, 

elevation, climate type, μ and σ. The use of geographic coordinates is more intuitive 

compared to Cartesian coordinates, thus we preferred to visualize the results using the 
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former coordinate system. The regression was applied using linear regression, the 

random forests algorithm (Biau and Scornet, 2016; Breiman, 2001) as implemented in 

the R package randomForest (Liaw and Wiener, 2002) and the random forests based on 

conditional inference trees (cforest algorithm, Strobl et al., 2007; 2008) as implemented 

in the R package party (Hothorn et al., 2017). 

Properties of linear models are well known, however random forests are less used in 

hydrological sciences. Random forests can handle non-linear interactions and highly 

correlated variables and have high predictive power. Furthermore, random forest 

variable importance measures for variable selection purposes are available (Strobl et al., 

2008). Therefore, despite being black boxes they can still provide information about the 

relationship between the dependent and the predictor variables. In this study, we used 

the permutation importance, which measures the mean increase of the prediction Mean 

Squared Error on the out-of-bag portion of the data after permuting each predictor 

variable in the trees of the trained model. More details can be found in the 

documentation of the importance function of the R package randomForest (Liaw and 

Wiener, 2002). Yet, the random forest importance variable measures are not reliable 

when the predictor variables vary in their scale of measurement or their number of 

categories (Strobl et al., 2007). In such cases, Strobl et al. (2007) propose the use of the 

cforest algorithm and its respective permutation importance measure, which we also 

used in our study. 

The three algorithms are applied using the R package caret (Kuhn, 2008; Kuhn et al., 

2017). We trained the three models on 80% of the sample, and we tested their 

performance on the remaining 20%, using the Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Pearson’s r metrics. 

H was the dependent variable, while we used a combination of spatial and location 

variables as predictors. 

The first testing of various combinations of predictor variables can be used initially to 

choose the most suitable for predicting H and reassess the selected combinations 

applying a computationally demanding 5-fold cross-validation. In the 5-fold cross-

validation, the original sample is randomly divided into five equal sized subsamples. The 

model is fitted in four subsamples and tested in the remaining one, while the procedure 

is repeated five times. Consequently, the randomness of the partitioning of the dataset in 

the 5-fold cross-validation influences the results less compared to the simple cross-
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validation. The 5-fold cross-validation was applied to four datasets sets, i.e. the full 

dataset and three subsets including stations in Australia, Europe and the USA 

respectively. In the 5-fold cross-validation, we compared the performance of random 

forests for predicting H with the simulations of a truncated normal distribution fitted to 

the sample of Hs and with a naïve approach in which the predicted value is equal to the 

median of H of the fitting set. The maximum likelihood estimates of the parameters of 

the truncated normal distribution in each one of the 80% folds, were used for the 

simulation of the other 20%. The maximum likelihood estimates were obtained using 

the R package tmvtnorm (Wilhelm and Manjunath, 2015). The RMSE, Pearson’s r and the 

slope of the regression line between the predicted and testing values metrics were used 

for the comparison. 

For more details on the application of the algorithms and the use of tuning 

parameters on the case of random forests and cforest, through the R package caret the 

interested reader is referred to Parts 4-8 of the Supplementary Information. For more 

details regarding the use of metrics to assess the predictive performance of regression 

algorithms the reader is referred to Alexander et al. (2015) and Gramatica and Sangion 

(2016). 

3.3 Mann-Kendall test under the long-range dependence assumption 

The MKt-LRD consists of three consecutive hypothesis tests, namely O (Original MK 

test), H (Hurst Parameter test) and M (Hamed 2008). Let H0i denote the null hypothesis 

of each test and let H1i denote the alternative hypothesis, where i = O, H, M denotes the 

step of the MKt-LRD. The null hypotheses are as follows. 

• H0O: No trend under the independence assumption. 

• H0H: No significant LRD.  

• H0M: No trend under LRD assumption. 

The possible outcomes of the test are summarized by the following sequences. 

• {H0O}: No significant trend. 

• {H1O, H0H}: Significant trend exists. 

• {H1O, H1H, H0M}: No significant trend. 

• {H1O, H1H, H1M}: Significant trend exists. 
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We used the test implementation in the R package HKprocess (Tyralis, 2016) with a 

predefined significance level α = 0.05 for all steps. For more details on the algorithm and 

its implementation using the R package HKprocess the interested reader is referred to 

Tegos et al. (2017). Furthermore, we estimated the trends of the annual time series with 

the fitting of a linear model. The estimated trends were set equal to the slope of the least 

squares line. 

3.4 Global Moran’s I test 

The global Moran’s I test uses the Moran’s I statistic (Moran, 1950). The Moran’s I 

statistic is a measure of spatial autocorrelation based on the location of variables and 

their observed values. In the global Moran’s I test, the null hypothesis is that the 

observed spatial pattern is a realization of a random spatial process. The alternative 

hypotheses are that the spatial distribution of high values and/or low values are 

spatially clustered or they are spatially dispersed. The former holds for low p-values and 

positive z-score, while the latter for low p-values and negative z-score. More details on 

the global Moran’s test can be found in Bivand et al. (2013b, pp. 275–284, 350–351). 

Here we applied the global Moran’s I test by implementing the spdep R package (Bivand 

and Piras, 2015; Bivand et al., 2013a). 

3.5 Kriging 

Besides random forests, we furthermore used ordinary kriging to predict H spatially, 

for comparison and benchmarking reasons. Kriging is a stochastic method of spatial 

interpolation, which uses normal processes to model the observed values. For more 

details, the reader may refer to Bivand et al. (2013b, pp. 232, 233). Kriging is less 

computationally intensive compared to the random forests. We used the gstat R package 

to perform kriging (Pebesma, 2004; Gräler et al., 2016). In addition, we used exponential 

functions to model the autocovariance of the spatial model. Details on the 

autocovariance functions can be found in the documentation of the R package geoR 

(Ribeiro Jr and Diggle, 2016). 

4. Methodology	summary	

Here we describe an outline of the method and the procedure of our analysis. Firstly, we 

selected stations with precipitation data in the time period 1916-2015, we filled the 

missing data, we computed the mean annual precipitation values and discarded some 
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stations, which did not satisfy the criteria set in Section 2.1. Then we grouped the 

stations in climate types (see Section 2.1.1). The record for each station includes its 

location (in geographic and Cartesian coordinates), its elevation, its climate type (three 

groupings) and mean annual precipitation time series. 

We modelled the time series with HKp and we estimated the parameters μ, σ, H 

(Section 3.1). We regressed H on combinations of location parameters using linear 

regression, random forests and the cforest algorithm. The fitting of the algorithms was 

performed in the 80% of the 1 535 stations, while their performance was tested in the 

other 20%. We compared the predictions of H between the random forests, the 

simulation from a fitted truncated normal distribution and the naïve method in a 5-fold 

cross-validation using the RMSE, the Pearson’s r and the slope of the regression line 

between the predicted and testing values. We applied the 5-fold cross validation to the 

entire dataset as well as three subsets, each one corresponding to a continent. 

Furthermore, we computed variable importance measures with the application of 

random forests and the cforest to the full dataset (Section 3.2). The combination of the 

validations and the use of variable importance measures can provide reliable 

information despite the shortcomings of each method when used individually. 

We applied the global Moran’s I test to the Hs to find possible spatial patterns with 

the aim to assess the results of the regression model. We furthermore compared the 

predictive performance of the random forests with ordinary kriging in which we used an 

exponential covariance function to model the spatial dependence of Hs. The comparison 

was performed using data from the contiguous part of the USA. To find a lower bound of 

predictive performance we modelled the spatial pattern of the Hs in the USA, using a 

Gaussian random field with an exponential covariance function, while we attempted to 

preserve the spatial dependence of the Hs. To this end, we simulated the spatial pattern 

1000 times and we tested the predictive performance of ordinary kriging in predicting H 

in the 20% of the sample, when fitted in the 80% of the sample. Finally, we estimated the 

trend and its significance under the LRD assumption (Section 3.3) and we visualized the 

results coupled with location variables. 

5. Long-range	dependence	analysis	

In this Section we present the results of the analysis for the H parameter. 
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5.1 Overview of H 

Figure 2 is the histogram of Hs. The maximum likelihood estimated values are skewed to 

the right with skewness equal to 0.21, while the median value is equal to 0.56. For 

comparison reasons and as shown in a simulation study in Part 9 of the Supplementary 

Information, the median of the H estimates of 100 000 simulated time series of length 

equal to 100 and H = 0.59 is equal to 0.56. Furthermore, 95% of the simulated 

experiment Hs are in the interval (0.413, 0.691), while 95% of the precipitation dataset 

Hs are in the interval (0.402, 0.733). A truncated normal distribution with support (0,1) 

seems to be a reasonable model for H. 

 
Figure 2. Histogram of H based on measurements from 1 535 stations. The median of the 

estimates is represented by the vertical red line and equals 0.56. 

Figure 3 presents the correlations between some variables of interest. The longitude 

is omitted, while the inclusion of x and y coordinates as single variables would be 

meaningless. We observe a high correlation between μ and σ and between the absolute 

latitude and cv. H is not highly correlated with any of the variables in Figure 3. 
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Figure 3. Correlations between numeric variables of each station based on the dataset of 

1 535 stations. 

To investigate the spatial properties of H we computed the spatial correlogram, 

presented in Figure 4 (see Part 9). The autocorrelation for distances equal to 250 km is 

approximately 0.1, while it increases to approximately 0.2 for distances equal to 100 km. 

The low autocorrelations for distances higher than 250 km may decrease the accuracy of 

predictions of H based on spatial characteristics. Furthermore, we calculated the Global 

Moran’s I statistic (Moran, 1950) using the global dataset, as well as the respective 

datasets in the USA and Australia (Part 9 of the Supplementary Information). Applying 

the hypothesis tests based on the Global Moran’s I statistic, we found p-values almost 

equal to 0 and positive z-scores implying that the spatial distribution of high or low 

values is spatially clustered, which rejects the hypothesis that the underlying spatial 

process is random. 

 
Figure 4. Smoothed spatial correlogram of the H values from the dataset of the 1 535 

stations. The computations are based on Bjornstad (2016) and they are presented in 

Part 9 of the supplementary information. 
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5.2 Visualization of H coupled with the predictor variables 

In this Section we visualize H coupled with the predictor variables. We present a full 

exploratory data analysis in the Supplementary Information, while here we present 

some important Figures for brevity. Figure 5 presents how H varies with the climate 

class of the station. Grouping 2 of Table 2 is used as the predictor variable. It seems that 

H does not significantly vary with grouping 2, while its values are near to the median 

value 0.56, computed in Section 5.1. On the other hand grouping 1 (see Table 2) in 

Figure 6 seems to be a better predictor, because of the higher variation of H between 

different climate classes. 

 
Figure 5. Boxplot of H based on the dataset of 1 535 stations conditional on the Köppen-

Geiger climate class (grouping 2). 

 
Figure 6. Boxplot of H from the dataset of 1 535 stations conditional on the Köppen-

Geiger climate class (grouping 1). 

In Figure 7, we observe the variation of H with the latitude. Higher H values are 

observed for positive latitude, however no trend prevails, while we do not observe any 

linear relationship between the two variables. Figure 7 also presents the relationship 

between H and longitude. Again, we do not observe any clear linear relationship 

between the two variables. Furthermore, H is not linearly related to the elevation of each 

station. 
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Figure 7. Scatterplot of H and the latitude (top), longitude (middle) and elevation 

(bottom) of each station. The legend presents the Köppen-Geiger climate class of each 

station. 

5.3 Model fitting and testing 

From the analysis in Section 5.2, it is apparent that a linear regression model between H 

and the location variables could be a benchmark, and be compared with the more 

complex random forests and the cforest algorithm. We examined combinations of 

predictor variables as shown in Table 3. Combinations 1-11 and 17-26 include the 

dependence of H on the location of the stations. Combination 12 examines its 

dependence on variables, which are features of the precipitation of the station, while 

combinations 13-16 and 27-30 examine both location and precipitation features. We 
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built the models of Table 3 using a stepwise regression method and in particular a 

forward selection approach, i.e. we started with no variables and we tested the addition 

of each variable using criteria such as the RMSE, the MAE, the MAPE and Pearson’s r. 

Table 3. Predictor variable combinations, examined in the fitting of models for the 

prediction of H. xyz are the Cartesian coordinates of each station. Grouping is defined in 

Table 2. 

Combination Predictors 

1 elevation 

2 grouping 1 

3 grouping 2 

4 grouping 3 

5 x, y 

6 x, y, z 

7 x, y, z, grouping 1 

8 x, y, z, elevation 

9 x, y, z, elevation, grouping 1 

10 x, y, z, elevation, grouping 2 

11 x, y, z, elevation, grouping 3 

12 μ, σ 

13 x, y, z, elevation, grouping 1, μ 

14 x, y, z, elevation, grouping 1, μ, σ 

15 x, y, z, elevation, grouping 2, μ, σ 

16 x, y, z, elevation, grouping 3, μ, σ 

17 longitude 

18 latitude 

19 longitude, grouping 1 

20 latitude, grouping 1 

21 longitude, latitude 

22 longitude, latitude, grouping 1 

23 longitude, latitude, elevation 

24 longitude, latitude, elevation, grouping 1 

25 longitude, latitude, elevation, grouping 2 

26 longitude, latitude, elevation, grouping 3 

27 longitude, latitude, elevation, grouping 1, μ 

28 longitude, latitude, elevation, grouping 1, μ, σ 

29 longitude, latitude, elevation, grouping 2, μ, σ 

30 longitude, latitude, elevation, grouping 3, μ, σ 

We fitted the models on 80% of the data and we tested their performance in 

predicting H on the other 20%. In Table 4, we present the testing results of each model. 

Combinations 1 and 3-16 for the cforest algorithm were omitted due to high 

computational load combined with the fact that they would not behave considerably 

different compared to the respective application of random forests. Random forests and 

the cforest had good performance while the performance of linear models was poor, 

indicating a strong non-linear relationship between the predictor variables and H. The 
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term linear here refers to the relationship e.g. between H and the elevation or the 

latitude and not to spatial relationships. The cforest is more computationally intensive 

compared to the random forests. Firstly, we examined the dependence of H on the 

elevation and the climate (combinations 1-4). Grouping 1 (combination 2) was the best 

predictor with a similar performance for all methods. Then, we examined the 

dependence of H on the Cartesian coordinates combined with or without other variables 

(combinations 5-11, 13-16). The combination 5 (i.e. x and y coordinates) performed 

very good in random forests, while the inclusion of the z coordinate, the elevation and 

the climate type further improved the performance. Combination 11 which includes 

grouping 3 performed marginally better than combinations 9 and 10 which include 

groupings 1 and 2 respectively. Inclusion of μ and σ further improved the performance 

of the random forests (combinations 13-16). Secondly, we performed a similar 

investigation using the geographic coordinates instead of the Cartesian coordinates 

(combinations 17-30). The longitude and latitude (combinations 17, 18) are not good 

predictors. When we combine each one of them with grouping 1 (combinations 19, 20) 

the results are worse or similar with using grouping 1 as a single predictor. The 

combination 21 (i.e. longitude and latitude) performed well, while the inclusion of 

grouping 1 (combination 22) weakened the regression model. On the other hand, the 

inclusion of the elevation (combination 23) improved marginally the performance of the 

model. Climate type (combinations 24-26) worsened the performance, while inclusion of 

μ and σ (combinations 27-30) further improved the performance of the random forests. 

It is noteworthy that some results seem incoherent. E.g. in the case of Cartesian 

coordinates, climate improves the random forests results (combinations 8-11), while for 

the geographic coordinates (combinations 23-26), it is the opposite. This may be 

explained by the slight deviations induced by the inclusion of climate. In this case, the 5-

fold cross-validation presented in the following is a valid method to obtain a more 

reliable inference. 
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Table 4. Model errors in the test set for predicting H for each method and metric. Comb 

is the combination of predictor variables as presented in Table 3. RMSE is the Root Mean 

Squared Error, MAE is the Mean Absolute Error, MAPE is the Mean Absolute Percentage 

Error and r is the Pearson’s r. 

Comb Linear model Random forests cforest 

 RMSE MAE MAPE r RMSE MAE MAPE r RMSE MAE MAPE r 
1 0.086 0.068 0.124 0.01 0.096 0.075 0.137 0.02     

2 0.084 0.068 0.124 0.24 0.084 0.068 0.124 0.24 0.084 0.068 0.124 0.24 

3 0.086 0.068 0.124 0.09 0.086 0.068 0.124 0.09     

4 0.088 0.069 0.126 -0.03 0.087 0.069 0.126 −0.03     

5 0.086 0.068 0.125 0.06 0.080 0.063 0.114 0.42     

6 0.086 0.068 0.123 0.11 0.079 0.061 0.110 0.44     

7 0.084 0.068 0.123 0.26 0.079 0.061 0.111 0.43     

8 0.086 0.068 0.123 0.11 0.077 0.059 0.107 0.47     

9 0.084 0.068 0.123 0.26 0.077 0.060 0.109 0.45     

10 0.085 0.067 0.122 0.17 0.077 0.059 0.108 0.46     

11 0.086 0.068 0.124 0.13 0.076 0.059 0.106 0.48     

12 0.086 0.068 0.124 0.07 0.091 0.071 0.130 0.09     

13 0.083 0.067 0.123 0.27 0.076 0.059 0.108 0.47     

14 0.082 0.067 0.123 0.31 0.073 0.058 0.106 0.53     

15 0.085 0.067 0.122 0.21 0.073 0.058 0.105 0.54     

16 0.086 0.068 0.124 0.14 0.073 0.057 0.104 0.54     

17 0.086 0.068 0.124 0.05 0.098 0.077 0.141 0.14 0.084 0.067 0.121 0.28 

18 0.086 0.069 0.124 0.00 0.097 0.078 0.142 0.09 0.087 0.069 0.127 0.19 

19 0.084 0.068 0.125 0.24 0.092 0.072 0.132 0.25 0.081 0.064 0.117 0.36 

20 0.084 0.068 0.125 0.24 0.092 0.072 0.131 0.19 0.082 0.064 0.117 0.34 

21 0.086 0.068 0.123 0.12 0.080 0.063 0.113 0.42 0.078 0.061 0.110 0.43 

22 0.084 0.068 0.124 0.25 0.081 0.063 0.115 0.39 0.080 0.062 0.114 0.39 

23 0.086 0.067 0.123 0.13 0.078 0.060 0.110 0.45 0.078 0.061 0.110 0.43 

24 0.084 0.068 0.124 0.25 0.079 0.061 0.112 0.42 0.080 0.062 0.114 0.39 

25 0.085 0.067 0.122 0.17 0.078 0.061 0.111 0.43 0.080 0.062 0.113 0.38 

26 0.086 0.067 0.123 0.14 0.078 0.060 0.110 0.44 0.079 0.061 0.112 0.40 

27 0.083 0.068 0.124 0.26 0.078 0.061 0.111 0.44 0.079 0.062 0.112 0.41 

28 0.082 0.067 0.122 0.32 0.075 0.059 0.109 0.50 0.077 0.061 0.111 0.46 

29 0.085 0.067 0.122 0.20 0.075 0.059 0.108 0.50 0.077 0.060 0.110 0.46 

30 0.086 0.068 0.123 0.15 0.075 0.059 0.107 0.50 0.077 0.060 0.109 0.47 

In Figure 8, we present the predicted H from the application of the trained random 

forests for the combination 24 to the test set. Pearson’s r indicates a good prediction, 

while the range of predicted Hs is smaller than the range of Hs in the test set. We 

observe the same behaviour for the cforest algorithm in Figure 8 albeit Pearson’s r is 

somewhat lower. When Pearson’s r is used to assess the predictive performance of 

regression models in the test set it is not a measure of correlation, while r2 does not 

explain variability. 
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Figure 8. H of the test set in the x-axis and predicted H for the test set in the y-axis using 

the random forests (top) and the cforest algorithm (bottom) for the combination 24 of 

predictor variables defined in Table 3. r denotes Pearson’s r. 

In Table 5, we present the results of a 5-fold cross-validation for the prediction of H. 

We compare the random forests in the combinations 2, 9, 17-22, 24, 27, 28 of predictor 

variables with the truncated normal distribution and the naïve approach. The 

combinations 2, 9, 17-22, 24 can be used for the prediction of H at ungauged locations. 

The combinations 27 and 28, which include μ and σ could be useful to predict H at an 

ungauged location, if we could make assumptions about the μ and σ parameters based 

on experts’ experience. This is also possible for cases with few years of observed data, 

since the uncertainty in estimating μ and to a lesser extend σ is less sensitive to the 

sample size. Besides μ and σ are also representative of the climate at the given location, 

thus they are equally useful at the stage of the analysis. 

Regarding the overall view, the RMSE of the random forests is lower than that of the 

truncated normal distribution and the naïve approach in most cases. However, it is 

notable, albeit expected, that the Pearson’s r and the slope are approximately 0 for the 

truncated normal distribution. This highlights the importance of the higher predicting 

performance of the random forests in terms of Pearson’s r and the slope. While in all 

cases, the performance of the random forests is not perfect, i.e. Pearson’s r is in the 

neighbourhood of 0.5 and the slope in the neighbourhood of 0.3, the improvement over 
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the benchmark approaches is somewhat significant. Indeed the RMSE is 10-15% lower. 

Furthermore, we note that the variation of RMSE, Pearson’s r and the slope values is low 

for all 11 random forests cases, meaning that the algorithm is stable with respect to the 

choice of the fitting sample. 

There is a rather weak relationship between H and grouping 1 (combination 2), while 

there is a rather moderate relationship between H and the longitude and latitude 

predictors (combination 21). The inclusion of grouping 1 to the longitude and latitude 

predictors (combination 22) did not improve the model compared to combination 21. 

However, the inclusion of grouping 1 and the elevation (combination 24) as predictor 

variables improved marginally the predictive performance of the fitted model. A 

possible explanation is that all information about H is included in the geographic 

location of the stations. Knowing the climate class of the stations does not add any 

information to that obtained by their locations. However the inclusion of μ and σ 

(combination 28) which may represent the climate in the location better than the 

climate class, further improved noticeably the performance of the prediction. On the 

other hand the better performance of the combination 28 compared to combination 27 

is possibly owed to that H and σ are not orthogonal (Tyralis and Koutsoyiannis, 2011) 

and therefore the properties of the estimates of the former depend on the latter. 



24 

 

Table 5. 5-fold cross-validation for predicting H using the random forests, the truncated 

normal distribution and the naïve method. Comb is the combination of predictor 

variables as presented in Table 3. Val denotes the number of the cross-validation. Three 

metrics were used, i.e. RMSE which is the Root Mean Squared Error, r which is the 

Pearson’s r and the slope of the regression line between the predicted and the observed 

values. The last column is equal to the mean value of the metrics. 
Method Comb Metric Val 1 Val 2 Val 3 Val 4 Val 5 Mean 

Random forests 2 RMSE 0.079 0.079 0.080 0.086 0.083 0.082 

 2 r 0.35 0.28 0.28 0.24 0.30 0.29 

 2 slope 0.11 0.10 0.09 0.08 0.10 0.09 

 9 RMSE 0.074 0.072 0.074 0.081 0.076 0.075 

 9 r 0.49 0.49 0.49 0.42 0.49 0.48 

 9 slope 0.29 0.28 0.28 0.24 0.27 0.27 

 17 RMSE 0.092 0.091 0.089 0.089 0.087 0.090 

 17 r 0.22 0.19 0.22 0.32 0.31 0.25 

 17 slope 0.15 0.13 0.14 0.20 0.20 0.17 

 18 RMSE 0.095 0.094 0.090 0.102 0.096 0.095 

 18 r 0.15 0.10 0.19 0.07 0.12 0.12 

 18 slope 0.10 0.06 0.11 0.04 0.07 0.08 

 19 RMSE 0.082 0.084 0.083 0.089 0.080 0.084 

 19 r 0.40 0.33 0.35 0.33 0.44 0.37 

 19 slope 0.29 0.24 0.24 0.22 0.28 0.25 

 20 RMSE 0.092 0.089 0.087 0.096 0.088 0.090 

 20 r 0.21 0.20 0.24 0.17 0.28 0.22 

 20 slope 0.14 0.13 0.15 0.10 0.17 0.14 

 21 RMSE 0.078 0.075 0.074 0.081 0.077 0.077 

 21 r 0.45 0.44 0.49 0.43 0.48 0.46 

 21 slope 0.30 0.27 0.31 0.26 0.30 0.29 

 22 RMSE 0.078 0.073 0.075 0.082 0.076 0.077 

 22 r 0.44 0.47 0.48 0.42 0.49 0.46 

 22 slope 0.29 0.28 0.29 0.25 0.30 0.28 

 24 RMSE 0.074 0.072 0.073 0.082 0.077 0.076 

 24 r 0.49 0.48 0.50 0.41 0.48 0.47 

 24 slope 0.28 0.27 0.28 0.23 0.26 0.26 

 27 RMSE 0.074 0.072 0.072 0.080 0.076 0.075 

 27 r 0.49 0.49 0.52 0.43 0.49 0.48 

 27 slope 0.28 0.27 0.28 0.22 0.26 0.26 

 28 RMSE 0.071 0.068 0.070 0.079 0.075 0.072 

 28 r 0.55 0.56 0.56 0.45 0.51 0.53 

 28 slope 0.29 0.31 0.29 0.23 0.27 0.28 

Truncated normal  RMSE 0.085 0.082 0.085 0.089 0.087 0.086 

  r −0.04 −0.01 −0.04 0.01 0.01 −0.01 

  slope 0.00 0.00 0.00 0.00 0.00 0.00 

Naïve  RMSE 0.085 0.082 0.084 0.089 0.087 0.085 

We repeated the 5-fold cross validation for stations in the USA, Australia and Europe 

(Parts 6-8 of the supplementary information) and we present the results for the USA and 

Australia for reasons of brevity in Table 6. While the overall comparison pattern 

remains the same with Table 5, there is a remarkable difference between the RMSEs of 

the random forests. They are lower in the USA and higher in Australia. While the RMSE 

of the truncated normal distribution is equal in the entire dataset and Australia, the 
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inclusion of the predictor variables has a lesser effect in the case of Australia. For 

instance, the RMSE of combination 28 is lower by 0.11 (= 0.087 − 0.076) in Australia, 

while 0.14 (= 0.086 − 0.072) for the entire dataset. We observe a similar behaviour in 

the USA (0.12 = 0.078− 0.066), albeit the differences are less significant. We attribute 

this behaviour to the combined information offered by entire dataset, which can be 

effectively exploited by the random forests. 

Table 6. 5-fold cross-validation for predicting H in the USA (left) and Australia (right) 

using the random forests, the truncated normal distribution and the naïve method. For 

further explanations, see Table 5. 
   USA Australia 

Method Comb Metric Val 1 Val 2 Val 3 Val 4 Val 5 Mean Val1 Val 2 Val 3 Val 4 Val 5 Mean 

Random forests 2 RMSE 0.068 0.073 0.070 0.074 0.078 0.073 0.089 0.085 0.080 0.093 0.081 0.086 

 2 r 0.35 0.30 0.37 0.46 0.36 0.37 0.07 0.13 0.22 0.24 0.32 0.20 

 2 slope 0.15 0.13 0.15 0.16 0.13 0.14 0.02 0.03 0.06 0.05 0.07 0.05 

 9 RMSE 0.066 0.067 0.071 0.068 0.071 0.069 0.078 0.079 0.073 0.084 0.076 0.078 

 9 r 0.45 0.49 0.40 0.58 0.51 0.49 0.46 0.40 0.47 0.47 0.48 0.46 

 9 slope 0.28 0.29 0.25 0.32 0.27 0.28 0.23 0.23 0.29 0.25 0.29 0.26 

 17 RMSE 0.083 0.086 0.081 0.089 0.088 0.086 0.094 0.092 0.086 0.103 0.086 0.092 

 17 r 0.12 0.22 0.19 0.18 0.14 0.17 0.22 0.23 0.31 0.15 0.31 0.25 

 17 slope 0.08 0.16 0.13 0.11 0.08 0.11 0.15 0.15 0.25 0.09 0.20 0.17 

 18 RMSE 0.082 0.086 0.080 0.083 0.086 0.084 0.099 0.095 0.092 0.103 0.097 0.097 

 18 r 0.13 0.18 0.30 0.30 0.22 0.22 0.06 0.15 0.07 0.16 0.08 0.10 

 18 slope 0.09 0.13 0.23 0.18 0.13 0.15 0.03 0.10 0.04 0.10 0.05 0.06 

 19 RMSE 0.077 0.080 0.077 0.080 0.087 0.080 0.086 0.087 0.087 0.092 0.080 0.086 

 19 r 0.28 0.32 0.34 0.36 0.23 0.31 0.35 0.32 0.27 0.37 0.43 0.35 

 19 slope 0.20 0.25 0.26 0.22 0.15 0.22 0.22 0.22 0.20 0.23 0.30 0.24 

 20 RMSE 0.080 0.082 0.077 0.082 0.083 0.081 0.094 0.094 0.084 0.098 0.087 0.091 

 20 r 0.18 0.28 0.33 0.32 0.26 0.27 0.20 0.15 0.23 0.20 0.26 0.21 

 20 slope 0.12 0.21 0.24 0.20 0.13 0.18 0.12 0.09 0.13 0.10 0.15 0.12 

 21 RMSE 0.067 0.067 0.068 0.068 0.073 0.069 0.080 0.084 0.074 0.087 0.076 0.080 

 21 r 0.45 0.50 0.47 0.57 0.48 0.50 0.44 0.37 0.46 0.44 0.50 0.44 

 21 slope 0.32 0.33 0.33 0.32 0.25 0.31 0.25 0.26 0.31 0.25 0.32 0.28 

 22 RMSE 0.066 0.068 0.070 0.068 0.072 0.069 0.080 0.083 0.076 0.088 0.073 0.080 

 22 r 0.45 0.49 0.44 0.57 0.50 0.49 0.43 0.35 0.42 0.42 0.53 0.43 

 22 slope 0.30 0.31 0.29 0.32 0.26 0.30 0.24 0.23 0.27 0.24 0.33 0.26 

 24 RMSE 0.066 0.068 0.072 0.069 0.072 0.069 0.080 0.082 0.076 0.086 0.080 0.081 

 24 r 0.45 0.48 0.38 0.56 0.50 0.47 0.42 0.34 0.40 0.45 0.42 0.41 

 24 slope 0.29 0.29 0.24 0.30 0.25 0.27 0.21 0.19 0.24 0.24 0.26 0.23 

 27 RMSE 0.066 0.067 0.070 0.068 0.072 0.068 0.079 0.079 0.077 0.084 0.078 0.079 

 27 r 0.45 0.49 0.41 0.58 0.49 0.48 0.45 0.38 0.39 0.48 0.45 0.43 

 27 slope 0.28 0.29 0.24 0.31 0.24 0.27 0.23 0.19 0.23 0.25 0.27 0.23 

 28 RMSE 0.064 0.067 0.066 0.066 0.068 0.066 0.074 0.077 0.076 0.081 0.073 0.076 

 28 r 0.48 0.50 0.48 0.62 0.56 0.53 0.54 0.45 0.41 0.52 0.54 0.49 

 28 slope 0.30 0.29 0.27 0.32 0.29 0.29 0.26 0.24 0.25 0.26 0.30 0.26 

Truncated normal  RMSE 0.073 0.076 0.076 0.083 0.083 0.078 0.088 0.086 0.081 0.095 0.085 0.087 

  r −0.02 0.05 −0.11 0.06 −0.02 −0.01 -0.01 -0.05 0.08 0.07 0.05 0.03 

  slope 0.00 0.00 −0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 

Naïve  RMSE 0.072 0.076 0.074 0.083 0.082 0.078 0.088 0.085 0.082 0.096 0.085 0.087 

In Figure 9, we present the variable importance for the combination 24 of predictor 

variables because it includes all predictor variables excluding μ and σ. The location 

parameters combined are the most important for predicting H, followed by the elevation 

and the climate classification. On the other hand, the cforest algorithm differs in that it 

estimates higher importance of the climate classification as presented in Figure 9 
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(bottom). This is possibly owed to the better performance of the cforest algorithm when 

estimating categorical variables’ importance. 

 

 
Figure 9. Variable importance for the combination 24 in Table 3 of predictor variables 

when random forests (top) and the cforest algorithm (bottom) is applied in the dataset 

of the 1 535 stations. The variable importance of a particular variable is the percentage 

of increase in mean square error observed in out-of-bag (OOB) prediction when this 

variable is randomly permuted. 

To find a lower bound for the errors, we simulated the observed spatial pattern in the 

USA using Gaussian random fields as analysed in Sections 3.5 and 4 and we predicted H 

using ordinary kriging. The results are presented in Part 12 of the supplementary 

information. We found a lower bound for the RMSE equal to 0.059, which is an 

improvement in predictive performance equal to 24%. Furthermore, we predicted H in 

the USA using kriging. We performed a 5-fold cross validation, presented in Part 12 of 

the supplementary information. The RMSE was equal to 0.069 while r = 0.48 and the 

slope was equal to 0.26 indicating a slighter better performance of the random forests. 

To present an application of the prediction model, in Figure 10 we show the variation 

of H in the USA and Australia obtained from the prediction of the random forests using 

the geographic coordinates as predictor variables. The spatial clustering appearing in 

Figure 10 is in accordance with the results of the hypothesis test based on the global 

Moran’s I statistic presented in Section 5.1. In Figure 11, we present the errors of the 

random forests models when they are fitted in the 80% of the sample using the 

geographic coordinates as predictor variables and predict the remaining 20% of the 
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sample, in a 5-fold cross validation. The pattern of the errors seems to suggest a random 

spatial underlying process for the errors. 

Summarizing the results of Section 5.3, one may interpret that the random forests 

could simply perform better than the naïve methods in cases in which the underlying 

process is random, implying that the better performance of the random forests is not the 

consequence of specific spatial patterns. To assess such arguments, we reassigned 

uniformly and randomly to the stations the Hs and obtained a completely random 

pattern (Part 11 of the supplementary information). The 5-fold cross validation proved 

that the naïve methods had a better predictive performance compared to the random 

forests in the new dataset. In fact, the predictive performance of the random forests 

decreased considerably, compared to the real dataset, while the performance of the 

naïve methods, did not change, as expected. 
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Figure 10. Heatmap of the Hurst parameter in Australia (top) and the USA (bottom) 

based on the prediction of the random forests when using the longitude and the latitude 

as predictor variables and the dataset of the 1 535 stations for fitting. 
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Figure 11. Errors of the prediction of random forests using the geographic coordinates 

as predictor variables in a 5-fold cross-validation. 

6. Trend	analysis	

In this Section we present the analysis on the significance of the observed trends under 

the LRD assumption. 

6.1 Overview of trend estimates 

Figure 12 is the histogram of estimated trends from the dataset of the 1 535 stations for 

the time period 1916-2015. The median value is equal to 0.36 mm/year, i.e. in the last 

100 years we observed an increase in the annual precipitation of 36 mm. For 
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comparison with the mean precipitation values, we note that the median annual 

precipitation for the 1535 stations is equal to 718 mm. 

 
Figure 12. Histogram of trends based on the dataset of the 1 535 stations. 

6.2 Visualization of trend estimates coupled with the location variables 

In this Section we visualize the estimated trends as well as their significance coupled 

with location parameters. The full exploratory analysis is presented in the 

Supplementary Information, while here we present some important observations. In 

Figure 13, we present how the precipitation trend varies with the climate type. In all five 

types of grouping 2 the estimated trend is positive, while we observe a larger variation 

for climate type “A”. 

 
Figure 13. Boxplot of trend estimates based on the dataset of the 1 535 stations 

conditional on the Köppen-Geiger climate class (grouping 2). 

Figure 14 presents the variation of trends conditional on grouping 3. It seems that 

non-significant differences are observed between different climate types. 
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Figure 14. Boxplot of trend estimates from the dataset of the 1 535 stations conditional 

on the Köppen-Geiger climate class (grouping 1). 

Notably, as shown in Figure 15, the mean annual precipitation seems to have been 

slightly increased in the Northern hemisphere and slightly decreased in the Southern 

hemisphere. This slight increase in the Northern hemisphere confirms the findings of 

van Wijngaarden and Syed (2015). 

 
Figure 15. Scatterplot of trend estimate and the latitude of each station. The legend 

presents the Köppen-Geiger climate class of each station. 

Figure 16 depicts the monotonicity and significance of trends for each main climate 

type, after application of the MKt-LRD with a predefined significance level α = 0.05 for all 

steps to the mean annual precipitation time series. The absolute number of stations with 

main climate type D and positive significant trend is considerably higher compared to 

the number of stations with significant negative trend. However, the main climate types 

B and C are characterized by mostly significant negative trends. We cannot infer on 

stations with main climate types A and E because of the low number of stations. The 

observed patterns are also shown in a different form in Figure 16. We observe 

insignificant trends in approximately 50% of the stations, for main climate types A, B, C 

and D. However, the percentage of stations with positive significant trends is higher than 
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the percentage of negative significant trends for main climate type D (snow) and E 

(polar), while the opposite is true for main climate types A, B and C (all other climates). 

 

 
Figure 16. Number of stations with their trend significance (top) and percentages of 

stations for each type of trend significance (bottom) in each Köppen-Geiger climate class 

(grouping 2 of Table 2). Significance was estimated applying the MKt-LRD to the mean 

annual precipitation time series. The legend presents the sign of the trend (pos for 

positive and neg for negative) and its significance (sign for significant and ins for 

insignificant). 

7. Summary,	discussion	and	conclusions	

We examined the long-range dependence properties of mean annual precipitation of 

1 535 stations for the time period 1916-2015 and we tested the trends under the 

assumption of long-range dependence. Based on the maximum likelihood estimates of 

Hurst parameter H, which is a measure of long-range dependence, we found that the 

median value of H is equal to 0.56. This result is consistent with those of Fatichi et al. 

(2012) and Iliopoulou et al. (2017) regarding the LRD properties of the mean annual 

precipitation from instrumental measurements, which cover large part of the earth’s 

land surface. Fatichi et al. (2012) estimated a median value H = 0.597 using an estimator 

based on the periodogram (Taqqu et al., 1995). Iliopoulou et al. (2017) estimated a 

mean H = 0.58. 

In Section 5.3, we showed that the patterns of LRD are spatially clustered, while 

Fatichi et al. (2012) did not identify any geographical pattern. A spatially clustered 
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pattern was produced by predicting H using random forests. Furthermore, we showed 

that the location of the station and the climate type are the most important predictor 

variables of H, followed by the elevation of the station. The order of importance of the 

three former variables depends on the algorithm. The cforest algorithm estimates that 

the climate type is the most important, while due to its simultaneous handling of 

continuous and categorical variables can be considered more reliable than the random 

forests in estimating the variable importance. The combinations 6 and 21 of predictor 

variables, which include, respectively, the Cartesian coordinates and the geographic 

coordinates of the stations performs well in terms of the error metrics, but most 

importantly, their predictions had good correlation with the tested values. This 

correlation cannot be achieved with fitting a distribution to the set of the H values 

therefore the truncated normal distribution should be used with caution when 

modelling H and only as a prior that needs updating in a Bayesian setting conditional on 

the observed precipitation of the location. The inclusion of the climate type and the 

elevation (combinations 9, 24) improved further, albeit little, the performance of the 

random forests. However, this marginal improvement means that the information 

obtained from the geographic location of the station already includes the information of 

the climate type. Overall, the improvement from the truncated normal distribution to 

the inclusion of the geographic coordinates is 10%, which is not negligible. Considering 

that the median value ± 2 RMSE forms an approximately 95% confidence interval 

(Hunter and Goodchild, 1995), the improved confidence interval is narrower by 0.04. 

This improvement may sound negligible but it is not, as pointed out by Koutsoyiannis 

and Montanari (2007). 

One could claim that the ability of the used algorithms to explain the spatial patterns 

of H is low. The low predictive performance could be due to the uncertainty in 

estimating H, or due to the weak spatial autocorrelation of Hs. Here, we proved that for 

the given spatial autocorrelation, the best performance for a regular spatial pattern 

could not be more than 24%. The improvement in the real dataset was equal to 12%, 

which is sufficient in our opinion. Despite the uncertainty in the estimation of H, we 

identified spatial patterns, indicating that the influence of the errors in the estimation 

procedure was remedied by the large size of the sample. We proved that naïve methods 

are better than random forests when predicting in cases of complete randomness, 

therefore the better performance of the random forests here is due to the spatial 
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distribution of Hs, and not due to their ability to predict better than naïve methods when 

complete randomness is present. 

The overall result is that the random forest algorithm can predict well the LRD of the 

mean annual precipitation, when the location characteristics are used as predictor 

variables, while their performance is considerably better compared to the predictive 

ability of the simple distribution of H, particularly in terms of the correlation between 

the predicted and the estimated values. Therefore, the random forests can be used to 

predict H in locations without data or insufficient quantity of data and can serve as a 

substitute of spatial interpolation methods. Compared to spatial algorithms the random 

forests excel in combining information from distant locations through the common 

latitude, climate type and elevation variables, even if the spatial coverage is limited and 

non-uniform. Ordinary kriging has similar performance with the random forests when 

using the geographic coordinates as predictor variables, but it can’t use other 

explanatory variables which proved to further slightly improve the predictive 

performance. The “Hurst_df.RData”, which is the outcome of Part 4 of the Supplementary 

Information can be used by the interested reader to fit a model and predict H for other 

applications. 

Regarding the presence of trends in the mean annual precipitation for the time period 

1916-2015, it seems that the magnitude and sign of trends depend on the latitude and 

climate type of the station. The median of estimated trends was equal to 0.36 mm/year; 

however, it varies with the climate types in grouping 3 and the latitude. The MKt-LRD 

indicates that positive significant trends have been observed for the main climate type D 

(snow). In the other climate types the percentage of stations with positive significant 

trends was approximately equal to that of negative significant trends, while 50% of all 

stations do not exhibit significant trends at all. 

 A limitation of our study is that the random forests algorithm can predict values only 

if given values of the predictor variables are within the range of the fitting set. Thus, the 

limited availability of data prohibits the generalization of the method to regions and 

Köppen-Geiger climate classes which are not represented by the dataset. However, the 

random forests algorithm could provide information about the full conditional 

distribution of H (e.g. see Coulston et al., 2016; Meinshausen, 2006). These probabilistic 

predictions could be more appropriate for determining an initial prior distribution for H 

in a Bayesian setting compared e.g. to the uniform distribution in Tyralis et al. (2014) or 
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to a fitted distribution in a sample of estimated H values which is independent of the 

location. The random forests algorithm provides additional means to examine the effect 

of interaction between the predictor variables and H, which could give some insights on 

the natural explanation of the long-range dependence in precipitation. The latter issue is 

of high importance in hydrological science. To this end, non-linear transformations of 

the variables could be tested in addition to the exploratory data analysis presented here. 

Furthermore, the same fitting and testing procedure can be applied to the estimated 

trends and their estimated significances, to generalize the preliminary results of the 

trend analysis. 

Appendix	A Statistical	software	and	supplementary	information 

The analyses and visualizations were performed in R Programming Language (R Core 

Team 2017). We used the contributed R packages caret (Kuhn 2008, Kuhn et al. 2017), 

devtools (Wickham and Chang, 2017), fBasics (Rmetrics Core Team et al., 2014), FGN 

(McLeod and Veenstra, 2014), gdata (Warnes et al., 2017), geoR (Ribeiro Jr and Diggle, 

2016), geosphere (Hijmans, 2016a), ggplot2 (Wickham, 2016), gstat (Pebesma, 2004, 

Gräler et al., 2016), HKprocess (Tyralis, 2016), Hmisc (Harrell Jr et al., 2017), hydroTSM 

(Zambrano-Bigiarini, 2017), knitr (Xie, 2014; 2015; 2017), lubridate (Grolemund and 

Wickham, 2011), magrittr (Bache and Wickham, 2014), maps (Brownrigg et al., 2017), 

Matrix (Bates and Maechler, 2017), ncf (Bjornstad, 2016), party (Hothorn et al., 2017), 

plyr (Wickham, 2011), randomForest (Liaw and Wiener, 2002), raster (Hijmans, 2016b), 

readr (Wickham et al., 2017), reshape2 (Wickham, 2007), scales (Wickham, 2017), sp 

(Bivand et al., 2013b; Pebesma and Bivand, 2005), spdep (Bivand and Piras, 2015; 

Bivand et al., 2013a), tmvtnorm (Wilhelm and Manjunath, 2015), truncnorm 

(Trautmann et al., 2014), xts (Ryan and Ulrich, 2017), zoo (Zeileis and Grothendieck, 

2005). 

The code used for analysing the dataset is available online as supplementary 

information online at Tyralis (2017). The supplementary information also contains the 

12 .html outcomes of the code, named Part 1, …, 12, the data and information about the 

data (in a readme.txt file in the main folder). The interested reader can use it to 

reproduce our analysis. 
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