Stochastic investigation of the streamflow adjusted in human impact
European Geosciences Union General Assembly 2018, 9-13 April, 2018 Vienna, Austria
NH1.3/H51.27 : Flood risk and uncertainty

Maria Zei, Panayiotis Dimitriadis, Alonso Pizarro, Theano Bisoupoulou and Demetris Koutsoyiannis
Department of Water Resources, School of Civil Engineering, National Technical University of Athens, Greece

1. Introduction
The streamflow process plays a major role not only in water management, but also in prosperity of any aquatic ecosystem. Until now, large numbers of scientific studies have dealt with the stochastic framework of the river flow, and not so much with the influence of human intervention on it. The following study attempts to investigate the cross-correlation and statistical similarities between the streamflow in natural conditions and that with anthropogenic alterations.

To this end, we collected and examined several data sets from numerous locations with differences in topography, geomorphology, catchment attributes and climate regimes. The detection of the statistical similarities or cross-correlation between the natural flows and those with human interventions could be useful in studies related to the ecosystem of the river, sediment transportation, as well as water management and environmental impact.

2. What is the Aim of the study?
In order to make the streamflow an independent variable, we are interested in the statistical similarities between the streamflow in natural conditions and that with anthropogenic alterations.

3. Where was the data gathered from?

4. Statistics tools

5. Results

6. Conclusions

References

The streamflow process plays a major role not only in water management, but also in prosperity of any aquatic ecosystem. Until now, large numbers of scientific studies have dealt with the stochastic framework of the river flow, and not so much with the influence of human intervention on it. The following study attempts to investigate the cross-correlation and statistical similarities between the streamflow in natural conditions and that with anthropogenic alterations.

To this end, we collected and examined several data sets from numerous locations with differences in topography, geomorphology, catchment attributes and climate regimes. The detection of the statistical similarities or cross-correlation between the natural flows and those with human interventions could be useful in studies related to the ecosystem of the river, sediment transportation, as well as water management and environmental impact.