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Introduction 
Classical moments, raw or central, express important theoretical properties of 
probability distributions but cannot be estimated from typical samples for 
order beyond 2—cf. Lombardo et al. (2014): “Just two moments!”. 

L-moments are better estimated but they are all of first order in terms of the 
random variable of interest. They are good to characterize independent series 
or to infer the marginal distribution of stochastic processes, but they cannot 
characterize even second order dependence of processes. 

Picking from both categories, we introduce K-moments, which combine 
advantages of both classical and L moments. They enable reliable estimation 
from samples (in some cases even more reliable than L moments) and effective 
description of high order statistics, useful for marginal and joint distributions of 
stochastic processes. 

High-order joint statistics of stochastic properties involve multivariate 
functions expressing joint high-order moments. Here, by extending the notion 
of climacogram (Koutsoyiannis, 2010, 2016) and climacospectrum 
(Koutsoyiannis, 2017) we introduce the K-climacogram and the K-
climacospectrum, which enable characterization of high-order properties of 
stochastic processes, as well as preservation thereof in simulations, in terms of 
univariate functions. 
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A note on classical moments 
The classical definitions of raw and central moments of order p are:  

𝜇𝑝
′ ≔ E[𝑥𝑝], 𝜇𝑝 ≔ E[(𝑥 − 𝜇)

𝑝
]  (1) 

respectively, where 𝜇 ≔ 𝜇1
′ = E[𝑥] is the mean of the random variable x. Their 

standard estimators from a sample xi, i = 1, …, n, are  

𝜇̂𝑝
′ =

1

𝑛
∑ 𝑥𝑖

𝑝𝑛
𝑖=1 , 𝜇̂𝑝 =

𝑏(𝑛,𝑝)

𝑛
∑ (𝑥𝑖 − 𝜇̂)

𝑝𝑛
𝑖=1   (2) 

where a(n, p) is a bias correction factor (e.g. for the variance μ2 =: σ2, b(n, 2) = 
n/(n – 1)). The estimators of the raw moments 𝜇̂𝑝

′  are in theory unbiased, but it 

is practically impossible to use them in estimation if p > 2—cf. Lombardo et al. 
(2014), “Just two moments”.  

In fact, because for large p, it holds that (
1

𝑛
∑ 𝑥𝑖

𝑝𝑛
𝑖=1 )

1/𝑝
≈ max1≤ 𝑖≤𝑛(𝑥𝑖) *, we can 

conclude that, for an unbounded variable x, asymptotically 𝜇̂𝑝
′  is not an estima-

tor of 𝝁𝒑
′  but one of an extreme quantity, i.e., the nth order statistic raised to 

power p. Thus, unless p is very small, 𝝁𝒑
′  is not a knowable quantity: we 

cannot infer its value from a sample. This is the case even if n is very large! 

                                  
* This is precise if xi are positive; see also p. 5. 
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Definition of K-moments 
To derive knowable moments for high orders p, in the expectation defining the 
pth moment we raise x – μ to a lower power q < p and for the remaining p – q 
terms we replace x – μ with 2F(x) – 1, where F(x) is the distribution function. 
This leads to the following (central) K-moment definition: 

𝐾𝑝𝑞 ≔ (𝑝 − 𝑞 + 1)E[(2𝐹(𝑥) − 1)
𝑝−𝑞

(𝑥 − 𝜇)𝑞]  (3) 

Likewise, we define non-central K-moments as: 

𝐾𝑝𝑞
′ ≔ (𝑝 − 𝑞 + 1)E [(𝐹(𝑥))

𝑝−𝑞
𝑥𝑞]  (4) 

The quantity (2𝐹(𝑥) − 1)
𝑝−𝑞

 is estimated from a sample without using powers 
of x. Specifically, for the ith element of a sample x(i) of size n, sorted in ascending 
order, F(x(i)), is estimated as 𝐹̂(𝑥(𝑖)) = (𝑖 − 1)/(𝑛 − 1), thus taking values from 
0 to 1 precisely and irrespective of the values x(i); likewise, 2F(x(i)) – 1 is 
estimated as 2𝐹̂(𝑥(𝑖)) − 1 = (2𝑖 − 𝑛 + 1)/(𝑛 − 1), taking values from –1 to 1 
precisely and irrespective of the values x(i). Hence, the estimators are:  

𝐾̂𝑝𝑞
′ =

1

𝑛
∑ (

𝑖−1

𝑛−1
)

𝑝−𝑞
𝑥(𝑖)

𝑞𝑛
𝑖=1 , 𝐾̂𝑝𝑞 =

1

𝑛
∑ (

2𝑖−𝑛+1

𝑛−1
)

𝑝−𝑞
(𝑥(𝑖) − 𝜇̂)

𝑞𝑛
𝑖=1   (5) 
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Rationale of the definition  
1. Assuming that the distribution mean is close to the median, so that F(μ) ≈ 1/2 (this is precisely 

true for a symmetric distribution), the quantity whose expectation is taken in (3) is  

𝐴(𝑥) ≔ (2𝐹(𝑥) − 1)
𝑝−𝑞

(𝑥 − 𝜇)𝑞 and its Taylor expansion is 

𝐴(𝑥) = (2𝑓(𝜇))
𝑝−𝑞

(𝑥 − 𝜇)𝑝 + (𝑝 − 𝑞)(2𝑓(𝜇))
𝑝−𝑞−1

𝑓′(𝜇)(𝑥 − 𝜇)𝑝+1 + 𝑂((𝑥 − 𝜇)𝑝+2) (6) 

where f(x) is the probability density function of x. Clearly then, 𝐾𝑝𝑞  depends on 𝜇𝑝 as well as 
classical moments of x of order higher than p. The independence of 𝐾𝑝𝑞from classical moments 
of order < p makes it a good knowable surrogate of the unknowable 𝜇𝑝.  

2. As p becomes large, by virtue of the multiplicative term (𝑝 − 𝑞 + 1) in definition (3), 𝐾𝑝𝑞   shares 

similar asymptotic properties with 𝜇̂𝑝
𝑞/𝑝

 (the estimate, not the true 𝜇𝑝
𝑞/𝑝

). To illustrate this for q = 
1, we consider the variable  𝑧 ≔ max1≤𝑖≤𝑝 𝑥𝑖 and denote f( ) and h( ) the probability densities of 
𝑥𝑖 and 𝑧, respectively. Then (Papoulis, 1990, p. 209): 

ℎ(𝑧) = 𝑝𝑓(𝑧)(𝐹(𝑧))
𝑝−1

 (7) 

and thus, by virtue of (4),  

E[𝑧] = 𝑝E [(𝐹(𝑥))
𝑝−1

𝑥] = 𝐾𝑝1
′  (8) 

On the other hand, as seen in p. 2, for positive x and large p → n, 

𝐸[𝜇̂𝑝
′ 1/𝑝

] = 𝐸 [(
1

𝑛
∑ 𝑥𝑖

𝑝𝑛
𝑖=1 )

1/𝑝
] ≈ 𝐸 [ max

1≤ 𝑖≤𝑛
𝑥𝑖] = E[𝑧] = 𝐾𝑝1

′     (9) 

Note also that the multiplicative term (𝑝 − 𝑞 + 1) in definition (3) and (4) makes K-moments 
increasing functions of p. 
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Asymptotic properties of moment estimates 
Generally, as p becomes large (approaching n), estimates of both classical and K 
moments, central or non-central, become estimates of expressions involving 

extremes such as (max1≤𝑖≤𝑝 𝑥𝑖)
𝑞

 or max1≤𝑖≤𝑝(𝑥𝑖 − 𝜇)𝑞 . For negatively skewed 

distributions these quantities can also involve minimum, instead of maximum 
quantities.  

For the K-moments this is consistent with their theoretical definition. For the 
classical moments this is an inconsistency.  

A common property of both classical and K moments is that symmetrical 
distributions have all their odd moments equal to zero. 

Both classical and K moments are non-decreasing functions of p, separately for 
odd and even p. 

In geophysical processes we can justifiably assume that the variance μ2 ≡ σ2 ≡ 
K22 is finite (an infinite variance would presuppose infinite energy to 
materialize, which is absurd). Hence, high order K-moments Kp2 will be finite 
too, even if classical moments μp diverge to infinity beyond a certain p (i.e., in 
heavy tailed distributions). 
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Justification of the notion of unknowable vs. knowable 

  

 
Note: Sample sizes are ten times higher than the maximum p shown in graphs, i.e., 1000.  
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Relationship among different moment types 
The classical moments can be recovered as a special case of K moments: 𝑀𝑝 ≡ 𝐾𝑝𝑝. In particular, in 

uniform distribution, classical and K moments are proportional to each other: 

𝐾𝑝𝑞
′ ≔ (𝑝 − 𝑞 + 1)𝜇𝑝

′ ,   𝐾𝑝𝑞 ≔ (𝑝 − 𝑞 + 1)𝜇𝑝 (10) 

The probability weighted moments (PWM), defined as 𝛽𝑝 ≔ E [𝑥 (𝐹(𝑥))
𝑝

], are a special case of K- 

moments corresponding to q = 1: 

𝐾𝑝1
′ = 𝑝𝛽𝑝−1  (11) 

The L-moments defined as 𝜆𝑝 ≔
1

𝑝
∑ (−1)𝑘 (

𝑝 − 1
𝑘

) E[𝑥(𝑝−𝑘):𝑝]
𝑝−1
𝑘=0 , where 𝑥𝑘:𝑝 denotes the kth order 

statistic in an independent sample of size p. L-moments are also related to PWM and through them 
to K moments. In particular, the relationships for the different types of moments for the first four 
orders are: 

𝐾11
′ = 𝜇 = 𝛽0, 𝐾11 = 0 

𝐾21
′ = 2𝛽1, 𝐾21 = 2(𝐾21

′ − 𝜇) = 4𝛽1 − 2𝛽0 = 2𝜆2   

𝐾31
′ = 3𝛽2, 𝐾31 = 4(𝐾31

′ − 𝜇) − 6(𝐾21
′ − 𝜇) = 12𝛽2 − 12𝛽1 + 2𝛽0 = 2𝜆3 

𝐾41
′ = 4𝛽3,  𝐾41 = 8(𝐾41

′ − 𝜇) − 16(𝐾31
′ − 𝜇) + 12(𝐾21

′ − 𝜇) 

= 32𝛽3 − 48𝛽2 + 24𝛽1 − 4𝛽0 =
8

5
𝜆4 +

12

5
𝜆2   

(12) 
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Basic characteristics of marginal distribution  
Within the framework of K-moments, we can (and should) use “Just two  
moments” in terms of the power of x, i.e. q = 1 or 2, but we can obtain knowable 
statistical characteristics for much higher order p.  

In this manner, for p > 1 we have two alternative options to define statistical 
characteristics related to moments of the distribution, as in the table below. 
(Which of the two is preferable depends on the statistical behaviour and in 
particular, mean, mode and variance of the estimator.) 
 
Characteristic Order 

p 
Option 1 Option 2 

Location 1 𝐾11
′ = 𝜇 

Variability 2 𝐾21 = 2(𝐾21
′ − 𝜇) = 2𝜆2 𝐾22 = 𝜎2  

(the classical variance) 
Skewness 
(dimensionless) 

3 𝐾31

𝐾21
=

𝜆3

𝜆2
 

𝐾32

𝐾22
 

Kurtosis 
(dimensionless) 

4 𝐾41

𝐾21
=

4

5

𝜆4

𝜆2
+

6

5
 

𝐾42

𝐾22
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High order moments for stochastic processes:  
the K-climacogram and the K-climacospectrum 
Second order properties of stochastic properties are typically expressed by the autocovariance 
function, c(h) := cov[x(t), x(t + h)]. An equivalent description is by the power spectrum, which is the 

Fourier transform of the autocovariance, 𝑠(𝑤) ≔ 4 ∫ 𝑐(ℎ) cos(2π𝑤ℎ) dℎ
∞

0
. 

Another fully equivalent description with many advantages (Dimitriadis and Koutsoyiannis 2015, 
Koutsoyiannis 2016)  is through the climacogram, the variance of the averaged process, i.e.,  

γ(k) ≔ var[X(k)/k], where 𝑋(𝑡) ≔ ∫ 𝑥(𝜉)d𝜉
𝑡

0
. The climacogram is connected to autocovariance by  

𝛾(𝑘) = 2 ∫ (1 − 𝜒)𝑐(𝜒𝑘)d𝜒 
1

0
and 𝑐(ℎ) =

1

2
 
d2(ℎ2𝛾(ℎ))

dℎ2 . A surrogate of the power spectrum with several 

advantages over it is the climacospectrum (Koutsoyiannis, 2017) defined as 𝜁(𝑘) ≔
𝑘(𝛾(𝑘)−𝛾(2𝑘))

ln 2
. 

Full description of the third-order, fourth-order, etc., properties of a stochastic process requires 
functions of 2, 3, …, variables. For example, the third order properties are expressed in terms of 
c3(h1, h2) := E[(x(t) – μ) (x(t + h1) – μ) (x(t + h2) – μ)]. 
Such a description is not parsimonious and its accuracy holds only in theory, because sample 
estimates are not reliable. Therefore we introduce single-variable descriptions for any order p, 
expanding the idea of the climacogram and climacospectrum based on K-moments. 

K-climacogram:    𝛾𝑝𝑞(𝑘) = (𝑝 − 𝑞 + 1)E[(2𝐹(𝑋(𝑘)/𝑘) − 1)
𝑝−𝑞

(𝑋(𝑘)/𝑘 − 𝜇)𝑞]  (13) 

K-climacospectrum:  𝜁𝑝𝑞(𝑘) =
𝑘(𝛾𝑝𝑞(𝑘)−𝛾𝑝𝑞(2𝑘))

ln 2
  (14) 

where 𝛾22(𝑘) ≡ 𝛾(𝑘) and 𝜁22(𝑘) ≡ 𝜁(𝑘). Even though the K-moment description is not equivalent 
to the multivariate high-order one, it suffices to define the marginal distribution at any scale k. 
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Example 1: Turbulent velocity 

  

  
Data: 60 000 values of turbulent velocity along the flow direction (Kang, 2003;  Koutsoyiannis 2017, Dimitriadis and Koutsoyiannis, 
2018); the original series was averaged so that time scale 1 corresponds to 0.5 s.   
Note: Plot (2*) is constructed from the variance and (2**) corresponds to standard deviation. 
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Example 2: Rainfall rate at Iowa measured every 10 s 

 

 
Data: 29542 values of rainfall at Iowa measured at temporal resolution of 10 s (merger of seven events from Georgakakos et al. 

1994; see also Lombardo et al. 2012). Plot (2*) is constructed from the variance and (2**) corresponds to standard deviation. 
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Example 3: Daily rainfall at Padova 

 
Data: 100 442 values of daily rainfall at Padova 
(the longest rainfall record existing worldwide; 
Marani and Zanetti, 2015). 

Note about the graph on the left: Notice that 
moments are plotted against order p and thus 
approximately represent maxima for a time 
window of length p. For independent processes 

E[max(𝑥1, … , 𝑥𝑝)] should be equal to 𝐾𝑝1
′  , but 

when there is dependence the two quantities 
slightly differ; the former reflects the joint 
distribution and the latter the marginal one. 
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