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Senza probabilità (Without Probability): An example 

 Problem: study the storage and outflow of a (toy) water supply 
reservoir in discrete time with ridiculously simple assumptions. 

 Assumption 1 – the ideal hydrological model: The inflow I to the 
reservoir is constant for any time step, equal to 10 units. 

 Assumption 2 – the perfect socio-hydrological model: If there is 
plenty of water in the reservoir, people consume more, while the 
consumption is reduced when the storage is low. We assume that 
this behaviour is expressed precisely by an exponential function: 
Q  = φ(S) = 0.2 e 0.3 S, where Q is the outflow and S the storage. 

 Discrete time dynamics Qi = φ(Si – 1),   Si = Si – 1 + I – Qi 

 Question 1: Assume a specific initial storage S0 in the interval 
(5, 15) and find S1. 

 Question 2: With the same initial condition, find S50. 

 Question 3: Is the system dynamics deterministic or stochastic? 

 Question 4: Is the system predictable (i.e., deterministic) or 
unpredictable (i.e., stochastic, random)? 
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Impacts of the creation of a single electron 
somewhere at the limit of the known universe 
 Perturbation scale Cause Effect Time frame 

1. Microscopic An electron has been 

created at a distance of 1010 

light years from Earth and 

has exerted gravitational 

attraction on the molecules 

of the atmosphere 

After 50 collisions the 

trajectories of molecules 

would have changed 

(different molecules would 

collide) 

10 ns 

(justifiably 

assuming 

~1010 

collisions 

per second) 

2. Macroscopic Turbulence  Change in the fine structure 

of turbulence 

1 min 

3. Local Turbulence Change in the large (km) 

scale atmospheric turbulence 

(wind, clouds) 

1 h – 1 d 

4. Global Change in the general 

circulation of the atmosphere ȋdepressions, fronts→ a storm 
that would not occur without 

that electron) 

1-2 weeks 
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Adapted from Ruelle (1979, 1991, p. 75); based on Berry (1978) and some ideas of 

E. Borel ɈȽɇ B. V. Chirikov. 



So, who does not play dice? 
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Αἰών ɎȽῖς ἐστɇ ɎȽίɃων Ɏɂσσɂύων  
Time is a child playing, throwing dice 

(Heraclitus; ca. 540-480 BC; Fragment 52)  

Jedenfalls bin ich “berzeugt, daß der nicht w“rfelt  
I, at any rate, am convinced that He [God] does not throw dice 

(Albert Einstein, in a letter to Max Born in 1926)  

Ἀνɂɏɏίφθω ɈύȾɍς  Iacta alea est  
Let the die have been cast The die has been cast [Plutarchǯs version, in Greek] [Suetoniusǯs version, in Latin] 

(Julius Caesar, 49 BC, when crossing Rubicon River) 



From old times dice games fascinated people—
but perhaps not scientists and teachers  

D. Koutsoyiannis, A brief introduction to probability and stochastics 5 

 All these dice are of the period 580-570 BC from  
Greek archaeological sites: 
 Left, Kerameikos Ancient Cemetery Museum, Athens, photo by author 

 Middle: Bronze die (1.6 cm), Greek National Archaeological Museum, 
www.namuseum.gr/object-month/2011/apr/7515.png 

 Right: Terracotta die (4 cm) from Sounion, Greek National Archaeological 
Museum, http://www.namuseum.gr/object-month/2011/dec/dies_b.png 

 Much older dice (up to 5000 years old) have been found in 
Asia (Iran, India). 

 



Modern determinism and the clockwise universe  
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 Johannes Kepler (1571-1630), Galileo Galilei (1564-1642) and René Descartes 
(1596-1650) introduced mathematical concepts to natural philosophy (science). 

 They also introduced the idea of a clockwork universe, leading to the philosophical 
proposition of determinism, still widely accepted in science. 

 Determinism was perfected by the French mathematician and astronomer Pierre-
Simon Laplace (1749-1827; cf. Laplace's demon, a hypothetical entity that knows 
the precise location and momentum of every atom in the universe at present, and can deduce the future and the past using Newtonǯs laws.). 

 According to deterministic thinking, the roots of uncertainty about future are 
subjective, i.e. rely on the fact that we do not know exactly the present, or we do not 
have good enough methods and models. It is then a matter of time to eliminate 
uncertainty, with better data and better models.  



Newtonǯs awareness of the fragility of the universe 
(rejection of determinism) 

 Newton regarded the complexity and fragility of the universe 
as proof of the existence of God. 

 He rejected Leibnizǯ thesis that God would necessarily make a 
perfect world which requires no intervention from the creator. 

 Newton simultaneously made an argument from design and 
for the necessity of intervention. 
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ǲFor while comets move in very eccentric orbs in all 
manner of positions, blind fate could never make all the 
planets move one and the same way in orbs concentric, 
some inconsiderable irregularities excepted which may 
have arisen from the mutual actions of comets and planets 
on one another, and which will be apt to increase, till this 
system wants a reformationǳ (Newton, Opticks, Query 31). 



From the almighty determinism of the 17th century to 
the probabilistic world of the 20th century 
 Statistical physics (cf. Boltzmann) used the probabilistic concept of 

entropy (which is nothing other than a quantified measure of uncertainty 
defined within the probability theory; see below) to explain fundamental 
physical laws (most notably the Second Law of Thermodynamics), thus 
leading to a new understanding of natural behaviours and to powerful 
predictions of macroscopic phenomena. 

 Dynamical systems theory (cf. Poincare) has shown that uncertainty can 
emerge even from pure, simple and fully known deterministic (chaotic) 
dynamics, and cannot be eliminated. 

 Quantum theory  
(cf. Heisenberg) has  
emphasized the  
intrinsic character  
of uncertainty and the  
necessity of probability  
in the description of  
nature. 
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From the almighty determinism of the 17th century to 
the probabilistic world of the 20th century (2) 
 Developments in mathematical logic, and particularly 

Gödel’s incompleteness theorem, challenged the 
almightiness of deduction (inference by mathematical proof). 
Ironically, Kurt Gödel anticipated by one day (in 1930) David 
Hilbert who pronounced the opposite with his famous 
aphorism (also inscribed in his tombstone at Göttingen) ǲWir 
müssen wissen, wir werden wissenǳ ȋǲWe must know, we will 
knowǳȌ. 

 Developments in numerical mathematics (cf. Nicholas 
Metropolis) highlighted the effectiveness of stochastic 
methods in solving even purely deterministic problems, such 
as numerical integration in high-dimensional spaces and 
global optimization of non-convex functions (where 
stochastic techniques, e.g. evolutionary algorithms or 
simulated annealing, are in effect the only feasible solution in 
complex problems that involve many local optima). 

 Advances in evolutionary biology emphasize the importance 
of stochasticity (e.g. in selection and mutation procedures and 
in environmental changes) as a driver of evolution. 
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Indeterminism vs. determinism 
 In indeterminism, a philosophical belief contradictory to determinism, uncertainty may be a 

structural element of nature and thus cannot be eliminated.  

 Indeterminism has its origin in the Greek philosophers Heraclitus (ca. 535–475 BC), Aristotle 
(384 – 322 BC) and Epicurus (341–270 BC).  

 Its relationship with modern science was theorized by the Austrian-British philosopher Karl 
Popper (1902-1994). 

 In science, indeterminism largely relies on the notion of probability, which according to 
Popper is the extension (quantification) of the Aristotelian idea of potentia (dynamis). 
Practically, the idea is that several outcomes can be produced by a specified cause, while in 
deterministic thinking only one outcome is possible (albeit difficult to predict which one). 
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The meaning of probability (by examples) 
(1) A fair coin has a probability of 0.5 of heads, and likewise 0.5 of tails; so 

the probability of tossing two heads in a row is 0.25. 

(2) There is a 10% probability of rain tomorrow. 

(3) There is a 10% probability of rain tomorrow according to the weather 
forecast. 

(4) Fortunately there is only a 5% probability that her tumor is 
malignant, but this will not be known for certain until the surgery is 
done next week. 

(5) Smith has a greater probability of winning the election than does 
Jones. 

(6) I believe that there is a 75% probability that she will want to go out 
for dinner tonight. 

(7) I left my umbrella at home today because the forecast called for only a 
1% probability of rain. 

(8) Among 100 patients in a clinical trial given drug A, 83 recovered, 
whereas among 100 other patients given drug B, only 11 recovered; 
so new patients will have a higher probability of recovery if treated 
with drug A. 

Source of examples: Gauch (2003).  
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The utility of probability  
 Commonly, probability is regarded to be a branch of applied mathematics 

that provides tools for data analysis (and also theorizes games of chance).  

 Historically, as modern science was initiated from deterministic views of 

the world, probability had a marginal role for peculiar unpredictable 

phenomena.  

 Nonetheless, probability is a more general concept that helps shape a 

consistent, realistic and powerful view of the world.  

 Probability has provided grounds for philosophical concepts such as 

indeterminism and causality, as well as for extending the typical 

mathematical logic, offering the mathematical foundation of induction.  

 In typical scientific and technological applications, probability provides 

the tools to quantify uncertainty, rationalize decisions under uncertainty, 

and make predictions of future events under uncertainty, in lieu of 

unsuccessful deterministic predictions.  

See more details in Koutsoyiannis (2008).  
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Deduction and induction 
 In mathematical logic, determinism can be paralleled to the premise that all truth can be revealed 

by deductive reasoning or deduction (the Aristotelian apodeixis). This type of reasoning consists of 
repeated application of strong syllogisms such as: 

 If A is true, then B is true;    If A is true, then B is true; 

 A is true;    B is false; 

 Therefore, B is true.   Therefore, A is false. 

 Deduction uses a set of axioms to prove propositions known as theorems, which, given the axioms, 
are irrefutable, absolutely true statements. It is also irrefutable that deduction is the preferred 
route to truth; the question is, however, whether or not it has any limits.  

 David (ilbertǯs belief ǲWir müssen wissen, wir werden wissenǳ, more formally known as 
completeness, according to which any mathematical statement could be proved or disproved by 
deduction from axioms, has been proved to be invalid. 

 In everyday life, however, we use weaker syllogisms of the type: 

 If A is true, then B is true;    If A is true, then B is true; 

 B is true;    A is false; 

 Therefore, A becomes more plausible.  Therefore, B becomes less plausible. 

 The latter type of syllogism is called induction (the Aristotelian epagoge). It does not offer a proof 
that a proposition is true or false and may lead to errors. However, it is very useful in decision 
making, when deduction is not possible.  

 An important achievement of probability is that it quantifies (expresses in the form of a number 
between 0 and 1) the degree of plausibility of a certain proposition or statement. The formal 
probability framework uses both deduction, for proving theorems, and induction, for inference 
with incomplete information or data. 

 
D. Koutsoyiannis, A brief introduction to probability and stochastics 13 



Definition of probability 
 According to Kolmogorovǯs ȋ1933) axiomatization, probability theory is based on 

three fundamental concepts and four axioms.  

 The concepts, i.e., the triplet (Ω, Σ, P) called probability space, are:  

1. A non-empty set Ω, sometimes called the basic set, sample space or the certain 
event whose elements ω are known as outcomes or states. 

2. A set Σ known as σ-algebra or σ-field whose elements E are subsets of Ω, 
known as events. Ω and Ø are both members of Σ, and, in addition, (a) if E is in 
Σ then the complement Ω – E is in Σ; (b) the union of countably many sets in Σ 
is also in Σ.  

3. A function P called probability that maps events to real numbers, assigning 
each event E (member of Σ) a number between 0 and 1.  

 The four axioms, which define the properties of P, are: 

I. Non-negativity: For any event A, P(AȌ η 0. 

II. Normalization: P(Ω) = 1.   

III. Additivity: For any events A, B with AB = Ø, P(A + B) = P(A) + P(B). 

IV. Continuity at zero: If A1  A2  …  An  … is a decreasing sequence of 
events, with A1A2…An… = Ø, then limn→∞P(An) = 0. 

[Note: In the case that Σ is finite, axiom IV follows from axioms I-III; in the 
general case, however, it should be put as an independent axiom.]  
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The concept of a random variable 

 A random variable x is a function that maps outcomes to numbers, i.e. quantifies 
the sample space Ω.  

 More formally, a real single-valued function x(ω), defined on the basic set Ω, is 
called a random variable if for each choice of a real number a the set {x < a} for all 
ω for which the inequality x(ω) < α holds true, belongs to Σ.  

 With the notion of the random variable we can conveniently express events using 
basic mathematics. In most cases this is done almost automatically. For instance a 
random variable x that takes values 1 to 6 is intuitively assumed when we deal 
with a die through.  

 We must be attentive that a random variable is not a number but a function. 
Intuitively, we could think of a random variable as an object that represents 
simultaneously all possible outcomes and only them.  

 A particular value that a random variable may take in a random experiment, else 
known as a realization of the variable, is a number.  

 We can denote a random variable by an underlined letter, e.g. x and its realization 
with a non-underlined letter x (another convention is to use an upper case letter, 
e.g. X, for the random variable and a lower case letter, e.g. x, for its realization. In 
any case, random variables and values thereof two should not be confused).  
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Probability distribution function 
 Distribution function is a function of the real variable x defined by 

 F (x) := P{x ζ x} 

where x is a random variable.  

 The random variable with which this function is associated is not an argument of the function. If 
there risk of confusion (e.g. there are many random variables), the random variable is usually 
denoted as a subscript (e.g. Fx(x)). Typically F(x) has a mathematical expression depending on 
some parameters. The domain of F(x) is not identical to the range of the random variable x; rather 
it is always the set of real numbers.  

 The distribution function is a non-decreasing function obeying the relationship 

 0 = F(–∞Ȍ ζ F(xȌ ζ Fȋ+∞) = 1 

 For its non-decreasing attitude, in the English literature the distribution function is also known as 
cumulative distribution function (cdf) – though ǲcumulativeǳ is not necessary. In practical 
applications the distribution function is also known as non-exceedence probability. Likewise, the 
non-increasing function 

 �(x) = P{x > x} = 1 – F(x)  

is known as exceedence probability (or survival function, survivor function, tail function).  

 The distribution function is always continuous on the right; however, if the basic set Ω is finite or 
countable, F(x) is discontinuous on the left at all points xi that correspond to outcomes ωi, and it is 
constant between them (staircase-like). Such random variable is called discrete. If F(x) is a 
continuous function, then the random variable is called continuous. A mixed case is also possible; 
in this the distribution function has some discontinuities on the left, but is not staircase-like.  

 For continuous random variables, the inverse function F–1( ) of F( ) exists. Consequently, the 
equation u = F(x) has a unique solution for x, called u-quantile of the variable x, that is:  

 xu = F–1(u) 
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Probability density (or mass) function 
 In continuous variables any particular value x has zero probability to occur. However, we 

can still tell which of two outcomes is more probable by examining the ratio of the two 
probabilities. As this is a 0/0 expression, having in mind lǯ(ôpitalǯs rule, we need to examine 
the ratio of derivatives of probabilities.  

 The derivative of the distribution function is called the probability density function: ݂ ݔ ≔ d� ݔdݔ  

 The basic properties of f (x) are 

  ݂ ݔ  Ͳ,   ݂ ݔ dݔ = ͳ ∞−∞  

 Obviously, the probability density function does not represent a probability; therefore it can 
take values higher than 1. Its relationship with probability is described by the following 
equation:  ݂ ݔ = limΔ௫→�{ݔ  ݔ  ݔ + ȟݔ}ȟݔ  

 The distribution function can be calculated from the density function by 

 �ሺݔሻ= ݂ ݕ dݕ ௫−∞  

 In discrete random variables, the density is a sequence of Dirac Ɂ functions. It is thus more 
convenient to use the so-called probability mass function Pj ≡ P(xj) = P{x = xj}, j = ͳ,…,w, 
where w is the number of possible outcomes (which can be infinite). 
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Some common distributions 

Name Probability density function Distribution function 

Uniform in [0, 1] ݂ሺݔሻ  =   ͳ for Ͳ  ݔ  ͳͲ otherwise    F(x) = max(0, min(x, 1)) 

Exponential ݂ሺݔሻ  =   e–x/μ / μ for ݔ  ͲͲ for ݔ < Ͳ   �ሺݔሻ  =   ͳ − e–x/μ for ݔ  ͲͲ for ݔ < Ͳ   
Normal  

 ݂ ݔ = ͳʹߨ� exp − ݔ − � ଶʹ�ଶ  
� ݔ =  ͳʹߨ� exp − ݑ − � ଶʹ�ଶ dݑ௫

−∞  
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Independent and dependent events, conditional 
probability 
 Two events A and B are called independent (or stochastically independent), if 

   � ܤܣ = � ܣ �ሺܤሻ 

 Otherwise A and B are called (stochastically) dependent.  

 The definition can be extended to many events. Thus, the events A1, A2, …, are independent if 
for any finite set of distinct indices i1, i2, …, in: 

 � మܣభܣ �ܣ… = � �ܣమሻ…�ሺܣభሻ �ሺܣ   

 The handling of probabilities of independent events is thus easy. However, this is a special 
case because usually natural events are dependent. In the handling of dependent events the 
notion of conditional probability is vital. 

 By definition (Kolmogorov, 1933), conditional probability of the event A given B (i.e. under 
the condition that the event B has occurred) is the quotient  

 � ܣ ܤ ≔ � �    

 Obviously, if P(B) = 0, this conditional probability cannot be defined, while for independent 
A and B, P(A|B) = P (A). It follows that 

 � ܤܣ = � ܣ ܤ � ܤ = � ܤ ܣ �ሺܣሻ  

 From this it follows the Bayes theorem: 

 � ܤ ܣ = �ሺܤሻ � |�    
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Random number generation  
 Sequence of random numbers is a sequence of numbers xi whose every one statistical 

property is consistent with that of a sample from a sequence of independent identically 
distributed random variables xi (adapted from Papoulis, 1990).  

 Random number generator is a device (typically computer algorithm) which generates a 
sequence of random numbers xi with given distribution F(x). As most algorithms are purely 
deterministic, sometimes the numbers are called pseudorandom—but this in not necessary.  

 Random number generation is also known as Monte Carlo sampling. 

 The basis of practically all random generators is the uniform distribution in [0,1]. A typical 
procedure is the following: 

 We generate a sequence of integers qi from the recursive algorithm 

  qi = (k qi - 1 + c) mod m  

 where k, c and m are appropriate integers (e.g. k = 69 069, c = 1, m = 232 = 4 294 967 296 
or k = 75 = 16 807, c = 0, m = 231 - 1 = 2 147 483 647; Ripley, 1987, p. 39). 

 We calculate the sequence of random numbers ui with uniform distribution in [0,1] by  

  ui = qi / m 

 A more recent and better algorithm is the so-called Mersenne twister 
(en.wikipedia.org/wiki/Mersenne_twister). It is available in most languages and software 
packages. For example, for Excel (which by default includes the function rand) the Mersenne 
twister algorithm, called NtRand, can be found in www.ntrand.com/download/. 

 A direct (but sometimes time demanding) algorithm to produce random numbers xi from 
any F(x) given random numbers ui with uniform distribution in [0,1] is provided by: 

 xi = F–1(ui) 
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Exercise 1 

Let ݔ and ݕ represent the outcomes of each of two dice. What is 

the probability of the following cases? 

 ݔ < ݕ  

 ݔ < ݕ  

 ݔ < ݕ  

 ݔ < ݕ  

 

Verify the results by Monte Carlo simulations. 
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Exercise 2 
 Assume that in a certain place on earth (specifically in the United 

Kingdom) and a certain period of the year a dry and a wet day are 
equiprobable and that in the different days the states (wet/dry) are 
independent. What is the probability that two consecutive days are wet 
under the following conditions? 

 Unconditionally. 

 If we know that the first day is wet. 

 If we know that the second day is wet. 

 If we know that one of the two days is wet. 

 If we know that one of the two days is dry. 

 Verify the results by Monte Carlo simulations. 

 Plot the distribution function of one dayǯs state ȋwet/dryȌ (after 
introducing an appropriate random variable). 

 Assuming that in a wet day the probability density function of the rainfall 
depth x (expressed in mm) is f(x|wet) = e–x, plot the probability 
distribution function F(x). 
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Exercise 3 
 Three engineers A, B and C are biding for a 1 000 000 € project and the evaluation 

committee, in order to make the fairest possible selection, decided to throw a die, 
instead of evaluating the proposal, the experience of engineers, etc.. If the 
outcome is 1 or 2 the projects goes to A, if it is 3 or 4, then B wins and if it is 5 or 
6, then C wins. The dice is cast, but the announcement of the winner is going to be 
done the next day by the minister. 

 Engineer A approaches the chairman of the committee and offers him 1000 € to 
accept his following request: ǲI know you are not allowed to tell me who wins; 
however, two of the three will lose. Therefore, B or C or both will lose. Please tell 
me just one of these two will loseǳ. The committee member accepts and says that 
C will lose. Then engineer A offers another 1000 € to swap him with B.  

 Prove that the strategy of engineer A is consistent with awareness of probability.  

 Compare this strategy with another one, in which engineer A offers the same 
amount to convince the chairman to re-decide on A and B by tossing a coin. 

 Verify your result with Monte Carlo simulation. 

 

Note: A different utterance of this problem is known as the ǲthree prisoners problemǳ 
(http://en.wikipedia.org/wiki/Three_Prisoners_problem), which has puzzled many. For 
example, Ben-Naim, 2008, devotes several pages in his book about entropy (including a whole 
appendix) to solve this problem. However, its solution can be done in two lines. 
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Expectation 
 For a discrete random variable x, taking on the values x1, x2, …, xw (where w could be ∞Ȍ with probability mass function Pj ≡ P(xj) = P{x = xj}, if g(x) is an arbitrary 

function of x (so that g(x) is a random variable per se), we define the expectation 
or expected value or mean of g(x) as 

 E ݃ ݔ ≔  ݃ ݔ �ሺݔሻ௪=ଵ  

 Likewise, for a continuous random variable x with density f(x), the expectation is 

 E ݃ ݔ ≔  ݃ ݔ ݂ ݔ dݔ∞−∞   

 For certain types of functions g(x) we get very commonly used statistical 
parameters, as specified below: 

1. For g(x) = xr, where r = Ͳ, ͳ, ʹ, …, the quantity μ΄r := Ε[xr ] is called the rth 
moment (or the rth moment about the origin) of x. For r = 0, obviously the 
moment is 1.  

2. For g(x) = x, the quantity μ := μ΄1 =Ε[x] (that is, the first moment) is called the 
mean of x.  

3. For g(x) = (x – μ)r where r = Ͳ, ͳ, ʹ, …, the quantity μr := Ε[(x – μ)r] is called 
the rth central moment of x. For r = 0 and 1 the central moments are 
respectively 1 and 0. For  

4. For g(x) = (x – μ)2 the quantity γ ≡ σ2 := μ2 = Ε[(x – μ)2] is called the variance 
of x (also denoted as var[x]); its square root σ (also denoted as std[x] is called 
the standard deviation of x. 
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Entropy 
 For a discrete random variable x, taking on the values x1, x2, …, xw (where w could be ∞Ȍ 

with probability mass function Pj ≡ P(xj) = P{x = xj}, the entropy is defined as the expectation 
of the minus logarithm of probability (Shannon, 1948), i.e.: 

 Φ[x] := E[–ln P(x)] = – P
j
ln P

j
w
j = ͳ  

 Extension of the above definition for the case of a continuous random variable x with 
probability density function f(x), is possible, although not contained in Shannonǯs (1948) 
original work. This extension involves a (so-calledȌ Ǯbackground measureǯ with density h(x), 
which can be any probability density, proper (with integral equal to 1) or improper 
(meaning that its integral does not converge); typically it is an (improper) Lebesgue density, 
i.e. a constant with dimensions [h(x)] = [f(x)] = [x–1], so that the argument of the logarithm 
function that follows be dimensionless. Thus, the entropy of a continuous variable x is (see 
e.g. Jaynes, 2003, p. 375): 

 Φ[x] :=E – ln f x
h x  = –  ln f x

h x f x dx∞
−∞  

 It is easily seen that for both discrete and continuous variables the entropy Φ[x] is a 
dimensionless quantity.  

 The importance of the entropy concepts relies in the principle of maximum entropy 
(Jaynes, 1957); it postulates that the entropy of a random variable x should be at maximum, 
under some conditions, formulated as constraints, which incorporate the information that is 
given about this variable. 

 This principle can be used for logical inference as well as for modelling physical systems; 
for example, the tendency of entropy to become maximal (Second Law of thermodynamics) 
can result from this principle.  
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Exercise 4 

 Find the mean, variance and entropy of the variable x 
representing the outcome of a fair die. Show that the entropy 
of a fair die is greater than in any loaded die.  

 Find the mean, variance and entropy of a variable x with 
uniform distribution in [0,1]. Show that this entropy is the 
maximum possible among all distributions in [0,1]. 

 Find the mean, variance and entropy of a variable x with 
exponential distribution. Show that this entropy is the 
maximum possible among all distributions in [Ͳ,∞Ȍ which 
have specified mean. 

 Find the mean, variance and entropy of a variable x with 
normal distribution. Show that this entropy is the maximum 
possible among all distributions in (–∞,∞Ȍ which have 
specified mean and variance. 
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Two variables: joint distribution and joint moments 

 Here we provide definitions referring to a pair of two random variables (x, y). 

 Joint probability distribution function: Fxy(x, y) := P{x ζ x, y ζ y} 

 Joint probability density function : ݂ݕݔ ,ݔ ݕ ≔ �మ�ೣ ሺ௫,௬ሻ �௫ �௬   
 Marginal probability distribution functions : Fx(x) := P{x ζ x}, Fy(y) := P{y ζ y} 

 Joint raw moment of order p + q: �′ ≔  E[ݔ ݕ]  = ∞−∞ݕݔ  ,ݔሺݕݔ݂   ݕd ݔሻ dݕ

 Marginal first moments (means): μx ≔ �ଵ′ , μy ≔ �ଵ′  

 Joint raw moment of order p + q: 

 � ≔  E ݔ − �௫  ݕ − �௬  = ݔ  − �௫  ݕ − �௬  ௫݂௬ ,ݔ ݕ dݔ dݕ∞−∞  

 Variances: var ݔ ≔ E ݔ − �௫ ଶ ≡ �ଶ ≡ �௫ ≡ �௫ଶ; var ݕ ≔ �ଶ ≡ �௬ ≡ �௬ଶ 

 Covariance: cov ,ݔ ݕ ≔ E ݔ − �௫ ݕ − �௬ ≡ �ଵଵ ≡ �௫௬ = E ݕ ݔ − E ݔ E ݕ  

 Correlation coefficient: �௫௬ ≔ �ೣ�ೣ� 

 Independent variables: Fxy(x, y) = Fx(x) Fy(y); fxy(x, y) = fx(x) fy(y) 

 Uncorrelated variables: σxy = 0, rxy = 0, E[x y] = E[x] E[y] 
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Correlation and climacogram  
 Linear combinations of random variables: E �ଵݔଵ + �ଶݔଶ = �ଵE ଵݔ +�ଶE ଶݔ , var �ଵݔଵ + �ଶݔଶ = �ଵଶvar ଵݔ + �ଶଶvar ଶݔ + ʹ�ଵ�ଶcov ,ଵݔ ଶݔ  

 It follows that: Var ଵଶ ௫భ�భ + ௫మ�మ = ଵ4Ƞ ௫భ−�భ�భ + ௫మ−�మ�మ  ଶ = ଵଶ + ଵଶCov ௫భ�భ , ௫మ�మ  

 Likewise: Var ଵଶ ௫భ�భ − ௫మ�మ = ଵ4Ƞ ௫భ−�భ�భ − ௫మ−�మ�మ  ଶ = ଵଶ − ଵଶCov ௫భ�భ , ௫మ�మ   

 Thus, �ଵଶ = Cov ௫భ,௫మ�భ�మ = cov ௫భ�భ , ௫మ�మ = ʹ var ଵଶ ௫భ�భ + ௫మ�మ − ͳ = ͳ − ʹ var ௫భ�భ − ௫మ�మ   

 As the variance is by definition non-negative, it follows that −ͳ  �ଵଶ  ͳ; the 
value r12 =0 corresponds to uncorrelated variables, while positive or negative r12 
corresponds to positively or negatively correlated variables,  respectively. 

 The same information as in r12 is provided by the quantity ߩଵଶ ≔ var ଵଶ ௫భ�భ + ௫మ�మ , 

for which it is easily seen that Ͳ  ଵଶߩ  ͳ ; the value ρ12 =1/2 corresponds to 
uncorrelated variables, while values of ρ12 greater or less than ½ correspond to 
positively or negatively correlated variables, respectively. 

 The notion of ρ12 could be readily expanded to many variables. Assuming that all 
variables are identically distributed and multiplying by the common variance σ2, 

we define the so-called climacogram, �� ≔ var �/� , where � ≔ ଵݔ + ⋯+  �ݔ

and Ͳ  ��  �ଶ. 
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Many variables and stochastic processes 

 A stochastic process is a family of infinitely many random variables indexed by a 
(regular) variable, which takes values from an index set T, typically representing 
time. We distinguish between: 

 A continuous-time stochastic process x(t), when time is continuous, e.g. T = 
[0, ). 

 A discrete-time stochastic process xi, when time is discrete, e.g., T = {0, 1, 2, …}. 

 Time series or sample function: a realization, xi, of a stochastic process, xi or x(t), 
at a finite set of discrete time instances i (or ti). (Caution: A stochastic process is a 
family of random variables, infinitely many for discrete time processes and 
uncountably infinitely many for continuous time processes. On the other hand, a 
time series is a finite sequence of numbers).  

 First order distribution function of the process: F(x; t) := P{x(tȌ ζ x}  

 Second order distribution function : F(x1, x2; t1, t2) := P{x(t1Ȍ ζ x1, x(t2Ȍ ζ x2}  

 nth order distribution function: F(x1, …, xn; t1, …, tn) := P{x(t1Ȍ ζ x1, …, x(tnȌ ζ xn}  

 Mean: μ(t) := E[x(t)]  

 Autocovariance: c(t; h) := Cov[x(t), x(t + h)] = E[(x(t) – μ(t)) (x(t + h) – μ(t + h))]  

 Cross-covariance of two processes x(t) and y(t): cxy(t; h) := cov[x(t), y(t + h)]  
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Stationarity 

 Central to the notion of a stochastic process are the concepts of stationarity and 
nonstationarity, two widely misunderstood and misused concepts (see 
Koutsoyiannis and Montanari, 2014), whose definitions apply only to stochastic 
processes (thus, e.g., a time series cannot be stationary, nor nonstationary).  

 A process is called (strict-sense) stationary if its statistical properties are 
invariant to a shift of time origin, i.e. the processes x(t) and x(t΄) have the same 
statistics for any t and t΄ (see further details in Papoulis, 1991; see also further 
explanations in Koutsoyiannis, 2006, 2011 and Koutsoyiannis and Montanari, 
2015). Conversely, a process is nonstationary if some of its statistics are changing 
through time and their change is described as a deterministic function of time. 

 A stochastic process is called wide-sense stationary if its mean is constant and its 
autocovariance depends on time difference only, i.e. 
 E[x(t)] = μ = constant,    Ε[(x(t) – μ) (x(t + τ) – μ)] = c(τ) 

 Convenient tools for a stationary process, which can replace auto- and cross-
covariance, are the following: 

 Climacogram: γ(k) := var[X(k)/k], where X(k) ≔  ݔ ݐ dݐ . 

 Cross-climacogram of two stationary processes x(t) and y(t):  �௫௬� � ≔ �௫�௬ var ሺሻ�ೣ +  ሺ�+ଵሻ −ሺ�ሻ� , where Y(k) ≔  ݕ ݐ dݐ  and Ʉ is lag. 
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Ergodicity 
 Stationarity is also related to ergodicity, which in turn is a prerequisite to make inference 

from data, that is, induction. Without ergodicity inference from data would not be possible. 
Ironically, several studies use time series data to estimate statistical properties, as if the 
process were ergodic, while at the same time what they (cursorily) estimate may falsify the 
ergodicity hypothesis (see example on p. 22). 

 While ergodicity is originally defined in dynamical systems (e.g. Mackey, 1992, p. 48), the 
ergodic theorem (e.g. Mackey, 1992 p. 54) allows redefining ergodicity within the stochastic 
processes domain (Papoulis 1991 p. 427; Koutsoyiannis 2010) in the following manner: A 
stochastic process x(t) is ergodic if the time average of any (integrable) function g(x(t)), as 
time tends to infinity, equals the true (ensemble) expectation E[g(x(t))], i.e., lim�→∞ ଵ�  ݃ ݔ ݐ ݐ� = E[gȋݔȋtȌȌ]� . 

 If the system that is modelled in a stochastic framework has deterministic dynamics 
(meaning that a system input will give a single system response, as happens for example in 
most hydrological models) then a theorem applies (Mackey 1992, p. 52), according to which 
a dynamical system has a stationary probability density if and only if it is ergodic. Therefore, 
a stationary system is also ergodic and vice versa, and a nonstationary system is also non-
ergodic and vice versa.  

 If the system dynamics is stochastic (a single input could result in multiple outputs), then 
ergodicity and stationarity do not necessarily coincide. However, recalling that a stochastic 
process is a model and not part of the real world, we can always conveniently device a 
stochastic process that is ergodic (see example in Koutsoyiannis and Montanari, 2015).  

 In conclusion, from a practical point of view ergodicity can always be assumed when there is 
stationarity. 
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A note on statistical estimation 
 Models are human inventions and not part of the real world. They are characterized by 

their mathematical structure and their parameters. The field of stochastics allows both 
testing the model structure and estimating the parameters, based on observation data. 
This is induction in practice and it is made possible by virtue of the ergodic theorem. 

 We should be aware of the differences between three concepts related to a single 
parameter Ʌ: 

 The true but unknown value Ʌ (often called ǲpopulationǳ parameterȌ . 
 The estimator � , which is a random variable depending on the stochastic process 

of interest x(t). �  is a model per se, not a number. 

 The estimate �  which is a number calculated by using the observations and the 
estimator. 

 Characteristic statistics of the estimator �  are its bias, E � − �, and its variance var � . When E � = � the estimator is called unbiased.  

 As an example, the standard estimator of the mean from a finite set of random 
variables xi (sample of size n), taken from a stochastic process  x(t) at discrete time 

instances i, is � ≔ ଵ� ݔ�=ଵ ; it is easy to show that it is unbiased. 

 However, the the standard estimator of the variance from the same set of random 

variables xi is � ≔ ଵ�−ଵ ݔ   −  � ଶ�=ଵ ; even though it is often called unbiased, it is 

biased, unless ݔ are independent, which is rarely the case in geophysics (see 

Koutsoyiannis, 2016). 
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A stochastic process in continuous and discrete time 

 

Note that the graphs display a realization of the process (it is impossible to display the process as such) while the 

notation is for the process per se. 

(cumulative, nonstationary)

x(t) (instantaneous, 
continuous-time process)

t

t0 D 2D … (τ – 1)D τD (averaged at time scale D)
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Definitions and notation – continuous  time 
Name of quantity or 

characteristic 

Symbol and definition Remarks Ref. 

Stochastic process of interest x(t) Assumed stationary  

Time, continuous t Dimensional quantity   

Cumulative process �ሺݐሻ ≔ ∫ ሺ�ሻd��ݔ   Nonstationary (1) 

Variance, instantaneous  γ0 ≔ Var[x(t)] Constant (not a function 

of t) 

(2) 

Cumulative climacogram Γ(t) ≔ Var[X(t)] A function of t, Γ(0) = 0 (3) 

Climacogram γ(k) ≔ Var[(1/k)(X(t + k) – X(t))] 

= Var[X(k)/k] = Γ(k)/k2 

Not a function of t, γ(0) 

= γ0 

(4) 

Time scale, continuous k Units of time  

Autocovariance function c(h) := Cov[x(t), x(t + h)] c(0) = γ0 (5) 

Time lag, continuous h Units of time  

Structure function (or 

semivariogram or variogram) 
ሺℎሻݒ ≔ ଵଶ Var[ݔሺݐሻ − ݐሺݔ + ℎሻ]   (6) 

Climacostructure function  ξ(k) ≔ γ0 – γ(k)  (7) 

Power spectrum (or spectral 

density) 
ሻݓሺݏ ≔ Ͷ ∫ ܿሺℎሻ cosሺʹπݓℎሻ dℎ∞    (8) 

Frequency, continuous w = 1/k Units of inverse time (9) 
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Definitions and notation – discrete  time 
Name of quantity or 

characteristic 

Symbol and definition Remarks Ref. 

Stochastic process, 

discrete time 

ሺሻ�ݔ ≔ ଵ ∫ ሺ�−ଵሻ�ݑሻdݑሺݔ = ଵ ቀ�ሺ��ሻ − �(ሺ� − ͳሻ�)ቁ   (10) 

Time unit = 

discretization time step 

D Length of time window 

of averaging 

 

Time, discrete  τ := t/D Dimensionless quantity, 

integer 

(11) 

Characteristic variance Var[ݔ�ሺሻ
] = γ(D)  (12) 

Climacogram �ሺሻ = �ሺߢ�ሻ = ௰ሺሻሺሻ2   �ଵሺሻ
= γȋDȌ (13) 

Time scale, discrete Ɉ = k/D Dimensionless quantity (14) 

Autocovariance function ܿఎሺሻ≔ Cov[ݔ�ሺሻ, ఎሺሻ+�ݔ
] ܿሺሻ = �ሺ�ሻ   

Time lag, discrete η = h/D Dimensionless quantity (15) 

Structure function ݒఎሺሻ = �ሺ�ሻ − ܿఎሺሻ
   (16) 

Power spectrum ݏሺୢሻሺ�ሻ = ଵ ∑ ݏ ቀ�+ ቁ sincଶ(πሺ� + ݆ሻ)∞=−∞      

 

(17) 

Frequency, discrete ω = wD = 1/Ɉ Dimensionless quantity (18) 

Note: In time-related quantities, Latin letters denote dimensional quantities and Greek letters dimensionless 

ones. The Latin i, j, l may also be used as integers to denote quantities τ, η, Ɉ, depending on the context.  
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Relationships between characteristics of a process in 

continuous and discrete time 
Related 

characteristics 

Symbol and definition Inverse relationship Ref. 

�ሺ݇ሻ ↔ ܿሺℎሻ  �ሺ݇ሻ = ʹ ∫ ሺͳ − ߯ሻܿሺ߯݇ሻd߯ ଵ   ܿሺℎሻ = ଵଶ  ୢ2ቀℎ2�ሺℎሻቁୢℎ2   
(19) 

ሻݓሺݏ ↔ ܿሺℎሻ  ݏሺݓሻ ≔ Ͷ ∫ ܿሺℎሻ cosሺʹπݓℎሻ dℎ∞   ܿሺℎሻ = ∫ ሻݓሺݏ cosሺʹπݓℎሻ dݓ∞   (20) �ሺ݇ሻ ↔ ሻ  �ሺ݇ሻݓሺݏ = ∫ ሻ݇ݓሻ sincଶሺπݓሺݏ dݓ∞ ሻݓሺݏ   ≔ ʹ ∫ ୢ2ቀℎ2�ሺℎሻቁୢℎ2 cosሺʹπݓℎሻ dℎ∞    
ሺℎሻݒ (21) ↔ ܿሺℎሻ  ݒሺℎሻ = � − ܿሺℎሻ ܿሺℎሻ = ሺ∞ሻݒ − ሺ∞ሻݒ) ሺℎሻݒ = �ሻ  (22) �ሺ݇ሻ ↔ �ሺ݇ሻ  ξ(k) ≔ γ0 – γ(k) γ(k) = ξ(∞) – ξ(k)  (�ሺ∞ሻ = �ሻ (23) �ሺ݇ሻ ↔ ሺℎሻ  �ሺ݇ሻݒ = ʹ ∫ ሺͳ − ߯ሻݒሺ߯݇ሻd߯ ଵ ሺℎሻݒ   = ଵଶ  ୢ2ቀℎ2�ሺℎሻቁୢℎ2   
(24) 

�ሺሻ ≡ �ሺߢ�ሻ ↔ܿఎሺሻ
  

�ሺሻ = ଵ ቀܿሺሻ +  ʹ ∑ ቀͳ − ఎቁ ܿఎሺሻ−ଵఎ=ଵ ቁ  

Alternatively, �ሺሻ = ௰ሺሻሺሻ2  where, in recursive 

mode,  �ሺߢ�ሻ =  ʹ�(ሺߢ − ͳሻ�) − �(ሺߢ − ʹሻ�) + ʹ ܿ−ଵሺሻ�ଶ  

with �ሺͲሻ = Ͳ, �ሺ�ሻ = ܿሺሻ�ଶ 

ܿఎሺሻ = ଵ2 ቆ௰ሺ|ఎ+ଵ|ሻ+௰(ሺ|ఎ−ଵ|)ଶ − �ሺ|ߟ|�ሻቇ  

(25) 

ܿఎሺሻ ↔ ݏ ሺୢሻሺ�ሻ  ݏሺୢሻሺ�ሻ = ʹܿሺሻ + Ͷ ∑ ܿఎሺሻ∞ఎ=ଵ cosሺʹπߟ�ሻ  ܿఎሺሻ = ∫ ݏ ሺୢሻሺ�ሻ cosሺʹπ�ߟሻ d�ଵ ଶ⁄ ఎሺሻݒ (26)   ↔ ܿఎሺሻ
ఎሺሻݒ   = �ሺ�ሻ − ܿఎሺሻ

  ܿఎሺሻ ≔ �ሺ�ሻ − ఎሺሻݒ
  (27) 
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Asymptotic power laws and the log-log derivative 
It is quite common that functions f(x) defined in [0, ∞), whose limits at Ͳ and ∞ exist, are associated 

with asymptotic power laws as ݔ → Ͳ and ∞ ȋKoutsoyiannis, ʹͲͳ4bȌ.  
Power laws are functions of the form �ሺݔሻ  ∝    (28)ݔ 

A power law is visualized in a graph of f(x) plotted in logarithmic axis vs. the logarithm of x, so that 

the plot forms a straight line with slope b. Formally, the slope b is expressed by the log-log 

derivative (LLD): �#ሺݔሻ ≔ dሺln �ሺݔሻሻd ሺln = ሻݔ ሻݔሻ�ሺݔሺ′ �ݔ  (29) 

If the power law holds for the entire domain, then �#ሺݔሻ = ܾ = constant. Most often, however, �#ሺݔሻ is not constant. Of particular interest are the asymptotic values for ݔ → Ͳ and ∞, 
symbolically f #(0) and f #ȋ∞Ȍ, which define two asymptotic power laws. 
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Definition and importance of entropy 
Historically entropy was introduced in thermodynamics but later it was given a rigorous definition 

within probability theory (owing to Boltzmann, Gibbs and Shannon). Thermodynamic and 

probabilistic entropy are essentially the same thing (Koutsoyiannis, 2013, 2014a; but others have 

different opinion). 

Entropy is a dimensionless measure of uncertainty defined as follows: 

For a discrete random variable z with probability mass function Pj ≔ P{z = zj} 

Φ[z] := E[–ln P(z)] = – ∑ Pj ln Pj
w
j = ͳ  (30) 

For a continuous random variable z with probability density function f(z):  

Φ[z] := E [– ln f(z)
m(z)]  = – ∫ ln fሺzሻ

mሺzሻ fሺzሻdz∞
-∞   (31) 

where m(z) is the density of a background measure (usually m(z) = 1[z–1]). 

Entropy acquires its importance from the principle of maximum entropy (Jaynes, 1957), which 

postulates that the entropy of a random variable should be at maximum, under some conditions, 

formulated as constraints, which incorporate the information that is given about this variable. 

Its physical counterpart, the tendency of entropy to become maximal (2nd Law of 

thermodynamics) is the driving force of natural change. 
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Entropy production in stochastic processes 
In a stochastic process the change of uncertainty in time can be quantified by the entropy 

production, i.e. the time derivative (Koutsoyiannis, 2011): 

Φ΄[X(t)] := dΦ[X(t)]/dt (32) 

A more convenient (and dimensionless) measure is the entropy production in logarithmic time 

(EPLT): 

φ(t) ≡ φ[X(t)] := Φ΄[X(t)] t ≡ dΦ[X(t)] / d(lnt) (33) 

For a Gaussian process, the entropy depends on its variance Γ(t) only and is given as (cf. Papoulis, 

1991): 

Φ[X(t)] = ȋͳ/ʹȌ lnȋʹπe Γ(t)/m2) (34) 

The EPLT of a Gaussian process is thus easily shown to be: 

φ(t) = Γ΄(t) t / 2Γ(t) = 1+ γ’(t) t / 2γ(t) = ½ Γ#(tȌ = ͳ + ½ γ#(t) (35) 

That is, EPLT is visualized and estimated by the slope of a log-log plot of the climacogram.  

When the past and the present are observed, instead of the unconditional variance γ(t) we should 

use a variance γC(t) conditional on the known past and present. This turns out to equal a 

differenced climacogram (Koutsoyiannis, 2017):  �Cሺ݇ሻ = – ሺ݇ሻ�)ߝ �ሺʹ݇ሻ), ߝ = ͳͳ − ʹ�#ሺ∞ሻ (36) 

The conditional entropy production in logarithmic time (CEPLT) becomes: ߮ሺݐሻ = ͳ + ½�#ሺݐሻ (37) 
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Examples of stochastic processes and their entropy production 

 
Markov process, maximizing entropy production for small times (t → ͲȌ but minimizing it for large times (t → ∞Ȍ: ܿሺℎሻ = �/e−ℎߣ , �ሺ݇ሻ = ଶఒ �⁄ ቀͳ − ଵ−ୣ−� �⁄ �⁄ ቁ  (38) 

Hurst-Kolmogorov (HK) process, maximizing entropy production for large times (t → ∞Ȍ but minimizing it for 
small times (t → ͲȌ: �ሺ݇ሻ =  ሺ�/݇ሻଶ−ଶ� (39)ߣ
Filtered Hurst-Kolmogorov process with a generalized Cauchy-type climacogram (FHK-C), maximizing entropy 
production for large (t → ∞Ȍ and small times (t → ͲȌ:  �ሺ݇ሻ = ሺͳߣ + ሺ݇ �⁄ ሻଶ�ሻ�−ଵ�  (40) 

The parameters a and ɉ are scale parameters. The parameter H is the Hurst parameter and   determines the global 
properties of the process with the notable property � = ߮ሺ∞ሻ = ߮Cሺ∞ሻ. The parameter M (for Mandelbrot) is the 
fractal parameter. Both M and H are dimensionless parameters varying in the interval (0, 1] with M < ½ or > ½ 
indicating a rough or a smooth process, respectively, and with H < ½ or > ½ indicating an antipersistent or a 
persistent process, respectively (see also the graph in p. 12). 

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0.00001 0.001 0.1 10 1000 100000

φ(
t)

, 
φ C

(t
)

t

Markov, unconditional

Markov, conditional

HK, unconditional+conditional

FHK-C, unconditional

FHK-C, conditional

Hurst parameter, H

All three processes have same: 

variance γ(1) = 1;  

autocovariance for lag 1, ܿଵሺଵሻ
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The climacospectrum 
By slightly modifying the differenced climacogram (in order to make it integrable in ȋͲ, ∞Ȍ), i.e. by 

multiplying with k, we can obtain an additional tool, which resembles the power spectrum and thus 

is referred to as the climacospectrum: ߞሺ݇ሻ ≔ (�ሺሻ−�ሺଶሻ)ln ଶ   (41) 

The climacospectrum is also written in an alternative manner in terms of frequency w = 1/k: ̃ߞሺݓሻ ≔ ሻݓ/ሺͳߞ = �ሺଵ/�ሻ−�ሺଶ/�ሻሺln ଶሻ�   (42) 

The inverse transformation, i.e., that giving the climacogram �ሺ݇ሻ once the climacospectrum ߞሺ݇ሻ is 

known, is  �ሺ݇ሻ = ln ʹ ∑ (ଶ�)ଶ�∞= = �ሺͲሻ − ln ʹ ∑ (ଶ−�)ଶ−�∞=ଵ   (43) 

As also happens with the power spectrum, the entire area under the curve ̃ߞሺݓሻ is precisely equal 

to the variance γ(0) of the instantaneous process. The climacospectrum has also the same 

asymptotic behaviour with the power spectrum, i.e.,  ̃ߞ#ሺͲሻ = ሺ∞ሻ#ߞ− = ,ሺͲሻ#ݏ ሺ∞ሻ#ߞ̃ = ሺͲሻ#ߞ− =  ሺ∞ሻ (44)#ݏ

This property holds almost always, with the exception of the cases where ߞ#ሺͲሻ is a specific integer 

ሺ∞ሻ#ߞ) = −ͳ or ߞ#ሺͲሻ = ͵).  

The climacospectrum is also connected with the CEPLT trough: ߮ሺ݇ሻ = ½ ቀͳ + ሺ݇ሻቁ#ߞ = ½ ቀͳ −  ሺͳ/݇ሻቁ (45)#ߞ̃
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The climacogram and the climacogram-based metrics 

compared to more standard metrics 
 In stochastic processes, almost all classical statistical estimators are biased and uncertain; in 

processes with LTP bias and uncertainty are very high. 

 In the climacogram (variance), bias and uncertainty are easy to control as they can be calculated 

analytically (and a priori known; see Koutsoyiannis, 2016).  

 The autocovariance function is the second derivative of the climacogram.  

o Estimation of the second derivative from data is too uncertain and makes a very rough 

graph.  

o Estimation of autocovariance is too biased in processes with LTP. 

 The power spectrum is the Fourier transform of the autocovariance and entails an even rougher 

shape and more uncertain estimation than in the autocovariance (see also Dimitriadis and 

Koutsoyiannis, 2015). 

 An additional advantage of the climacogram is its close relationship with entropy production. 

 A further advantage is its expandability to high-order moments (see part 3 of the Lecture Notes). 

 



  D. Koutsoyiannis, Aspects of stochastics   11 

Asymptotic scaling of second order properties 
EPLT and the CEPLT are related to LLDs (slopes of log-log plots) of second order tools such as 

climacogram, climacospectrum, power spectrum, etc. With a few exceptions, these slopes are 

nonzero asymptotically, hence entailing asymptotic scaling or asymptotic power laws with the 

LLDs being the scaling exponents. It is intuitive to expect that an emerging asymptotic scaling law 

would provide a good approximation of the true law for a range of scales.  

If the scaling law was appropriate for the entire range of scales, then we would have a simple 

scaling law. Such simple scaling sounds attractive from a mathematical point of view, but it turns 

out to be impossible in physical processes (Koutsoyiannis, 2017; see also the graph in p. 12).  

It is thus physically more realistic to expect two different types of asymptotic scaling laws, one in 

each of the ends of the continuum of scales. The respective scaling exponents are the following: 

Local scaling or smoothness or fractal behaviour, when k → 0 or w → ∞:   �C#ሺͲሻ = �#ሺͲሻ = ሺͲሻ#ݒ  = ሺͲሻ#ߞ − ͳ =  ʹ߮ሺͲሻ − ʹ = ሺ∞ሻ#ݏ− − ͳ =  ʹ� (46) 

Global scaling or persistence or Hurst- Kolmogorov behaviour, when k → ∞ or w → Ͳ:    �C#ሺ∞ሻ = �#ሺ∞ሻ = ܿ#ሺ∞ሻ = ሺ∞ሻ#ߞ − ͳ =  ʹ߮ሺ∞ሻ − ʹ = ሺͲሻ#ݏ− − ͳ = ʹ� − ʹ (47) 

Here, the emergence of scaling has been related to maximum entropy considerations, and this may 

provide the theoretical background in modelling complex natural processes by such scaling laws. 

Generally, scaling laws are a mathematical necessity and could be constructed for virtually any continuous function defined in ȋͲ, ∞Ȍ. )n other words, there is no magic in power laws, except that 
they are, logically and mathematically, a necessity.  
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Bounds of scaling 
Bounds of asymptotic values of 

CEPLT, ��ټٿٻ and ��ټ∞ٻ, and 

corresponding bounds of the log-

log slopes of power spectrum 

and climacospectrum.  The ǲgreen squareǳ represents 
the admissible region (note that 

s# can, by exception, take on 

values out of the square when 

φC(0) = 2 or φCȋ∞Ȍ = ͲȌ. The 
reasons why a process out of 

the square would be impossible 

or inconsistent are also marked. 

The lines ��ټٿٻ = ټ∞ٻ�� and ځ/ڂ =  define ǲneutralityǳ ځ/ڀ

(which is represented by a 

Markov process) and support 

the classification of stochastic 

processes into the indicated 

four categories (smaller squares within the ǲgreen 
squareǳ). 
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Stochastic simulation 
The so-called symmetric moving average (SMA) method (Koutsoyiannis, 2000) can directly 

generate time series with any arbitrary autocorrelation function provided that it is mathematically 

feasible. It consists of the following generation equation which transforms white noise ݒ averaged 

in discrete time (and not necessarily Gaussian), to a process ݔ with the specified autocorrelation: ݔ = ∑ ܽ||ݒ+�=−�   (48) 

In theory, the limit q should be ∞ but in practice a truncation to a specific finite q is made (see 

Koutsoyiannis, 2016, for methods to handle the truncation error).  

To calculate the series of coefficients ܽ  we first determine their Fourier transform ݏୢሺ�ሻ from the 

power spectrum of the process, i.e., ݏୢሺ�ሻ =  dሺ�ሻ (49)ݏʹ√

and then we inverse the transform and get the coefficients ܽ . Note that the coefficients are internal 

constants of the model, not model parameters. 

For the HK process with H > 0.5, there is an explicit analytical solution (Koutsoyiannis, 2016): ܽ = √ ଶΓሺଶ�+ଵሻ sinሺπ�ሻ�ሺ௱ሻΓ2ሺ�+ଷ/ଶሻ ሺଵ+sinሺπ�ሻሻ ቀ|+ଵ|�+0.5+|−ଵ|�+0.5ଶ − |݈|�+.5ቁ  (50) 

By properly calculating the high-order moments of ݒ , we can preserve any moment of ݔ that we 

wish (Dimitriadis and Koutsoyiannis, 2018). Thus, the scheme can handle any marginal distribution 

of ݔ . 
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Some results of simulations 

 

  

The first fifty terms of times series at time scales k = 1 and 20 of time series produced by various models, along with ǲstampsǳ of the models ȋgreen lines plotted with respect to the secondary axesȌ represented by the CEPLT, 

φC(k). In all cases the discretization time scale is D = 1, the characteristic time scale a = 10, and the characteristic 

variance scale ɉ is chosen so that for time scale D, γ(D) = 1. The mean is 0 in all cases and the marginal distribution 

is normal (see details in Koutsoyiannis, 2017).  
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(a) 

(a) Markov;  

(b) FHK, with CEPLT 
close to the 
absolute maximum 
(H = M = 0.97); 

(c) FHK, close to ǲred noiseǳ, i.e., 
with CEPLT close to 
the absolute 
maximum for large 
scales (H = 0.99) and 
close to the absolute 
minimum for small 
scales (M = 0.01);  

(d) process with the 
blackbody 
spectrum, i.e. with 
CEPLT equal to the 
absolute minimum 
(0) for large scales 
and to the absolute 
maximum (2) for 
small scales. 

(a) (b) 

(c) (d) 
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Introduction 

Classical moments, raw or central, express important theoretical properties of 
probability distributions but cannot be estimated from typical samples for 
order beyond 2—cf. Lombardo et al. ȋʹͲͳͶȌ: ǲJust two moments!ǳ. 
L-moments are better estimated but they are all of first order in terms of the 
random variable of interest. They are good to characterize independent series 
or to infer the marginal distribution of stochastic processes, but they cannot 
characterize even second order dependence of processes. 

Picking from both categories, we introduce K-moments, which combine 
advantages of both classical and L moments. They enable reliable estimation 
from samples (in some cases even more reliable than L moments) and effective 
description of high order statistics, useful for marginal and joint distributions of 
stochastic processes. 

High-order joint statistics of stochastic properties involve multivariate 
functions expressing joint high-order moments. Here, by extending the notion 
of climacogram (Koutsoyiannis, 2010, 2016) and climacospectrum 
(Koutsoyiannis, 2017) we introduce the K-climacogram and the K-
climacospectrum, which enable characterization of high-order properties of 
stochastic processes, as well as preservation thereof in simulations, in terms of 
univariate functions. 
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A note on classical moments 

The classical definitions of raw and central moments of order p are:  ߤ′ ≔ E[ݔ], ߤ ≔ E[(ݔ −  ]  (1)(ߤ

respectively, where ߤ ≔ ′ଵߤ = E[ݔ] is the mean of the random variable x. Their 

standard estimators from a sample xi, i = ͳ, …, n, are  ̂ߤ′ = ଵ� ∑ ��=ଵ�ݔ , ߤ̂ = �ሺ�,ሻ� ∑ �ݔ) − ��=ଵ(ߤ̂   (2) 

where a(n, p) is a bias correction factor (e.g. for the variance μ2 =: σ2, b(n, 2) = 
n/(n – 1)). The estimators of the raw moments ̂ߤ′  are in theory unbiased, but it 

is practically impossible to use them in estimation if p > 2—cf. Lombardo et al. 
(2014), ǲJust two momentsǳ.  
In fact, because for large p, it holds that ቀଵ� ∑ ��=ଵ�ݔ ቁଵ/ ≈ maxଵ≤ �≤�ሺݔ�ሻ *, we can 

conclude that, for an unbounded variable x, asymptotically ̂ߤ′  is not an estima-

tor of ��′  but one of an extreme quantity, i.e., the nth order statistic raised to 

power p. Thus, unless p is very small, ��′  is not a knowable quantity: we 

cannot infer its value from a sample. This is the case even if n is very large! 

                                  
* This is precise if xi are positive; see also p. 5. 
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Definition of K-moments 

To derive knowable moments for high orders p, in the expectation defining the 
pth moment we raise x – μ to a lower power q < p and for the remaining p – q 
terms we replace x – μ with 2F(x) – 1, where F(x) is the distribution function. 
This leads to the following (central) K-moment definition: � ≔ ሺ − ݍ + ͳሻE[(ʹ(ݔ)ܨ − ͳ)−ሺݔ −  ሻ]  (3)ߤ

Likewise, we define non-central K-moments as: �′ ≔ ሺ − ݍ + ͳሻE [ቀ(ݔ)ܨቁ−  ]  (4)ݔ

The quantity (ʹ(ݔ)ܨ − ͳ)−
 is estimated from a sample without using powers 

of x. Specifically, for the ith element of a sample x(i) of size n, sorted in ascending 

order, F(x(i)), is estimated as ̂ܨ(ݔሺ�ሻ) = ሺ� − ͳሻ/ሺ� − ͳሻ, thus taking values from 

0 to 1 precisely and irrespective of the values x(i); likewise, 2F(x(i)) – 1 is 

estimated as ʹ̂ܨ(ݔሺ�ሻ) − ͳ = ሺʹ� − � + ͳሻ/ሺ� − ͳሻ, taking values from –1 to 1 

precisely and irrespective of the values x(i). Hence, the estimators are:  �̂′ = ଵ� ∑ ቀ �−ଵ�−ଵቁ− ሺ�ሻ��=ଵݔ , �̂ = ଵ� ∑ ቀଶ�−�+ଵ�−ଵ ቁ− ሺ�ሻݔ) − ��=ଵ(ߤ̂   (5) 
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Rationale of the definition  
1. Assuming that the distribution mean is close to the median, so that F(μ) ≈ ͳ/ʹ (this is precisely 

true for a symmetric distribution), the quantity whose expectation is taken in (3) is  �ሺݔሻ ≔ (ݔ)ܨʹ) − ͳ)−ሺݔ − ሻݔሻ and its Taylor expansion is �ሺߤ = (ʹ�ሺߤሻ)−ሺݔ − ሻߤ + ሺ − ݔሻሺߤ−−ଵ�′ሺ(ሻߤሺ�ʹ)ሻݍ − ሻ+ଵߤ + �ሺሺݔ −  ሻ+ଶሻ (6)ߤ

where f(x) is the probability density function of x. Clearly then, �  depends on ߤ as well as 

classical moments of x of order higher than p. The independence of �from classical moments 

of order < p makes it a good knowable surrogate of the unknowable ߤ.  

2. As p becomes large, by virtue of the multiplicative term ሺ − ݍ + ͳሻ in definition (3), �   shares 

similar asymptotic properties with ̂ߤ/
 (the estimate, not the true ߤ/

). To illustrate this for q = 

1, we consider the variable  � ≔ maxଵ≤�≤ and �, respectively. Then (Papoulis, 1990, p. 209): ℎሺ�ሻ �ݔ and denote f( ) and h( ) the probability densities of �ݔ = −ଵ(ሺ�ሻܨ)ሺ�ሻ�
 (7) 

and thus, by virtue of (4),  E[�] = E [ቀ(ݔ)ܨቁ−ଵ [ݔ = �ଵ′  (8) 

On the other hand, as seen in p. 2, for positive x and large p → n, ߤ̂]ܧ′ ଵ/] = ܧ [ቀଵ� ∑ ��=ଵ�ݔ ቁଵ/] ≈ ܧ [ maxଵ≤ �≤�ݔ�] = E[�] = �ଵ′     (9) 

Note also that the multiplicative term ሺ − ݍ + ͳሻ in definition (3) and (4) makes K-moments 

increasing functions of p. 
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Asymptotic properties of moment estimates 

Generally, as p becomes large (approaching n), estimates of both classical and K 

moments, central or non-central, become estimates of expressions involving 

extremes such as (maxଵ≤�≤ (�ݔ
 or maxଵ≤�≤ሺݔ� − ሻߤ . For negatively skewed 

distributions these quantities can also involve minimum, instead of maximum 

quantities.  

For the K-moments this is consistent with their theoretical definition. For the 

classical moments this is an inconsistency.  

A common property of both classical and K moments is that symmetrical 

distributions have all their odd moments equal to zero. 

Both classical and K moments are non-decreasing functions of p, separately for 

odd and even p. 

In geophysical processes we can justifiably assume that the variance μ2 ≡ σ2 ≡ 

K22 is finite (an infinite variance would presuppose infinite energy to 

materialize, which is absurd). Hence, high order K-moments Kp2 will be finite 

too, even if classical moments μp diverge to infinity beyond a certain p (i.e., in 

heavy tailed distributions). 
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Justification of the notion of unknowable vs. knowable 

  

 
Note: Sample sizes are ten times higher than the maximum p shown in graphs, i.e., 1000.  
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Relationship among different moment types 
The classical moments can be recovered as a special case of K moments: � ≡ �. In particular, in 

uniform distribution, classical and K moments are proportional to each other: �′ ≔ ሺ − ݍ + ͳሻߤ′ ,   � ≔ ሺ − ݍ + ͳሻߤ (10) 

The probability weighted moments (PWM), defined as ߚ ≔ E ݔ] ቀ(ݔ)ܨቁ], are a special case of K- 

moments corresponding to q = 1: �ଵ′ =  −ଵ  (11)ߚ

The L-moments defined as ߣ ≔ ଵ ∑ ሺ−ͳሻ� ቀ − ͳ� ቁ E[ݔሺ−�ሻ:]−ଵ�= , where ݔ�: denotes the kth order 

statistic in an independent sample of size p. L-moments are also related to PWM and through them 

to K moments. In particular, the relationships for the different types of moments for the first four 

orders are: �ଵଵ′ = ߤ = , �ଵଵߚ = Ͳ �ଶଵ′ = ଵ, �ଶଵߚʹ = ʹሺ�ଶଵ′ − ሻߤ = Ͷߚଵ − ߚʹ = ′ଶ   �ଷଵߣʹ = ଶ, �ଷଵߚ͵ = Ͷሺ�ଷଵ′ − ሻߤ − ሺ�ଶଵ′ − ሻߤ = ͳʹߚଶ − ͳʹߚଵ + ߚʹ = ′ଷ �ସଵߣʹ = Ͷߚଷ,  �ସଵ = 8ሺ�ସଵ′ − ሻߤ − ͳሺ�ଷଵ′ − ሻߤ + ͳʹሺ�ଶଵ′ − = ሻߤ ଷߚʹ͵ − Ͷ8ߚଶ + ʹͶߚଵ − Ͷߚ = 8ହ ସߣ + ଵଶହ    ଶߣ

(12) 



   D. Koutsoyiannis, Knowable moments and K-climacogram   8 

Basic characteristics of marginal distribution  

Within the framework of K-moments, we can ȋand shouldȌ use ǲJust two  momentsǳ in terms of the power of x, i.e. q = 1 or 2, but we can obtain knowable 

statistical characteristics for much higher order p.  

In this manner, for p > 1 we have two alternative options to define statistical 

characteristics related to moments of the distribution, as in the table below. 

(Which of the two is preferable depends on the statistical behaviour and in 

particular, mean, mode and variance of the estimator.) 

 

Characteristic Order 

p 

Option 1 Option 2 

Location 1 �ଵଵ′ =  ߤ

Variability 2 �ଶଵ = ʹሺ�ଶଵ′ − ሻߤ = ଶ �ଶଶߣʹ = �ଶ  

(the classical variance) 

Skewness 

(dimensionless) 

3 �ଷଵ�ଶଵ =  ଶߣଷߣ
�ଷଶ�ଶଶ 

Kurtosis 

(dimensionless) 

4 �ସଵ�ଶଵ = Ͷͷ ଶߣସߣ + ͷ 
�ସଶ�ଶଶ 
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High order moments for stochastic processes:  

the K-climacogram and the K-climacospectrum 

Second order properties of stochastic properties are typically expressed by the autocovariance 

function, c(h) := cov[x(t), x(t + h)]. An equivalent description is by the power spectrum, which is the 

Fourier transform of the autocovariance, ݏሺݓሻ ≔ Ͷ ∫ �ሺℎሻ cosሺʹπݓℎሻ dℎ∞ . 

Another fully equivalent description with many advantages (Dimitriadis and Koutsoyiannis 2015, 

Koutsoyiannis 2016)  is through the climacogram, the variance of the averaged process, i.e.,  

γ(k) ≔ var[X(k)/k], where �ሺݐሻ ≔ ∫ ሺ�ሻd��ݔ . The climacogram is connected to autocovariance by  ߛሺ�ሻ = ʹ ∫ ሺͳ − �ሻ�ሺ��ሻd� ଵ and �ሺℎሻ = ଵଶ  d2ቀℎ2�ሺℎሻቁdℎ2 . A surrogate of the power spectrum with several 

advantages over it is the climacospectrum (Koutsoyiannis, 2017) defined as �ሺ�ሻ ≔ �(�ሺ�ሻ−�ሺଶ�ሻ)ln ଶ . 

Full description of the third-order, fourth-order, etc., properties of a stochastic process requires functions of ʹ, ͵, …, variables. For example, the third order properties are expressed in terms of 

c3(h1, h2) := E[(x(t) – μ) (x(t + h1) – μ) (x(t + h2) – μ)]. 

Such a description is not parsimonious and its accuracy holds only in theory, because sample 

estimates are not reliable. Therefore we introduce single-variable descriptions for any order p, 

expanding the idea of the climacogram and climacospectrum based on K-moments. 

K-climacogram:    ߛሺ�ሻ = ሺ − ݍ + ͳሻE[(ʹܨ(�ሺ�ሻ/�) − ͳ)−ሺ�ሺ�ሻ/� −  ሻ]  (13)ߤ

K-climacospectrum:  �ሺ�ሻ = �ቀ�ሺ�ሻ−�ሺଶ�ሻቁln ଶ   (14) 

where ߛଶଶሺ�ሻ ≡ ሺ�ሻ and �ଶଶሺ�ሻߛ ≡ �ሺ�ሻ. Even though the K-moment description is not equivalent 

to the multivariate high-order one, it suffices to define the marginal distribution at any scale k. 
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Example 1: Turbulent velocity 

  

  
Data: 60 000 values of turbulent velocity along the flow direction (Kang, 2003;  Koutsoyiannis 2017, Dimitriadis and Koutsoyiannis, 

2018); the original series was averaged so that time scale 1 corresponds to 0.5 s.   

Note: Plot (2*) is constructed from the variance and (2**) corresponds to standard deviation. 
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Example 2: Rainfall rate at Iowa measured every 10 s 

 

 
Data: 29542 values of rainfall at Iowa measured at temporal resolution of 10 s (merger of seven events from Georgakakos et al. 

1994; see also Lombardo et al. 2012). Plot (2*) is constructed from the variance and (2**) corresponds to standard deviation. 
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Example 3: Daily rainfall at Padova 

 
Data: 100 442 values of daily rainfall at Padova 

(the longest rainfall record existing worldwide; 

Marani and Zanetti, 2015). 

Note about the graph on the left: Notice that 

moments are plotted against order p and thus 

approximately represent maxima for a time 

window of length p. For independent processes E[max(ݔଵ, … , ′)] should be equal to �ଵݔ  , but 

when there is dependence the two quantities 

slightly differ; the former reflects the joint 

distribution and the latter the marginal one. 
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