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Abstract

Hydrometeorological processare typically characterized by temporal dependence, short- or
long-range (e.g., Hurst behavior), as well as by non-Gaussian distributions (especially at fine
time scales). The generation of long synthetic time series that resemble the marginal and joint
properties of the observed onssa prerequisite in many uncertainty-related hydrological
studies, since they can be used as inputs and hence allow the propagation of natural variability
and uncertainty to the typically deterministic water-system models. For this rédsmbeen

for years one of the main research topics in the field of stochastic hydrology. This work presents
a novel model for synthetic time series generation, termed Symmetric Moving Average
(neaRly To Anything (SMARTA), that holds out the promise of simulating stationary
univariate and multivariate processes with any-range dependence and arbitrary marginal
distributions, provided that the former is feasible and the latter have finite variance. This is
accomplished by utilizing a mapping procedure in combination with the relationship that exists
between the correlation coefficients of an auxiliary Gaussian process and a non-Gaussian one,
fRUPDOL]JHG WKURXJK WKH 1D WDd §evieMIRylof BMARTAVSNtkéssEK W L R Q
through two hypothetical simulation studies (univariate and multivariate), characterized by
different dependencies and distributions. Furthermore, we demonstrate the practical aspects of
the proposed model through two real-world cases, one that concerns the generation of annual
non-Gaussian streamflow time series at four stations, and another that involves the synthesis
of intermittent, non-Gaussian, daily rainfall series at a single location.

1 Introduction

Hydrometeorological time series (i.e., sequences of observations ordered in time) can be
considered the cornerstoneanfy water-related engineering study, although, such data are in
scDUFLW\ DQG RIWHQ WKH DYDLODEOH UHFRUGYV GRQfW KDY
reliability and risk-related studies). A historical record of such observations will rarely if ever
repeat in the future, which is the simplest manifestation of the high variability and uncertainty
that is naturally inherited therein. In this vein, it can be argued that embracing stochasticity in
hydrometeorological processes is a first step towards the development of uncertainty-aware
methodologies for water systems. Stochastic simulation, and the synthesis of long
hydrometeorological time series, which are used in place of historical ones, can provide a
potential remedy to this situation. Synthetic time series are not predictions of future states, but
rather constitute plausible realizations of the simulated process, that are, loosely speaking,
statistically equivalent with the parent information (i.e., historical data). Driving the typically
deterministic water-system simulation models with such realizations provides the means to
assess their response in a probabilistic manner, under multiple, plausible scenarios. Nowadays,
synthetic data are used in a variety of studies, among them, the optimal planning and
management of reservoir systefasy., Celeste & Billib, 2009; Feng et al., 201 4ulizni

et al., 2014; Koutsoyiannis & Economou, 2003; Tsdak& Makropoulos, 2015a, 2015b)

risk assessment of flooe@.g., Haberlandt et al., 2011; Paschalis et @142 Qin & Lu,

2014; Wheater et al., 200and drought events.g., Herman et al., 201,6as well as water
resources simulation under future climate conditieng., Fatichi et al., 2011; Fowler et al.,
2000; Kilsby et al., 2007; Nazemi et al., 201 Bhereby, the wide applicability of synthetic

time series and stochastic simulation highlight the need for simulation schemes that can
resemble the, intriguing and challenging to simulate, characteristics of hydrometeorological
processes.

A typical characteristic encountered in such procassago-dependence (persistence), either
short or long-range. The former, short-range dependence (SRD), has been extensively
discussed in literaturéz.g., Box et al., 2015and implies an exponential autocorrelation
structure that diminishes after few time lags. On the contrary, the second, long-range
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dependence (LRD), also known as long-term persistence (sometimes referred to as long-
memory), implies an auto-dependence structure that strongly extends for lafgedagsran,
1992) The latter behavior is also related to the so-called Hurst phenomenon, also known as
Joseph effect, fractional Gaussian noise (fGn), scaling in time or Hurst-Kolmogorov dynamics
(HK; Koutsoyiannis, 2011; Koutsoyiannis & Montanari, 20,0see also the review work of
Molz et al. (1997)Its discovery is usually credited tourst (1951)who while studying long
records of streamflow and other data noticed that extreme events tend to exhibit a clustering
behavior in terms of temporal occurrence. However, as pointdayouiutsoyiannis(2011)
it wasKolmogorov(1940)who first proposed its mathematical description. Eventually, after
the seminal work of Hurst and the extensive documentatibraofielbrot and Walli¢1969a,
1969b, 1969c)it is now acknowledged thdtRD (and HK) processes are omnipresent
geophysics, hydrology, climate and other scientific disciplidesan, 1994; Koutsoyiannis,
219&RQQHOO HMe latter publicationprovide further examples and details
regarding the interpretation and identification of such behavior.
Regarding modelling and application of SRD or LRD in hydrological studies, the former type
(SRD) has been systematically studied and employed in numerous cases for the simulation of
a variety of hydrometeorological proces&es:=inl et al., 2013; Brissette et al., 2007; Khali
et al., 2009; Matalas, 1967; Mehrotra et al., 20&anna & Bauwens, 2012; Srikanthan
& McMahon, 2001; Srikanthan & Pegram, 2009; Thompeo al., 2007) On the other
hand, it is well recognized that proper representation of LRD is of high importance, especially
in reservoir-related studies, since their operation and regulation is performed in over-annual
scale, where LRD is mostly encountefédas & Rodriguez-lturbe, 1985; Iliopoulou et al.,
2016; Koutsoyiannis, 20020ther notable hydrology-related applications of LRD include
the stochastic simulation of precipitation or streamflow at finee-scales, from monthly and
daily (e.g., Detzel & Mine, 2017; Maftei et al., 2016; Manari et al., 1997, 20009 10-
second intervale.g., Lombardo et al., 2012; Papalexiou et al.l13pas well as the
generation of synthetic storm hyetographs)., Koutsoyiannis & Foufoul&eorgiou, 1993)
In general, SRD can be easily captured with the so-called AutoRegressive Movirgé\ver
(ARMA) family of models, while we note that, even though such models have a long history
and are still popular, today the literature offers other powerful and flexible options
Koutsoyiannis, 2016)On the other hand, LRD, hence HK behavior, requires the use of
alternative generation schemgsee, Bras & Rodriguez W XU EH 29&RQQHOO
2016) such as fractional Gaussian noise modeisndelbrot & Wallis, 1969a, 1969b,
1969c) fast fractional Gaussian noise (ffGn) modeélsindelbrot, 1971,)broken line models
(Ditlevsen, 1971; Mejia et al., 197@nd Fractional AutoRegressive Integrated Moving-
Average (FARIMA) model§Granger & Joyeux, 1980; Hosking, 1984n contrast to the
abovementioned specialized simulation schemes, a notable exception, that can simulate any
type of autocorrelation function of a process, isSgmmetric Moving Average (SMA) model
of Koutsoyiannis (2000, 2002, 2016) coupled with theoretical autocorrelation (or
autocovariance) structures. This flexibilitg achieved by decoupling the parameter
identification of the autocorrelation structure and the generation mechanism (i.e., the model).
In addition to temporal dependence, hydrometeorological variables are often characterized by
non-Gaussian and skewed distribution functions (partially attributed to the often non-negative
nature of such processes), especially in fine time scales (e.g., daily or finer), where
intermittency is omnipresent. The need to account for non-Gaussian distributions was early
recognizedoy many researchersH J .OHPHa %RUS$SYND ODWDODV
Matalas, 1967)and is currently remarked by the numerous large-scale statistical studies
conducted at various time seale.g., Blum et al., 2017; Cavanaugh et al., 201fIK&
Vogel, 2002; McMahon et al., 2007; Papalexiou & Ksmytiannis, 2013, 2016Regarding
stochastic hydrology and simulation through linear stochastic models, many efforts have been
made towards that direction (i.e., simulating non-Gaussian processes) which can be broadly
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classified in three main categorigssoukalas et al., 2018a) Explicit methods that are able

to generate data from specific marginal distribugionH J .OHPHa %RUSYND
Lawrance & Lewis, 1981; Lombardo et al., 2012, 20Matalas, 1967)b) Implicit
approaches, pioneered byomas and Fiering (1963hat treat skewness via employing non-
Gaussian white noise (typically from Pearson type-Ill distribution) for the innovation term
(Detzel & Mine, 2017; Efstratiadis et al., 2014; Ksoyiannis, 1999, 2000; Lettenmaier

& Burges, 1977; Matalas & Wallis, 1976, 1971; Matal 1967; Todini, 1980)c)
Transformation-based approaches that employ appropriate functions (e.g., Box-Cox) in order
W Rorfnalize” Wdbs¢erved data; next simulate realizations using typical Gaussian stochastic
modelsD Q G | Lebdnalizé” W KH JH Q HitvddartoGitt@rDthe Process of interest
(e.g., Salas et al., 198(However, as discussed Tsoukalas et al. (2018amost of these
schemes exhibit a number of limitations that still remain unresolved. Particularly, approaches
of category (a) are limited to a narrow type of autocorrelation functions and non-Gaussian
distributions (e.g., Gamma or Log-Normal), while they are typically able to simulate only
univariate processes. On the other hand, approaches of categamey frone to the generation

of negative values, provide an approximation of the marginal distributions, while encounter
difficulties when modelling highly skewed (univariate or multivariate) processes
(Koutsoyiannis, 1999; Todini, 1980It is noted thought, that some recent schemes are able
to capture moments higher than skewness (e.g., kurtosis), by the inclusion of additiorhal mode
parameterskoutsoyiannis et al., 2018 and references ther€m)top of these issues, only

few schemesge.g., SMA) are able to model a variety of temporal correlation structures, while

it is also possible to establish bounded dependence patterns which are far from natural ones
(Tsoukalas et al., 2018a, 2018F)nally, regarding the schemes of category (c), they require
the specification of a non-trivial normalization function (due to the inadequacy of simple
transformations; such as, Box-Cox) that often entail several parameters (usually determined
through optimization techniques). Further to this, even if the latter function is properly
identified, it is acknowledged that they introduce bias in the simulated marginal and joint
characteristicéBras & Rodriguez-lturbe, 1985; Salas et al., 1p803).

In this work, in an efforto simultaneously address these challenges and provide a flexible
method for synthetic time series generation, we introduce a generic, yet simple and
theoretically justified, explicit approach based on the simulation of univariate and multivariate
stationary processes exhibiting any-range dependence and arbitrary marginal distributions.
More specifically, the proposed method can explicitly model the autocorrelation structure and
distribution of each individual process, provided that the former is feasible and the latter have
finite variance, while simultaneously it can preserve the lag-0 cross-correlation structure. The
main components of the method are, the SMA modélfisoyiannis (200Q)atheoretical
autocorrelation structure and the pivotal concept of Najaint distribution modelNDM,

Nataf, 1962) The key idea of our approach lies in employing an auxiliary Gaussian stochastic
process, modelled using the SMA scheme, with such parameters that reproduce the target auto-
(i.e., temporal; SRD or LRD) and lag-O cross-correlation (i.e., spatial) coefficients of the
process afterts subsequent mapping to the actual domain via the target inverse cumulative
density functions (ICDFs)it is remarked that instead of SMA, any other linear stochastic
model (e.g., ARMA-type) could be employed in order to mathemBtidakcribe the auxiliary
Gaussian process, yet, it is anticipated that the resulting simulation scheme will inherit its
properties regarding the simulation of univariate and multivariate processes, e.g., if the
auxiliary model is capable of simulating SRD structures, the established simulation scheme
will also be SRD.

The latter rationale has also been employed within the scientific field of operations research
and patrticularly byCario and Nelson (1996as well asBiller and Nelson (2003who
proposed the AutoRegressive To Anything (ARTA) and the Vector AutoRegressive To
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Anything (VARTA) methods respectively for the explicit simulation of stationary
autoregressive (AR) processes with arbitrary marginal distributions.

It is remarked that (to the extent of our knowledge) despite their wide acceptance, the
aforementioned approaches (and their variants) have been unknown to the hydrological
community and hae never been used for the simulation of hydrometeorological processes until
very recently. Nonetheless, it seems that presently, Nataf-based approaches are gaining
momentum. Particularly, using a similar ration&lerinaldi and Lombardo (201introduced

an approach for the synthesis of autocorrelated univariate binary processes; ayhilexiou
(2018)provided a comprehensive treatment on the topic using autoregressive models and used,
for first time, mixed-type marginals enabling the modeling of intermittent processes like
precipitation. Finally,Tsoukalas et al. (2017, 2018@mployed the notion of NDM and
provided a generalization of the latter models (ARTA, VARTA), termed SPARTA (Stochastic
Periodic AutoRegressive To Anything), for the simulation of univariate and multivariate
cyclostationary (i.e., periodic) processes with arbitrary marginal distributions. Following the
same naming convention with the initial publications, and since our approach uses as an
auxiliary model the SMA scheme, the proposed method is termed Symmetric Moving Average
(neaRly) To Anything (SMARTA). Alternatively, given that the latter schemes makefuse

the ICDF, which is generally a non-linear function, they can be viewed as a non/ination

of underlying linear stochastic models (e.g., AR or SMA). The use of the ICDF in the
abovementioned, Nataf-based, schemes ensures that the generated data will have the target
distribution but on the other hand it is recognized that the Pearson correlation coefficient
(which is used to express the dependencies in all linear stochastic models) is not invariant under
such non-linear monotonic transformatigfisnbrechts et al., 1999Therefore, the main
challenge of such approaehlies in identifying W KeHui¥alent F R U U HoOdfidiehtR Qay

should be used within the generation procedure (Gaussian domain) in order to attain the target
correlation structure in the actual (i.e., real) domain. The latter relationship (i.e., that of
equivalent and target correlations) can be expressed theoretically through a double infinite
integral, which can be approximated with the use of numerical techniques such as the one
employed herein.

Further details about the proposed approach can be found in s@€ctind 3, where the latter

is further divided in four subsections. Particularly, section 2 presents some key concepts
regarding modeling of auto-dependence structure in general; while subsections 3.1 and 3.2
develop the theoretical background of the proposed approach; next, subsection 3.3 describes
the auxiliary SMA model and lastly, subsection 3.4 summarizes the overall approach and
provides the generation mechanism of SMARTA in sigtep manner. The generality of
SMARTA is illustrated through a series of numerical examples, hypothetical (section 4) and
real-world (section 5), including the simulation of both univariate and multivariate time series.
Finally, in section 6 we synopsize and discuss the proposed modelling approach.

2 Modelling the auto-dependence structure

Before describing SMARTA, it is considered useful to provide a brief introduction to the tools
that allow the mathematical description of the auto-dependence structure of a stochastic
process. For a more thorough treatment, the interested reader is referred to the works of
Papoulis (1991and Lindgren et al (2013). To elaborate, lefl.a P £be a discrete-time
stationary process, indexed usigwith finite variance 84 L " @@nd autocorrelation
function é &L ‘"”gall.g L é, where i L ra Gsa Gdénates the time lag. The
autocovariance function (ACVJFof the processan be obtained by,?a L ‘~¢d . g L

€%¢é. It is reminded that a valid autocorrelation structure has to be positive définite
Lindgren, 2013; Papoulis, 199which can be readily checked by formulating, and testing



229 for positive definiteness, the so-called) H &utocorrelation matrix~, whose Efa'F

230 elements are being determined by, j aly £ 2 v

231 Besides the ACF and ACVF, another particularly useful stochastic tool, is the climacogram
232 (CG, Koutsoyiannis, 2010, 2016which is typically depicted using a log-log plot, and
233 expresses the variance of the aggrega@il ‘Aor time averaged@;T ‘Aprocess at scal& D

234 :”. We point out that the notation empémyherein slightly differs from the typical one, since
235  we restrict our attention to discrete-time processes. Assuminditbanotes a discretene
236 stationary process at the basic time s&atel, the discrete-time aggregated process at scale
237 G P san be obtained by,
bR
b 1
R T 1)
c@R?5>5
238 while the averaged discrete-time process obtained by, F"'L :;”' G Hence, the
239 corresponding climacograms of the discri@e aggregated and averaged process can be
240 defined asAP:  f"BfCand (P’ f"BJ Crespectively. Moreover, as shown by
241 Beran (1994 p. 3)as well ady Koutsoyiannis (2010, 2016the variance over scales (i.e.,
242 the CG) and the ACVF (and therefore ACF) are interrelated. Specifically, if the theoretical
243  ACVF (or ACF), ? at the basic time scal& £ 1) is known, the corresponding theoretical

244  discrete-time climacogram of the aggregated m®can be calculated using the following

245  equation,
p?5

AP'L2JGEtIi:GFij? (2)
@5
246  while the averaged one can be obtained b§,; L AP @. The recursive application of the
247  following equation facilitates the calculation of the climacogrdfi;

APIL tAP?SF AP?SE t2,5 (3)
248 Itis noted that, A> L 0%/ L 2 L &%a&vhile A* L r. The inverse relationship that calculates
249  the ACVF of the aggregated discrete-time procg@g Adenoted % ° B ;™ & i Cat

250 time scalek given the theoretical climacogram is given(Byutsoyiannis, 2017)
. A SPIE K ?5Pi
%L t FA P4 iRt 4)

251  Furthermore, the ACVF%" ‘at scalek is linked with the ACVF,? &f the basic time scale
252 k=1, through the following relationship,

p 5> ;b b :5> ;b
%™ L1 1 "cT_AfgLi [ ? (58 1R (5)
c@a@b>5 c@45@pP>5
253  Analogously, the ACVF of the time averaged discrete-time pro@{é‘é;Aat scalek, denoted
254 ?%  "BT & Cia obtained by? L %~ & Hence, the ACF of the aggregated

255  discrete-time process at time schlean be obtainetly é°'L %™ AP: while the ACF of

256 the time averaged discrete-time procéss & 'L 27 UP: Note that the ACF of the
257 aggregated and time averaged process are identical, due to standardization of the corresponding

258  ACVF with the variance. Itis also noted tHgf” L APand 9%’ L ? avhile similarly, 2,” L
259 OPand 2 L 2.
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Undoubtedly, the most commonly-employed tool to characterize the auto-dependence structure
is the autocorrelation function (ACF). The literature offers a plethora of theoretical models in
both continuous and discrete tinfieimitriadis & Koutsoyiannis, 2015; Gneiting, 2000;
Gneiting & Schlather, 2004; Koutsoyiannis, 2000, 0Rapalexiou, 2018; Papalexiou et

al., 2011) that can be easily combined with the proposed approach (see next section). In this
work we use the discrete-time Cauchy-type autocorrelation structure (CAS)tHfoyiannis
(2000)due to its simple and parsimonious form (a desired propediochastic modelling),

which however does not hinder its ability to model a wide range of short (ARMA-type) and
long-range dependence structures (including HK behavior). CAS is a two-parameter power-
type autocorrelation structure which, in its simplest form, if the ACF has constant and positive
sign (as in the case of geophysical and hydrometeorological processes), is given by,

6CEWY s E aUi® a iR (6)

where U R and & P are parameters that control the degree of dependence (or persistence)

of the process. It is remarked that the autocorrelation function of an HK (i.e., f{Gn) process

consists a special case (or a very good approximation) of the latter model (i.e., Eq. (6)) whose
theoretical ACF is given by,

s . . )
é'-OL—t:‘lF36°Ft i8AE 1 E 84 (7)
whereH LV WKH +XUVW HRHIILFK BE3N spedking, controls the degree of
long-term dependence (or persistence) of the process. It has been shown that for lége time
and * P raa parameter of CAS is related to thel coefficient of an HK ACF through the
relationship U L & :t F t*P s thus asymptotically resembling the right tail of latter

theoretical model. More specifically, for> 1 and whenais set equal td, see Eq. (8), CAS
closely approximates the theoretical ACF of an HK process, even for small time lags.

S

alLa-+lk (8)
- S
udl s%p I's FtTJp h
In addition, the ACF of an SRD process (ARMA-type) can be obtained through CAS, by setting
U L rand applyingtiH /] +{SLWDOYTV UXO HACFksHjiver-by, XOWLQJ 65"

eWVH t35 8] 9
Furthermore, wherd L FZ*é&;, andr Q € Q sEq. (8) reduces to the classic Markovian

ACF of an AR(1) process, given b;é,EV‘ > & . For other parameter values, CAS resembles

a plethora of alternative autocorrelation structures, that differ from the aforementioned classic
models(for further details see, Koutsoyiannis, 200Dhefl exibility of CAS is illustrated in

Figure 1la where we depict (in a log-log scale) the theoretical ACF of vaHi&uprocesses,
characterized by different values of Hurst coefficiéhtas well as, their approximation with
CAS. The close agreement of the two theoretical models is further valid&igdia 1b where

we plot (also in log-log scale) their climacograms (assuméhd 2 L 9, which are
practically indistinguishable. It is noted that for an HK process, which exhibits simple and
constant scaling laws, the slop@of the climacogram (P, i.e., the log-log derivativeD

tk Boe Z+G ;4s related withH parameter byO L t* F.tThe resemblance of the

HK and CAS is confirmed by estimating the average mean square error (MSE) of the depicted
processes by means of both ACF and climacogram. In terms of ACF, the average MSE value
is 0.01 and the corresponding value in terms of climacogram is 0.66.
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Figure 1.a) Autocorrelation functions and b) climacogramsiif processes exhibiting different Hurst
coefficients (dashed lines) and their approximation withQA& (continuous line).

Considering the practical aspects of the auto-dependence structure identification procedure
(e.g., estimation of the parameters of CAS or ather theoretical structure, given a sample
time series), it is remarked that it is a challenging task, due to the fact that the sampleegsti

of variance and autocorrelation coefficients (i.e., empirical variance and ACF - calcroated f

the historical time series) are negatively biased)., Beran, 1994; Koutsoyiannis, 2003,
2016, 2017,)especially in the presence of LRD (e.g., HK behavior). A thorough treatment on
the subject lies beyond the scope of this stagdyt has been extensively documented by the
aforementioned authors, as welbg<Dimitriadis and Koutsoyianni€015)who highlighed

the advantages of using the climacogram, in comparison with the ACF and power spectrum,
for the identification of the auto-dependence structure. The latter authors, via an extended
analysis of a wide range of SRD and LRD processes, showed that the climacogram exhibits
less uncertainty and bias in its estimation, which can be easily estanatied, thus providing

an attractive alternative to the latter classic approaches. Further to this, the latter stochastic tool
can be used as a basis for LRD identification algorithensg., Tyralis & Koutsoyiannis,

2011) as well as for the developmetditional tools (e.g., the climacospectrum) that provide
further insights regarding the asymptotic behavior of the progéssisoyiannis, 2016,

2017) It is noted that in this work, the above-mentioned stochastic tools (i.e., ACF and CG)
are mainly H P S O R \ Hdiagh&stic', ’and not for identification purposes, i.e., to verify that

the simulated processexhibit the desired dependence properties.

3 Methodology

3.1 Theoretical background of the SMARTA model

The central idea of the proposed approach is based on thefNaiaff distribution model
(NDM, Nataf, 1962)which has been originally implementéor the generation of cross-
correlated, yet serially independent, random vectors with arbitrary distributions. One of its key
assumptions, which consequently holds for SMARTA or any other Nataf-based method, is that
the employed distributions owe to have finite variance. This assumption is implied throughout
this work.

NDM gained popularity after the works ofu and Der Kiureghian (198@ndCario and
Nelson (1997,)who also coined theermNORmal To Anything (NORTA) procedure and also



330 accounted for combinations of continuous and discrete marginal distributions. Its main concept
331 lies in establishing joint relationships with the use of an auxiliary multivariate standard normal
332 (i.e., Gaussian) distribution (using an appropriately adjusted correlation matrix); generating
333 correlated standard normal variates and then mapping them to the actual domain using their
334 ICDF. As noted byCario and Nelson (199@and further investigateloly Lebrun and Dutfoy

335 (2009) NDM is related to the Gaussian copula since h® U L Odn® éiserfpution is

336 established through the multivariate Gaussian distribution.

337 An interesting point concerning NDNkee, Tsoukalas et al., 2018is) that it can be

338 retrospectively associated with several well-known hydrological approaehes Kelly &

339 UJ\VI]WRIRZLF] .OHPHa % R W$Y N DAmong them,) WeD O D
340 distinguishthao FDOOHG :LONVY W\S ${\VIKsDWIH Hibich Hayd-nbDveiee U

341 a significant amount of research during the last decades. The latter author, in an effort to
342 simulate cross-correlated random variates, representing either the precipitation occurrence or
343 amount process (neglecting temporal dependence), proposed the simulation of cross-correlated
344  Gaussian variables and their subsequent mapping via their ICDF. Wilks empirically observed
345 that a monotonic relationship exists which links the correlation coeffeceithe Gaussian

346 DQG 3UHDCHera® ®UsOof inflated correlation coefficients was proposed within the
347 multivariate Gaussian distribution, in order to attain random variates with the required cross-
348 correlation and distribution. The latter class of models is reviewed in the workskef and

349 Wilby (1999)andAilliot et al., (2015)

350 Inthis study, we employ the concept of NDM, buaitifferent context, i.e., for the simulation

351 of stationary any-range-dependent stochastic processes. Particularly, the rationale of NDM is
352 combined with an auxiliary Gaussian process in order to capture the stochastic structure (in
353 terms of autocorrelation and cross-correlation coefficients) of the target process and
354 simultaneously preserve the desired marginal distributions after the use of the ICDF.

355  Suppose that the goal to generatea m-dimensional discrete-time stationary procesd

356 c¥aa dard & f wheret is thetime index and the indice& & F L s dafedused to refer to

357 individual processTU and TY respectively. Also let, Z L c jé a é”é'l’é éf denotea
358 realization of it. Furthermore let us assign a target cumulative distribution function (CDF),

359 denoted by, (0 2kT'Q Tto each individual proces3y and let é’aa(; > Pl %2

360 GHQRWH WKH WDUJHW 3HDUVRQ'|]T&arEFR§l£bUt|H1®I@gVHLRQ FRHIILFLI
361 Likewise, and using the same notation as abate, d L c§/a a é’aVa é !g?be an auxiliary

362 m-dimensional stationary standard Gaussian process with zero mean and unit variance. Also,
363 let & ‘””>\f9é‘; ?2GHQRWH WKH 3HDUVR Q 107 tHe RuxiliaH/@rocdst RQ FR +
364 between\éjand V for time lag 2 hereafter, referretb as equivalent correlation coefficient. It

365 is noted that throughout the paper the superscripts or subscrrmﬁaggor %apmay be

366 omitted when possible. For brevity, the target autocorrelation of the pr@@aﬂbbe denoted

367 @&Yandits lagZcross-correlation WrthT as &2

368 As mentioned earlier, the idea behlnd SMARTA lies in simulating an auxiliary standard

369  Gaussian process.using the SMA model with such parameters that after applying the inverse

370  of their distribution function, resulta a processz; with the desired correlation structure and

371 marginal distributions. The latter operation can be written as follows,

372

( > @ 0 kovA (10)
373 where 0 : ®denotes the standard normal CDF a(rgeﬁz ®stands for the ICDF of proceg‘%J
374 An advantage of the above scheme is that since the ICDFs of the target distributions are
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enmployed (given that they can be analytically or numerically evaluated), the pr_ﬂigwsisls
inevitably have the desired marginal properties. On the other hand, the Peamsosiation

coefficient is not invariant under such non-linear monotonic transformations, bgﬁggvill

differ from %f;; However, as discussed in the literature, they are related, Biller &

Nelson, 2003; Cario & Nelson, 1997; Der Kiuregh&riu, 1986). Since Eq. (10) holds,
we can write,

Gacs L AL gL " El@OoKvA Bl@0kVoAC (11)
UVLQJ WKH GHILQLWLRQ Rdefficient,u® daQ 836 iU forHhe BakeLdR Q
simplicity the time indexHs omitted when possible due to stationarity),

Uay (mom _f_t> gF _Cug _e(g-

il eifg —— (12)
§ f'cg frgT

where cFPga ¥%jland f"c¥a fYgdenote the mean and variance aFf e« 1T

respectively, which are known from the corresponding distributiorsind ( ;0and have to

be finite. Subsequently, using Eq. (10) and the first cross-product mom_e'g’;hfef’r_'f> we
obtain,

c?_ToL Bf@oknF @oRvoAcC
L e Ay (13)
L+ + (Z@OKVAK @ORVoAGKYaY a B0 1V,
29 ? ‘ﬂ
where 1 6k}9 aeé 0is the bivariate standard normal probability density function. Hence,
by substituting Eq (13) to Eq. (11) we obtain,

Uay
AL
il ([ @OKAKF @0fVoA ck¥al a BEt¥V. F cfy 7 (14)
§ f'c QT

Inspection of Eq. (14) indicates thégéégjs afunction of %aégisince all other quantities are
already known from the target (i.e., given) distributiqnsand (;6 Thereforeijt is compactly

written as,
LNl a a'@Za 6A (15)

where a : ®s an abbreviation of the function defined by Eqg. (14).
This relationship implies that prido the estimation of the auxiliary modgV S DU DIFSHWH UV
essential to identify, and next use within parameter estimation, the equivalent cosglation

%agbthat result to the target correlatloncé’a ¢ sfter the subsequent mapping of the auxmary
process to the actual domain. This can be achieved through inversion of Eq. (1% alsz,

475 @7 (oA A

3.2 Identification of equivalent correlation coefficients
Provided that the identification of equivalent correlation coefficients can be accompltshed o]

a pairwise basis, and for the sake of simplicity, let us define T and T T/t Tes hence
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€, and é4 stand for the equivalent and the target correlation coefficients respectively.
Furthermore, let(s and ¢ denote the corresponding target distributions. It is reminded that

our ultimate objective is to establish a relationship betwé&gnand é; and eventually find

the appropriate value o8&, that results in the target correlatiod, after the mapping
operation of EQq(10). It is acknowledged that Eq. (15) does not have a general closed-form
solution, with the exception of few special cases, hence it is typically identified via numerical
techniques such as crude search, quadrature methods as well as Monte-Carlo priécadares

& Nelson, 1996, 1997; Chen, 2001; Li & Hammond, 89Ziu & Der Kiureghian, 1986;

Xiao, 2014) The abovementioned authors provided a series of Lemmas that can be used in
order to establish the relationship of Eq. (15). Among them,

Lemma 1. é; is a strictly increasing function o#&g .

Lemma?2. & L rfor & L raswellas, & R:Q; rif é R:Q; r

It is remarked that the equality sign in Lemma 3 is valid whég L r or when both
marginals are Gaussian. Furthermore, the minimum and maximum attainable valégs of

are in accordance with the Fréchet-Hoeffding bourdschet, 1957; Hoeffding, 1994and

are given for € L Fsand €& L s respectively. Particularly the following relationship
holds true, Fs Q4 @ kR Z(A Q ¢ Q a @ s A(: (A Q.sSee also the work af/hitt
(1976)for a comprehensive discussion on the topic. In this paper, unless stated otherwise, in
order to establish the relationship of Eq. (15) we employ the simple, yet efficient method
proposed bysoukalas et al(2018a) which in a nutshell, is based on the evaluation of few
pairs of é4 f T éi using Monte-Carlo simulation and subsequently, the establishment of
the relationship of Eq16) through polynomial interpolation (see also, Appendix A).

3.2.1 An illustrative example
To shed some light on the functional formaf ®et us consider the case where both variables
T and T are described by the two-parameter Gamma distribuor bie probability density

function (PDF) of the latter distribution is given by,
025

g:Ta:;éL%@A ié’@lﬂ\a TPy (16)
where + Alenotes the gamma function ardP rand > M are shape and scale parameters,
respectivelyFigure 2a depicts the relationship among and é4 (i.e., a : ®computed via
numerical integration) for various values of distribution parameters. Specifically, we assumed
= = L = and constant>a L 3L > L s We remind that the theoretical skewness
coefficient of a Gamma distributed variable is givenday L t %= From the latter figure we

observe that the non-linearity @f : ®ncreases with low values af(i.e., high skewness), and
that the maximum attainable value o4 is equal to 1, due to the fact thgt (& . In
addition, one may observe that the shape param&teaiso related to the minimum attainable
value of é;. For example, wher= L ri&sthe latter value is practically restricted to zero,
something that may be considered a reasonable behavior, attributed to the very high value of
positive skewness which does not allow for negative correlations. In a similar vEigune
2b we set= L wand vary parameter from 5to 0.01 (assuming againtha@a L 3 > L
9. In this case, both the minimum and maximum attainable valuegphre affected. It is
observed that, wherr f ¢ T = exhibit significant differences, the range of feasible values

€, Is getting narrower. This implies that two variables with considerable different shape

(expressed through parametgrcannot be highly correlated. From an engineering point of
view, and similar to the previous case (i.e., when = L =), this is barely considered a
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limitation of the proposed approach, since such behavior is rarely encountered in
hydrometeorological processes. For instance, it is not expected, or rational, two processes, one
with skewness ~0.9 and one with 20 to be highly correlated (positively or negatively). In any
case, we stress the importance of checking the range of attainable correlation coefficients whe
employing the concept of NDMsee, Demirtas & Hedeker, 2011; Leonov & QaqisHi, 2P
especially within the context of stochastic process simulation. For instance, given the non-
linear and asymmetric nature af: ®fpr some combinations of marginal distributions, a target
correlation coefficient may be inadmissible. This constraint, and the fact that the target
marginal distributions ought to have finite variance, drove us to add the desigh&tiBhD U O\~
when naming the method. However, in the examples employed in this work, such problems did
not occur (for a simulation example also involving negative cross-correlations see section 4.2),
a fact which by no means overrules the aforementioned need for compatibility verification.

. G =6 =G =0 b az=5 (Ce=0.89)

0- = ‘ 0-
1.0 ol 1.0 p=p

—az=ay =5 (€, =0.89) — ay=5 (€,,=089)
—ag=a,=2 (C,=141) —ay=2 (C;,=141)
ar=ay=1 (C;=2) ay=1(C,,=2)
=a, =05 (C,=2.83) 05- — ay=05 (C,,=2.83)
w=0.1 (C;=6.32) ay=0.1 (C,,=6.32)

a
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az=a, =005 (C,=895) ay,=0.05 (C,,=8.95) /
— az=ay, =001 (C,=20) — a,=0.01 (€,,=20)
5 00- - 9
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Figure 2. Graphical illustration of functiora : see, Eq. (15)) that expresses the relationship between
the equivalent, & and target é4 correlation coefficients assuming that bdttand T are described
by the two-parameter Gamma distribution (assuming thd@ L & > L 9 with a) equal shape
parameters. <4 $a & =L = ;and b) different shape parameters by settind- wand varying=
from 5 to 0.01.

Evidently, the proper and accurate identification of the relationahi@has a crucial role in
NDM-based schemes, since its misspecification may lead to simulation errors. Hence, to assess
the suitability of the algorithm of Appendix A, which is extensively used in this work, we
employed the latter and recreated the cases depict&igime 2; which concerned the
identification of equivalent correlation coefficients of two Gamma-distributed variables for
various values of shape parameters. After the specification of the relatiansliiljy the latter
algorithm, the target correlations where evaluated for valueséafb > F s §afipled by

0.01. To provide a quantitative comparison, we estimated the MSE and maximum square error
(Max(SE)) between the estimates of the numerical integration methoBiglee 2) and those

of the aforementioned algorithm. A synopsis of the results is givehable 1, where the

panels (a) and (b) corresponds to thosEigidire 2. The latter analysis illustrates the potential

of the employed method to resemble the asymmetric and non-linear natarre®ajith high
accuracy.



478 Table 1.Comparison between numerical integration and the algorithm of Appenditi#efaumerical
479 example illustrate ifrigure 2. Panels a) and b) correspond to thosEigfire 2.

a) = =L= >aLL>1Ls b) = Lw>aL>x>1Ls
Shape § MSE Max(SE) Shape €) MSE Max(SE)
0.01 8.03x1CP 7.75x10 0.01 2.12x10° 3.79x10*
0.05 5.81x10° 3.08x10* 0.05 6.46x1F  2.70x1C°
0.1 2.44x10° 9.89x10° 0.1 6.26x10C° 4.15x10°
0.5 4.33x10° 1.59x10P 0.5 1.51x1F  9.37x1C°
1 3.31x10° 1.88x1C° 1 2.54x10° 1.13x10°
2 1.22x10° 8.47x10° 2 7.19x10°  3.20x1C°
3) 3.70x10° 1.80x1C° 5 5.24x10 1.77x16°

480 3.2.2 The Log-Normal case
481  As mentioned earlier, there are some exceptions that have a closed-form solution. Among them
482 the Log-Normal case, which is of particular interest from a hydrological perspective. The PDF
483  of the 3-parameterdg-Normal distribution @e § is given by,
B.o:Ta =4 t3 nn—|S=EZ‘Q/°EF‘)F>G6 a TP? (17)
a—’J— ’ . :
¢ TF?=%eé t = q

484 where= P r > b, and ? b denote the shapegale and location parameters respectively
485  while, whenc = 0, the distribution reduces to the 2-parameter Log-Normal distribution. As
486 shown inMostafa and Mahmoud1964) yet without direct reference to NDM, for two
487 random variablesl and T that are Log-Normally distributed, Eq. (14) simplifies to,

) IS’k &£ =0 Fs

€; L (18)

§k13'Re Fsoki®&# so

488 Which can be easily inverted in order to directly provide the equivalent correlation
489 coefficient &, given the target value ofé; ie.,

*ISE é 8k13'ReFsoki®P&E sp (19)

& L

490 It is worth remarking that Eq. (18) is identical with the one empldpethe celebrated
491 multivariate lag-1 Log-Normal model déflatalas (1967)in order to adjust the correlation
492  coefficients, which interestingly can be identified as a Nataf-based approach.

493 3.2.3 A cautionary note

494 A delicate point worth standing concerns the use of alternative, rank-based dependence
495 measures, such &S HD U P POJE . HQ Gy déphiameter identification BDM (or

496 Gaussian copula). Under the assumption that both marginal distributions and copula are

497  Gaussian (or more generally elliptical distributions), there is dmpae relationship between

498 WKH DIRUHPHQWLRQHG GHSHQGHQ F HcéeHi@ent{d) twhichocenG 3HD U\
499 Dbe expressed gg.9., Embrechts et al., 1999; Esscher, 1924; Kaljsk958; Lebrun &

500 Dutfoy, 2009)(notice that the indices have been omitted for the sake of simplicity),

e X e
GLtrcn@A N ulbp 7. A@ (20)

e t
éL-<-—j[-p A L—épf”...:év (21)
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Both and are measures of concordance and are invariant to non-linear monotonic
transformations (such as those imposed by Eq. (10)). Thus, specifying NDM with estimates of
SHDUVRQ TV Hased ahkhe touvérstdp of empirical estimates, @i will inevitably
preserve the target values ofor after the application of the mapping procedure (due to the
property of invariance) but it will lead to misspecification of the underlying model (i.e., NDM)
due to Eq. (14), and of course the target valuessR QW EH SUHVHUYHG

3.3 The auxiliary SMA model

Having described the theoretical background of the proposed approach, this section provides
brief introduction to the univariate and multivariate Symmetric Moving Average (SMA) model
of Koutsoyiannis (200Q)which is used within SMARTAsan auxiliary standard Gaussian
process. SMA model consists as a special case of the Backward-Forward Moving Average
(BFMA) model, whose key idea is that a stochastic prosgsan be described as a weighted
sum of infinite backward and forward random variables. Note that the notation slightly differs
from the original one, in order to highlight the fact that the msdeiployed in the Gaussian
domain using the equivalent correlation coefficieréiastead of the target correlation
coefficients, é

3.3.1 Univariate model
In practice, the SMA model slightly relaxes the assumptions of BFMA model and assumes that
a stochastic procesg can be described as a weighted sumfofite number of backward and
forward random variables. Particularly, the generating mechanism of the SMA model is given
by the following equation,

a

ML i = R.L=%R,4,E®E gR,sE ¥RE BR.sE ®E -4 (22)

@24
where R.are standard normal i.i.d. variables awihre internal model parameters (i.e., weight
coefficients) that are assumed to be symmetric, #el, =3 :~‘” b L s & aaAddapproach

zero after some value> P Mwhereq denotes a large positive integer value. The selection of
Mdepends on the degree of auto-dependence imposed by the target process Z8¢edad. (
the desired level of accuracy. Furthermadweannot be greater than the length of the time series
to simulate. Particularly, the parameteggre related to the autocorrelation coefficieatsia
a2q+ 1 equation system of theofollowing form,

a

gL i = =, a iLrasataadam (23)
@?a
; a
élL i A % & iLMEs&adatm (24)
@ ?a

Evidently, if Eq. (23) is honored, the model resembles the theoreticalup@-&,, while it

decays to zero aftelgdsee Eq. (24)). In order to estimate the paramet@ésoutsoyiannis

(2000) proposed two solutions, one closed-form and one based on a formulation of an
optimization problem. The interested reader is referred to the latter publit@timthorough
andin-depth description of the two methods. In this work we restrict our attention in briefly
describing only the first one, since it is a fast and direct method. The aforementioned author
showed that the discrete Fourier transformation (DFT3&dte., 55: X, is related to the power

spectrum of the autocorrelation function, i.€,: X;, by, 53: X; L¥t5: X
If the autocorrelation structuré, is known (or specified), its power spectrum can be calculated
using the DFT, hence estimafg: X; &hen, by applying the inverse Fourier transformation



540
541
542
543
544
545
546

547
548
549
550
551
552
553
554
555
556
557
558
559

560
561

562
563

564
565
566
567

568

569
570
571

572

573

574
575

one can obtain the parameterddlt is remarked that algorithms that facilitate the latter
calculations are nowadays built-in in many high-level programming languages (e.g., R or
MATLAB), which in turn allow the straightforward implementation of SMA and SMARTA
models in most computational environments. At this point we noté&thgtoyiannis (2002,
2016) proposed an even simpler and straightforward procedure for the estimatigh of
coefficients, which however is applicable only for HK (i.e., fGn) type autocorrelation
structures.

3.3.2 Multivariate model

Furthermore, the SMA model can be extended for the multivariate simulation of
contemporaneously cross-correlated processes, via theiegpgervation of the lag-0 cross-
correlation coefficients. This assumption, which significantly simplifies the parameter
estimation procedure, is often regarded adequate within hydrological domain, and can be found
in several other stochastic simulation schefaes., Camacho et al., 1985; Efstratiadis et al.,
2014; Koutsoyiannis & Manetas, 1996; Pegram & Jarh®%2; Tsoukalas et al., 2018a)

With this in mind, for simulation of hydrometeorological processes characterized by strongly
lagged cross-correlations (e.g., rainfall-runoff at fine time scales), it may be advantageous to
employ the same modelling strategy as the one proposed herein, using alternativey auxiliar
Gaussian models that, apart from the lag-O cross-correlations, are able to directly model
(preferably, for parsimony and stability, in combination with suitable theoretical auto- and
cross-correlation structures; e.g., similar to CAS) the lagged coosdation coefficients.

Regarding the multivariate SMA modebt|_. L cgla é’aVa §5 be am-dimensional
vector, as defined in section 2, areéfaY e c\g’a Q gdenote the equivalent lageross-

correlation between process&“and \/ for time lag i. Similar to the univariate case, each
process\{;’ls represented by a welghted sum of random vanal@’em

WL |’ AV R, (25)
@?a
In this case, the random variablesk%"J are considered serially independent but
contemporaneously cross-correlated. Therefore, the problem lies in generating such variables
in a way that they reproduce the equivalent lag-0 cross-correlation coefflc#ﬁglt( has
been shown that it suffices to generate random varlatﬁ{éwlth correlation G£Y

o ﬁpqual to,

Javy
délé‘LY eﬁ O (26)
@ 24
Hence, theri x m) correlation matriins formulated, with ones in the diagonal and Y
Ef elements determined b, ¢ sly Ca2Eurthermore, the theoretical lagsross-correlation

structure (fori L rasa} éfihe model is given by,

4 X S
& &Y éga 004 L c4aY =20, X 27)
@”a:jd% @?a

Regarding simulation, a vector of correlated random variatgels C EQa 3 é%Ré @ écan be

generatedby, o L Re {e o where oc L C $a a V8 4 gg is a vector of standard normal i.i.d.

variables, andf is am x m matrlx obtained by finding the so-called square root of marix
i.e., EQ. (28). A solution to the latter problem can be obtained by standard decompaosition
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techniques (e.g., Cholesky or singular value decomposition) or via optimization-based methods
(Higham, 2002; Koutsoyiannis, 1999)

RE*L € (28)

In more detail, it is reminded thidit §is positive definite (which indicates that the multivariate
process is admissible), then Eq. (28) has infinite solutions, hence, both decomposition and
optimization-based methods can be employed. On the other hand, S\isenon-positive
definite (implying that the multivariate process is inadmissible), the decomposition methods
cannot offer a solution. In this case, optimization-based techniques can provide a potential
remedy, by formulating an optimization problem, where the objective is to identify a matrix

&Ywhich results to a feasible and néaeptimum matrix §¥ néY 69 which is as closest
(typically quantified in terms of some distance measure; e.g., Euclidean norm) as possible to
the original matrix§. Of course, in such cases, the target process will not be exactly resembled,
while, the difference betwee® and §Ycan be regarded as a proxy for the magnitude of
approximation introduced to the simulatiéras and Rodriguez-lturbe (1985 p. Sas well
asKoutsoyiannis (1999discuss several situations which may lead to a non-positive definite
matrix € Almost all of these situations are related with the estimates of correlation coefficients
from the empirical data. In the case of SMARTA, and provided that a feasible autocorrelation
structure has been identified for each individual process, a non-positive definite Svamx

arise due to data-based estimates of lag-O cross-correlation coefficients, imprecise
approximation of equivalent correlation coefficients or incompatible combinations of marginal
distributions, autocorrelation structures and target cross-correlations (see sectiprF8r2.1
instance, since the proposed scheme (in multivariate mode) treats each individual process
separgely of the cross-correlations, the simulation of highly cross-correlated processes with
particularly different distributions and autocorrelation structures (e.g., very fast-decaying and
very slow-decaying) may be infeasible (see section 4.2 for a simulation example involving both
positively and negative cross-correlated LRD and SRD processes), even if the latter are
individually valid.

At this point it is noted that an incidental contribution of SMARTA is the alleviation of a burden
relatedto preservation of the skewness coefficient. As mentioned in the introduction, a broad
class of linear stochastic models, in an attempt to preserve the coefficients of skewness of the
target process], employ non-Gaussian white noise for the innovation tégrtypically from
Pearson type-lll distribution. However, the latter practice may lead to very high coefficients of
skewness for the innovation term which are hardly attain&aletsoyiannis, 1999; Todini,

1980) This practice was also adoptediyutsoyiannis (2000in the original SMA scheme,
where the Pearson type-lll distribution has been employed for the generation of skewed white
noise. More specifically, regarding the univariate formulation of the latter model (assuming
q =219, in Figure 3a-b we depict (from two distinct points of view) the relationship between

the skewness coefficien®g,Aof innovation term, R, that is required to attain the target

coefficient of skewness@g,Aof the variable, T; for several hypothetical HK process

characterized by different valuestafcoefficient. See also Eg. (29) limutsoyiannis (2000)

It is apparent from irFigure 3a-b that the higher the value B the higher the required
skewness of the innovation terrR, For example, in an HK process wiih= 0.8, the skewness
coefficient of innovation termRhas to be set twice as high as than the on& &¥e remark

that this issue is further amplified (not shown h@revhen the underlying model is used in
multivariate modéKoutsoyiannis, 1999)0n the other hand, SMARTA completely alleviates

the latter difficulties since the SMA scheme is used as an auxiliary model in the standard
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Normal (i.e., Gaussian) domain and the generated data are subsequently mapped to the actual
domain using the target ICDFs. Therefore, the target marginal statistics are attained without
making any attemptto generate skewed innovation terms, neither in univariate nor in
multivariate mode. Moreover, an additional contribution of SMARTA regards the optimization
problem that arises when the matis non-positive. Particularly, the latter is simplified in a
nearest correlation matrix problem, since tet&m of Eq. (28) irKoutsoyiannis(1999)
that accounts for skewness, is no longer needed.
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Figure 3. Graphical illustration of the relationship between the required skewnesgieoef@_2#of

innovation termR.and a) the skewnes® 2#of an fGn procesdl for various values off and b) the
value ofH of an fGn processl, for various values of skewness &4, (using the SMA model wit

q= 2.
3.4 Generation procedure of SMARTA

Having described in detail all the key components of SMARTA approach in the previous
sections, it is useful to provide the complete generation procedure, deconnposéte
following six steps:

Step 1.Defineatarget distribution( sofor each proces_é'gé E L saSMARTA, as well

as all Nataf-based methods flexible in terms of distribution fitting method; hence one can
select a fitting method of their preference.

Step 2.Define a target auto-correlation structuéﬂ(for each proces_é’gé E L sasingl
a theoretical ACF modeFor instance, for each proce}gdentify the parameters of CAS that
better fit the observed data. Furthermore, in the multivariate case, identify the tarQet lag-

cross-correlation coefficientséj"['J f‘%etween processe_?.'gf . T_‘fé EM F L .sdaaal

Step 3.Identify the equivalent correlation coefficientéékof each theoretical ACF, up to the
maximum specified lag (which depends on the type of the process; LRD or SRD), for each
process_'l'gé E L saFRurdhermore, in the multivariate case, estimate the equivalent lag-0
cross-correlation coefﬁcier@ ?Assuming that the algorithm of Appendix A is employed for
the identification of equivalent correlations, and given the fact that it allows the direct
estimation of the equivalent ACF up to any lag, the latter has to be empidyeds, one for

each procesgrgé E L saFRudhkermore, in order to estimate the lag-0 equivalent cross-

correlation coefficientég é,Ythe same procedure should be employetl F s; t additional
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times. For instance, in a 4-dimensional probleim [ V), the algorithm of Appendix A is
execuedin total, 1:1 E s; ttimes (=10).

Step 4.Calculate the parameters of the auxiliary SMA model (section 3.3), i.e., the weight
coefficients (= of each auxiliary proces_SéJé E L saAdditionally, in the multivariate

case, calculate the elements of masi€and & (see also, Eq. (26) and (28)

Step 5.Employ the auxiliary Gaussian SMA model and generate a realization of the auxiliary
univariate (\; or multivariate process ;.

Step 6.Attain the actual procesg (or _%), by mapping the auxiliary Gaussian procegéor
_ ¢ to the actual domain using the ICDFgo‘E’, of each proces_é'gé E L savadd. (10).

By now, it should be clear that the basis of the proposed methodology consists an explicit
simulation method, in terms of reproducing the distribution function (relieved from the
limitations and constraints of such schemes; see section 1), that fundamentally differs from the
other two typical schemes (implicit and transformation-based; see section 1) used in hydrology,
which also employ linear stochastic models. Compared to the implicit approaches, that employ
non-Gaussian white noise, Nataf-based schemes (e.g., SMARTA) alleviate several notable
limitations. Among them, the approximation of the distribution function, the generation of
negative values, the bounded dependence patterns and the (often) narrow type of possible
correlation structures, which can be attributed to the limited number of schemes for which
analytical equations can be derived to link the moments of the process with those of the white
noise. Additionally, in contrast to transformation-based appesatiat aim tanormalizethe

data, Nataf-based schemes explicitly model them using target marginal distributions. Though,
it has to be noted, that in principle, the rationale of transformation-based agzroacthe

easily aligned with theWKHRUHWLFDO EDFNJURXQG Rby ugng eV GLV'
concept of equivalent (i.e., adjusted) correlation coefficients. This modification would mitigate
their major weakness (i.e., the introduction of bias) but still will not be equivalent with the
reproduction of certain, pre-specified, distribution functions. On top of this, since the ICDF is
employed, a unique advantage of SMARTA (and other Nataf-based approaches) over the
aforementioned schemes is that it can be used for the simulation of both univariate and
multivariate stationary processes with discrete, continuous and mixed-type distributions.
Regarding parameterization, the proposed Nataf-based approach exhibit a parsimonious
character, as it is evident by the small number of required parameters, which are equal or lower
than those required by the aforementioned schemes (for a comparison see section 4.1). Finally,
itis notedthatGXH WR WKH GHILQLWLRQ DQG XVH RI 3HRD)JVRQTV F
none of the latter methods (including SMARTA), can be used for the simulation of processes
characterized by distributions functions exhibiting infinite variance. In such situations the use
of alternative simulation methods is requifedy., Samoradnitsky, 20L7Random variables

with infinite moments typically arise when heavy-tailed distribution functions with power-type
tails are employed. For instance, a Pareto tyglistribution with CDF,( :T; L s F:Te >?©

where> P [scale),= P (shape) andl R ,has finite variance only for P tThe literature

offers a plethora of studies indicating the suitability of heavy-tailed distributions for both
precipitation(e.g., Cavanaugh et al., 2015; Koutsoyiannis & Papalexi@l6;2Papalexiou

et al., 2013; Papalexiou & Koutsoyiannis, 2013, 2048d streamflowe.g., Anderson &
Meerschaert, 1998; Basso et al., 2015; Blum et28l1,7; Bowers et al., 201%rocesses,
especially regarding the description of their extreme behavior. After reviewing the outcomes
of these studies, which involve the analysis of numerous worldwide historical records, we
found that the majority of them, agree that the hydrological variables are characterized by
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distribution functions (with either exponential or power-type tails) with finite variance. On top
of the empirical evidence provided by the aforementioned works, theoretical reasoning (related
with entropy and energy production) further supports the finite variance hypothesis for
hydrometeorological processgsoutsoyiannis, 2016, 2017n this vein, it is regarded that

the finite variance assumption poses a practical barrier of limited impact, if arthe on
application of latter methods for the simulation of hydrometeorological processes.

4  Hypothetical simulation studies

Prior to employing real-world datasets to demonstrate the proposed approach, we decided to
setup two hypothetical simulation studies. One univariate and one multivariate. The motivation
behind this choice was based on conducting experiments where all the assumpagrgare
known, hence allowing the comprehensive evaluation and assessment of the model without the
effect of exogenous factors, such as, erroneous or short length historical data. However, it is
remarledthat the proposed method is generic, and can be directly applied for the simulation of
univariate and multivariate stationary processes (e.g., geophysical, hydrometeorological and
beyond). In that respect, in section 5 the applicability of SMARTA is demonstrated using two
real-world datasets, one that concerns the simulation of annual non-Gaussian streamflow at
four stations and another that involves the simulation of intermittent, non-Gaussign, dail
rainfall at a single location.

4.1 Simulation of univariate processes
The first simulation study constitutes a comparison between the original SMA and the proposed
SMARTA models (withg = 2'2 for both) for the simulation of long (i.e.?2ime stepy
univariate HK processes (i.e., f{Gn), exhibiting different Hurst coefficientsHi.&{0.6, 0.7,
0.8, 0.9} and Pearson type-lll marginal distributiod (). With this in mind, we identifiead
total of 4 scenarios, each one characterize@ byand differenH coefficients. It is reminded
that the original SMA model, in order to approximate the marginal statisticsgusesriates
for the innovation term (hence hereafter referred to as SMA; while SMARTA uses the
ICDF of the target distributiof in this caseé . The rationale regarding the selection of this
distribution was the intention to conduct a fair and meaningful comparison among the two
models, which, in this formulation, have exactly the same number of parameters, i.e., three for
the marginal distribution (see, Eg. (29)) and one (Hgfor the autocorrelation structure. We
point out that, the comparison is not inteddb infer which model is the best, but rather used
as a benchmark to highlight the merits of the proposed appréachis essentially a Gamma
distribution (see, Eg.1¢))) with an additional location (else knovas threshold or shift)
parameter, whose PDF is given by,
S T F 2075 TF? (° 2

Builid =apar—— @ A 13 @R A4l o) £ % @

where + Alenotes the gamma function, whike, P y > M rand ? D @re shape, scale and

location parameters, respectively; and they are interconnected with the ggava(iance
(é_é?), skewness %) and kurtosis ¢p,) coefficients of random variabl&by,

t> X
& L ?EXA BL =34 oL —a YpL—-—Eu (30)
- - = > Y ==
More specifically, in all scenarios, we employedéa distribution with parameters L
rgwxsv> ssAyet? L sidv uavhose theoretical moments are presentéichivle 2




738 Table 2.Summary of theoretical and simulated statisiEreproduced by SMA and SMARTA models.

Theoretica Simulated (SMA€ ) Simulated (SMARTA)
Scenario All H=0.6H=0.7H=08 H=09H=06H=0.7H=0.8H=0.9
Mean () 10 9.99 10.08 9.85 10.23| 10.00 9.99 9.99 10.00
Variance () 100 100.61 100.78 100.04 99.79 | 100.03 99.86 100.07 101.65
Skewness coeffQ) 2.30 235 234 232 235 | 230 229 230 235
Kurtosis coeff. Cy) 10.93 |11.43 11.80 12.62 15.97| 1094 10.85 11.00 11.53

0.60, 0.70|
Hurst coeff. H) 0.80. 0.90 061 070 080 089 | 060 0.71 080 0.9

*The theoretical moments correspondé&o distribution @ = 0.75614p = 11.5 and: = 1.30434).

739 Regarding SMARTA and the given marginal distributibigure 4a illustrates the relationship
740 between the equivalent correlation coefficiegand the target oneé (the superscripts are
741 omitted for simplicity), whileFigure 4b depicts the equivalent autocorrelation coefficiegis
742 employed by SMARTA, in order to capture the target autocorrelation struétofaghe target
743  HK processes.
200~ bro00- __
— Approx. fun. « 0.500- S e
* Eval. points Zq: R L |
0.75- T: R
Q. 0.50- 'g 0.010-
S oot e
= H=0.7
0.00 - —H=0.6
().IOO O‘IES O.ISO O.I'f’S 1 .‘00 i I‘O 1 UIOO 40I(J0
744 p Lag, t
745  Figure 4.a) The established relationship between equivaléand targetécorrelation coefficients. b)
746  Comparison between the target and equivalent autocorrelation coefficients employed théthi
747  SMARTA model for HK processes with the various valuebl of
748 Table 2 presents the simulated (by the two approaches) first four moments; which are
749 apparently well-captured by both models. It is noted that, while SMA does not explicitly
750 accounts for the kurtosis coefficient, it is able to reproduce it in a satisfactory degeewlbsp
751 when one considers the high uncertainty associated with its estim&tionombardo et al.,
752  2014) Nevertheless, it is reminded that the resemblance of the moments does not imply the
753  reproduction of the marginal distributioiviatalas & Wallis, 1976)This is clearly depicted
754  in Figure 5a-d, where we compare the target theoretical cumulative distribution (CDF) with
755  the empirically derived cumulative density functions (ECDFs) of the two models. In this case,
756 only SMARTA was able to reproduce the target distribution, regardless of the vaHlie of
757  coefficient (its ECDF is almost indistinguishable from the theoretical one). On the other hand,
758 the ECDF of SMA€ departs from the theoretical one for high valued ¢¢.g., sed-igure
759 5d). Furthermore, SMARTA explicitly avoids the generation of negative values; since the
760 target distribution € ) is positively bounded at? L sidv u\A property of high importance
761 in hydrology due to the (often) non-negative nature of such variables (e.g., streamflow and
762  precipitation).
763 Regarding the resemblance of the auto-dependence structure of the processes, it is apparent
764  from Figure 5e-h andrigure 5i-I that, both models were able to reproduce the theorédi€al
765 ACFs as well as the corresponding climacograms, even for high valde3 bé latter graphs
766 also provide an empirical evidence of the theoretical consistency of both approaches. In
767 addition, the Hurst coefficient of the synthetic realizations {sd#e 2) was estimated using
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the climacogram-based, least squares variance (LSV) méthodlis & Koutsoyiannis,
2011)and are in agreement with the theoretical values.

Finally, in order to visually assess the form of the established dependencies, for both models
and each HK process (i.e., scenario), we employ scatter plots of the lagged synthetic data for
2= 1 (Figure 5m-p) and 2= 10 Figure 5g-t). It is observed that, despite the fact that both
models reproduced the same autocorrelation coefficienfal and 2= 10, they establish
particularly different dependence patterns. This is attributed to the underlying assumption of
SMARTA regarding the joint behavior of the process which is related to the Gaussian copula
(expressed through the auxiliary Gaussian model).



777
778  Figure 5.Comparison between theoretical and simulated CDFY LQJ WKH :HLposDAD)V SORW

779 of SMA-é and SMARTA models for HK processes with )= 0.6, b)H = 0.7, c)H = 0.8, d)
780 H=0.9. Comparison between theoretical (HK) and empiAcat of SMA-& and SMARTA models
781  for HK processes with éll = 0.6, )H = 0.7, g)H = 0.8, h)H = 0.9. Comparison between theoretical
782  (HK) and empirical climacograms of SMA&- and SMARTA models models for HK processes with
783 i)H=0.6,j)H=0.7,kH =0.8, [)H = 0.9. Scatter plots of SMA& and SMARTA models for time
784  lag 2= 1 for simulated HK processes with k)= 0.6, n)H = 0.7, 0)H = 0.8, p)H = 0.9. Scatter plots
785 of SMA-é& and SMARTA models for time lag= 10 for simulated HK processes withHj) 0.6, r)
786 H=0.7,sH=0.8,t)H=0.9.



787 4.2 Simulation of multivariate processes

788 To further elaborate on the SMARTA approach, we setup a multivariate problem that concerns
789 the simultaneous generation of four contemporaneously cross-correlated SRD and LRD
790 processes. The latter may be seen as four (4) different processes at the same site, or processes
791 of the same variablet 4 different sites. Hereinafter, we consider the latter for convenience and

792 refer to them as sites A-D, as well as model them in that order, i.e., as 4-dimestsito@ry

793 process z L gjgg'égrég'g% where for instance,= 3 refers to site C. In this demonstration,
794  the target auto-dependence structure of each process is described by the two-parameter CAS
795 (i.e., EqQ. (6)). More specifically, sites A and B are characterized by LRD behavior (pahticula
796 HK, since we set >1 and = o) and slowly-decaying ACF, while sites C and D by SRD
797 (since we set =0) and fast-decaying ACF. In addition, we assigned different target
798 distributions to the sites A-D, i.e., Burr type-Xll (Eq. (31)), Pearson Typi=g. (29)), Log-
799 Normal (Eq. (17)) and Weibull (Eqg. (32)). The PDF of the Burr type-XIl distribution is given
800 by, i
= = 47?5 6 7075

B vl asa g4 »L @5>—_6A-I@\ |'s EéA p a TPr (31)
801 where =5& &P rare shape parameters ardP Iis a scale parameter. It is noted that
802 is a power-type distribution and it moment exist if and only if5=; P NFurthermore, the
803 PDF of the Weibull reads as follows,

= TO07?5 TO
BrsTa=d>@AQN $3'IF-@péa TR (32)

804 where = P rand > P rare shape and scale parameters respectiValyle 3a provides a
805 synopsis of the latter assumptions, as well as the parameters of CAS and the theoretical
806 moments of the corresponding distributions. Note that, the Kurtosis coefficient of site A is
807 infinite, since == O v Further to this, the target and equivalent lag-0 cross-correlation
808 coefficients (involving both positive and negative ones) are givéralile 3b. It is apparent
809 that this is a peculiar simulation scenario, which was devised in order stress-test the SMARTA
810 method.

811 Table 3. a) Synopsis of theoretical distribution models and their moments, asasyetif CAS
812 parameters for each variable of the multivariate simulation study. b) The tuppete (grey cells)

813 contains the target lag-0 cross-correlation coefficieéfs)é(ﬁetween sites A-D, while the lower triangle
814  depicts the corresponding estimated equivalent correlation coeffici@fsv(

a) Theoretical b) Lag-0 cross-correlation

Distribution/ Parameters |Site A Site B Site C Site D Site A Site B Site CSite D
U é ®ee nARa SiteA 1 -0.700 0.750 0.600

a 25@) 3 05 15 Site B-0.94C 1 -0.60C-0.700

b 1 1 2 10 Site C0.862 -0.749 1 0.650

c 15@) 10 - - Site D0.811 -0.923 0.707 1

Statistic Theoretical

Mean () 476 13 837 9.02

Variance () 1142 3 19.91 37.56

Skewness coeff() 501 1.15 1.75 1.07

Kurtosis coeff. Cv) - 8 8.89 4.39

CAS parameter, 1.25 1.66 0 0

CAS parameter, 11.32 5 05 0.2

Hurst coeff. H) 06 07 05 05

*Distribution abbreviations:U  : Burr type-Xll (a; = shapea, = shapeb = scale),é : Pearson typéH
(a = shape,b = scale,c = location), & & Log-Normal @ = shape,b=scale), i R &Weibull (a = shapg
b = scal¢.
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In order to provide further insights regarding the theoretical consistency of the model, we
generated 100 independent realizations with lentjthithe steps and set the number of
SMARTA modelf Mternal weight coefficients equal tp= 2'°. Figure 6 provides a synopsis

of some basic dependence-related statistics in terms of box-plots. Clearly, SMARTA resembled
with high precision the lag-1 autocorrelation and lag-0 cross-correlation coefficients (including
the negative ones), despite the fact that the target processes are characterized by very different
auto-dependence structures and distribution functions. Additionally, regarding the Hurst
coefficient of the simulated series, it was once again estimated with the LSV matbroll
discrepancy that concern site D, which is an SRD procesdH{i=e(.5)is observed. This may

be attributed to the associated estimation method and the high lag-1 autocorrelation (~0.8) of
site D. Furthermore, iRigure 7a-d we compared the empirical distribution of each realization

of each site A-D, with the corresponding theoretical distribution, in terms of the survival

function (SF), also known as complementary CDF or tail function. The latter is ddexyo_@d

and expresses the probability of exceedance,_a_-ee., 2kTP To L s & The latter figure

highlights the ability of the model to preserve the target distribution functions, even in
multivariate mode, since the median 8Fall 100 realizations for the 4 sités virtually
identical to the associated theoretical model. Furthermor&jguare 7e-h we depict the
relationship between the equivalerdand targeté correlation coefficients for each site A-D,
while the preservation of the theoretical auto-dependence structure can be verified by the
simulated ACFsKigure 7i-l) and climacogramsHigure 7m-p) of the four variables, that
closely resemble the corresponding theoretical ones. To further explore the joint behavior of
the model and the established dependence patterns, we employ scattdtiguiogsS1 of
supplementary material (SM) depicts the established dependence patterns among the variables
for time lag O (SMFigure Sle, i, j, m, n, 0), as well as for each variable for time lag 1 (SM,
Figure S1a, f, k, p). Finally, the relationship between equivalét®hd targetéV 2correlation
coefficients is provided for every combination of sites A-D ($Mure S1b, c, d, g, h, ).

Figure 6. Comparison between theoretical (red ddtsnd simulated lag-1 autocorrelation and Hurst
coefficient for sites A-D. Target (red dot¥,and simulated lag-0 cross-correlation coefficients for all
pairs of sites A-D.



845
846  Figure 7. (ad) Theoretical and simulated (SMARTA) distribution functionxVLQJ WKH :HLEXO(

847  plotting position) for sites A-D(e-h) The established relationships between equivai@and targeté
848 correlation coefficients given the marginal distribution of sites A-I). {iheoretical and simulated
849  ACEFs for sites A-D. (m-p) Theoretical and simulated climacograms (€@Gsj)tes A-D. In all cases,
850 the simulation intervals have been established using all 100 realizations.

851 5 Real-world simulation studies

852 5.1 Generation of multivariate annual streamflow time series

853 The first real-world simulation study concerns the application of SMARTA for the synthesis
854  of annual streamflow time seriat4 stations in New South Wales region, Australia (Australian
855 Government Bureau of Meteorology, 2015). Particularly, we employed historicaFagiag(

856 8a-d) from the following stations: Maragle Creek at Maragle (ID1: 401009), Goobarragandra
857 River at Lacmalac (ID2: 410057), Adelong Creek at Batlow Road (ID3: 410061), Cotter River
858 at Gingera (ID4: 410730). Hereinafter, we refer to them using their station ID, as well as model

859 them in that order, as 4-dimensional stationary prockds c 34 Ja T4 grgx; (i.e.,i = 3 refers
860 to station Adelong Creek at Batlow Road Wii¥8: 410061). The distribution of historical data
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does not exhibit the typical bell-type shape that is often encountered in annual data, hence we
use the Gamma and Weibull distributions to model them. Specifically, using the maximum
likelihood estimation method we identified the following distribution®] &= L t$ia > L
sxdw, F1ABRa= L tara> urtds, FT1ARE= L térd > svywand T81a= L

s@wa > kz¥z In addition, they are characterized by modetateigh temporal
dependence and high lag-0 cross-correlation coefficients, that range fronéﬁ)?)?ﬂo(o.%

(6237 FollowingKoutsoyiannis (200Qthe parameters of CAS (i.e., Eq. (6) - given in vector
format), ¥ L >4 yad sda yd2and A L >0éa wEa x 43 wyiwere identified for each
process by minimizing the mean square error (MSE) among the sample and theoretical
autocorrelation coefficients. In this case study, we simulated one realization of 1 000 years
using the SMARTA model (withg = 2°). Figure 8e-h provides, for each station, a visual
comparison among the empirical, theoretical and simulated distribution. FurtheFigoire,

8i-l depicts, for each process, the relationship between the equivalent and target autocorrelation
coefficients. The ability of the model to establish the target auto-dependence structures is
verified by comparing, the theoretical and simulated AEgUre 8m-p) and corresponding
climacogram Figure 8g-t) of each process. Finally, the model reproduced the targé lag-
cross-coefficients with high accuracy (SMgure S2 and established dependence patterns
that are in agreement with the observed ones Sgdire S2).
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Figure 8. Synopsis of annual streamflow simulation study at 4 stations in New Solgh k&gion. (a-
d) Historical time series. (e-h) Empirical, simulated and theoreticalbdison functions (using the
:HLE X O O 1 \poStdm tor\atationd ID1-4 () The established relationships between equivalént,
and targetécorrelation coefficients given the marginal distribution of stations IDin4o) Empirical,
simulated and theoretical ACFs for stations ID1-4. (g-t) Empirical, si@dl and theoretical
climacograms (CGs) for stations ID1-4.

5.2 Generation of univariate daily rainfall time series

In the final case study, we employ SMARTA for the stochastic simulation of a univariate daily
rainfall process characterized by intermittency. The available data concern an observation
period spanning from 1/1/1964 to 31/12/20@8 years) from Pavlos rain gauge located at
Boeticos Kephisos river basin, Greeé¢gg(re 9a). See alsd-fstratiadis et al(2014) for

further details regarding the dataset. In general, apart &d+hoc techniquesto handle
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intermittency (e.g., truncation to zero of values below a threshold), typical stochastic
simulation schemes.g., Papalexiou, 2018; Serinaldi, 2009; Serin&l#iilsby, 2014)rely
on the use of mixed-distributions or employ two-part models, which, in a nutshell, describe
precipitation processes as the product of two different processes, particularly, that of
occurrence (rain or no-rain) and that of intengity)., Ailliot et al., 2015; Breinl et al., 2013;
Brissette et al., 2007; Khalili et al., 2009; L@6,16, 2017; Lombardo et al., 2017; Mhanna
& Bauwens, 2012; Thompson et al., 2007; Wilks, 1988ks & Wilby, 1999). Herein, we
employ the former approach, that is, mixed-distributions, as it seems a convenient option
(Papalexiou, 2018piven the characteristics of SMARTA and particularly its flexibility
regarding the selection of the marginal distribution. An alternative option, also compatible with
the proposed method (and BfBbased schemes in general), would be the use of single
distribution functions that exhibit an atom of probability mass at zero. A characteristic example,
which in the past has been used for this purpbsein, 2004; Hasan & Dunn, 201%$ the
Tweedie distribution(Jorgensen, 1987; Tweedie, 198MNevertheless, in this simulation
study, in order to simultaneously account for the effect of seasonality and the stationarity
assumption of the model, we treat each month as separate stochastic process, by varying the
distribution function and autocorrelation structure on a monthly basis. Specifically, regarding
the marginal distribution, we employ a discr&entinuous (i.e., mixed or zero-inflated) model
whose CDF is given by,

L,a

ETL VL EsFL)Ta TPr
where, L, denotes the probability of a dry interval (abbreviated as probability dry)Li.e.,
2kTQ T,0and )¢ stands for the distribution of amounts greater than the threshpice.,
)& (_é_qlé“ L 2k ¥ TP T,0Moreover, the corresponding ICDF is given by,

(33)

ra 9
J5QL P QF4 34
\E Q )_'G?SF:S = L&Ga LO Q Qs ( )

where Q B > r & dehotes probability. In this formulation values less or equal f@hat arise

with probability L) are assumed equal to zero. We remind the reader that the solely
requirement of the algorithm of Appendix A, that is used to approximate the relatianskeip

of Eq. (15), hence the equivalent correlatiasisis the ICDF (thus conveniently accounting

for mixed distributions; e.g., Eq. (33)). Nevertheless, after the specification of the threghold
the empirical probability dryL., can be directly obtained from the available data by counting
the number of dry occurrences and dividing it with the total number of observed data.
Regarding,) & it is obtained by selecting and fitting a theoretical distribution to the amount

data above threshold, In this demonstration, we sdt, r , and for the description of the
positive daily precipitation amounts of all months, we employ the generalized gaéna (
distribution (Stacy, 1962)which has been proved particularly capable for the task at hand
(Chen et al., 2017; Papalexiou, 2018; PapalexiolKd&tsoyiannis, 2016)Of course,
depending on the case, tideacould be replaced with other distribution functions. Back in our
case, the parameters of thedistribution were identified using a fitting approach based on L-
moments/Hosking, 1990; specifically the one proposed Byapalexiou and Koutsoyiannis
(2016) The PDF ofa adistribution is given by,

= TG?5

TO
BaTaAAPL——— @A 13 IF@pa TPr (3
> 1% ) >

where + Alenotes the gamma function, whike; P 1, =5 P rare parameters that control the
shape of the distribution and P is a scale parameter. The interested reader is referred to the
latter works for further details regarding tlaeddistribution and the associated fitting method.
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For instance, concernind KH PDUJLQDO FKD U D BalMHdintall, We_déstin&dd 2 FW R E |
the probability dry, L, L r & v while the parameters od awere foundb = 3.96, == 0.851

and =5 = 0.588. Furthermore, regarding the description of the auto-dependence structure of the
process, we employed CAS and estimategarameters on a monthly basis (e.g., for October

it we identified, =0 and =1.36) by minimizing the MSE among the sample and theoretical
autocorrelation coefficients. Finally, we generated 1 000 years (i.e., 365 000 days) of synthetic
data Figure 9b depicts a random window of 60 years) and performed a similar analysis with
the previous cases studies; which is summarizdeéigare 9, where we depict the results of
three characteristic months, i.e., February, June and October (the results are similar for the
other monthstsee SMFigure S3-S6). Particularly, panels (c)-(e) illustrate the capability of

the model to reproduce the target distributions (in terms oSHef positive precipitation
amounts L, is explicitly preserved since it is embedded in the employed mixed-distribution
model), while, panels (f)-(h) depicts the relationship of equivaléand targeté correlation
coefficients for botha &and mixed-distribution models. It is observed that, the non-linearity of
this relationship increases fro@ato mixed distribution due to the fact that the latter is zero-
inflated. Furthermore, panels (i)-(k) depict the accurate resemblance of the target
autocorrelation structure (i.e., CAS), while, panels (I)-(n) provide a comparison of empirical
and simulated scatter for time lag 1, which seems to be in agreement with the historical pattern.
Finally, preliminary analysis (not shown herein) indicated that the model has the potential to
approximate some of the empirical statistics (in terms of L-moments) across coarser time
scales, even though they are not explicitly modelled by it. This observation should not be
interpreted as a general conclusion, rather as a direction for further investigation. We remark
that the literature offers several well-established techniques with proven results, specifically
designed for this purpose, i.¢o0, address scaling and intermittency, such as disaggregation
(e.g., Kossieris et al., 2016; Lombardo et al., 20and multi-fractal methods, based on
cascade modelg.g., Deidda et al., 1999; Kantelhardt et al., @0Dessier et al., 1996)

The latter methods, by design, aim to simultaneously resemble the process at multiple
aggregation levels, employing scaling relationships for high order moments (often greater than
second). In our view, an interesting topic of future research would be a comparison among the
latter simulation techniqgues with Nataf-based methods for the reproduction of the multi-scale
behavior that characterizes hydrometeorological processes. Similar works, yet involving
alternative simulation schemes, are thosewfibardo et al. (201ZandPui et al. (2012)
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6 Conclusions

This paper introduces a novel and versatile stochastic model, termed SMARTA, with solid

theoretical background and proven capability of addressing important hydrometeorological

simulation problems. A prominent characteristic of the model is its alditgimulate
univariate and multivariate stationary processes with any autocorrelation structure and
marginal distribution, provided that the former is feasible and the latter have finite variance.

The central idea of the methodies on the use of an appropriately parameterized (expressed

throughequivalentcorrelation coefficients) auxiliary Gaussian process which after its mapping

to the actual domain resuliis a process with the desired stochastic structure and marginal
distribution.

Briefly, the proposed approach is built upon three major elemahiche SMA scheme of

Koutsoyiannis (200Q)which is used as an auxiliary model in the Gaussian domain, b) a

generalized autocorrelation structure, that allows the parsimonious description of SRD and

LRD processes, and) the rationale of NDM (Nataf, 1962) and the associated mapping

procedure, that provide the theoretical basis of the method and in turn allows the identification

of the equivalentcorrelation coefficients; hence determine the parameters of the auxiliary
model.

Overall, the proposed methodology maintains the flexible and parsimonious character of the

original SMA model and simultaneously exhibit a series of additional virtues, as demonstrated

through two hypothetical and two real-world simulation studies. Among them:

a) The unambiguous advantage of explicitly simulating any-range dependent (SRD or LRD)
stationary processes with arbitrary distributions (even from different families, see section
4.2), using a single simulation scheme.

b) Its ability to simulate univariate and multivariate processes that exhibit contemporaneous
cross-correlations. The generation of time series at multiple locations, or of individual
correlated processes, is often the case in hydrological studies, making SMARTA a useful
method for such tasks.

c) The possible incorporation of novel advances in statistical science in stochastic simulation;
such as new distributions and robust fitting methods (e.g., L-moments). In addition,
regarding distributions of hydrometeorological processes, SMARTA can take advantage of
years of research in statistical analysis of hydrometeorological variables, since it can
incorporate any distribution function whose variance exists.

d) The ability of the model to explicitly avoid the generation of negative values, which
simultaneouslys a shortcoming of many linear stochastic models. This is due to the direct
use of the distribution function(s) within the generation mechanism of the model. If the
latter is defined in the positive real line, then all the generated values will be within those
bounds (i.e., positive).

Typical, but not limited, applications of SMARTA entail the simulatibstationary processes

at time scales not affected by cyclostationary correlation structures (e.g., monthly scale). For

instance, given the wide range of admissible correlation structures and distributions, it could

be applied for the generation of synthetic time series at annual arienfagcales (e.qg., daily)

for various hydrometeorological processes, such as, precipitation, streamflow and temperature.

The latter time series can be used as input in a variety of water resources risk-related studies

and it is anticipated to improve the quality of their outcomes, due to more accurate

representation of the input processes. Ongoing research aims in an enhanced stochastic

simulation scheme that will combine (using disaggregation techniques) both stationary (e.g.,

SMARTA) and cyclostationary Nataf-based modgisoukalas et al., 2017, 2018dhus

providing an even more flexible and versatile simulation method for synthetic time series

generation.
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Appendix A

Tsoukalas et al(2018a) proposed a generic, yet simple and efficient method for the
establishment of the relationship of Eq. (18)at concerns the estimation of equivalent
correlation coefficientséd, required by Nataf-based schemes. The method is essentially a
combination of Monte-Carlo simulation and polynomial approximationisuagplicable for
discrete, mixed and continuous-type marginal distributions; since its only requirement is the
ICDF. The basic steps of the algorithm are synopsized below (the indices were omitted for
simplicity):

Let T and T be two random variables whilég; and é4 stand for the equivalent (in
Gaussian domain) and the target correlation coefficients respectively. Furthermofe, let

and ¢ , denote the corresponding target distributions, whose variance is assumed finite.

Step 1.Create a -dimensional, equally spaced, vectal c N6A& &aNBA4 divithe interval
[rmin, rmayd. LEMMa 2 (see section 3.2an be employed in order to determine the valuegiof
and rmax Since it provides insights regarding the sign @. For instance, if the target

correlation é4 is positive we restrict our attention on the interval [0, 1]

Step 2.For each value oBigeneratéN samples from the bivariate standard normal distribution
with correlation N'A

Step 3.Map the generated values to actual domain using their ICDF (@.eand £ ) as in

Eq. (10). ) )

Step 4.Calculate and store the resulting correlatidin thevector ™ L cNa & &aN& a ¢\

Step 5.Since Eg. (15) is a continuous function, bounded in the intemvial ffmay, according

to Weierstrass approximation theorem it can be approximategioyager polynomial of the
form of Eq. (A.1) betweerNaAd N

éLa@&ZdA NN LLNE 5,.MAE ® E sNEk 3 (0)

Note that the constant termy could be omitted as indicated by Lemma 2. Furthermore, in
order to avoid over-fitting and possikle-conditions, which could lead to simulation errors,

the order of the polynomial can be determined with the use of cross-validation or Akaike
information criterion (AIC). Alternatively, the degrees of freedom of the polynomial can be
restricted (as inKiao (2014) by settingL L x F.sThe latter author, based on a systematic
analysis of a variety of distributions characterized by wide combinations of skewness and
kurtosis coefficients, argued that the relationship of Eqg. (15) can be well approximated by a
polynomial of less than ninth degrge<g9); hence proposed setting= 9 ancpb = 8. Moreover,

it is noted that instead @fpolynomial relationship, other type of functions can be usedl,
Papalexiou, 2018; Serinaldi & Lombardo, 2017)

Step 6.Given a target correlatiorey @&valuate the equivalent correlati@d, by inverting the

fitted polynomial of Eq. (1 ).



1070 It is remarked that the implementation of the latter algorithm in high-level programming
1071 languages (e.g., R or MATLAB) is fairly easy and straightforward, while a single run requires
1072 less than 0.5 second (with= 150 000 and = 9) on a typical 3.0 GHz Intel Dual-Core i5
1073 processor with 4 GB RAM. Finally, it is noted that since it is a Monte-Carlo based method, the
1074 three parametefd, andp control its accuracy and computational efficiency.
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