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Abstract  31 
Hydrometeorological processes are typically characterized by temporal dependence, short- or 32 
long-range (e.g., Hurst behavior), as well as by non-Gaussian distributions (especially at fine 33 
time scales). The generation of long synthetic time series that resemble the marginal and joint 34 
properties of the observed ones is a prerequisite in many uncertainty-related hydrological 35 
studies, since they can be used as inputs and hence allow the propagation of natural variability 36 
and uncertainty to the typically deterministic water-system models. For this reason, it has been 37 
for years one of the main research topics in the field of stochastic hydrology. This work presents 38 
a novel model for synthetic time series generation, termed Symmetric Moving Average 39 
(neaRly) To Anything (SMARTA), that holds out the promise of simulating stationary 40 
univariate and multivariate processes with any-range dependence and arbitrary marginal 41 
distributions, provided that the former is feasible and the latter have finite variance. This is 42 
accomplished by utilizing a mapping procedure in combination with the relationship that exists 43 
between the correlation coefficients of an auxiliary Gaussian process and a non-Gaussian one, 44 
f�R�U�P�D�O�L�]�H�G���W�K�U�R�X�J�K���W�K�H���1�D�W�D�I�¶�V���M�R�L�Q�W���G�L�V�W�U�L�E�X�W�L�R�Q���P�R�G�H�O�� The generality of SMARTA is stressed 45 
through two hypothetical simulation studies (univariate and multivariate), characterized by 46 
different dependencies and distributions. Furthermore, we demonstrate the practical aspects of 47 
the proposed model through two real-world cases, one that concerns the generation of annual 48 
non-Gaussian streamflow time series at four stations, and another that involves the synthesis 49 
of intermittent, non-Gaussian, daily rainfall series at a single location. 50 

1 Introduction 51 
Hydrometeorological time series (i.e., sequences of observations ordered in time) can be 52 
considered the cornerstone of any water-related engineering study, although, such data are in 53 
sc�D�U�F�L�W�\���D�Q�G���R�I�W�H�Q���W�K�H���D�Y�D�L�O�D�E�O�H���U�H�F�R�U�G�V���G�R�Q�¶�W���K�D�Y�H���V�X�I�I�L�F�L�H�Q�W���O�H�Q�J�W�K���I�R�U���W�K�H���W�D�V�N���D�W���K�D�Q�G�����H���J������54 
reliability and risk-related studies). A historical record of such observations will rarely if ever 55 
repeat in the future, which is the simplest manifestation of the high variability and uncertainty 56 
that is naturally inherited therein. In this vein, it can be argued that embracing stochasticity in 57 
hydrometeorological processes is a first step towards the development of uncertainty-aware 58 
methodologies for water systems. Stochastic simulation, and the synthesis of long 59 
hydrometeorological time series, which are used in place of historical ones, can provide a 60 
potential remedy to this situation. Synthetic time series are not predictions of future states, but 61 
rather constitute plausible realizations of the simulated process, that are, loosely speaking, 62 
statistically equivalent with the parent information (i.e., historical data). Driving the typically 63 
deterministic water-system simulation models with such realizations provides the means to 64 
assess their response in a probabilistic manner, under multiple, plausible scenarios. Nowadays, 65 
synthetic data are used in a variety of studies, among them, the optimal planning and 66 
management of reservoir systems (e.g., Celeste & Billib, 2009; Feng et al., 2017; Giuliani 67 
et al., 2014; Koutsoyiannis & Economou, 2003; Tsoukalas & Makropoulos, 2015a, 2015b), 68 
risk assessment of flood (e.g., Haberlandt et al., 2011; Paschalis et al., 2014; Qin & Lu, 69 
2014; Wheater et al., 2005) and drought events (e.g., Herman et al., 2016), as well as water 70 
resources simulation under future climate conditions (e.g., Fatichi et al., 2011; Fowler et al., 71 
2000; Kilsby et al., 2007; Nazemi et al., 2013). Thereby, the wide applicability of synthetic 72 
time series and stochastic simulation highlight the need for simulation schemes that can 73 
resemble the, intriguing and challenging to simulate, characteristics of hydrometeorological 74 
processes. 75 
A typical characteristic encountered in such processes is auto-dependence (persistence), either 76 
short or long-range. The former, short-range dependence (SRD), has been extensively 77 
discussed in literature (e.g., Box et al., 2015) and implies an exponential autocorrelation 78 
structure that diminishes after few time lags. On the contrary, the second, long-range 79 



dependence (LRD), also known as long-term persistence (sometimes referred to as long-80 
memory), implies an auto-dependence structure that strongly extends for large lags (see, Beran, 81 
1992). The latter behavior is also related to the so-called Hurst phenomenon, also known as 82 
Joseph effect, fractional Gaussian noise (fGn), scaling in time or Hurst-Kolmogorov dynamics 83 
(HK; Koutsoyiannis, 2011; Koutsoyiannis & Montanari, 2007); see also the review work of 84 
Molz et al. (1997). Its discovery is usually credited to Hurst (1951), who while studying long 85 
records of streamflow and other data noticed that extreme events tend to exhibit a clustering 86 
behavior in terms of temporal occurrence. However, as pointed out by Koutsoyiannis (2011), 87 
it was Kolmogorov (1940) who first proposed its mathematical description. Eventually, after 88 
the seminal work of Hurst and the extensive documentation of Mandelbrot and Wallis (1969a, 89 
1969b, 1969c) it is now acknowledged that LRD (and HK) processes are omnipresent in 90 
geophysics, hydrology, climate and other scientific disciplines (Beran, 1994; Koutsoyiannis, 91 
������������ �2�¶�&�R�Q�Q�H�O�O�� �H�W�� �D�O������ ����������. The latter publications provide further examples and details 92 
regarding the interpretation and identification of such behavior. 93 
Regarding modelling and application of SRD or LRD in hydrological studies, the former type 94 
(SRD) has been systematically studied and employed in numerous cases for the simulation of 95 
a variety of hydrometeorological processes (Breinl et al., 2013; Brissette et al., 2007; Khalili 96 
et al., 2009; Matalas, 1967; Mehrotra et al., 2015; Mhanna & Bauwens, 2012; Srikanthan 97 
& McMahon, 2001; Srikanthan & Pegram, 2009; Thompson et al., 2007). On the other 98 
hand, it is well recognized that proper representation of LRD is of high importance, especially 99 
in reservoir-related studies, since their operation and regulation is performed in over-annual 100 
scale, where LRD is mostly encountered (Bras & Rodríguez-Iturbe, 1985; Iliopoulou et al., 101 
2016; Koutsoyiannis, 2002). Other notable hydrology-related applications of LRD include 102 
the stochastic simulation of precipitation or streamflow at finer time-scales, from monthly and 103 
daily (e.g., Detzel & Mine, 2017; Maftei et al., 2016; Montanari et al., 1997, 2000) to 10-104 
second interval (e.g., Lombardo et al., 2012; Papalexiou et al., 2011), as well as the 105 
generation of synthetic storm hyetographs (e.g., Koutsoyiannis & Foufoula�rGeorgiou, 1993). 106 
In general, SRD can be easily captured with the so-called AutoRegressive Moving Average 107 
(ARMA) family of models, while we note that, even though such models have a long history 108 
and are still popular, today the literature offers other powerful and flexible options (cf. 109 
Koutsoyiannis, 2016). On the other hand, LRD, hence HK behavior, requires the use of 110 
alternative generation schemes (see, Bras & Rodríguez-�,�W�X�U�E�H���� ������������ �2�¶�&�R�Q�Q�H�O�O�� �H�W�� �D�O������111 
2016), such as fractional Gaussian noise models (Mandelbrot & Wallis, 1969a, 1969b, 112 
1969c), fast fractional Gaussian noise (ffGn) models (Mandelbrot, 1971), broken line models 113 
(Ditlevsen, 1971; Mejia et al., 1972) and Fractional AutoRegressive Integrated Moving-114 
Average (FARIMA) models (Granger & Joyeux, 1980; Hosking, 1984). In contrast to the 115 
abovementioned specialized simulation schemes, a notable exception, that can simulate any 116 
type of autocorrelation function of a process, is the Symmetric Moving Average (SMA) model 117 
of Koutsoyiannis (2000, 2002, 2016), coupled with theoretical autocorrelation (or 118 
autocovariance) structures. This flexibility is achieved by decoupling the parameter 119 
identification of the autocorrelation structure and the generation mechanism (i.e., the model).  120 
In addition to temporal dependence, hydrometeorological variables are often characterized by 121 
non-Gaussian and skewed distribution functions (partially attributed to the often non-negative 122 
nature of such processes), especially in fine time scales (e.g., daily or finer), where 123 
intermittency is omnipresent. The need to account for non-Gaussian distributions was early 124 
recognized by many researchers ���H���J�������.�O�H�P�H�ã���	���%�R�U�$�Y�N�D�����������������0�D�W�D�O�D�V���	���:�D�O�O�L�V����������������125 
Matalas, 1967) and is currently remarked by the numerous large-scale statistical studies 126 
conducted at various time scales (e.g., Blum et al., 2017; Cavanaugh et al., 2015; Kroll & 127 
Vogel, 2002; McMahon et al., 2007; Papalexiou & Koutsoyiannis, 2013, 2016). Regarding 128 
stochastic hydrology and simulation through linear stochastic models, many efforts have been 129 
made towards that direction (i.e., simulating non-Gaussian processes) which can be broadly 130 



classified in three main categories (Tsoukalas et al., 2018a): a) Explicit methods that are able 131 
to generate data from specific marginal distributions ���H���J������ �.�O�H�P�H�ã�� �	�� �%�R�U�$�Y�N�D���� ������������132 
Lawrance & Lewis, 1981; Lombardo et al., 2012, 2017; Matalas, 1967) b) Implicit 133 
approaches, pioneered by Thomas and Fiering (1963), that treat skewness via employing non-134 
Gaussian white noise (typically from Pearson type-III distribution) for the innovation term 135 
(Detzel & Mine, 2017; Efstratiadis et al., 2014; Koutsoyiannis, 1999, 2000; Lettenmaier 136 
& Burges, 1977; Matalas & Wallis, 1976, 1971; Matalas, 1967; Todini, 1980). c) 137 
Transformation-based approaches that employ appropriate functions (e.g., Box-Cox) in order 138 
�W�R���³normalize�´���W�K�H��observed data; next simulate realizations using typical Gaussian stochastic 139 
models �D�Q�G���I�L�Q�D�O�O�\���³de-normalize�´���W�K�H���J�H�Q�H�U�D�W�H�G���G�D�W�D in order to attain the process of interest 140 
(e.g., Salas et al., 1980). However, as discussed in Tsoukalas et al. (2018a), most of these 141 
schemes exhibit a number of limitations that still remain unresolved. Particularly, approaches 142 
of category (a) are limited to a narrow type of autocorrelation functions and non-Gaussian 143 
distributions (e.g., Gamma or Log-Normal), while they are typically able to simulate only 144 
univariate processes. On the other hand, approaches of category (b) are prone to the generation 145 
of negative values, provide an approximation of the marginal distributions, while encounter 146 
difficulties when modelling highly skewed (univariate or multivariate) processes 147 
(Koutsoyiannis, 1999; Todini, 1980). It is noted thought, that some recent schemes  are able 148 
to capture moments higher than skewness (e.g., kurtosis), by the inclusion of additional model 149 
parameters (Koutsoyiannis et al., 2018 and references therein). On top of these issues, only 150 
few schemes (e.g., SMA) are able to model a variety of temporal correlation structures, while 151 
it is also possible to establish bounded dependence patterns which are far from natural ones 152 
(Tsoukalas et al., 2018a, 2018b). Finally, regarding the schemes of category (c), they require 153 
the specification of a non-trivial normalization function (due to the inadequacy of simple 154 
transformations; such as, Box-Cox) that often entail several parameters (usually determined 155 
through optimization techniques). Further to this, even if the latter function is properly 156 
identified, it is acknowledged that they introduce bias in the simulated marginal and joint 157 
characteristics (Bras & Rodríguez-Iturbe, 1985; Salas et al., 1980 p. 73).  158 
In this work, in an effort to simultaneously address these challenges and provide a flexible 159 
method for synthetic time series generation, we introduce a generic, yet simple and 160 
theoretically justified, explicit approach based on the simulation of univariate and multivariate 161 
stationary processes exhibiting any-range dependence and arbitrary marginal distributions. 162 
More specifically, the proposed method can explicitly model the autocorrelation structure and 163 
distribution of each individual process, provided that the former is feasible and the latter have 164 
finite variance, while simultaneously it can preserve the lag-0 cross-correlation structure. The 165 
main components of the method are, the SMA model of Koutsoyiannis (2000), a theoretical 166 
autocorrelation structure and the pivotal concept of Nataf�¶�V joint distribution model (NDM, 167 
Nataf, 1962). The key idea of our approach lies in employing an auxiliary Gaussian stochastic 168 
process, modelled using the SMA scheme, with such parameters that reproduce the target auto- 169 
(i.e., temporal; SRD or LRD) and lag-0 cross-correlation (i.e., spatial) coefficients of the 170 
process after its subsequent mapping to the actual domain via the target inverse cumulative 171 
density functions (ICDFs). It is remarked that instead of SMA, any other linear stochastic 172 
model (e.g., ARMA-type) could be employed in order to mathematically describe the auxiliary 173 
Gaussian process, yet, it is anticipated that the resulting simulation scheme will inherit its 174 
properties regarding the simulation of univariate and multivariate processes, e.g., if the 175 
auxiliary model is capable of simulating SRD structures, the established simulation scheme 176 
will also be SRD.  177 
The latter rationale has also been employed within the scientific field of operations research 178 
and particularly by Cario and Nelson (1996), as well as, Biller and Nelson (2003) who 179 
proposed the AutoRegressive To Anything (ARTA) and the Vector AutoRegressive To 180 



Anything (VARTA) methods respectively for the explicit simulation of stationary 181 
autoregressive (AR) processes with arbitrary marginal distributions. 182 
It is remarked that (to the extent of our knowledge) despite their wide acceptance, the 183 
aforementioned approaches (and their variants) have been unknown to the hydrological 184 
community and have never been used for the simulation of hydrometeorological processes until 185 
very recently. Nonetheless, it seems that presently, Nataf-based approaches are gaining 186 
momentum. Particularly, using a similar rationale, Serinaldi and Lombardo (2017) introduced 187 
an approach for the synthesis of autocorrelated univariate binary processes, while, Papalexiou 188 
(2018) provided a comprehensive treatment on the topic using autoregressive models and used, 189 
for first time, mixed-type marginals enabling the modeling of intermittent processes like 190 
precipitation. Finally, Tsoukalas et al. (2017, 2018a), employed the notion of NDM and 191 
provided a generalization of the latter models (ARTA, VARTA), termed SPARTA (Stochastic 192 
Periodic AutoRegressive To Anything), for the simulation of univariate and multivariate 193 
cyclostationary (i.e., periodic) processes with arbitrary marginal distributions. Following the 194 
same naming convention with the initial publications, and since our approach uses as an 195 
auxiliary model the SMA scheme, the proposed method is termed Symmetric Moving Average 196 
(neaRly) To Anything (SMARTA). Alternatively, given that the latter schemes make use of 197 
the ICDF, which is generally a non-linear function, they can be viewed as a non-linear variation 198 
of underlying linear stochastic models (e.g., AR or SMA). The use of the ICDF in the 199 
abovementioned, Nataf-based, schemes ensures that the generated data will have the target 200 
distribution but on the other hand it is recognized that the Pearson correlation coefficient 201 
(which is used to express the dependencies in all linear stochastic models) is not invariant under 202 
such non-linear monotonic transformations (Embrechts et al., 1999). Therefore, the main 203 
challenge of such approaches, lies in identifying �W�K�H���³equivalent�´���F�R�U�U�H�O�D�W�L�R�Q�V coefficients that 204 
should be used within the generation procedure (Gaussian domain) in order to attain the target 205 
correlation structure in the actual (i.e., real) domain. The latter relationship (i.e., that of 206 
equivalent and target correlations) can be expressed theoretically through a double infinite 207 
integral, which can be approximated with the use of numerical techniques such as the one 208 
employed herein.  209 
Further details about the proposed approach can be found in sections 2 and 3, where the latter 210 
is further divided in four subsections. Particularly, section 2 presents some key concepts 211 
regarding modeling of auto-dependence structure in general; while subsections 3.1 and 3.2 212 
develop the theoretical background of the proposed approach; next, subsection 3.3 describes 213 
the auxiliary SMA model and lastly, subsection 3.4 summarizes the overall approach and 214 
provides the generation mechanism of SMARTA in step-by-step manner. The generality of 215 
SMARTA is illustrated through a series of numerical examples, hypothetical (section 4) and 216 
real-world (section 5), including the simulation of both univariate and multivariate time series. 217 
Finally, in section 6 we synopsize and discuss the proposed modelling approach. 218 

2  Modelling the auto-dependence structure 219 
Before describing SMARTA, it is considered useful to provide a brief introduction to the tools 220 
that allow the mathematical description of the auto-dependence structure of a stochastic 221 
process. For a more thorough treatment, the interested reader is referred to the works of 222 
Papoulis (1991) and  Lindgren et al. (2013). To elaborate, let �T�ç�á �P �Ð �: be a discrete-time 223 
stationary process, indexed using �P, with finite variance �ê�6�ã L ���ƒ�”c�T�çg and autocorrelation 224 
function �é���ã L ���‘�”�”c�T�ç�á �T�ç�>��g L �é������, where �ì L �r�á G�s�á G�t�á �å denotes the time lag. The 225 
autocovariance function (ACVF) of the process can be obtained by,���?���ã L ���‘�˜c�T�ç�á �T�ç�>��g L226 
�ê�6�é��. It is reminded that a valid autocorrelation structure has to be positive definite (e.g., 227 
Lindgren, 2013; Papoulis, 1991), which can be readily checked by formulating, and testing 228 



for positive definiteness, the so-called �:�J�� H ���J�; autocorrelation matrix �~, whose �E�r�f�á �F�r�f 229 
elements are being determined by, �~�>�Ü�á�Ý�?L �é���Ü�?�Ý��. 230 
Besides the ACF and ACVF, another particularly useful stochastic tool, is the climacogram 231 
(CG, Koutsoyiannis, 2010, 2016), which is typically depicted using a log-log plot, and 232 

expresses the variance of the aggregated �@�:�ß
�:�Þ�;�A or time averaged �@�T�ß

�:�Þ�;�A process at scale �G �Ð233 

�: �>. We point out that the notation employed herein slightly differs from the typical one, since 234 
we restrict our attention to discrete-time processes. Assuming that �T�ç denotes a discrete-time 235 
stationary process at the basic time scale k = 1, the discrete-time aggregated process at scale 236 
�G P �s can be obtained by, 237 

 �: �ß
�:�Þ�;�� Í �T �ç

�Þ�ß

�ç�@�:�ß�?�5�;�Þ�>�5

�� (1) 

while the averaged discrete-time process is obtained by,���T�ß
�:�Þ�;L �:�ß

�:�Þ�;���G. Hence, the 238 
corresponding climacograms of the discrete-time aggregated and averaged process can be 239 

defined as���Á�:�Þ�;�� ���ƒ�”�B�Õ�ß
�:�Þ�;�C and ���Û�:�Þ�;�� ���ƒ�”�B�T�ß

�:�Þ�;�C respectively. Moreover, as shown by 240 

Beran (1994 p. 3), as well as by Koutsoyiannis (2010, 2016), the variance over scales (i.e., 241 
the CG) and the ACVF (and therefore ACF) are interrelated. Specifically, if the theoretical 242 
ACVF (or ACF), �?�� at the basic time scale (k = 1) is known, the corresponding theoretical 243 
discrete-time climacogram of the aggregated process can be calculated using the following 244 
equation, 245 

 �Á�:�Þ�;L �?�4�G E �t Í �:�G F �ì�;

�Þ�?�5

���@�5

�?���� (2) 

while the averaged one can be obtained by,���Û�:�Þ�;L ���Á�:�Þ�;���G�6. The recursive application of the 246 
following equation facilitates the calculation of the climacogram���Á�:�Þ�;, 247 

 �Á�:�Þ�;L �t�Á�:�Þ�?�5�;F �Á�:�Þ�?�6�; E �t�?�Þ�?�5�� (3) 

It is noted that,���Á�:�5�; L �Û�:�5�;L �?�4 L �ê�6�á while���Á�:�4�;L �r. The inverse relationship that calculates 248 

the ACVF of the aggregated discrete-time process���@�:�ß
�:�Þ�;�A, denoted���%��

�:�Þ�;�� ���‘�˜�B�:�ß
�:�Þ�;�á �:�ß�>��

�:�Þ�;�C, at 249 

time scale k given the theoretical climacogram is given by (Koutsoyiannis, 2017), 250 

 �%��
�:�Þ�;L

�Á�:�����>�5���Þ�;E �Á�:�����?�5���Þ�;

�t
F �Á�:�������Þ�;�á �ì R �r (4) 

Furthermore, the ACVF, �%��
�:�Þ�; at scale k is linked with the ACVF, �?���á��of the basic time scale 251 

k = 1, through the following relationship, 252 

 �%��
�:�Þ�;L Í Í ���‘�˜c�T �ç�á �T�åg L Í Í �? ���ç�?�å��

�:�5�>���;�Þ

�å�@���Þ�>�5

�Þ

�ç�@�5

�:�5�>���;�Þ

�å�@���Þ�>�5

�Þ

�ç�@�5

�á �ì R �r (5) 

Analogously, the ACVF of the time averaged discrete-time process �@�T�ß
�:�Þ�;�A at scale k, denoted 253 

�?��
�:�Þ�; �� ���‘�˜�B�T�ß

�:�Þ�;�á �T�ß�>��
�:�Þ�;�C�á is obtained by���?��

�:�Þ�; L �%��
�:�Þ�;���G�6. Hence, the ACF of the aggregated 254 

discrete-time process at time scale k can be obtained by���é��
�:�Þ�;L �%��

�:�Þ�;���Á�:�Þ�;, while the ACF of 255 
the time averaged discrete-time process by�����é��

�:�Þ�;L �?��
�:�Þ�;���Û�:�Þ�;. Note that the ACF of the 256 

aggregated and time averaged process are identical, due to standardization of the corresponding 257 
ACVF with the variance. It is also noted that �%�4

�:�Þ�; L �Á�:�Þ�; and���%��
�:�5�; L �?���á while similarly, �?�4

�:�Þ�; L258 

�Û�:�Þ�; and���?��
�:�5�; L �?��.  259 



Undoubtedly, the most commonly-employed tool to characterize the auto-dependence structure 260 
is the autocorrelation function (ACF). The literature offers a plethora of theoretical models in 261 
both continuous and discrete time (Dimitriadis & Koutsoyiannis, 2015; Gneiting, 2000; 262 
Gneiting & Schlather, 2004; Koutsoyiannis, 2000, 2016; Papalexiou, 2018; Papalex iou et 263 
al., 2011), that can be easily combined with the proposed approach (see next section). In this 264 
work we use the discrete-time Cauchy-type autocorrelation structure (CAS) of Koutsoyiannis 265 
(2000) due to its simple and parsimonious form (a desired property in stochastic modelling), 266 
which however does not hinder its ability to model a wide range of short (ARMA-type) and 267 
long-range dependence structures (including HK behavior). CAS is a two-parameter power-268 
type autocorrelation structure which, in its simplest form, if the ACF has constant and positive 269 
sign (as in the case of geophysical and hydrometeorological processes), is given by, 270 

 �é���G�E�WL �:�s E �â�Ú�ì�;�?�5���	�á �ì R �r (6) 

where �Ú R �r and �â P �r are parameters that control the degree of dependence (or persistence) 271 
of the process. It is remarked that the autocorrelation function of an HK (i.e., fGn) process 272 
consists a special case (or a very good approximation) of the latter model (i.e., Eq. (6)) whose 273 
theoretical ACF is given by, 274 

 �é���L�OL
�s
�t

�:���ì F �s���6�ô F �t���ì���6�ÁE ���ì E �s���6�Á�; (7) 

where H �L�V���W�K�H���+�X�U�V�W���F�R�H�I�I�L�F�L�H�Q�W���������”��H �”�����������Z�K�L�F�K, loosely speaking, controls the degree of 275 
long-term dependence (or persistence) of the process. It has been shown that for large time lags 276 
and �* P �r�ä�w�á the parameter �� of CAS is related to the H coefficient of an HK ACF through the 277 
relationship �Ú L �s �:�t F �t�*�;�¤ P �s, thus asymptotically resembling the right tail of latter 278 
theoretical model. More specifically, for �� > 1 and when �â��is set equal to �â�4, see Eq. (8), CAS 279 
closely approximates the theoretical ACF of an HK process, even for small time lags. 280 
 281 
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In addition, the ACF of an SRD process (ARMA-type) can be obtained through CAS, by setting 282 
�Ú L �r and applying th�H���/�¶���+�{�S�L�W�D�O�¶�V���U�X�O�H�����7�K�H���U�H�V�X�O�W�L�Q�J���6�5�' ACF is given by, 283 

 �é���W�V�HL �‡�š�’�:F�â�ì�; (9) 

Furthermore, when �â L F�Ž�•�:�é�5�;, and �r Q �é�5 Q �s, Eq. (8) reduces to the classic Markovian 284 
ACF of an AR(1) process, given by, �é��

�E�V�:�5�;L �é�5
������. For other parameter values, CAS resembles 285 

a plethora of alternative autocorrelation structures, that differ from the aforementioned classic 286 
models (for further details see, Koutsoyiannis, 2000). The flexibility of CAS is illustrated in 287 
Figure 1a where we depict (in a log-log scale) the theoretical ACF of various HK processes, 288 
characterized by different values of Hurst coefficient, H, as well as, their approximation with 289 
CAS. The close agreement of the two theoretical models is further validated in Figure 1b where 290 
we plot (also in log-log scale) their climacograms (assuming���ê�6 L �?�4 L �s), which are 291 
practically indistinguishable. It is noted that for an HK process, which exhibits simple and 292 
constant scaling laws, the slope �O of the climacogram ���Û�:�Þ�;, i.e., the log-log derivative �O ��293 
�†k�Ž�•k���Û�:�Þ�;oo �†�:�Ž�•�:�G�;�;�¤ �á is related with H parameter by �O L �t�* F �t. The resemblance of the 294 
HK and CAS is confirmed by estimating the average mean square error (MSE) of the depicted 295 
processes by means of both ACF and climacogram. In terms of ACF, the average MSE value 296 
is 0.01 and the corresponding value in terms of climacogram is 0.66. 297 



 298 
Figure 1. a) Autocorrelation functions and b) climacograms of HK processes exhibiting different Hurst 299 
coefficients (dashed lines) and their approximation with the CAS (continuous line). 300 

Considering the practical aspects of the auto-dependence structure identification procedure 301 
(e.g., estimation of the parameters of CAS or any other theoretical structure, given a sample 302 
time series), it is remarked that it is a challenging task, due to the fact that the sample estimates 303 
of variance and autocorrelation coefficients (i.e., empirical variance and ACF - calculated from 304 
the historical time series) are negatively biased (e.g., Beran, 1994; Koutsoyiannis, 2003, 305 
2016, 2017), especially in the presence of LRD (e.g., HK behavior). A thorough treatment on 306 
the subject lies beyond the scope of this study, as it has been extensively documented by the 307 
aforementioned authors, as well as by Dimitriadis and Koutsoyiannis (2015) who highlighted 308 
the advantages of using the climacogram, in comparison with the ACF and power spectrum, 309 
for the identification of the auto-dependence structure. The latter authors, via an extended 310 
analysis of a wide range of SRD and LRD processes, showed that the climacogram exhibits 311 
less uncertainty and bias in its estimation, which can be easily estimated a priori, thus providing 312 
an attractive alternative to the latter classic approaches. Further to this, the latter stochastic tool 313 
can be used as a basis for LRD identification algorithms (e.g., Tyralis & Koutsoyiannis, 314 
2011), as well as for the development additional tools (e.g., the climacospectrum) that provide 315 
further insights regarding the asymptotic behavior of the process (Koutsoyiannis, 2016, 316 
2017). It is noted that in this work, the above-mentioned stochastic tools (i.e., ACF and CG) 317 
are mainly �H�P�S�O�R�\�H�G���I�R�U���³diagnostic� ,́ and not for identification purposes, i.e., to verify that 318 
the simulated processes exhibit the desired dependence properties. 319 

3 Methodology 320 

3.1 Theoretical background of the SMARTA model 321 
The central idea of the proposed approach is based on the Nataf�¶�V joint distribution model 322 
(NDM, Nataf, 1962) which has been originally implemented for the generation of cross-323 
correlated, yet serially independent, random vectors with arbitrary distributions. One of its key 324 
assumptions, which consequently holds for SMARTA or any other Nataf-based method, is that 325 
the employed distributions owe to have finite variance. This assumption is implied throughout 326 
this work. 327 
NDM gained popularity after the works of Liu and Der Kiureghian (1986) and Cario and 328 
Nelson (1997), who also coined the term NORmal To Anything (NORTA) procedure and also 329 



accounted for combinations of continuous and discrete marginal distributions. Its main concept 330 
lies in establishing joint relationships with the use of an auxiliary multivariate standard normal 331 
(i.e., Gaussian) distribution (using an appropriately adjusted correlation matrix); generating 332 
correlated standard normal variates and then mapping them to the actual domain using their 333 
ICDF. As noted by Cario and Nelson (1997) and further investigated by Lebrun and Dutfoy 334 
(2009), NDM is related to the Gaussian copula since the �Y�D�U�L�D�E�O�H�V�¶��joint distribution is 335 
established through the multivariate Gaussian distribution.  336 
An interesting point concerning NDM (see, Tsoukalas et al., 2018a) is that it can be 337 
retrospectively associated with several well-known hydrological approaches (e.g., Kelly & 338 
�.�U�]�\�V�]�W�R�I�R�Z�L�F�]���� ������������ �.�O�H�P�H�ã�� �	�� �%�R�U�$�Y�N�D���� ������������ �0�D�W�D�O�D�V���� ����������. Among them, we 339 
distinguish the so-�F�D�O�O�H�G���:�L�O�N�V�¶���W�\�S�H���Z�H�D�W�K�H�U���J�H�Q�H�U�D�W�R�Us (Wilks, 1998), which have motivated 340 
a significant amount of research during the last decades. The latter author, in an effort to 341 
simulate cross-correlated random variates, representing either the precipitation occurrence or 342 
amount process (neglecting temporal dependence), proposed the simulation of cross-correlated 343 
Gaussian variables and their subsequent mapping via their ICDF. Wilks empirically observed 344 
that a monotonic relationship exists which links the correlation coefficients of the Gaussian 345 
�D�Q�G���³�U�H�D�O�´���G�R�P�D�L�Q. Hence, the use of inflated correlation coefficients was proposed within the 346 
multivariate Gaussian distribution, in order to attain random variates with the required cross-347 
correlation and distribution. The latter class of models is reviewed in the works of Wilks and 348 
Wilby (1999) and Ailliot et al., (2015). 349 
In this study, we employ the concept of NDM, but in a different context, i.e., for the simulation 350 
of stationary any-range-dependent stochastic processes. Particularly, the rationale of NDM is 351 
combined with an auxiliary Gaussian process in order to capture the stochastic structure (in 352 
terms of autocorrelation and cross-correlation coefficients) of the target process and 353 
simultaneously preserve the desired marginal distributions after the use of the ICDF.  354 
Suppose that the goal is to generate a m-dimensional discrete-time stationary process���ž�ç L355 
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�X
, where t is the time index and the indices �E�á �F L �s�á �å �á �I are used to refer to 356 

individual process �T�ç
�Ü and �T�ç

�Ý respectively. Also let, ���ž�ç L c�T�ç
�5�á �å �á �T�ç

�Ü�á �å �á �T�ç
�à g

�X
 denote a 357 

realization of it. Furthermore, let us assign a target cumulative distribution function (CDF), 358 
denoted by,���(�ë�Ô�� �2k�T�ÜQ �To��to each individual process �T�ç

�Ü, and let �é�ç�á�ç�>��
�Ü�á�Ý�� ���‘�”�”�>�T�ç

�Ü�á �T�ç�>��
�Ý �? 359 

�G�H�Q�R�W�H���W�K�H���W�D�U�J�H�W���3�H�D�U�V�R�Q�¶�V���F�R�U�U�H�O�D�W�L�R�Q���F�R�H�I�I�L�F�L�H�Q�W���E�H�W�Z�H�H�Q���T�ç
�Ü and �T�ç

�Ý for time lag �2.  360 

Likewise, and using the same notation as above, let � �ç L c�V�ç
�5�á �å �á �V�ç

�Ü�á �å �á �V�ç
�à g

�X
 be an auxiliary 361 

m-dimensional stationary standard Gaussian process with zero mean and unit variance. Also, 362 
let���éä�ç�á�ç�>��

�Ü�á�Ý�� ���‘�”�”�>�V�ç
�Ü�á �V�ç�>��

�Ý �? �G�H�Q�R�W�H���W�K�H���3�H�D�U�V�R�Q�¶�V���F�R�U�U�H�O�D�W�L�R�Q���F�R�H�I�I�L�F�L�H�Q�W of the auxiliary process 363 

between �V�ç
�Ü and �V�ç

�Ý for time lag �2, hereafter, referred to as equivalent correlation coefficient. It 364 

is noted that throughout the paper the superscripts or subscripts of �é�ç�á�ç�>��
�Ü�á�Ý or �éä�ç�á�ç�>��

�Ü�á�Ý may be 365 
omitted when possible. For brevity, the target autocorrelation of the process �T�ç

�Ü will be denoted 366 

�é���Ü and its lag-�2 cross-correlation with �T�ç
�Ý as���é��

�Ü�á�Ý. 367 
As mentioned earlier, the idea behind SMARTA lies in simulating an auxiliary standard 368 
Gaussian process � �ç using the SMA model with such parameters that after applying the inverse 369 
of their distribution function, results in a process �ž�ç with the desired correlation structure and 370 
marginal distributions. The latter operation can be written as follows,  371 
 372 

 �T�ç
�ÜL �(�ë�Ô

�?�5�@�0k�V�ç
�Üo�A (10) 

where �0�:�®�; denotes the standard normal CDF and �(�ë�Ô
�?�5�:�®�; stands for the ICDF of process �T�ç

�Ü. 373 

An advantage of the above scheme is that since the ICDFs of the target distributions are 374 



employed (given that they can be analytically or numerically evaluated), the process �T�ç
�Ü will 375 

inevitably have the desired marginal properties. On the other hand, the Pearson�¶s correlation 376 
coefficient is not invariant under such non-linear monotonic transformations, hence �é�ç�á�ç�>��

�Ü�á�Ý will 377 

differ from���éä�ç�á�ç�>��
�Ü�á�Ý. However, as discussed in the literature, they are related (e.g., Biller & 378 

Nelson, 2003; Cario & Nelson, 1997; Der Kiureghian & Liu, 1986). Since Eq. (10) holds, 379 
we can write, 380 

 �é�ç�á�ç�>��
�Ü�á�Ý�� L ���‘�”�”c�T�ç

�Ü�á �T�ç�>��
�Ý g L ���‘�”�” �B�(�ë�Ô

�?�5�@�0k�V�ç
�Üo�A �á �(�ë�Õ

�?�5�@�0k�V�ç�>��
�Ý o�A�C (11) 

U�V�L�Q�J�� �W�K�H�� �G�H�I�L�Q�L�W�L�R�Q�� �R�I�� �3�H�D�U�V�R�Q�¶�V�� �F�R�U�U�H�O�D�W�L�R�Q��coefficient, we can also write (for the sake of 381 
simplicity the time index �P is omitted when possible due to stationarity), 382 

 �é�ç�á�ç�>��
�Ü�á�ÝL ���‘�”�”c�T�ç

�Ü�á �T�ç�>��
�Ý g L

��c�T�ç
�Ü���T�ç�>��

�Ý g F ��c�T�Üg����c�T�Ýg

§���ƒ�”c�T�Üg�����ƒ�”c�T�Ýg
 (12) 

where ��c�T�Üg�á ��c�T�Ýg and ���ƒ�”c�T�Üg�á ���ƒ�”c�T�Ýg denote the mean and variance of �T�Ü���ƒ�•�†���T�Ý 383 
respectively; which are known from the corresponding distributions �(�ë�Ô and �(�ë�Õ and have to 384 

be finite. Subsequently, using Eq. (10) and the first cross-product moment of���T�ç
�Ü���ƒ�•�†���T�ç�>��

�Ý ��we 385 
obtain, 386 
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where �î �6k�V�ç
�Ü�á�V�ç�>��

�Ý �á�éä�ç�á�ç�>��
�Ü�á�Ýo is the bivariate standard normal probability density function. Hence, 387 

by substituting Eq. (13) to Eq. (11) we obtain, 388 
 389 
 390 
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Inspection of Eq. (14) indicates that �é�ç�á�ç�>��
�Ü�á�Ý is a function of���éä�ç�á�ç�>��

�Ü�á�Ý, since all other quantities are 391 
already known from the target (i.e., given) distributions �(�ë�Ô and���(�ë�Õ. Therefore, it is compactly 392 

written as, 393 

 �é�ç�á�ç�>��
�Ü�á�ÝL �à �@�éä�ç�á�ç�>��

�Ü�á�Ý�Z�(�ë�Ô�á ���(�ë�Õ�A (15) 

where �à�:�®�; is an abbreviation of the function defined by Eq. (14). 394 
This relationship implies that prior to the estimation of the auxiliary model�¶�V���S�D�U�D�P�H�W�H�U�V it is 395 
essential to identify, and next use within parameter estimation, the equivalent correlations, 396 
�éä�ç�á�ç�>��

�Ü�á�Ý, that result to the target correlations,���é�ç�á�ç�>��
�Ü�á�Ý�á��after the subsequent mapping of the auxiliary 397 

process to the actual domain. This can be achieved through inversion of Eq. (15), i.e., �éä�ç�á�ç�>��
�Ü�á�ÝL398 

�à�?�5�@�é�ç�á�ç�>��
�Ü�á�Ý�Z�(�ë�Ô�á ���(�ë�Õ�A. 399 

3.2 Identification of equivalent correlation coefficients 400 
Provided that the identification of equivalent correlation coefficients can be accomplished on 401 
a pairwise basis, and for the sake of simplicity, let us define �T�� �� �T �ç

�Ü and���T�� �� �T �ç�>��
�Ý , hence 402 



�éä���á�� and ���é���á�� stand for the equivalent and the target correlation coefficients respectively. 403 
Furthermore, let �(�ë  and���(�ë�  denote the corresponding target distributions. It is reminded that 404 

our ultimate objective is to establish a relationship between �éä���á�� and���é���á�� and eventually find 405 
the appropriate value of �éä���á�� that results in the target correlation���é���á�� after the mapping 406 
operation of Eq. (10). It is acknowledged that Eq. (15) does not have a general closed-form 407 
solution, with the exception of few special cases, hence it is typically identified via numerical 408 
techniques such as crude search, quadrature methods as well as Monte-Carlo procedures (Cario 409 
& Nelson, 1996, 1997; Chen, 2001; Li & Hammond, 1975; Liu & Der Kiureghian, 1986; 410 
Xiao, 2014). The abovementioned authors provided a series of Lemmas that can be used in 411 
order to establish the relationship of Eq. (15). Among them, 412 
Lemma 1.���é���á����is a strictly increasing function of���éä���á��. 413 
Lemma 2. ���éä���á�� L �r��for�����é���á����L �r as well as, ���éä���á�� R�:Q�;���r if ���é���á����R�:Q�;���r. 414 
Lemma 3.���+���é���á�����+ Q �+���éä���á���+�ä 415 
It is remarked that the equality sign in Lemma 3 is valid when ���é���á����L �r or when both 416 
marginals are Gaussian. Furthermore, the minimum and maximum attainable values of ���é���á���� 417 
are in accordance with the Fréchet-Hoeffding bounds (Fréchet, 1957; Hoeffding, 1994) and 418 
are given for ���éä���á�� L F�s and�����éä���á�� L �s, respectively. Particularly the following relationship 419 

holds true,��F�s Q �à �@F�s�Z�(�ë �á ���(�ë� �A Q �é���á�� Q �à �@�s�Z�(�ë �á ���(�ë� �A Q �s. See also the work of Whitt 420 

(1976) for a comprehensive discussion on the topic. In this paper, unless stated otherwise, in 421 
order to establish the relationship of Eq. (15) we employ the simple, yet efficient method 422 
proposed by Tsoukalas et al., (2018a), which in a nutshell, is based on the evaluation of few 423 
pairs of ���é���á�������ƒ�•�†�����éä���á�� using Monte-Carlo simulation and subsequently, the establishment of 424 
the relationship of Eq. (15) through polynomial interpolation (see also, Appendix A). 425 

3.2.1 An illustrative example 426 
To shed some light on the functional form of �à�:�®�; let us consider the case where both variables 427 
�T��  and �T��  are described by the two-parameter Gamma distribution (�á). The probability density 428 
function (PDF) of the latter distribution is given by, 429 

 �B�á�:�T�â �=�á �>�; L
�s
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where �+���Â�� denotes the gamma function and �= P �r and �> M �r are shape and scale parameters, 430 
respectively. Figure 2a depicts the relationship among���éä���á�� and���é���á����(i.e., �à�:�®�;; computed via 431 
numerical integration) for various values of distribution parameters. Specifically, we assumed 432 
�= �� �=�� L �=��  and constant �>�ã L �>�� L �>�� L �s. We remind that the theoretical skewness 433 
coefficient of a Gamma distributed variable is given by �%�æ�ã L �t���¾�=. From the latter figure we 434 

observe that the non-linearity of �à�:�®�; increases with low values of a (i.e., high skewness), and 435 
that the maximum attainable value of ���é���á���� is equal to 1, due to the fact that �(�ë � �( �ë� . In 436 
addition, one may observe that the shape parameter a is also related to the minimum attainable 437 
value of ���é���á��. For example, when �= L �r�ä�r�s the latter value is practically restricted to zero, 438 
something that may be considered a reasonable behavior, attributed to the very high value of 439 
positive skewness which does not allow for negative correlations. In a similar vein, in Figure 440 
2b we set �=�� L �w and vary parameter �=��  from 5 to 0.01 (assuming again that �>�ã L �>�� L �>�� L441 
�s). In this case, both the minimum and maximum attainable values of ���é���á����are affected. It is 442 
observed that, when �=�� ���ƒ�•�†���=��  exhibit significant differences, the range of feasible values 443 
���é���á���� is getting narrower. This implies that two variables with considerable different shape 444 
(expressed through parameter a) cannot be highly correlated. From an engineering point of 445 
view, and similar to the previous case (i.e., when �= �� �=�� L �=�� ), this is barely considered a 446 



limitation of the proposed approach, since such behavior is rarely encountered in 447 
hydrometeorological processes. For instance, it is not expected, or rational, two processes, one 448 
with skewness ~0.9 and one with 20 to be highly correlated (positively or negatively). In any 449 
case, we stress the importance of checking the range of attainable correlation coefficients when 450 
employing the concept of NDM, (see, Demirtas & Hedeker, 2011; Leonov & Qaqish, 2017), 451 
especially within the context of stochastic process simulation. For instance, given the non-452 
linear and asymmetric nature of �à�:�®�;, for some combinations of marginal distributions, a target 453 
correlation coefficient may be inadmissible. This constraint, and the fact that the target 454 
marginal distributions ought to have finite variance, drove us to add the designation �³�Q�H�D�U�O�\�´��455 
when naming the method. However, in the examples employed in this work, such problems did 456 
not occur (for a simulation example also involving negative cross-correlations see section 4.2), 457 
a fact which by no means overrules the aforementioned need for compatibility verification. 458 

 459 
Figure 2. Graphical illustration of function �à�:�®�; (see, Eq. (15)) that expresses the relationship between 460 
the equivalent, ���éä���á�� and target ���é���á���� correlation coefficients assuming that both �T��  and �T��  are described 461 
by the two-parameter Gamma distribution (assuming that���>�ã L �>�� L �>�� L �s) with a) equal shape 462 
parameters �:�‹�ä �‡�ä �á �= �� �=�� L �=�� �; and b) different shape parameters by setting �=�� L �w and varying �=��  463 
from 5 to 0.01. 464 

Evidently, the proper and accurate identification of the relationship �à�:�®�; has a crucial role in 465 
NDM-based schemes, since its misspecification may lead to simulation errors. Hence, to assess 466 
the suitability of the algorithm of Appendix A, which is extensively used in this work, we 467 
employed the latter and recreated the cases depicted in Figure 2; which concerned the 468 
identification of equivalent correlation coefficients of two Gamma-distributed variables for 469 
various values of shape parameters. After the specification of the relationship �à�:�®�; by the latter 470 
algorithm, the target correlations where evaluated for values of�����éä���á�� �Ð �>F�s�á�s�? sampled by 471 
0.01. To provide a quantitative comparison, we estimated the MSE and maximum square error 472 
(Max(SE)) between the estimates of the numerical integration method (i.e., Figure 2) and those 473 
of the aforementioned algorithm. A synopsis of the results is given on Table 1, where the 474 
panels (a) and (b) corresponds to those of Figure 2. The latter analysis illustrates the potential 475 
of the employed method to resemble the asymmetric and non-linear nature of �à�:�®�; with high 476 
accuracy. 477 



Table 1. Comparison between numerical integration and the algorithm of Appendix A for the numerical 478 
example illustrate in Figure 2. Panels a) and b) correspond to those of Figure 2. 479 

a) �= �� �=�� L �=�� �� �>�ã L �>�� L �>�� L �s b) �=�� L �w�� �>�ã L �>�� L �>�� L �s 
 Shape (�=) MSE Max(SE)  Shape (�=�� ) MSE Max(SE) 
 0.01 8.03×10-5 7.75×10-4  0.01 2.12×10-5 3.79×10-4 
 0.05 5.81×10-5 3.08×10-4  0.05 6.46×10-6 2.70×10-5 
 0.1 2.44×10-6 9.89×10-6  0.1 6.26×10-6 4.15×10-5 
 0.5 4.33×10-6 1.59×10-5  0.5 1.51×10-5 9.37×10-5 
 1 3.31×10-6 1.88×10-5  1 2.54×10-6 1.13×10-5 
 2 1.22×10-6 8.47×10-6  2 7.19×10-7 3.20×10-6 
 5 3.70×10-6 1.80×10-5  5 5.24×10-7 1.77×10-6 

3.2.2 The Log-Normal case 480 
As mentioned earlier, there are some exceptions that have a closed-form solution. Among them 481 
the Log-Normal case, which is of particular interest from a hydrological perspective. The PDF 482 
of the 3-parameter Log-Normal distribution (�æ�è) is given by,  483 
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where �= P �r,���> �Ð �9, and �? �Ð �9 denote the shape, scale and location parameters respectively; 484 
while, when c = 0, the distribution reduces to the 2-parameter Log-Normal distribution. As 485 
shown in Mostafa and Mahmoud (1964), yet without direct reference to NDM, for two 486 
random variables �T��  and �T�� ��that are Log-Normally distributed, Eq. (14) simplifies to, 487 
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Which can be easily inverted in order to directly provide the equivalent correlation 488 
coefficient���éä���á��, given the target value of ���é���á�����ä i.e.,  489 
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It is worth remarking that Eq. (18) is identical with the one employed in the celebrated 490 
multivariate lag-1 Log-Normal model of Matalas (1967), in order to adjust the correlation 491 
coefficients, which interestingly can be identified as a Nataf-based approach. 492 

3.2.3 A cautionary note 493 
A delicate point worth standing concerns the use of alternative, rank-based dependence 494 
measures, such as �6�S�H�D�U�P�D�Q�¶�V��	� �æ �D�Q�G���.�H�Q�G�D�O�O�¶�V��	�, for the parameter identification of NDM (or 495 
Gaussian copula). Under the assumption that both marginal distributions and copula are 496 
Gaussian (or more generally elliptical distributions), there is a one-to-one relationship between 497 
�W�K�H���D�I�R�U�H�P�H�Q�W�L�R�Q�H�G���G�H�S�H�Q�G�H�Q�F�H���P�H�D�V�X�U�H�V���D�Q�G���3�H�D�U�V�R�Q�¶�V���F�R�U�U�H�O�D�W�L�R�Q coefficient (�é), which can 498 
be expressed as (e.g., Embrechts et al., 1999; Esscher, 1924; Kruskal, 1958; Lebrun & 499 
Dutfoy, 2009) (notice that the indices have been omitted for the sake of simplicity),  500 
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Both 	� �æ and 	� are measures of concordance and are invariant to non-linear monotonic 501 
transformations (such as those imposed by Eq. (10)). Thus, specifying NDM with estimates of 502 
�3�H�D�U�V�R�Q�¶�V���F�R�U�U�H�O�D�W�L�R�Q based on the conversion of empirical estimates of 	� �æ or 	� will inevitably 503 
preserve the target values of 	� �æ or 	� after the application of the mapping procedure (due to the 504 
property of invariance) but it will lead to misspecification of the underlying model (i.e., NDM) 505 
due to Eq. (14), and of course the target values of �é �Z�R�Q�¶�W���E�H���S�U�H�V�H�U�Y�H�G��  506 

3.3 The auxiliary SMA model 507 
Having described the theoretical background of the proposed approach, this section provides a 508 
brief introduction to the univariate and multivariate Symmetric Moving Average (SMA) model 509 
of Koutsoyiannis (2000), which is used within SMARTA as an auxiliary standard Gaussian 510 
process. SMA model consists as a special case of the Backward-Forward Moving Average 511 
(BFMA) model, whose key idea is that a stochastic process �V�ç can be described as a weighted 512 
sum of infinite backward and forward random variables. Note that the notation slightly differs 513 
from the original one, in order to highlight the fact that the model is employed in the Gaussian 514 
domain using the equivalent correlation coefficients �éä�á instead of the target correlation 515 
coefficients,���é.  516 

3.3.1 Univariate model 517 
In practice, the SMA model slightly relaxes the assumptions of BFMA model and assumes that 518 
a stochastic process �V�ç can be described as a weighted sum of a finite number of backward and 519 
forward random variables. Particularly, the generating mechanism of the SMA model is given 520 
by the following equation, 521 
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where �R�ç are standard normal i.i.d. variables and �=ä���are internal model parameters (i.e., weight 522 
coefficients) that are assumed to be symmetric, i.e., �=ä� L �=ä�?����:�ˆ�‘�”���Þ L �s�á �t�á �å �; and approach 523 
zero after some value ���Þ�� P �M, where q denotes a large positive integer value. The selection of 524 
�M depends on the degree of auto-dependence imposed by the target process (see Eq. (23)) and 525 
the desired level of accuracy. Furthermore, �M cannot be greater than the length of the time series 526 
to simulate. Particularly, the parameters �=ä�  are related to the autocorrelation coefficients �éå�ì via 527 
a 2q + 1 equation system of the following form, 528 

 �éä�� L Í �=ä ��� ���=ä�����>����á
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 529 
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Evidently, if Eq. (23) is honored, the model resembles the theoretical ACF up to �éå�M, while it 530 

decays to zero after 2q (see Eq. (24)). In order to estimate the parameters �=ä� �á Koutsoyiannis 531 
(2000) proposed two solutions, one closed-form and one based on a formulation of an 532 
optimization problem. The interested reader is referred to the latter publication for a thorough 533 
and in-depth description of the two methods. In this work we restrict our attention in briefly 534 
describing only the first one, since it is a fast and direct method. The aforementioned author 535 
showed that the discrete Fourier transformation (DFT) of �=ä� �á i.e., �5�Ôä�:�X�;, is related to the power 536 
spectrum of the autocorrelation function, i.e.,���5��å�:�X�;, by, �5�Ôä�:�X�; L¥�t�5��å�:�X�; . 537 
If the autocorrelation structure �éå�ì is known (or specified), its power spectrum can be calculated 538 
using the DFT, hence estimate �5�Ôä�:�X�;�ä��Then, by applying the inverse Fourier transformation 539 



one can obtain the parameters �=ä� �ä It is remarked that algorithms that facilitate the latter 540 
calculations are nowadays built-in in many high-level programming languages (e.g., R or 541 
MATLAB), which in turn allow the straightforward implementation of SMA and SMARTA 542 
models in most computational environments. At this point we note that Koutsoyiannis (2002, 543 
2016) proposed an even simpler and straightforward procedure for the estimation of �=ä�  544 
coefficients, which however is applicable only for HK (i.e., fGn) type autocorrelation 545 
structures. 546 

3.3.2 Multivariate model 547 
Furthermore, the SMA model can be extended for the multivariate simulation of 548 
contemporaneously cross-correlated processes, via the explicit preservation of the lag-0 cross-549 
correlation coefficients. This assumption, which significantly simplifies the parameter 550 
estimation procedure, is often regarded adequate within hydrological domain, and can be found 551 
in several other stochastic simulation schemes (e.g., Camacho et al., 1985; Efstratiadis et al., 552 
2014; Koutsoyiannis & Manetas, 1996; Pegram & James, 1972; Tsoukalas et al., 2018a). 553 
With this in mind, for simulation of hydrometeorological processes characterized by strongly 554 
lagged cross-correlations (e.g., rainfall-runoff at fine time scales), it may be advantageous to 555 
employ the same modelling strategy as the one proposed herein, using alternative auxiliary 556 
Gaussian models that, apart from the lag-0 cross-correlations, are able to directly model 557 
(preferably, for parsimony and stability, in combination with suitable theoretical auto- and 558 
cross-correlation structures; e.g., similar to CAS) the lagged cross-correlation coefficients. 559 

Regarding the multivariate SMA model, let � �ç L c�V�ç
�5�á �å �á �V�ç

�Ü�á �å �á �V�ç
�à g

�X
 be a m-dimensional 560 

vector, as defined in section 2, and �éä��
�Ü�á�Ý�� ���‘�”�”c�V�ç

�Ü�á �V�ç�>��
�Ý g denote the equivalent lag-�ì cross-561 

correlation between processes �V�ç
�Ü and �V�ç

�Ý for time lag �ì. Similar to the univariate case, each 562 
process �V�ç

�Ü is represented by a weighted sum of random variables �R�ç
�Ü, i.e., 563 
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In this case, the random variables �R�ç
�Ü are considered serially independent but 564 

contemporaneously cross-correlated. Therefore, the problem lies in generating such variables 565 
in a way that they reproduce the equivalent lag-0 cross-correlation coefficients (�éä�4

�Ü�á�Ý). It has 566 
been shown that it suffices to generate random variables �R�ç

�Ü with correlation���Cä�Ü�á�Ý��567 

���‘�”�”c�R�ç
�Ü�á �R�ç

�Ýg equal to, 568 
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Hence, the (m × m) correlation matrix �sé is formulated, with ones in the diagonal and its �E�r�f M569 
�F�r�f  elements determined by, �sé�>�Ü�á�Ý�?L �Cä�Ü�á�Ý. Furthermore, the theoretical lag-�ì cross-correlation 570 
structure (for �ì L �r�á�s�á�t�á �å) of the model is given by, 571 
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Regarding simulation, a vector of correlated random variables �œ�ç L c�R�ç
�5�á �å �á �R�ç

�Ü�á �å �á �R�ç
�à g

�X
 can be 572 

generated by, �œ�ç L �né�• �ç, where���•�ç L c�S�ç
�5�á �å �á �S�ç

�Ü�å �á �S�ç
�à g

�X
 is a vector of standard normal i.i.d. 573 

variables, and �né is a m × m matrix obtained by finding the so-called square root of matrix �sé, 574 
i.e., Eq. (28). A solution to the latter problem can be obtained by standard decomposition 575 



techniques (e.g., Cholesky or singular value decomposition) or via optimization-based methods 576 
(Higham, 2002; Koutsoyiannis, 1999).  577 
 578 

 �né�né�X L �sé (28) 

In more detail, it is reminded that if  �sé is positive definite (which indicates that the multivariate 579 
process is admissible), then Eq. (28) has infinite solutions, hence, both decomposition and 580 
optimization-based methods can be employed. On the other hand, when �sé is non-positive 581 
definite (implying that the multivariate process is inadmissible), the decomposition methods 582 
cannot offer a solution. In this case, optimization-based techniques can provide a potential 583 
remedy, by formulating an optimization problem, where the objective is to identify a matrix 584 

�né�Û which results to a feasible and near-to-optimum matrix �sé�Û�� �né�Û �né�Û�X which is as closest 585 
(typically quantified in terms of some distance measure; e.g., Euclidean norm) as possible to 586 
the original matrix �sé. Of course, in such cases, the target process will not be exactly resembled, 587 
while, the difference between �sé and �sé�Û can be regarded as a proxy for the magnitude of 588 
approximation introduced to the simulation. Bras and Rodríguez-Iturbe (1985 p. 98), as well 589 
as Koutsoyiannis (1999) discuss several situations which may lead to a non-positive definite 590 
matrix �sé. Almost all of these situations are related with the estimates of correlation coefficients 591 
from the empirical data. In the case of SMARTA, and provided that a feasible autocorrelation 592 
structure has been identified for each individual process, a non-positive definite matrix �sé may 593 
arise due to data-based estimates of lag-0 cross-correlation coefficients, imprecise 594 
approximation of equivalent correlation coefficients or incompatible combinations of marginal 595 
distributions, autocorrelation structures and target cross-correlations (see section 3.2.1). For 596 
instance, since the proposed scheme (in multivariate mode) treats each individual process 597 
separately of the cross-correlations, the simulation of highly cross-correlated processes with 598 
particularly different distributions and autocorrelation structures (e.g., very fast-decaying and 599 
very slow-decaying) may be infeasible (see section 4.2 for a simulation example involving both 600 
positively and negative cross-correlated LRD and SRD processes), even if the latter are 601 
individually valid.  602 
At this point it is noted that an incidental contribution of SMARTA is the alleviation of a burden 603 
related to preservation of the skewness coefficient. As mentioned in the introduction, a broad 604 
class of linear stochastic models, in an attempt to preserve the coefficients of skewness of the 605 
target process, �T�ç, employ non-Gaussian white noise for the innovation term, �R�ç, typically from 606 
Pearson type-III distribution. However, the latter practice may lead to very high coefficients of 607 
skewness for the innovation term which are hardly attainable (Koutsoyiannis, 1999; Todini, 608 
1980). This practice was also adopted by Koutsoyiannis (2000) in the original SMA scheme, 609 
where the Pearson type-III distribution has been employed for the generation of skewed white 610 
noise. More specifically, regarding the univariate formulation of the latter model (assuming 611 
q = 210), in Figure 3a-b we depict (from two distinct points of view) the relationship between 612 
the skewness coefficient �@�%�O�R�A of innovation term, �R�ç, that is required to attain the target 613 

coefficient of skewness �@�%�O�T�A of the variable, �T�ç, for several hypothetical HK process 614 
characterized by different values of H coefficient. See also Eq. (29) in Koutsoyiannis (2000). 615 
It is apparent from in Figure 3a-b that the higher the value of H, the higher the required 616 
skewness of the innovation term, �R�ç. For example, in an HK process with H = 0.8, the skewness 617 
coefficient of innovation term �R�ç has to be set twice as high as than the one of �T�ç. We remark 618 
that this issue is further amplified (not shown herein) when the underlying model is used in 619 
multivariate mode (Koutsoyiannis, 1999). On the other hand, SMARTA completely alleviates 620 
the latter difficulties since the SMA scheme is used as an auxiliary model in the standard 621 



Normal (i.e., Gaussian) domain and the generated data are subsequently mapped to the actual 622 
domain using the target ICDFs. Therefore, the target marginal statistics are attained without 623 
making any attempts to generate skewed innovation terms, neither in univariate nor in 624 
multivariate mode. Moreover, an additional contribution of SMARTA regards the optimization 625 
problem that arises when the matrix �sé is non-positive. Particularly, the latter is simplified in a 626 
nearest correlation matrix problem, since the 3rd term of Eq. (28) in Koutsoyiannis (1999), 627 
that accounts for skewness, is no longer needed. 628 

 629 
Figure 3. Graphical illustration of the relationship between the required skewness coefficient �@�%�æ�á�A of 630 

innovation term �R�ç and a) the skewness �@�%�æ�ã�A��of an fGn process �T�ç for various values of H and b) the 631 
value of H of an fGn process �T�ç for various values of skewness of �%�æ�ã (using the SMA model with 632 
q = 210). 633 

3.4 Generation procedure of SMARTA 634 

Having described in detail all the key components of SMARTA approach in the previous 635 
sections, it is useful to provide the complete generation procedure, decomposed into the 636 
following six steps: 637 

Step 1. Define a target distribution �(�ë�Ô for each process �T�ç
�Ü�â ���E�� L ���s�á �å �á �I. SMARTA, as well 638 

as all Nataf-based methods, is flexible in terms of distribution fitting method; hence one can 639 
select a fitting method of their preference. 640 

Step 2. Define a target auto-correlation structure (�é���Ü) for each process �T�ç
�Ü�â ���E�� L ���s�á �å �á �I using 641 

a theoretical ACF model. For instance, for each process �T�ç
�Ü identify the parameters of CAS that 642 

better fit the observed data. Furthermore, in the multivariate case, identify the target lag-0 643 
cross-correlation coefficients (�é�4

�Ü�á�Ý) between processes, �T�ç
�Ü���ƒ�•�†���T�ç

�Ý�â ���E M ���F�� L ���s�á �å �á �I. 644 

Step 3. Identify the equivalent correlation coefficients (�éä���Ü) of each theoretical ACF, up to the 645 
maximum specified lag (which depends on the type of the process; LRD or SRD), for each 646 
process �T�ç

�Ü�â ���E�� L ���s�á �å �á �I. Furthermore, in the multivariate case, estimate the equivalent lag-0 647 

cross-correlation coefficient �éä�4
�Ü�á�Ý. Assuming that the algorithm of Appendix A is employed for 648 

the identification of equivalent correlations, and given the fact that it allows the direct 649 
estimation of the equivalent ACF up to any lag, the latter has to be employed m times, one for 650 
each process �T�ç

�Ü�â ���E�� L ���s�á �å �á �I. Furthermore, in order to estimate the lag-0 equivalent cross-651 

correlation coefficient �éä�4
�Ü�á�Ý , the same procedure should be employed �I�:�I F �s�;���t  additional 652 



times. For instance, in a 4-dimensional problem (�I  L  �v), the algorithm of Appendix A is 653 
executed in total,���I�:�I E �s�;���t times (=10). 654 

Step 4. Calculate the parameters of the auxiliary SMA model (section 3.3), i.e., the weight 655 
coefficients (�=ä�

�Ü) of each auxiliary process �V�ç
�Ü�â ���E�� L ���s�á �å �á �I. Additionally, in the multivariate 656 

case, calculate the elements of matrices �sé��and �né (see also, Eq. (26) and (28)). 657 

Step 5. Employ the auxiliary Gaussian SMA model and generate a realization of the auxiliary 658 
univariate (�V�ç�; or multivariate process (� �ç�;.  659 

Step 6. Attain the actual process���T�ç (or���ž�ç), by mapping the auxiliary Gaussian process���V�ç (or 660 
� �ç) to the actual domain using the ICDF, �(�ë�Ô

�?�5, of each process �T�ç
�Ü�â ���E�� L ���s�á �å �á �I, via Eq. (10). 661 

By now, it should be clear that the basis of the proposed methodology consists an explicit 662 
simulation method, in terms of reproducing the distribution function (relieved from the 663 
limitations and constraints of such schemes; see section 1), that fundamentally differs from the 664 
other two typical schemes (implicit and transformation-based; see section 1) used in hydrology, 665 
which also employ linear stochastic models. Compared to the implicit approaches, that employ 666 
non-Gaussian white noise, Nataf-based schemes (e.g., SMARTA) alleviate several notable 667 
limitations. Among them, the approximation of the distribution function, the generation of 668 
negative values, the bounded dependence patterns and the (often) narrow type of possible 669 
correlation structures, which can be attributed to the limited number of schemes for which 670 
analytical equations can be derived to link the moments of the process with those of the white 671 
noise. Additionally, in contrast to transformation-based approaches, that aim to normalize the 672 
data, Nataf-based schemes explicitly model them using target marginal distributions. Though, 673 
it has to be noted, that in principle, the rationale of transformation-based approaches can be 674 
easily aligned with the �W�K�H�R�U�H�W�L�F�D�O�� �E�D�F�N�J�U�R�X�Q�G�� �R�I�� �1�D�W�D�I�¶�V�� �G�L�V�W�U�L�E�X�W�L�R�Q�� �P�R�G�H�O, by using the 675 
concept of equivalent (i.e., adjusted) correlation coefficients. This modification would mitigate 676 
their major weakness (i.e., the introduction of bias) but still will not be equivalent with the 677 
reproduction of certain, pre-specified, distribution functions. On top of this, since the ICDF is 678 
employed, a unique advantage of SMARTA (and other Nataf-based approaches) over the 679 
aforementioned schemes is that it can be used for the simulation of both univariate and 680 
multivariate stationary processes with discrete, continuous and mixed-type distributions. 681 
Regarding parameterization, the proposed Nataf-based approach exhibit a parsimonious 682 
character, as it is evident by the small number of required parameters, which are equal or lower 683 
than those required by the aforementioned schemes (for a comparison see section 4.1). Finally, 684 
it is noted that, �G�X�H���W�R���W�K�H���G�H�I�L�Q�L�W�L�R�Q���D�Q�G���X�V�H���R�I���3�H�D�U�V�R�Q�¶�V���F�R�U�U�H�O�D�W�L�R�Q���F�R�H�I�I�L�F�L�H�Q�W�����V�H�H���(�T����(12)), 685 
none of the latter methods (including SMARTA), can be used for the simulation of processes 686 
characterized by distributions functions exhibiting infinite variance. In such situations the use 687 
of alternative simulation methods is required (e.g., Samoradnitsky, 2017). Random variables 688 
with infinite moments typically arise when heavy-tailed distribution functions with power-type 689 
tails are employed. For instance, a Pareto type-I distribution with CDF, �(�:�T�; L �s F�:�T �>�¤ �;�?�Ô, 690 
where �> P �r (scale), �= P �r (shape) and �T R �>, has finite variance only for �= P �t. The literature 691 
offers a plethora of studies indicating the suitability of heavy-tailed distributions for both 692 
precipitation (e.g., Cavanaugh et al., 2015; Koutsoyiannis & Papalexiou, 2016; Papalexiou 693 
et al., 2013; Papalexiou & Koutsoyiannis, 2013, 2016) and streamflow (e.g., Anderson & 694 
Meerschaert, 1998; Basso et al., 2015; Blum et al., 2017; Bowers et al., 2012) processes, 695 
especially regarding the description of their extreme behavior. After reviewing the outcomes 696 
of these studies, which involve the analysis of numerous worldwide historical records, we 697 
found that the majority of them, agree that the hydrological variables are characterized by 698 



distribution functions (with either exponential or power-type tails) with finite variance. On top 699 
of the empirical evidence provided by the aforementioned works, theoretical reasoning (related 700 
with entropy and energy production) further supports the finite variance hypothesis for 701 
hydrometeorological processes (Koutsoyiannis, 2016, 2017). In this vein, it is regarded that 702 
the finite variance assumption poses a practical barrier of limited impact, if any, on the 703 
application of latter methods for the simulation of hydrometeorological processes.  704 

4 Hypothetical simulation studies 705 
Prior to employing real-world datasets to demonstrate the proposed approach, we decided to 706 
setup two hypothetical simulation studies. One univariate and one multivariate. The motivation 707 
behind this choice was based on conducting experiments where all the assumptions are a priori 708 
known, hence allowing the comprehensive evaluation and assessment of the model without the 709 
effect of exogenous factors, such as, erroneous or short length historical data. However, it is 710 
remarked that the proposed method is generic, and can be directly applied for the simulation of 711 
univariate and multivariate stationary processes (e.g., geophysical, hydrometeorological and 712 
beyond). In that respect, in section 5 the applicability of SMARTA is demonstrated using two 713 
real-world datasets, one that concerns the simulation of annual non-Gaussian streamflow at 714 
four stations and another that involves the simulation of intermittent, non-Gaussian, daily 715 
rainfall at a single location. 716 

4.1 Simulation of univariate processes 717 
The first simulation study constitutes a comparison between the original SMA and the proposed 718 
SMARTA models (with q = 212 for both) for the simulation of long (i.e., 220

 time steps) 719 
univariate HK processes (i.e., fGn), exhibiting different Hurst coefficients, i.e., H �Ð {0.6, 0.7, 720 
0.8, 0.9} and Pearson type-III marginal distribution (�ê������). With this in mind, we identified a 721 
total of 4 scenarios, each one characterized by �ê������ and different H coefficients. It is reminded 722 
that the original SMA model, in order to approximate the marginal statistics, uses �ê������ variates 723 
for the innovation term (hence hereafter referred to as SMA-�ê������), while SMARTA uses the 724 
ICDF of the target distribution�² in this case �ê������. The rationale regarding the selection of this 725 
distribution was the intention to conduct a fair and meaningful comparison among the two 726 
models, which, in this formulation, have exactly the same number of parameters, i.e., three for 727 
the marginal distribution (see, Eq. (29)) and one (i.e., H) for the autocorrelation structure. We 728 
point out that, the comparison is not intended to infer which model is the best, but rather used 729 
as a benchmark to highlight the merits of the proposed approach. �ê������ is essentially a Gamma 730 
distribution (see, Eq. (16))) with an additional location (else known as threshold or shift) 731 
parameter, whose PDF is given by, 732 
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where �+���Â�� denotes the gamma function, while, �= P �r, �> M �r  and �? �Ð �9 are shape, scale and 733 
location parameters, respectively; and they are interconnected with the mean (�ä�ë), variance 734 
(�ê�ë�6), skewness (�%�æ�ã) and kurtosis (�%�Þ�ã

) coefficients of random variable �T by,  735 
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More specifically, in all scenarios, we employed a �ê������ distribution with parameters �= L736 
�r�ä�y�w�x�s�v�á �> L�s�s�ä�w���ƒ�•�†���? L �s�ä�u�r�v�u�v�á whose theoretical moments are presented in Table 2.  737 



Table 2. Summary of theoretical and simulated statistics as reproduced by SMA and SMARTA models. 738 
 Theoretical Simulated (SMA-�ê������) Simulated (SMARTA) 
Scenario All H =0.6 H = 0.7 H = 0.8 H = 0.9 H =0.6 H = 0.7 H = 0.8 H = 0.9 
Mean (��) 10 9.99 10.08 9.85 10.23 10.00 9.99 9.99 10.00 
Variance (�12) 100 100.61 100.78 100.04 99.79 100.03 99.86 100.07 101.65 
Skewness coeff. (Cs) 2.30 2.35 2.34 2.32 2.35 2.30 2.29 2.30 2.35 
Kurtosis coeff. (Ck) 10.93 11.43 11.80 12.62 15.97 10.94 10.85 11.00 11.53 

Hurst coeff. (H) 0.60, 0.70,  
0.80, 0.90 0.61 0.70 0.80 0.89 0.60 0.71 0.80 0.90 

*The theoretical moments correspond to �ê������ distribution (a = 0.75614, b = 11.5 and c = 1.30434). 

Regarding SMARTA and the given marginal distribution, Figure 4a illustrates the relationship 739 
between the equivalent correlation coefficients �éä and the target ones �é (the superscripts are 740 
omitted for simplicity), while Figure 4b depicts the equivalent autocorrelation coefficients �éä�� 741 
employed by SMARTA, in order to capture the target autocorrelation structure �é�� of the target 742 
HK processes. 743 

 744 
Figure 4. a) The established relationship between equivalent, �éä and target �é correlation coefficients. b) 745 
Comparison between the target and equivalent autocorrelation coefficients employed within the 746 
SMARTA model for HK processes with the various values of H. 747 

Table 2 presents the simulated (by the two approaches) first four moments; which are 748 
apparently well-captured by both models. It is noted that, while SMA does not explicitly 749 
accounts for the kurtosis coefficient, it is able to reproduce it in a satisfactory degree; especially 750 
when one considers the high uncertainty associated with its estimation (cf., Lombardo et al., 751 
2014). Nevertheless, it is reminded that the resemblance of the moments does not imply the 752 
reproduction of the marginal distribution (Matalas & Wallis, 1976). This is clearly depicted 753 
in Figure 5a-d, where we compare the target theoretical cumulative distribution (CDF) with 754 
the empirically derived cumulative density functions (ECDFs) of the two models. In this case, 755 
only SMARTA was able to reproduce the target distribution, regardless of the value of H 756 
coefficient (its ECDF is almost indistinguishable from the theoretical one). On the other hand, 757 
the ECDF of SMA-�ê������ departs from the theoretical one for high values of H (e.g., see Figure 758 
5d). Furthermore, SMARTA explicitly avoids the generation of negative values; since the 759 
target distribution (�ê������) is positively bounded at���? L �s�ä�u�r�v�u�v. A property of high importance 760 
in hydrology due to the (often) non-negative nature of such variables (e.g., streamflow and 761 
precipitation).  762 
Regarding the resemblance of the auto-dependence structure of the processes, it is apparent 763 
from Figure 5e-h and Figure 5i-l that, both models were able to reproduce the theoretical HK 764 
ACFs as well as the corresponding climacograms, even for high values of H. The latter graphs 765 
also provide an empirical evidence of the theoretical consistency of both approaches. In 766 
addition, the Hurst coefficient of the synthetic realizations (see Table 2) was estimated using 767 



the climacogram-based, least squares variance (LSV) method (Tyralis & Koutsoyiannis, 768 
2011) and are in agreement with the theoretical values. 769 
Finally, in order to visually assess the form of the established dependencies, for both models 770 
and each HK process (i.e., scenario), we employ scatter plots of the lagged synthetic data for 771 
�2 = 1 (Figure 5m-p) and �2 = 10 (Figure 5q-t). It is observed that, despite the fact that both 772 
models reproduced the same autocorrelation coefficient for �2 = 1 and �2 = 10, they establish 773 
particularly different dependence patterns. This is attributed to the underlying assumption of 774 
SMARTA regarding the joint behavior of the process which is related to the Gaussian copula 775 
(expressed through the auxiliary Gaussian model).  776 



 777 
Figure 5. Comparison between theoretical and simulated CDFs ���X�V�L�Q�J���W�K�H���:�H�L�E�X�O�O�¶�V���S�O�R�W�W�L�Q�J��position) 778 
of SMA-�ê������ and SMARTA models for HK processes with a) H = 0.6, b) H = 0.7, c) H = 0.8, d) 779 
H = 0.9. Comparison between theoretical (HK) and empirical ACF of SMA-�ê������ and SMARTA models 780 
for HK processes with e) H = 0.6, f) H = 0.7, g) H = 0.8, h) H = 0.9. Comparison between theoretical 781 
(HK) and empirical climacograms of SMA-�ê������ and SMARTA models models for HK processes with 782 
i) H = 0.6, j) H = 0.7, k) H = 0.8, l) H = 0.9. Scatter plots of SMA-�ê������ and SMARTA models for time 783 
lag �2 = 1 for simulated HK processes with m) H = 0.6, n) H = 0.7, o) H = 0.8, p) H = 0.9. Scatter plots 784 
of SMA-�ê������ and SMARTA models for time lag �2 = 10 for simulated HK processes with q) H = 0.6, r) 785 
H = 0.7, s) H = 0.8, t) H = 0.9. 786 



4.2 Simulation of multivariate processes 787 
To further elaborate on the SMARTA approach, we setup a multivariate problem that concerns 788 
the simultaneous generation of four contemporaneously cross-correlated SRD and LRD 789 
processes. The latter may be seen as four (4) different processes at the same site, or processes 790 
of the same variable at 4 different sites. Hereinafter, we consider the latter for convenience and 791 
refer to them as sites A-D, as well as model them in that order, i.e., as 4-dimensional stationary 792 

process���ž�ç L c�T�ç
�5�á �T�ç

�6�á �T�ç
�7�á �T�ç

�8g
�X
, where for instance, i = 3 refers to site C. In this demonstration, 793 

the target auto-dependence structure of each process is described by the two-parameter CAS 794 
(i.e., Eq. (6)). More specifically, sites A and B are characterized by LRD behavior (particularly 795 
HK, since we set �� > 1 and �� = ��0) and slowly-decaying ACF, while sites C and D by SRD 796 
(since we set �� = 0) and fast-decaying ACF. In addition, we assigned different target 797 
distributions to the sites A-D, i.e., Burr type-XII (Eq. (31)), Pearson Type-III  (Eq. (29)), Log-798 
Normal (Eq. (17)) and Weibull (Eq. (32)). The PDF of the Burr type-XII distribution is given 799 
by, 800 
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where �=�5�á �=�6 P �r are shape parameters and �> P �r is a scale parameter. It is noted that �Ü	������� 801 
is a power-type distribution and its �Nth moment exist if and only if �=�5�=�6 P �N. Furthermore, the 802 
PDF of the Weibull reads as follows, 803 
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where �= P �r and �> P �r are shape and scale parameters respectively. Table 3a provides a 804 
synopsis of the latter assumptions, as well as the parameters of CAS and the theoretical 805 
moments of the corresponding distributions. Note that, the Kurtosis coefficient of site A is 806 
infinite, since �=�5�=�6 O �v. Further to this, the target and equivalent lag-0 cross-correlation 807 
coefficients (involving both positive and negative ones) are given in Table 3b. It is apparent 808 
that this is a peculiar simulation scenario, which was devised in order stress-test the SMARTA 809 
method. 810 

Table 3. a) Synopsis of theoretical distribution models and their moments, as well as, of CAS 811 
parameters for each variable of the multivariate simulation study. b) The upper triangle (grey cells) 812 
contains the target lag-0 cross-correlation coefficients (�é�4

�Ü�á�Ý) between sites A-D, while the lower triangle 813 
depicts the corresponding estimated equivalent correlation coefficients (�éä�4

�Ü�á�Ý). 814 
a) 

Distribution/ Parameters 
Theoretical b) Lag-0 cross-correlation 

 Site A Site B Site C Site D   Site A Site B Site C Site D 
 �Ü	������� �ê������ �æ�è �ñ �ß�ã  Site A 1 -0.700 0.750 0.600 
 a 2.5 (a1) 3 0.5 1.5  Site B -0.940 1 -0.600 -0.700 
 b 1  1 2 10  Site C 0.862 -0.749 1 0.650 
 c 1.5 (a2) 10 - -  Site D 0.811 -0.923 0.707 1 
 Statistic Theoretical       
 Mean (��) 4.76 13 8.37 9.02       
 Variance (�12) 11.42 3 19.91 37.56       
 Skewness coeff. (Cs) 5.01 1.15 1.75 1.07       
 Kurtosis coeff. (Ck) - 8 8.89 4.39       
 CAS parameter, �� 1.25 1.66 0 0       
 CAS parameter, �� 11.32 5 0.5 0.2       
 Hurst coeff. (H) 0.6 0.7 0.5 0.5       
 *Distribution abbreviations: �Ü	�������: Burr type-XII (a1 = shape, a2 = shape, b = scale), �ê������: Pearson type-III 

(a = shape, b = scale, c = location), �æ�è: Log-Normal (a = shape, b = scale), �ñ �ß�ã: Weibull (a = shape, 
b = scale). 



In order to provide further insights regarding the theoretical consistency of the model, we 815 
generated 100 independent realizations with length 211 time steps and set the number of 816 
SMARTA model�¶�V internal weight coefficients equal to q = 210. Figure 6 provides a synopsis 817 
of some basic dependence-related statistics in terms of box-plots. Clearly, SMARTA resembled 818 
with high precision the lag-1 autocorrelation and lag-0 cross-correlation coefficients (including 819 
the negative ones), despite the fact that the target processes are characterized by very different 820 
auto-dependence structures and distribution functions. Additionally, regarding the Hurst 821 
coefficient of the simulated series, it was once again estimated with the LSV method. �ù small 822 
discrepancy that concern site D, which is an SRD process (i.e., H = 0.5) is observed. This may 823 
be attributed to the associated estimation method and the high lag-1 autocorrelation (~0.8) of 824 
site D. Furthermore, in Figure 7a-d we compared the empirical distribution of each realization 825 
of each site A-D, with the corresponding theoretical distribution, in terms of the survival 826 
function (SF), also known as complementary CDF or tail function. The latter is denoted by �(�ë 827 

and expresses the probability of exceedance, i.e., �(�ë �� �2k�TP �To L �s F �(�ë. The latter figure 828 
highlights the ability of the model to preserve the target distribution functions, even in 829 
multivariate mode, since the median SF of all 100 realizations for the 4 sites is virtually 830 
identical to the associated theoretical model. Furthermore, in Figure 7e-h we depict the 831 
relationship between the equivalent, �éä and target �é correlation coefficients for each site A-D, 832 
while the preservation of the theoretical auto-dependence structure can be verified by the 833 
simulated ACFs (Figure 7i-l) and climacograms (Figure 7m-p) of the four variables, that 834 
closely resemble the corresponding theoretical ones. To further explore the joint behavior of 835 
the model and the established dependence patterns, we employ scatter plots. Figure S1 of 836 
supplementary material (SM) depicts the established dependence patterns among the variables 837 
for time lag 0 (SM, Figure S1e, i, j, m, n, o), as well as for each variable for time lag 1 (SM, 838 
Figure S1a, f, k, p). Finally, the relationship between equivalent, �éä�Ü�á�Ý and target �é�Ü�á�Ý, correlation 839 
coefficients is provided for every combination of sites A-D (SM, Figure S1b, c, d, g, h, l). 840 

 841 
Figure 6. Comparison between theoretical (red dots, �‡) and simulated lag-1 autocorrelation and Hurst 842 
coefficient for sites A-D. Target (red dots, �‡) and simulated lag-0 cross-correlation coefficients for all 843 
pairs of sites A-D. 844 



 845 
Figure 7. (a-d) Theoretical and simulated (SMARTA) distribution functions ���X�V�L�Q�J�� �W�K�H�� �:�H�L�E�X�O�O�¶�V��846 
plotting position) for sites A-D. (e-h) The established relationships between equivalent, �éä and target �é 847 
correlation coefficients given the marginal distribution of sites A-D. (i-l) Theoretical and simulated 848 
ACFs for sites A-D. (m-p) Theoretical and simulated climacograms (CGs) for sites A-D. In all cases, 849 
the simulation intervals have been established using all 100 realizations. 850 

5 Real-world simulation studies 851 

5.1 Generation of multivariate annual streamflow time series 852 
The first real-world simulation study concerns the application of SMARTA for the synthesis 853 
of annual streamflow time series at 4 stations in New South Wales region, Australia (Australian 854 
Government Bureau of Meteorology, 2015). Particularly, we employed historical data (Figure 855 
8a-d) from the following stations: Maragle Creek at Maragle (ID1: 401009), Goobarragandra 856 
River at Lacmalac (ID2: 410057), Adelong Creek at Batlow Road (ID3: 410061), Cotter River 857 
at Gingera (ID4: 410730). Hereinafter, we refer to them using their station ID, as well as model 858 

them in that order, as 4-dimensional stationary process���ž�ç L c�T�ç
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to station Adelong Creek at Batlow Road with ID3: 410061). The distribution of historical data 860 



does not exhibit the typical bell-type shape that is often encountered in annual data, hence we 861 
use the Gamma and Weibull distributions to model them. Specifically, using the maximum 862 
likelihood estimation method we identified the following distributions,���T�ç

�5�1�á�:�= L �t�ä�s�u�á �> L863 
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�s�ä�{�w�á �> L�v�z�ä�v�z�;. In addition, they are characterized by moderate-to-high temporal 865 
dependence and high lag-0 cross-correlation coefficients, that range from 0.83 (�é�4

�5�á�8) to 0.93 866 
(�é�4

�6�á�7). Following Koutsoyiannis (2000), the parameters of CAS (i.e., Eq. (6) - given in vector 867 
format), �¼ L �>�r�ä�{�{�á �r�ä�y�w�á �s�ä�s�u�á �r�ä�y�t�? and �Ä L �>�t�ä�w�y�á �v�ä�v�s�á �x�ä�r�s�á �w�ä�r�y�? were identified for each 868 
process by minimizing the mean square error (MSE) among the sample and theoretical 869 
autocorrelation coefficients. In this case study, we simulated one realization of 1 000 years 870 
using the SMARTA model (with q = 29). Figure 8e-h provides, for each station, a visual 871 
comparison among the empirical, theoretical and simulated distribution. Furthermore, Figure 872 
8i-l depicts, for each process, the relationship between the equivalent and target autocorrelation 873 
coefficients. The ability of the model to establish the target auto-dependence structures is 874 
verified by comparing, the theoretical and simulated ACF (Figure 8m-p) and corresponding 875 
climacogram (Figure 8q-t) of each process. Finally, the model reproduced the target lag-0 876 
cross-coefficients with high accuracy (SM, Figure S2) and established dependence patterns 877 
that are in agreement with the observed ones (SM, Figure S2). 878 



 879 
Figure 8. Synopsis of annual streamflow simulation study at 4 stations in New South Wales region. (a-880 
d) Historical time series. (e-h) Empirical, simulated and theoretical distribution functions (using the 881 
�:�H�L�E�X�O�O�¶�V���S�O�R�W�W�L�Q�J��position) for stations ID1-4 (i-l) The established relationships between equivalent, �éä 882 
and target �é correlation coefficients given the marginal distribution of stations ID1-4. (m-p) Empirical, 883 
simulated and theoretical ACFs for stations ID1-4. (q-t) Empirical, simulated and theoretical 884 
climacograms (CGs) for stations ID1-4. 885 

5.2 Generation of univariate daily rainfall time series 886 
In the final case study, we employ SMARTA for the stochastic simulation of a univariate daily 887 
rainfall process characterized by intermittency. The available data concern an observation 888 
period spanning from 1/1/1964 to 31/12/2006 (43 years) from Pavlos rain gauge located at 889 
Boeticos Kephisos river basin, Greece (Figure 9a). See also Efstratiadis et al. (2014) for 890 
further details regarding the dataset. In general, apart from ad-hoc techniques to handle 891 



intermittency (e.g., truncation to zero of values below a threshold), typical stochastic 892 
simulation schemes (e.g., Papalexiou, 2018; Serinaldi, 2009; Serinaldi & Kilsby, 2014) rely 893 
on the use of mixed-distributions or employ two-part models, which, in a nutshell, describe 894 
precipitation processes as the product of two different processes, particularly, that of 895 
occurrence (rain or no-rain) and that of intensity (e.g., Ailliot et al., 2015; Breinl et al., 2013; 896 
Brissette et al., 2007; Khalili et al., 2009; Lee, 2016, 2017; Lombardo et al., 2017; Mhanna 897 
& Bauwens, 2012; Thompson et al., 2007; Wilks, 1998; Wilks & Wilby, 1999). Herein, we 898 
employ the former approach, that is, mixed-distributions, as it seems a convenient option 899 
(Papalexiou, 2018) given the characteristics of SMARTA and particularly its flexibility 900 
regarding the selection of the marginal distribution. An alternative option, also compatible with 901 
the proposed method (and Nataf-based schemes in general), would be the use of single 902 
distribution functions that exhibit an atom of probability mass at zero. A characteristic example, 903 
which in the past has been used for this purpose (Dunn, 2004; Hasan & Dunn, 2011), is the 904 
Tweedie distribution (Jorgensen, 1987; Tweedie, 1984). Nevertheless, in this simulation 905 
study, in order to simultaneously account for the effect of seasonality and the stationarity 906 
assumption of the model, we treat each month as separate stochastic process, by varying the 907 
distribution function and autocorrelation structure on a monthly basis. Specifically, regarding 908 
the marginal distribution, we employ a discrete�±continuous (i.e., mixed or zero-inflated) model 909 
whose CDF is given by, 910 
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where, �L�½ denotes the probability of a dry interval (abbreviated as probability dry), i.e., �L�½��911 
�2k�TQ �T�½o and �)�ë stands for the distribution of amounts greater than the threshold �T�½, i.e., 912 

�)�ë �� �( �ë���ë�µ�ë�µ L �2k�T�+�TP �T�½o. Moreover, the corresponding ICDF is given by, 913 
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where �Q �Ð �>�r�á �s�? denotes probability. In this formulation values less or equal to �T�½ (that arise 914 
with probability �L�½) are assumed equal to zero. We remind the reader that the solely 915 
requirement of the algorithm of Appendix A, that is used to approximate the relationship �à�:�®�; 916 
of Eq. (15), hence the equivalent correlations �éä��, is the ICDF (thus conveniently accounting 917 
for mixed distributions; e.g., Eq. (33)). Nevertheless, after the specification of the threshold���T�½, 918 
the empirical probability dry, �L�½, can be directly obtained from the available data by counting 919 
the number of dry occurrences and dividing it with the total number of observed data. 920 
Regarding, �)�ë, it is obtained by selecting and fitting a theoretical distribution to the amount 921 
data above threshold �T�½. In this demonstration, we set �T�½ �� �r , and for the description of the 922 
positive daily precipitation amounts of all months, we employ the generalized gamma (�á�á) 923 
distribution (Stacy, 1962), which has been proved particularly capable for the task at hand 924 
(Chen et al., 2017; Papalexiou, 2018; Papalexiou & Koutsoyiannis, 2016). Of course, 925 
depending on the case, the �á�á could be replaced with other distribution functions. Back in our 926 
case, the parameters of the �á�á distribution were identified using a fitting approach based on L-927 
moments (Hosking, 1990); specifically the one proposed by Papalexiou and Koutsoyiannis 928 
(2016). The PDF of �á�á distribution is given by, 929 
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where �+���Â�� denotes the gamma function, while, �=�5 P �r, �=�6 P �r are parameters that control the 930 
shape of the distribution and �> P �r is a scale parameter. The interested reader is referred to the 931 
latter works for further details regarding the �á�á distribution and the associated fitting method. 932 



For instance, concerning �W�K�H���P�D�U�J�L�Q�D�O���F�K�D�U�D�F�W�H�U�L�V�W�L�F�V���R�I���2�F�W�R�E�H�U�¶�V��daily rainfall, we estimated 933 
the probability dry,���L�½L �r�ä�z�v, while the parameters of �á�á were found b = 3.96, �=�5 = 0.851 934 
and �=�6 = 0.588. Furthermore, regarding the description of the auto-dependence structure of the 935 
process, we employed CAS and estimated its parameters on a monthly basis (e.g., for October 936 
it we identified, �� = 0 and �� = 1.36) by minimizing the MSE among the sample and theoretical 937 
autocorrelation coefficients. Finally, we generated 1 000 years (i.e., 365 000 days) of synthetic 938 
data (Figure 9b depicts a random window of 60 years) and performed a similar analysis with 939 
the previous cases studies; which is summarized in Figure 9, where we depict the results of 940 
three characteristic months, i.e., February, June and October (the results are similar for the 941 
other months �± see SM, Figure S3-S6). Particularly, panels (c)-(e) illustrate the capability of 942 
the model to reproduce the target distributions (in terms of the SF) of positive precipitation 943 
amounts (�L�½ is explicitly preserved since it is embedded in the employed mixed-distribution 944 
model), while, panels (f)-(h) depicts the relationship of equivalent, �éä and target �é correlation 945 
coefficients for both �á�á and mixed-distribution models. It is observed that, the non-linearity of 946 
this relationship increases from �á�á to mixed distribution due to the fact that the latter is zero-947 
inflated. Furthermore, panels (i)-(k) depict the accurate resemblance of the target 948 
autocorrelation structure (i.e., CAS), while, panels (l)-(n) provide a comparison of empirical 949 
and simulated scatter for time lag 1, which seems to be in agreement with the historical pattern. 950 
Finally, preliminary analysis (not shown herein) indicated that the model has the potential to 951 
approximate some of the empirical statistics (in terms of L-moments) across coarser time 952 
scales, even though they are not explicitly modelled by it. This observation should not be 953 
interpreted as a general conclusion, rather as a direction for further investigation. We remark 954 
that the literature offers several well-established techniques with proven results, specifically 955 
designed for this purpose, i.e., to address scaling and intermittency, such as disaggregation 956 
(e.g., Kossieris et al., 2016; Lombardo et al., 2017) and multi-fractal methods, based on 957 
cascade models (e.g., Deidda et al., 1999; Kantelhardt et al., 2006; Tessier et al., 1996). 958 
The latter methods, by design, aim to simultaneously resemble the process at multiple 959 
aggregation levels, employing scaling relationships for high order moments (often greater than 960 
second). In our view, an interesting topic of future research would be a comparison among the 961 
latter simulation techniques with Nataf-based methods for the reproduction of the multi-scale 962 
behavior that characterizes hydrometeorological processes. Similar works, yet involving 963 
alternative simulation schemes, are those of Lombardo et al. (2012) and Pui et al. (2012). 964 



 965 
Figure 9. Synopsis of daily rainfall simulation at �3�D�Y�O�R�V�¶��station. a) Historical time series. b) Synthetic 966 
time series; randomly selected window of 60 years. Empirical, simulated and theoretical distribution 967 
function of positive precipitation amounts for c) February, d) June and e) October ���X�V�L�Q�J���W�K�H���:�H�L�E�X�O�O�¶�V��968 
plotting position); the title of each plot provides the parameters of the �á�á distribution, as well as the 969 
historical (�L�½) and simulated (�L�¸�½) values of probability dry. The established relationship between 970 
equivalent, �éä and target �é correlation coefficients for the mixed and �á�á distribution for f) February, g) 971 
June and h) October. Empirical, simulated and theoretical ACF for i) February, j) June and k) October; 972 
the title of each plot depicts the parameters of CAS. Empirical and simulated dependence pattern for 973 
time lag 1 for l) February, m) June and n) October; the title of each plot depicts the lag-1, target k�é�5

�¼�º�Ìo, 974 
simulated �:�éÜ�5�;, and equivalent �:�éä�5�; autocorrelation coefficients. 975 



6 Conclusions 976 
This paper introduces a novel and versatile stochastic model, termed SMARTA, with solid 977 
theoretical background and proven capability of addressing important hydrometeorological 978 
simulation problems. A prominent characteristic of the model is its ability to simulate 979 
univariate and multivariate stationary processes with any autocorrelation structure and 980 
marginal distribution, provided that the former is feasible and the latter have finite variance. 981 
The central idea of the method relies on the use of an appropriately parameterized (expressed 982 
through equivalent correlation coefficients) auxiliary Gaussian process which after its mapping 983 
to the actual domain results in a process with the desired stochastic structure and marginal 984 
distribution.  985 
Briefly, the proposed approach is built upon three major elements: a) The SMA scheme of 986 
Koutsoyiannis (2000), which is used as an auxiliary model in the Gaussian domain, b) a 987 
generalized autocorrelation structure, that allows the parsimonious description of SRD and 988 
LRD processes, and c) the rationale of NDM (Nataf, 1962), and the associated mapping 989 
procedure, that provide the theoretical basis of the method and in turn allows the identification 990 
of the equivalent correlation coefficients; hence determine the parameters of the auxiliary 991 
model.  992 
Overall, the proposed methodology maintains the flexible and parsimonious character of the 993 
original SMA model and simultaneously exhibit a series of additional virtues, as demonstrated 994 
through two hypothetical and two real-world simulation studies. Among them: 995 
a) The unambiguous advantage of explicitly simulating any-range dependent (SRD or LRD) 996 

stationary processes with arbitrary distributions (even from different families, see section 997 
4.2), using a single simulation scheme. 998 

b) Its ability to simulate univariate and multivariate processes that exhibit contemporaneous 999 
cross-correlations. The generation of time series at multiple locations, or of individual 1000 
correlated processes, is often the case in hydrological studies, making SMARTA a useful 1001 
method for such tasks. 1002 

c) The possible incorporation of novel advances in statistical science in stochastic simulation; 1003 
such as new distributions and robust fitting methods (e.g., L-moments). In addition, 1004 
regarding distributions of hydrometeorological processes, SMARTA can take advantage of 1005 
years of research in statistical analysis of hydrometeorological variables, since it can 1006 
incorporate any distribution function whose variance exists. 1007 

d) The ability of the model to explicitly avoid the generation of negative values, which 1008 
simultaneously is a shortcoming of many linear stochastic models. This is due to the direct 1009 
use of the distribution function(s) within the generation mechanism of the model. If the 1010 
latter is defined in the positive real line, then all the generated values will be within those 1011 
bounds (i.e., positive).  1012 

Typical, but not limited, applications of SMARTA entail the simulation of stationary processes 1013 
at time scales not affected by cyclostationary correlation structures (e.g., monthly scale). For 1014 
instance, given the wide range of admissible correlation structures and distributions, it could 1015 
be applied for the generation of synthetic time series at annual and fine time scales (e.g., daily) 1016 
for various hydrometeorological processes, such as, precipitation, streamflow and temperature. 1017 
The latter time series can be used as input in a variety of water resources risk-related studies 1018 
and it is anticipated to improve the quality of their outcomes, due to more accurate 1019 
representation of the input processes. Ongoing research aims in an enhanced stochastic 1020 
simulation scheme that will combine (using disaggregation techniques) both stationary (e.g., 1021 
SMARTA) and cyclostationary Nataf-based models (Tsoukalas et al., 2017, 2018a), thus 1022 
providing an even more flexible  and versatile simulation method for synthetic time series 1023 
generation. 1024 



Acknowledgments 1025 
We would like to thank the Associate Editor and the three anonymous reviewers, for their 1026 
constructive comments and critique, which helped providing a much-improved manuscript. 1027 
Furthermore, we would like to sincerely thank P. Kossieris and G. Moraitis for their valuable 1028 
comments and suggestions, as well as the many fruitful discussions. Data availability: The 1029 
Australian streamflow data were retrieved from the Australian Bureau of Meteorology and they 1030 
are available at: www.bom.gov.au/water/hrs/. The historical dataset of precipitation gauge 1031 
Pavlos, Boeticos Kephisos river basin, Greece, can be obtained from the following link: 1032 
http://kyy.hydroscope.gr/timeseries/d/216/. The aforementioned datasets can be also found in: 1033 
http://www.itia.ntua.gr/en/docinfo/1863/. 1034 

Appendix A 1035 
Tsoukalas et al. (2018a) proposed a generic, yet simple and efficient method for the 1036 
establishment of the relationship of Eq. (15), that concerns the estimation of equivalent 1037 
correlation coefficients �éä���á�� required by Nataf-based schemes. The method is essentially a 1038 
combination of Monte-Carlo simulation and polynomial approximation and is applicable for 1039 
discrete, mixed and continuous-type marginal distributions; since its only requirement is the 1040 
ICDF. The basic steps of the algorithm are synopsized below (the indices were omitted for 1041 
simplicity):  1042 
Let �T��  and���T��  be two random variables while �éä���á�� and ���é���á�� stand for the equivalent (in 1043 
Gaussian domain) and the target correlation coefficients respectively. Furthermore, let �(�ë  1044 

and���(�ë� , denote the corresponding target distributions, whose variance is assumed finite. 1045 

Step 1. Create a � -dimensional, equally spaced, vector �̃äL c�N�Á�5�á �å �á �N�Á�Ü�á �å �á �N�Á�� g in the interval 1046 
[rmin, rmax]. Lemma 2 (see section 3.2) can be employed in order to determine the values of rmin 1047 
and rmax since it provides insights regarding the sign of���éä�� �á��. For instance, if the target 1048 

correlation���é�� �á�� is positive we restrict our attention on the interval [0, 1]. 1049 

Step 2. For each value of���˜ä generate N samples from the bivariate standard normal distribution 1050 
with correlation���N�Á�Ü.  1051 
Step 3. Map the generated values to actual domain using their ICDF (i.e., �(�ë  and���(�ë� ) as in 1052 
Eq. (10). 1053 
Step 4. Calculate and store the resulting correlation �N�Ü in the��vector �˜ L c�N�5�á �å �á �N�Ü�á �å �á �N�� g. 1054 
Step 5. Since Eq. (15) is a continuous function, bounded in the interval [rmin, rmax], according 1055 
to Weierstrass approximation theorem it can be approximated by a p-order polynomial of the 1056 
form of Eq. (A.1) between �N�Á and���N. 1057 

 �é L �à �@�éä�Z�(�� �á �(�� �A N �N L �=�ã�N�Á�ã E �=�ã�?�5�N�Á�ã�?�5E �® E �=�5�N�Á�5 E �=�4 (�ù����) 

Note that the constant term �=�4 could be omitted as indicated by Lemma 2. Furthermore, in 1058 
order to avoid over-fitting and possible ill -conditions, which could lead to simulation errors, 1059 
the order of the polynomial can be determined with the use of cross-validation or Akaike 1060 
information criterion (AIC). Alternatively, the degrees of freedom of the polynomial can be 1061 
restricted (as in Xiao (2014)) by setting �L L �× F �s. The latter author, based on a systematic 1062 
analysis of a variety of distributions characterized by wide combinations of skewness and 1063 
kurtosis coefficients, argued that the relationship of Eq. (15) can be well approximated by a 1064 
polynomial of less than ninth degree (p < 9); hence proposed setting �  = 9 and p = 8. Moreover, 1065 
it is noted that instead of a polynomial relationship, other type of functions can be used (e.g., 1066 
Papalexiou, 2018; Serinaldi & Lombardo, 2017).  1067 
Step 6. Given a target correlation���é�� �á���á��evaluate the equivalent correlation �éä�� �á�� by inverting the 1068 

fitted polynomial of Eq. (�ù����). 1069 



It is remarked that the implementation of the latter algorithm in high-level programming 1070 
languages (e.g., R or MATLAB) is fairly easy and straightforward, while a single run requires 1071 
less than 0.5 second (with N = 150 000 and �  = 9) on a typical 3.0 GHz Intel Dual-Core i5 1072 
processor with 4 GB RAM. Finally, it is noted that since it is a Monte-Carlo based method, the 1073 
three parameters N, �  and p control its accuracy and computational efficiency.  1074 
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