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Key points 11 

• The impact of seasonality on the tail index of the probability distribution of extreme 12 

rainfall is minimal. 13 

• Estimation uncertainty of extreme rainfall is relevant even when long historical records are 14 

available. 15 

• Estimating seasonality in extreme rainfall by dividing the year in 4 seasons leads to 16 

overfitting and increased uncertainty. 17 

 18 

Plain language summary 19 

Climate studies and hydrological applications, e.g. flood risk mitigation, scheduling of season-20 

specific engineering works and reservoir management, often require information on the time of 21 

occurrence and magnitude of extreme rainfall throughout the year. The seasonal variation of 22 

rainfall extremes is investigated in a dataset of 27 remarkably long records including at least 150 23 

years of daily measurements. An innovative method is proposed to perform identification of 24 

seasons and simulation of extreme rainfall values for each season. Identification of the number of 25 
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seasons is achieved by evaluating alternative seasonal models according to model selection 26 

criteria. Seasonal partitioning is performed by grouping consecutive months with similarly 27 

behaving rainfall extremes. To generate synthetic data, extreme value probability distributions 28 

are employed. The results indicate that seasonal properties of rainfall extremes mainly affect the 29 

average values of seasonal maxima, while the shape of their probability distribution and its tail 30 

do not substantially vary from season to season. Uncertainty in the estimated probability 31 

distributions is important when comparing results from three different estimation methods, even 32 

for long records, where one would expect that uncertainty is limited. The overall effectiveness of 33 

the methodology is highlighted when contrasted to the conventional approach of using fixed 34 

climatological seasons. 35 

 36 

Abstract 37 

A comprehensive understanding of seasonality in extreme rainfall is essential for climate studies, 38 

flood prediction and various hydrological applications such as scheduling season-specific 39 

engineering works, intra-annual management of reservoirs, seasonal flood risk mitigation and 40 

stormwater management. To identify seasonality in extreme rainfall and quantify its impact in a 41 

theoretically consistent yet practically appealing manner, we investigate a dataset of 27 daily 42 

rainfall records spanning at least 150 years. We aim to objectively identify periods within the 43 

year with distinct seasonal properties of extreme rainfall by employing the Akaike Information 44 

Criterion (AIC). Optimal partitioning of seasons is identified by minimizing the within-season 45 

variability of extremes. The statistics of annual and seasonal extremes are evaluated by fitting a 46 

generalized extreme value (GEV) distribution to the annual and seasonal block maxima series. 47 

The results indicate that seasonal properties of rainfall extremes mainly affect the average values 48 

of seasonal maxima and their variability, while the shape of their probability distribution and its 49 



3 

 

tail do not substantially vary from season to season. Uncertainty in the estimation of the GEV 50 

parameters is quantified by employing three different estimation methods (Maximum 51 

Likelihood, Method of Moments and Least Squares) and the opportunity for joint parameter 52 

estimation of seasonal and annual probability distributions of extremes is discussed. The 53 

effectiveness of the proposed scheme for seasonal characterization and modeling is highlighted 54 

when contrasted to results obtained from the conventional approach of using fixed climatological 55 

seasons. 56 

Keywords: seasonality, extreme daily rainfall, AIC, seasonal clustering, Generalized Extreme 57 

Value Distribution, long rainfall records58 



4 

 

1. Introduction 59 

Seasonality is a dominant feature of most hydrological processes including extreme rainfall 60 

(Hirschboeck, 1988). It implies intra-annual periodic variability which pertains to both timing 61 

and magnitude of extreme rainfall. An accurate and effective characterization of seasonality is 62 

critical to a wide variety of hydrological applications. For instance, it is useful in the scheduling 63 

of various flood preparedness measures, including management of stormwater infrastructures 64 

(Dhakal et al., 2015) and reservoir operation (Chiew et al., 2003; Fang et al., 2007; Chen et al., 65 

2010a). Similarly, seasonality characterization is exploited in advanced schemes of flood-66 

frequency analysis incorporating causative mechanisms (e.g. Sivapalan et al., 2005; Li et al., 67 

2016) and may be useful for medium-range flood prediction (e.g. Koutsoyiannis et al., 2008; 68 

Wang et al., 2009; Aguilar et al., 2017), for which inclusion of seasonal extreme rainfall may 69 

increase prediction skill. Modeling of seasonal rainfall extremes – which typically implies some 70 

sort of frequency analysis – may also inform the selection of design values for related 71 

infrastructure. Additionally, the latter provides support to within-year operation of water 72 

resources systems, design rainfall estimation (Golian et al., 2010; Efstratiadis et al., 2014) and 73 

probabilistic assessment of extreme events occurring in a given season. Nowadays, extreme 74 

rainfall seasonality also prompts renewed scientific interest as a field of trend analyses (Ntegeka 75 

and Willems, 2008; Dhakal et al., 2015; Tye et al., 2016; Wu and Qian, 2017). 76 

Characterization of extreme rainfall seasonality is scarcely dealt with by the relevant 77 

literature. Most of the established methods are devised to identify the temporal span of a wet 78 

season and assess its significance, typically by a priori identifying a single wet season. For 79 

example, directional statistics are typically applied to identify the high flow season (Cunderlik et 80 

al., 2004a; Baratti et al., 2012; Chen et al., 2013) and have also been applied to characterize the 81 
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timing of seasonal rainfall (Parajka et al., 2009, 2010; Lee et al., 2012). However, directional 82 

statistics are inefficient when extremes occur over multiple seasons, which is very likely in the 83 

case of rainfall (Cunderlik and Burn, 2002). Recently, Dhakal et al. (2015) provided an 84 

improvement to the traditional method of directional statistics by adopting a non-parametric 85 

approach to capture multiple modes in the timing of annual rainfall maxima. Yet they noted that 86 

the proposed method is sensitive to the subjective selection of threshold values to assess 87 

significance of circular density estimates. Multimodality of the seasonal regime is also dealt with 88 

by analyzing the monthly relative frequencies of extreme occurrences (Cunderlik and Burn, 89 

2002; Cunderlik et al., 2004b). This approach, however, relies on the subjective identification of 90 

the monthly time step to characterize seasonality. The latter along with the four climatological 91 

seasons are often used when large-scale or global analyses are performed (e.g. Rust et al., 2009; 92 

Villarini, 2012; Serinaldi and Kilsby, 2014; Papalexiou and Koutsoyiannis, 2016) but lead to 93 

disregarding the large spatial variability of atmospheric patterns and may not align well with 94 

local behaviors (Pryor and Schoof, 2008; Dhakal et al., 2015). Moreover, the fixed partitions do 95 

not resolve the crucial question of the identification of the optimal number of seasons, therefore 96 

resulting in over-parameterization of the seasonal model of extremes due to the large number of 97 

seasons that is adopted, particularly in the 12 month model. 98 

A sub-optimal characterization of seasonality could be a reasonable compromise when one 99 

is interested in characterizing the timing of the most extreme events only. However, technical 100 

applications often require the modeling of the frequency of extremes during the whole course of 101 

the year. In this regard, several previous studies have either considered climatological 102 

information or employed statistical methods along with some degree of subjective judgement to 103 

estimate the optimal number of seasons and their displacement in time (e.g. Durrans et al., 2003; 104 
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Chen et al., 2010a; Baratti et al., 2012; Bowers et al., 2012). Coles et al. (2003) adopted a 105 

different approach by treating seasonal temporal limits as unknown parameters to be identified 106 

within a Bayesian framework. Yet, they also identified the number of seasons a priori through 107 

subjective inference. 108 

The above literature review highlights a methodological gap in the objective identification 109 

of the optimal number of extreme rainfall seasons and their duration. To the best of the authors’ 110 

knowledge, existing methods are not suitable for directly inferring multimodality from the 111 

seasonal regime and concurrently identifying segmentation points between seasons in an 112 

objective manner. 113 

The research herein presented proposes a two-purpose framework for (a) objective 114 

seasonality identification and (b) modelling of rainfall extremes in order to effectively estimate 115 

the seasonal probability of extreme events. To this end, we introduce two alternative methods for 116 

season identification, which are characterized by different levels of parsimony in terms of data 117 

requirements, therefore providing two options for practical applications. Our approach employs 118 

an information-theoretic framework (Akaike Information Criterion, AIC) to estimate the optimal 119 

number of seasons. In order to describe the frequency of extremes in each identified season we 120 

use the GEV probability distribution. We discuss the consistency of the model at different time 121 

scales. Finally, in order to demonstrate the efficiency of our framework we present a comparison 122 

with the traditional 4-season approach. 123 

An extended dataset of long daily rainfall records is herein investigated, as detailed in the 124 

next section. The length of the records, the shortest one covering an observation period of 150 125 

years, allows us to inspect the impact of uncertainty, which may be relevant for seasonal extreme 126 

value analyses (Cunderlik et al., 2004c). To reduce uncertainty we propose a robust 127 
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parameterization approach of seasonal-annual distributions which is supported by empirical 128 

evidence. 129 

2. Dataset 130 

Our dataset includes 27 daily rainfall records each one spanning over 150 years. Eighteen of 131 

them are collected from global databases, namely, the Global Historical Climatology Network 132 

Daily database (Menne et al., 2012) and the European Climate Assessment & Dataset (Klein 133 

Tank et al., 2002). Figure 1 shows the geographical location of the stations, while Table 1 reports 134 

the coordinates of each station, the observation period, as well as the number of years that are 135 

fully covered by observations after quality control and screening of missing values. For the 136 

extraction of the annual maxima we employ a methodology proposed by Papalexiou and 137 

Koutsoyiannis (2013); accordingly, an annual maximum is not accepted if (a) it belongs to the 138 

lowest 40% of the annual maxima values and (b) 30% or more of the observations for that year 139 

are missing. For seasonal and monthly maxima we compute statistics only if number of missing 140 

values is less than 10% of the total sample (season or month). The longest series is that of Padua, 141 

that is, the longest rainfall record existing worldwide (Marani and Zanetti, 2015). 142 

3. Methodology 143 

3.1 Season identification 144 

The methodology that we propose to identify seasons is inspired by cluster analysis and model 145 

selection techniques. Seasons are regarded as groups (clusters) of consecutive months with 146 

similar behavior of extremes. The question of selecting the number of seasons that best describe 147 

the dataset is addressed here via a model selection process under the assumption that different 148 

numbers of clusters (seasons) represent alternative plausible models for the dataset. Two 149 
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alternative methods for season identification characterized by different level of parsimony are 150 

considered here and described below. 151 

In what follows, we denote random variables and their realizations by upper and lower case 152 

symbols, respectively. We also use bold characters for vectors. We denote season, month and 153 

year with the indexes i = 1,..n, j = 1,...,12, and k = 1,..kmax, respectively, where n is the number of 154 

seasons and kmax is the record length in years. We assume that n is fixed a priori and denote with 155 

Ci the vector containing the j values of contiguous months belonging to the same season i, and 156 

with si its size. Accordingly, we define the following random variables: 157 

 Ri,j,k is the maximum daily rainfall amount of season i, month j and year k; 158 

 Ri,j is the temporal average of maximum daily rainfall of month j of season i along the 159 

record, namely, 𝑅𝑖,𝑗 ≔
1

𝑘𝑚𝑎𝑥
∑ 𝑅𝑖,𝑗,𝑘

𝑘𝑚𝑎𝑥
𝑘=1   ; 160 

  Ri is the temporal average of the Ri,j values along the season i, 𝑅𝑖 ≔
1

𝑠𝑖
∑ 𝑅𝑖,𝑗𝑗∈𝒄𝑖

. 161 

For instance, r2,5,12 for season i=2 defined by 𝒄2 =[5,6,7] denotes the maximum daily 162 

rainfall observed in May of the 12th year of a given record and belonging to the 2nd identified 163 

season of the year, which also includes months June and July; likewise, r2,5 is the sample average 164 

of maximum rainfall observed in all May days of the record, while, r2 is the sample average of all 165 

monthly averages belonging to season 2, in this case of May, June and July. 166 

We call the first method for season identification the SSD algorithm. It is based on the 167 

computation of Sum of Squared Deviations (SSD) of the Ri,j values from their seasonal average, 168 

Ri for all seasons according to the equation:  169 

                                                                 SSD = ∑ ∑(𝑅𝑖,𝑗 − 𝑅𝑖)2

𝑗∈𝒄𝑖

  

𝑛

𝑖=1

                                                (1) 170 
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This metric is evaluated for each possible clustering combination Ci of consecutive months for 171 

the given number of seasons, thus enabling the identification of the lower value of SSD, which 172 

identifies the optimal partition of the year into n seasons. We require a season to span at least 173 

two months and allow the algorithm to group months across different calendar years. The 174 

requirement for a season to span at least two months implies that the maximum number of 175 

seasons is 6, but preliminary investigations showed that more than three seasons are rarely 176 

present in extreme rainfall. Therefore, we limit our attention to n values ranging in the interval 177 

[1-4]. 178 

Essentially, the SSD algorithm minimizes the within-cluster variance of the average value 179 

over the years of the monthly rainfall maxima and can be considered as a simplification of the 180 

well-known k-means algorithm (MacQueen, 1967). Since seasons may include contiguous 181 

months only, and the algorithm deals with only 12 data points to cluster - the average over the 182 

years of daily maximum rainfall values for each month - the number of possible combinations is 183 

relatively low and the method is parsimonious. 184 

 In order to identify the optimal number of seasons we define alternative probabilistic 185 

models, with different level of parsimony, to describe the frequency of occurrence of extreme 186 

events in each season and assess their ability to optimally fit the observed record. Accordingly, 187 

we first select a trial value for the number n of seasons in the range [1-4] and partition them by 188 

applying the above SSD algorithm. To describe the probability distribution of rainfall in each 189 

season and the whole year we form a mixture model with n seasonal components, each described 190 

by its own probability distribution. Hence, according to the law of total probability, the 191 

probability distribution of the seasonal model for a generic seasonal random variable U takes the 192 

form: 193 
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                                                   𝑓𝑈(𝑢; 𝒂1, … , 𝒂𝑛) = ∑ 𝑤𝑖𝑓𝑈𝑖
(𝑢𝑖; 𝒂𝑖)

𝑛

𝑖=1

                                           (2) 194 

where wi are weights adding up to 1. They are obtained as the ratio of the season’s length in 195 

months, si, versus the whole twelve-month period, i.e. 𝑤𝑖 = 𝑠𝑖 12⁄ ; and ai is a seasonal parameter 196 

vector. Here 𝑓𝑈𝑖  is a seasonal probability distribution for U describing realizations ui in season i. 197 

Note that by applying the law of total probability instead of deriving the annual probability 198 

distribution as the product of the seasonal ones, we avoid relying on the assumption of 199 

independence of the random variables Ui, which was adopted in other studies (Durrans et al., 200 

2003). Therefore, this is a more general approach also appropriate for the rarer cases of rainfall 201 

maxima being correlated among seasons. 202 

The above step requires identifying and fitting a candidate model for the 𝑓𝑈𝑖
 probability 203 

distribution. We propose two alternative models for the seasonal probability distribution 𝑓𝑈𝑖
(ui, 204 

ai) which are characterized by different level of complexity.  205 

The first option, which we call Average Based (AB) method, identifies the random variable 206 

Ui as the monthly temporal average Ri,j. Then, we assume that 𝑓𝑅𝑖,𝑗
(ri,j, ai) is a uniform 207 

distribution given by: 208 

                                                                  𝑓𝑅𝑖,𝑗
(𝑟𝑖,𝑗 , 𝒂𝑖) =

1

𝑏𝑖
                                                            (3) 209 

where in this case ai contains only one parameter, namely, 𝑏𝑖 = max
𝑗𝜖𝒄𝑖

𝑟𝑖,𝑗 . Preliminary analyses 210 

showed that the uniform distribution provides an efficient representation of the frequency of the 211 

ri,j realizations, by minimizing the number of involved parameters. The above approach imposes 212 

an upper limit to the average value of the monthly maximum rainfall depth and sets the lower 213 

limit to zero. 214 
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The second option, which we call Complete Data (CD) method, identifies the random 215 

variable Ui as the maximum daily rainfall in each month j of the season i for the year k, which 216 

has been previously introduced as Ri,j,k. Then, we assume that 𝑓𝑅𝑖,𝑗,𝑘
(ri,j,k, ai) is described by two 217 

alternative probability distributions with a different tail behavior, i.e. one characterized by a 218 

lighter and one by a heavier right tail, in order to allow flexibility in fitting the observed rainfall 219 

maxima. The first is the two-parameter Gamma distribution, given by: 220 

                                                             𝑓𝑅𝑖,𝑗,𝑘
(𝑟𝑖,𝑗,𝑘, 𝒂𝑖) =

𝑟𝑖,𝑗,𝑘
𝜉𝑖−1

𝑒
−

𝑟𝑖,𝑗,𝑘

𝜃𝑖

𝜃𝑖
𝜉𝑖  Γ(𝜉𝑖)

                                                    (4) 221 

where ai = (ξi, θi) is the parameter vector with ξ and θ being shape and scale parameters, 222 

respectively. The second is the two-parameter Weibull distribution: 223 

                                                       𝑓𝑅𝑖,𝑗,𝑘
(𝑟𝑖,𝑗,𝑘, 𝒂𝑖) =

𝜇𝑖

𝜆𝑖
(

𝑟𝑖,𝑗,𝑘

𝜆𝑖
)

𝜇𝑖−1

𝑒−(𝑟𝑖,𝑗,𝑘/𝜆𝑖)𝜇𝑖                                  (5) 224 

where ai = (μi, λi) is the parameter vector with μ and λ being shape and scale parameters, 225 

respectively. By working on the monthly maximum rainfall instead of their averages along the 226 

season, the CD method allows one to base the estimation of the probability model on a more 227 

extended dataset. 228 

The above methodology allows several modeling options, which differ for the number of 229 

seasons, the application of either AB or CD method and the selection of either the Gamma or the 230 

Weibull distribution in the CD method. The best modeling option and the related optimal number 231 

of seasons is identified by applying the Akaike Information Criterion (AIC, Akaike, 1973, 1974). 232 

The criterion statistic for the pth candidate model, AICp, is given by: 233 

                                                 AIC𝑝 = 2𝑚𝑝 − 2ln𝐿𝑝                                                         (6) 234 
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where mp is the number of parameters and Lp is the likelihood of the pth candidate model. The 235 

application of the criterion is straightforward as it only requires estimation of the likelihood 236 

function for the candidate probability models defined by eq. (2). The minimum AIC value 237 

identifies the best candidate model by evaluating the bias versus variance trade off; i.e., the 238 

condition in which as the model parameters increase the bias of the model estimates decreases, 239 

yet their variance increases (Burnham and Anderson, 2002). Hence, AIC provides an implicit 240 

interpretation of the principle of parsimony which is pivotal in model selection (Box and Jenkins, 241 

1970). Although AIC has a solid foundation in information theory both in mathematical terms 242 

and also from a philosophical point of view, its use is not still widely established in hydrological 243 

applications (Laio et al., 2009). For an insightful review of AIC’s properties, the reader is 244 

referred to Burnham and Anderson (2002). 245 

 Therefore, the workflow for season identification is as follows: 246 

1. A trial value is adopted for the number n of seasons in the range [1-4]; 247 

2. The n seasons are partitioned by applying the SSD algorithm therefore identifying the 248 

vectors ci, i = 1,…, n, of the indexes of the months that are included in each season; 249 

3. AB and CD methods are applied to estimate the probability distribution of Ri,j and Ri,j,k, 250 

respectively, in each season; 251 

4. AIC is computed for candidate models; 252 

5. The procedure is repeated for the other values of n in the range [1-4]; 253 

6. The resulting AIC values are compared therefore identifying the optimal number of 254 

seasons, and their partition, for AB and CD methods. 255 

7. If n values resulting from AB and CD methods are the same, then the procedure is 256 

terminated and the optimal partition of seasons is uniquely identified; 257 
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8. If the estimated n values differ, then the user is allowed to select the preferred partition of 258 

seasons based on the suitability of Ri,j instead of Ri,j,k, for the considered design problem. 259 

3.2 Extreme value analysis 260 

3.2.1 Fitting the GEV distribution 261 

Once the optimal number of seasons and their partition have been identified, to estimate seasonal 262 

extremes one needs to fit a suitable probabilistic model for the seasonal block maxima series. 263 

The latter is formed by extracting from each identified season the maximum daily rainfall 264 

observed in each year. It is worth noting that distributions that were previously considered for 265 

seasonal partitioning (the Gamma and the Weibull) are not suited for fitting extreme values and 266 

therefore are not an option for the current target.  267 

Extreme Value Theory (EVT) suggests that the distribution of the maximum of v 268 

independent and identically distributed (i.i.d.) random variables asymptotically converges to 269 

three limiting laws (Fisher and Tippett, 1928), which are the Gumbel distribution (Type I), the 270 

Fréchet distribution (Type II) and the reversed Weibull (Type III), that can be unified under the 271 

following single analytical form provided independently by von Mises (1936) and Jenkinson 272 

(1955) and known as Generalized Extreme Value (GEV) distribution: 273 

                             𝐺𝑋(𝑥) = exp (− (1 + 𝜅
𝑥 − 𝜓

𝜎
)

−
1
𝜅

) ,     1 + 𝜅
𝑥 − 𝜓

𝜎
≥ 0                                  (7) 274 

where X is a generic random variable and κ ∈ ℝ is a shape parameter, σ > 0 is a scale parameter 275 

and ψ ∈ ℝ is a location parameter. The Type I distribution emerges for κ = 0, the Type II for κ > 276 

0, while the Type III emerges as the limiting distribution for κ < 0, but it is not used for modeling 277 

rainfall extremes as it is upper limited. GEV is the limiting distribution for extremes from any 278 

parent distribution of the underlying stochastic process. Therefore, it could be the limiting 279 
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distribution also in the case of monthly rainfall maxima described by the Gamma and Weibull 280 

distributions as in the CD method above. Leadbetter (1974) showed that convergence to GEV is 281 

guaranteed even in the presence of short-range correlation in the underlying stochastic process. 282 

In our case, the implication is that GEV emerges as limiting distribution even if rainfall maxima 283 

are correlated. Koutsoyiannis (2004a) has shown mathematically that GEV still emerges as 284 

asymptotical distribution in the presence of different parent distributions from season to season. 285 

In practical applications, though, in which a maximum value is extracted from a small number of 286 

events, the asymptotic condition is unlikely to hold. In this respect, Koutsoyiannis (2004a) 287 

demonstrated that the convergence of the distribution of maxima to the GEV with a positive 288 

shape parameter (Type II) is good even for a small number of events and also for parent 289 

distributions belonging to the domain of attraction of the Gumbel (Type I), due to the increased 290 

flexibility of the three-parameter distribution. On the contrary, convergence rates to the Gumbel 291 

distribution are very slow even for distributions belonging to the domain of attraction of the 292 

Gumbel family (see also Papalexiou and Koutsoyiannis, 2013). 293 

Here, we assume that the underlying stochastic process is given by the series of the 294 

monthly maxima of daily rainfall in each season. We aim to fit with the GEV distribution the 295 

seasonal samples that are obtained by extracting from each season i and each year k the 296 

maximum daily value r*
i,k therefore obtaining a block maxima series, which is assumed to be a 297 

realization of the random variable R*
i,k. We also fit the series of the annual maxima r*

k which is 298 

assumed to be a realization of the random variable R*
k. This approach shall allow one to estimate 299 

the extremes for the seasonal periods and the total annual period and ensures that both the 300 

seasonal and annual approaches refer to the same sample size when fitting the GEV, as the block 301 
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maxima sampling method is used, i.e., one extreme event is sampled on a yearly basis for both 302 

the seasonal and annual periods. 303 

3.2.2. Investigating consistency of seasonal and annual distributions 304 

A considerable part of related literature (e.g. Buishand and Demaré, 1990; Durrans et al., 2003; 305 

Chen et al., 2010b; Baratti et al., 2012) has focused on the estimation of seasonal and annual 306 

flood frequency distributions and their inter-relationship. Usually, it is suggested that an 307 

independent fitting of seasonal and annual distributions may lead to inconsistency among them, 308 

manifested as a “crossing over” effect. The latter means that for extremely rare events seasonal 309 

quantiles may be higher than their annual counterparts. To resolve this inconsistency, a variety of 310 

methods for the joint estimation of the seasonal and annual distributions has been proposed. 311 

Durrans et al. (2003) attributed distributional inconsistencies in seasonal-annual frequency 312 

analysis to three possible reasons: (a) the arbitrary parameterization of seasonal and annual 313 

distributions, (b) stochastic dependence among them and (c) estimation uncertainty. In this 314 

respect, we believe that the arbitrary specification of seasonal samples is also a major reason 315 

causing distributional inconsistencies (such a case is discussed and illustrated later in section 316 

4.5). In our case though, we argue that the above inconsistency should rather be viewed as an 317 

empirical evidence of estimation uncertainty, which is particularly relevant in extreme value 318 

studies (Coles et al., 2003; Koutsoyiannis, 2004a). This is further supported by observing that the 319 

crossing over effect is manifested in the domain of extremely rare events, where uncertainty is 320 

prominent. 321 

To inspect the impact of estimation uncertainty, we fit the GEV probability distribution by 322 

applying three different methods, namely, maximum likelihood (ML), method of moments (MM) 323 

and a least squares estimation method (LS) for an improved fitting of the extremes 324 



16 

 

(Koutsoyiannis, 2004b). We further investigate estimation uncertainty in each of the three 325 

methods by computing 95% Monte Carlo Prediction Limits (MCPL) for the resulting GEV 326 

quantiles. MCPL are estimated by applying a Monte Carlo simulation which is structured 327 

according to the following steps: (1) we estimate the GEV parameters by each method, (2) 328 

produce 1000 synthetic GEV series for each derived parameter set, (3) re-estimate the parameters 329 

by the same method, (4) compute the resulting GEV quantiles for each of them and then (5) 330 

identify the 95% confidence region for each quantile value. The scope is to assess whether the 331 

crossing over falls within the limits of the estimation uncertainty as evaluated from applying a 332 

set of different parameter estimation methods. To further reduce fitting uncertainty, we propose a 333 

simpler alternative to joint parameterization, i.e. the joint estimation of a common shape 334 

parameter among seasonal-annual distributions – since the shape parameter is the most difficult 335 

to estimate accurately − and we discuss how this choice is supported by empirical evidence. 336 

 337 

4. Results  338 

4.1 Season identification for the observed records 339 

Table 2 shows the AIC values resulting from season identification for the available stations. 340 

Following Burnham and Anderson (2004), we denote with ΔAIC the difference in the AIC value 341 

of each model with respect to the best one. Therefore, the zero ΔAIC model is the best model, 342 

while models with ΔAIC<2 and ΔAIC>10 are assumed to have good and little support, 343 

respectively. An example of seasonal partition for the case of Florence is shown in Figure 2a and 344 

Figure 2b for 2 and 3 seasons. We refer to this type of figures as climatograms, though the term 345 

is typically used for plots depicting both rainfall and temperature climatological regimes. 346 
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The results point out that both methods identified the one-season (annual) model as the 347 

best solution for 11 stations (with 6 stations being the same for both methods). In four stations, 348 

the one-season model was preferred by the CD method, while the two-season solution was 349 

indicated by the AB method. On further investigation, it was found that neither the Gamma, nor 350 

the Weibull provided satisfactory likelihood values for these stations. As a result, the more 351 

parsimonious one-season model was preferred by the AIC. The three-season model is identified 352 

as the best solution for five stations with the CD method, while the AB method did not select 353 

n = 3 for any station. This result was expected as the AB method exploits information from a 354 

limited dataset and therefore parsimonious models are likely to provide better AIC values. The 355 

Gamma distribution is selected as the best model in 21 cases and the Weibull for the remaining 356 

6.  357 

To inspect the spatial coherence of the results, we present maps of the two regions of the 358 

dataset having neighboring stations, i.e. Europe and Australia (Figure 3). We group the stations 359 

in six clusters of similarity in their seasonal patterns and we also mark single stations for which 360 

similarity falls below the accepted threshold. As similarity index we define the ratio of the 361 

number of the wet season months that the stations in the cluster have in common versus the span 362 

of each wet season and we require it to be at least 60% for each station in the cluster. More 363 

specifically, Clusters 1 and 2 have 67% and 80% similarity, respectively, for both methods, 364 

while, Clusters 3, 4 and 5 exhibit 100%-75%, 60%-75% and 80%-67% for the AB and CD 365 

methods, respectively. On top of the maps, we also plot Köppen maps of climate classification 366 

by Chen and Chen (2013) covering the period 1901-2010, in order to allow a direct comparison 367 

of the observed spatial patterns to the climatological ones. Some interesting insights can be 368 

derived. First, spatial coherence does not fully coincide with climatological coherence and vice 369 
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versa, and this is especially true in regions with complex topography/climatology. For example, 370 

in the wider Alpine region, where climate shows great diversity, the stations are less spatially 371 

consistent than in Central Europe. On the contrary, stations belonging to a Mediterranean climate 372 

(Cluster 1) show consistent patterns. In general, we notice that patterns are coherent on both 373 

levels: neighboring stations show very high similarity (e.g. Cluster 3) and far apart stations 374 

belonging to a climatically homogenous region show medium to high similarity (see, e.g., 375 

Cluster 2). 376 

 377 

4.2 Assessing temporal change in observed seasonality 378 

To demonstrate the applicability of the proposed season identification method in the inspection 379 

of temporal changes in seasonality, we analyze the four longest records of the dataset, i.e. the 380 

stations of Padua (275 years), Prague (211 years), Bologna (195 years) and Radcliffe (188 381 

years). We split the observation period into equally sized sub-periods and apply the methodology 382 

independently to each period. We employ four sub-periods for the significantly longer station of 383 

Padua and three for the other records. 384 

Results are shown in Table 3. It can be seen that changes, both in the number and duration 385 

of seasons, are likely to emerge within each sub-period. For example, seasonality in Prague 386 

during the 2nd period changed in terms of the span of the wet season, but a two-season regime 387 

was selected for all sub-periods. Results for 3rd and 1st window coincide. These characteristics of 388 

the methodology make it useful for climate change analysis. 389 

 390 
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4.3 Fitting the GEV distribution 391 

Subsequently to the identification of seasons, we fitted the GEV distribution via maximum 392 

likelihood (ML) estimation to each of the seasonal sets (or the annual set if one season was 393 

identified). Table 4 contains summary statistics of the GEV fitting for wet and dry seasons, as 394 

well as for the whole year, for the cases where the two- and three-season model were found 395 

prevalent under AB and/or CD methods. Summary statistics for the transition season (placed 396 

between the wet and dry season) in the three season model are omitted since the sample is small 397 

(5 stations). The main differences in the seasonal distributions lie in the values of the scale and 398 

location parameters, which are in their vast majority (93.8% and 100%, respectively, under AB 399 

method and 100% and 100%, respectively, under CD method) higher for the wet season 400 

compared to the dry. What might be less anticipated is that there is limited seasonal variation in 401 

the value of the shape parameter κ, which is related to the shape of the tail of the seasonal 402 

maxima distribution. Hence, it is justifiable to represent the two seasons and the whole year by a 403 

common value for the shape parameter, therefore increasing robustness of the method, which is a 404 

desirable feature. Additionally, for the majority of the stations, the shape parameter takes 405 

positive values indicating the appropriateness of heavier-tailed distributions for modeling of 406 

extremes. It is also clear that the wet extreme properties are quite close to the annual maxima 407 

ones, which indicates that the annual maxima distribution is dominated by the wet season. 408 

The singular cases of the stations of Prague from Czech Republic and Florence from Italy 409 

are plotted in Figures 4a and 4b. In the second case, there is small deviation between the wet 410 

season and the annual period, while in the first case the two lines are almost identical. In both 411 

cases, the dry-season probability line lies considerably lower. In the second case, in which the 412 

three-season model is preferred by the CD method (while two seasons were preferred by the AB 413 
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method), the probability line of the transition season lies in the space between the wet and dry 414 

seasons’ probability lines, as expected. 415 

 416 

4.4 Assessing estimation uncertainty in seasonal-annual GEV parameterization  417 

The crossing over effect mentioned in Section 3.2.2 is observed in five cases (Eelde, Genoa, 418 

Hohenpeissenberg, Milan and Zagreb), where we found that the wet-season probability 419 

distribution lies higher than the annual one in the area of extremely rare events. We focus on the 420 

station in Genoa where the effect is more pronounced. As mentioned in Section 3.3, we 421 

performed additional parameter estimation by applying the method of moments (MM) and the 422 

least squares algorithm (LS). Figure 5a shows results from the application of the three estimation 423 

methods for the annual maximum series along with uncertainty bounds computed within each 424 

method by means of Monte Carlo analysis. Uncertainty bounds in the area of extremely rare 425 

events, where the crossing over effect is also observed, are large. The larger annual maxima fall 426 

within the 95% limits of the annual maxima GEV distribution only for the LS method. This is 427 

due to the better fitting capability of the LS algorithm for extremely rare events (Koutsoyiannis, 428 

2004b). To further improve the fitting we also estimate via LS a common shape parameter for 429 

the three distributions (two seasonal GEV and the annual one). In these cases as well, the choice 430 

of a common shape parameter is supported by empirical evidence from the previous independent 431 

fitting. The crossing over effect is significantly mitigated (Figure 5b), with a remaining positive 432 

difference between the quantiles of the wet season and annual distribution of 10 mm for the 0.5% 433 

annual exceedance probability, which is considered not significant in view of the large 434 

uncertainty in the high-quantile domain. The results for the other cases also showed that the 435 

crossing over effect was resolved. 436 
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The importance of taking estimation uncertainty into consideration is additionally 437 

showcased by applying ML, MM and LS estimation methods to the entire set of stations, as 438 

shown in Table 5. One notices that uncertainty is higher in the estimation of the shape parameter, 439 

as already discussed in literature (Koutsoyiannis, 2004b; Papalexiou and Koutsoyiannis, 2013). 440 

The fact that this result is empirically confirmed for the long rainfall records considered here is a 441 

further confirmation that for practical applications uncertainty in the estimation of extremes is 442 

unavoidable even when dealing with long records. 443 

4.5 A comparison to traditional methods of seasonal clustering 444 

We compare our method to the climatological 4-season approach, which divides the annual 445 

period in Winter, Spring, Summer and Fall seasons. First, to highlight that site-specific season 446 

identification is important, we compare the monthly maxima plots for two stations in Europe for 447 

our method and the fixed seasonal partition (Figure 6). It is clear that climatological seasons are 448 

an inefficient partition for analyzing the extreme rainfall properties, and may also be a rather 449 

crude method for delineating the extreme’s properties in multi-site analyses where seasonal 450 

differences in climate may be very pronounced among stations. As an example, seasonality of 451 

maximum rainfall in Jena (Germany) is completely out of phase with respect to Athens (Greece). 452 

The same could be argued for trend studies employing fixed characterizations of seasonality. For 453 

instance, the question of whether winter rainfall has increased is potentially ill-conceived, as it 454 

mostly pertains to a subjective interpretation of seasonality. A more relevant question is whether 455 

rainfall in the major rainy season has significantly changed, but such a change is unlikely to be 456 

identified by considering an arbitrary partition in seasons. 457 

To demonstrate the effect that a fixed 4-season partition could have on the estimation of 458 

extreme value properties, we focus on the rainfall record of Athens. By applying the 4-season 459 
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partition one obtains an apparent overfitting, as the seasonal lines are not clearly separated and 460 

even cross each other at several points (Figure 7b). It is evident that an inappropriate 461 

characterization of seasonality provides no valuable and practical information for seasonal 462 

planning and decision-making while, in fact, it obscures the presence of the existing seasonal 463 

regime (Figure 7a). Additionally, in the presence of parameter uncertainty and given the short 464 

record lengths that are usually available, adopting subjective characterizations of seasonality for 465 

the study of extreme values entails the risk of disproportionately increasing estimation 466 

uncertainty. The consequences of overfitting are even more obvious in stations with very low or 467 

no seasonality. 468 

 469 

5. Discussion and Conclusions 470 

An objective methodology is proposed to allow season identification in extreme daily rainfall 471 

and the study of the resulting extreme properties in each season. The methodology is evaluated 472 

on an extended dataset comprising 27 rainfall stations covering a period of more than 150 years 473 

of daily observations. In the following, we discuss methodological and modeling issues, the 474 

results of the extreme value analysis and their comparison to the no-seasonality approach, as well 475 

as relative strengths and potential limitations of our method. 476 

The season identification methodology herein proposed is based on the SSD algorithm, a 477 

simplified version of the k-means clustering algorithm, whose results are evaluated by exploiting 478 

the model selection properties of the Akaike Information Criterion (AIC). The method is able to 479 

identify the optimal modeling option for the seasonal extreme rainfall for a given dataset, 480 

discerning among the existence of 1 (no dominant season) to 4 seasons in the extreme rainfall 481 

properties and identifying their temporal span. Since AIC is a measure of relative performance of 482 
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models, this task should be performed after thorough consideration of the appropriateness of the 483 

candidate seasonal distributions to be assessed. In that respect, our methodology provides 484 

additional flexibility as multiple probabilistic models may be simultaneously assessed. Overall, 485 

the methodology shows good spatial coherence, which makes it potentially appropriate for 486 

regionalization studies, and its flexibility allows one to inspect temporal changes in a range of 487 

ways, which is also a desirable feature concerning climatic variability and trend studies. 488 

In terms of generated results, the adopted scheme proved to be successful for the long 489 

rainfall records considered here, by both visual evaluation of the plots of the monthly maximum 490 

rainfall values (climatograms) and assessment of the resulting extreme seasonal distributional 491 

properties. For the cases where two or three seasons are identified, the differences in the 492 

distributional properties are reflected mainly in the value of the scale and location parameters of 493 

the GEV which are significantly higher for the wet season. The shape parameter shows limited 494 

seasonal variability, which implies that the seasonal distributional properties do not differ 495 

substantially in the shape of the distribution tail. Our results also confirm other studies regarding 496 

the prevalence of heavy-tailed distributions for daily rainfall extremes (Koutsoyiannis, 2004b; 497 

Villarini, 2012; Papalexiou and Koutsoyiannis, 2013; Serinaldi and Kilsby, 2014; Mascaro, 498 

2018). Some of these studies have also argued that a positive shape parameter emerges for 499 

extremes caused by multiple types of synoptic patterns, whereas a zero exponent (i.e. an 500 

exponential tail) may occur for a single-type of events. Apart from pronounced intra-annual 501 

variability, a positive shape parameter may be also portraying increased inter-annual variability 502 

in the extremes which has been linked to the presence of large-scale circulation patterns, i.e. the 503 

NAO, for certain stations of our dataset (Kutiel and Trigo, 2014; Marani and Zanetti, 2015). In 504 

principle, we believe that our findings are in agreement with previous research and strengthen 505 
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the assumption that a heavier-tail behaviour better captures conditions of enhanced natural 506 

variability and complex atmospheric forcing, as revealed by the inspection of our long and 507 

spatially sparse dataset. 508 

In comparison to the no-seasonality approach, in some cases the annual maxima series are 509 

found to be dominated by extreme events occurring in the wet season. This result is pointed out 510 

by the closeness in the estimated GEV parameter values between the annual and the wet season’s 511 

probability distribution of extreme events. It also indicates that annual frequency analyses may 512 

suffice for studying the annual maxima (AM). Actually, studying the AM series is more in favor 513 

of a conservative design approach, since the former takes into account the rare cases of extreme 514 

events of significant magnitude happening in the dry season. Furthermore, since the majority of 515 

AM in records with pronounced seasonality still stems from the wet season, strong seasonality is 516 

not significantly violating the i.i.d. assumption in the GEV approach. A similar remark was also 517 

made by Allamano et al. (2011). However, for intra-annual hydrological design and 518 

management, it is crucial to take seasonal variability into account. The wet season maxima series 519 

contain valuable information on the timing of occurrence of the most extreme events, although it 520 

is likely that in some cases, their magnitude will be close to the AM estimated one. Yet when dry 521 

periods are of interest, using the AM series instead, i.e. adopting a no-seasonality approach, is 522 

likely to lead to costly overestimation of design values and floodwater waste.  523 

A few key strengths of our methodology should be underlined. In general, estimation 524 

uncertainty in extreme studies is a known issue especially for the estimation of the shape 525 

parameter of the GEV distribution. Here, we show how an alternative choice of estimation 526 

methods, improving the model performance in the domain of extreme events, may resolve 527 

inconsistencies deriving from an independent seasonal and annual fitting. Given the latter, we 528 
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consider the need for the laborious joint estimation of seasonal-annual distributions to be 529 

questionable and we propose a simpler procedure based on the estimation of a common shape 530 

parameter for the seasonal-annual parameterization, which is shown to increase robustness of the 531 

statistical model. On the whole, the entire methodology is compared to a conventional partition 532 

in fixed seasons and its advantageous features are highlighted both in that it enables consistent 533 

identification of seasonal regimes at single-site and multi-site levels, as opposed to arbitrary 534 

partitions, and that it consequently allows a more informed and parsimonious fitting of the GEV 535 

distribution to seasonal extremes. 536 

A few limitations should be taken into account. We note that in case where the Average 537 

Based (AB) and the Complete Data (CD) methods diverge, there is some remaining degree of 538 

subjectivity in the choice for the most appropriate scheme. This constitutes a potential limitation 539 

of our method as results may not be fully conclusive. Yet this may be resolved if an equifinality 540 

framework is adopted and both options are considered. Additionally, it should be noted that the 541 

performance of AIC largely depends on the quality of the considered candidate models. 542 

Although the chosen distributions are representative of a variety of statistical behaviors, it is 543 

possible that there may be exceptions for which they do not perform well. Increasing the set of 544 

candidate distributions is another option to achieve a greater degree of confidence within a multi-545 

model approach. 546 

Despite these limitations, we believe that our findings have direct applications both in the 547 

theoretical conceptualization of seasonality in extreme rainfall and in engineering applications. 548 

On a methodological level, they contribute to a wider establishment of model selection 549 

techniques, in this case AIC, in hydrological studies and pave the way for the objective 550 
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identification of seasonality via automated schemes which are required for global-scale 551 

hydrology. 552 

Acknowledgments 553 

We greatly thank the Radcliffe Meteorological Station (Burt and Howden, 2011), the Icelandic 554 

Meteorological Office (Trausti Jónsson), the Czech Hydrometeorological Institute, the Finnish 555 

Meteorological Institute, the National Observatory of Athens, the Department of Earth Sciences 556 

of the Uppsala University and the Regional Hydrologic Service of the Tuscany Region 557 

(servizio.idrologico@regione.toscana.it) for providing the required data for each region 558 

respectively. We are also grateful to Professor Ricardo Machado Trigo (University of Lisbon) for 559 

providing the Lisbon timeseries and to Professor Marco Marani (University of Padua) for 560 

providing the Padua timeseries. All the above data were freely provided after contacting the 561 

acknowledged sources. The Eelde and Den Helder timeseries are publicly available by the data 562 

providers in the ECA&D project (http://www.ecad.eu), while the remaining 16 timeseries can be 563 

freely accessed at the GHCN-Daily database (https://data.noaa.gov/dataset/global-historical-564 

climatology-network-daily-ghcn-daily-version-3). We greatly thank Professor Marco Marani and 565 

Professor Attilio Castellarin (University of Bologna) for their helpful discussions during an early 566 

stage of this research. We are also grateful to the anonymous reviewers and the Associate Editor 567 

for providing very constructive remarks and suggestions. 568 

References 569 

Aguilar, C., Montanari, A., Polo, M.-J., 2017. Real-time updating of the flood frequency 570 

distribution through data assimilation. Hydrol. Earth Syst. Sci. 21, 3687–3700. 571 

https://doi.org/10.5194/hess-21-3687-2017 572 

Akaike, H., 1974. A new look at the statistical model identification. IEEE transactions on 573 

automatic control 19, 716–723. 574 



27 

 

Akaike, H., 1973. Information Theory and an Extension of the Maximum Likelihood Principle", 575 

in B. Petrov and B. Csake (eds), Second International Symposium on Information 576 

Theory, Akademai Kiado, Budapest, 267–281. 577 

Allamano, P., Laio, F., Claps, P., 2011. Effects of disregarding seasonality on the distribution of 578 

hydrological extremes. Hydrology and Earth System Sciences 15, 3207–3215. 579 

Baratti, E., Montanari, A., Castellarin, A., Salinas, J.L., Viglione, A., Bezzi, A., 2012. Estimating 580 

the flood frequency distribution at seasonal and annual time scales. Hydrology and Earth 581 

System Sciences 16, 4651–4660. 582 

Bowers, M.C., Tung, W.W., Gao, J.B., 2012. On the distributions of seasonal river flows: 583 

lognormal or power law? Water Resources Research 48. 584 

Box, G.E.P., Jenkins, G.M., 1970. Time series analysis: forecasting and control, 1976. ISBN: 0-585 

8162-1104-3. 586 

Buishand, T.A., Demaré, G.R., 1990. Estimation of the annual maximum distribution from 587 

samples of maxima in separate seasons. Stochastic Hydrology and Hydraulics 4, 89–103. 588 

Burnham, K.P., Anderson, D.R., 2004. Multimodel inference understanding AIC and BIC in 589 

model selection. Sociological methods & research 33, 261–304. 590 

Burnham, K.P., Anderson, D.R., 2002. Information and likelihood theory: a basis for model 591 

selection and inference. Model selection and multimodel inference: a practical 592 

information-theoretic approach 49–97. 593 

Burt, T.P., Howden, N.J.K., 2011. A homogenous daily rainfall record for the Radcliffe 594 

Observatory, Oxford, from the 1820s. Water Resour. Res. 47, W09701. 595 

https://doi.org/10.1029/2010WR010336 596 

Chen, D., Chen, H.W., 2013. Using the Köppen classification to quantify climate variation and 597 

change: An example for 1901–2010. Environmental Development 6, 69–79. 598 

https://doi.org/10.1016/j.envdev.2013.03.007 599 

Chen, L., Guo, S., Yan, B., Liu, P., Fang, B., 2010a. A new seasonal design flood method based 600 

on bivariate joint distribution of flood magnitude and date of occurrence. Hydrological 601 

Sciences Journal 55, 1264–1280. https://doi.org/10.1080/02626667.2010.520564 602 

Chen, L., Guo, S., Yan, B., Liu, P., Fang, B., 2010b. A new seasonal design flood method based 603 

on bivariate joint distribution of flood magnitude and date of occurrence. Hydrological 604 

Sciences Journal–Journal des Sciences Hydrologiques 55, 1264–1280. 605 

Chen, L., Singh, V.P., Guo, S., Fang, B., Liu, P., 2013. A new method for identification of flood 606 

seasons using directional statistics. Hydrological Sciences Journal 58, 28–40. 607 

Chiew, F.H.S., Zhou, S.L., McMahon, T.A., 2003. Use of seasonal streamflow forecasts in water 608 

resources management. Journal of Hydrology 270, 135–144. 609 

Coles, S., Pericchi, L.R., Sisson, S., 2003. A fully probabilistic approach to extreme rainfall 610 

modeling. Journal of Hydrology 273, 35–50. 611 

Cunderlik, J.M., Burn, D.H., 2002. Analysis of the linkage between rain and flood regime and its 612 

application to regional flood frequency estimation. Journal of Hydrology 261, 115–131. 613 

Cunderlik, J.M., Ouarda, T.B., Bobée, B., 2004a. Determination of flood seasonality from 614 

hydrological records/Détermination de la saisonnalité des crues à partir de séries 615 

hydrologiques. Hydrological Sciences Journal 49. 616 

Cunderlik, J.M., Ouarda, T.B., Bobée, B., 2004b. Determination of flood seasonality from 617 

hydrological records/Détermination de la saisonnalité des crues à partir de séries 618 

hydrologiques. Hydrological Sciences Journal 49. 619 



28 

 

Cunderlik, J.M., Ouarda, T.B., Bobée, B., 2004c. On the objective identification of flood 620 

seasons. Water Resources Research 40. 621 

Dhakal, N., Jain, S., Gray, A., Dandy, M., Stancioff, E., 2015. Nonstationarity in seasonality of 622 

extreme precipitation: A nonparametric circular statistical approach and its application. 623 

Water Resources Research 51, 4499–4515. 624 

Durrans, S.R., Eiffe, M.A., Thomas Jr, W.O., Goranflo, H.M., 2003. Joint seasonal/annual flood 625 

frequency analysis. Journal of Hydrologic Engineering 8, 181–189. 626 

Efstratiadis, A., Koussis, A.D., Koutsoyiannis, D., Mamassis, N., 2014. Flood design recipes vs. 627 

reality: can predictions for ungauged basins be trusted? Natural Hazards and Earth 628 

System Sciences 14, 1417–1428. 629 

Fang, B., Guo, S., Wang, S., Liu, P., Xiao, Y., 2007. Non-identical models for seasonal flood 630 

frequency analysis. Hydrological Sciences Journal 52, 974–991. 631 

https://doi.org/10.1623/hysj.52.5.974 632 

Fisher, R.A., Tippett, L.H.C., 1928. Limiting forms of the frequency distribution of the largest or 633 

smallest member of a sample, in: Mathematical Proceedings of the Cambridge 634 

Philosophical Society. Cambridge Univ Press, pp. 180–190. 635 

Golian, S., Saghafian, B., Maknoon, R., 2010. Derivation of Probabilistic Thresholds of Spatially 636 

Distributed Rainfall for Flood Forecasting. Water Resour Manage 24, 3547–3559. 637 

https://doi.org/10.1007/s11269-010-9619-7 638 

Hirschboeck, K.K., 1988. Flood hydroclimatology. Flood geomorphology 27, 49. 639 

Jenkinson, A.F., 1955. The frequency distribution of the annual maximum (or minimum) values 640 

of meteorological elements. Quarterly Journal of the Royal Meteorological Society 81, 641 

158–171. 642 

Klein Tank, A.M.G., Wijngaard, J.B., Können, G.P., Böhm, R., Demarée, G., Gocheva, A., 643 

Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., 2002. Daily dataset of 20th-644 

century surface air temperature and precipitation series for the European Climate 645 

Assessment. International journal of climatology 22, 1441–1453. 646 

Koutsoyiannis, D., 2004a. Statistics of extremes and estimation of extreme rainfall: I. Theoretical 647 

investigation/Statistiques de valeurs extrêmes et estimation de précipitations extrêmes: I. 648 

Recherche théorique. Hydrological sciences journal 49. 649 

Koutsoyiannis, D., 2004b. Statistics of extremes and estimation of extreme rainfall: II. Empirical 650 

investigation of long rainfall records/Statistiques de valeurs extrêmes et estimation de 651 

précipitations extrêmes: II. Recherche empirique sur de longues séries de précipitations. 652 

Hydrological Sciences Journal 49. 653 

Koutsoyiannis, D., Yao, H., Georgakakos, A., 2008. Medium-range flow prediction for the Nile: 654 

a comparison of stochastic and deterministic methods/Prévision du débit du Nil à moyen 655 

terme: une comparaison de méthodes stochastiques et déterministes. Hydrological 656 

Sciences Journal 53, 142–164. 657 

Kutiel, H., Trigo, R.M., 2014. The rainfall regime in Lisbon in the last 150 years. Theoretical 658 

and applied climatology 118, 387–403. 659 

Laio, F., Di Baldassarre, G., Montanari, A., 2009. Model selection techniques for the frequency 660 

analysis of hydrological extremes. Water Resources Research 45. 661 

Leadbetter, M.R., 1974. On extreme values in stationary sequences. Probability theory and 662 

related fields 28, 289–303. 663 



29 

 

Lee, J.-J., Kwon, H.-H., Kim, T.-W., 2012. Spatio-temporal analysis of extreme precipitation 664 

regimes across South Korea and its application to regionalization. Journal of hydro-665 

environment research 6, 101–110. 666 

Li, J., Thyer, M., Lambert, M., Kuzera, G., Metcalfe, A., 2016. Incorporating seasonality into 667 

event-based joint probability methods for predicting flood frequency: A hybrid causative 668 

event approach. Journal of Hydrology 533, 40–52. 669 

https://doi.org/10.1016/j.jhydrol.2015.11.038 670 

MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations, 671 

in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and 672 

Probability. Oakland, CA, USA, pp. 281–297. 673 

Marani, M., Zanetti, S., 2015. Long-term oscillations in rainfall extremes in a 268 year daily time 674 

series. Water Resources Research 51, 639–647. 675 

Mascaro, G., 2018. On the distributions of annual and seasonal daily rainfall extremes in central 676 

Arizona and their spatial variability. Journal of Hydrology 559, 266–281. 677 

https://doi.org/10.1016/j.jhydrol.2018.02.011 678 

Menne, M.J., Durre, I., Vose, R.S., Gleason, B.E., Houston, T.G., 2012. An Overview of the 679 

Global Historical Climatology Network-Daily Database. J. Atmos. Oceanic Technol. 29, 680 

897–910. https://doi.org/10.1175/JTECH-D-11-00103.1 681 

Ntegeka, V., Willems, P., 2008. Trends and multidecadal oscillations in rainfall extremes, based 682 

on a more than 100-year time series of 10 min rainfall intensities at Uccle, Belgium. 683 

Water Resources Research 44. 684 

Papalexiou, S.M., Koutsoyiannis, D., 2016. A global survey on the seasonal variation of the 685 

marginal distribution of daily precipitation. Advances in Water Resources 94, 131–145. 686 

Papalexiou, S.M., Koutsoyiannis, D., 2013. Battle of extreme value distributions: A global 687 

survey on extreme daily rainfall. Water Resources Research 49, 187–201. 688 

Parajka, J., Kohnová, S., Bálint, G., Barbuc, M., Borga, M., Claps, P., Cheval, S., Dumitrescu, 689 

A., Gaume, E., Hlavčová, K., others, 2010. Seasonal characteristics of flood regimes 690 

across the Alpine–Carpathian range. Journal of hydrology 394, 78–89. 691 

Parajka, J., Kohnová, S., Merz, R., Szolgay, J., Hlavčová, K., Blöschl, G., 2009. Comparative 692 

analysis of the seasonality of hydrological characteristics in Slovakia and 693 

Austria/Analyse comparative de la saisonnalité de caractéristiques hydrologiques en 694 

Slovaquie et en Autriche. Hydrological Sciences Journal 54, 456–473. 695 

Pryor, S.C., Schoof, J.T., 2008. Changes in the seasonality of precipitation over the contiguous 696 

USA. J. Geophys. Res. 113, D21108. https://doi.org/10.1029/2008JD010251 697 

Rust, H.W., Maraun, D., Osborn, T.J., 2009. Modelling seasonality in extreme precipitation. The 698 

European Physical Journal-Special Topics 174, 99–111. 699 

Serinaldi, F., Kilsby, C.G., 2014. Rainfall extremes: Toward reconciliation after the battle of 700 

distributions. Water resources research 50, 336–352. 701 

Sivapalan, M., Blöschl, G., Merz, R., Gutknecht, D., 2005. Linking flood frequency to long-term 702 

water balance: Incorporating effects of seasonality. Water Resources Research 41. 703 

Tye, M.R., Blenkinsop, S., Fowler, H.J., Stephenson, D.B., Kilsby, C.G., 2016. Simulating 704 

multimodal seasonality in extreme daily precipitation occurrence. Journal of Hydrology 705 

537, 117–129. 706 

Villarini, G., 2012. Analyses of annual and seasonal maximum daily rainfall accumulations for 707 

Ukraine, Moldova, and Romania. Int. J. Climatol. 32, 2213–2226. 708 

https://doi.org/10.1002/joc.3394 709 



30 

 

Von Mises, R., 1936. La distribution de la plus grande de n valeurs. Rev. math. Union 710 

interbalcanique 1. 711 

Wang, Q.J., Robertson, D.E., Chiew, F.H.S., 2009. A Bayesian joint probability modeling 712 

approach for seasonal forecasting of streamflows at multiple sites. Water Resources 713 

Research 45. 714 

Wu, H., Qian, H., 2017. Innovative trend analysis of annual and seasonal rainfall and extreme 715 

values in Shaanxi, China, since the 1950s. Int. J. Climatol. 37, 2582–2592. 716 

https://doi.org/10.1002/joc.4866 717 

 718 

Tables 719 

Table 1 Characteristics of the 27 daily rainfall stations used in the analysis. The last column 720 

shows the final number of years that were accepted for the analysis after quality control.  721 

Stations Country Latitude Longitude Start 

year 

End 

year 

Years 

accepted 

Bologna Italy 44.5 11.346 1813 2007 195 

Palermo Italy 38.11 13.351 1797 2008 175 

Mantova Italy 45.158 10.797 1840 2008 160 

Milan Italy 45.472 9.1892 1858 2008 151 

Genoa Italy 44.414 8.9264 1833 2008 176 

Florence Italy 43.8 11.2 1822 1979 155 

Padua Italy 45.866 11.526 1725 2013 275 

Newcastle  Australia -32.919 151.8 1862 2015 151 

Deniliquin  Australia -35.527 144.95 1858 2014 154 

Melbourne  Australia -37.807 144.97 1855 2015 160 

Robe  Australia -37.163 139.76 1860 2015 152 

Sydney  Australia -33.861 151.21 1858 2015 157 

Jena Sternwarte Germany 50.927 11.584 1826 2015 179 

Hohenpeissenberg Germany 47.802 11.012 1781 2015 182 

Armagh UK 54.35 -6.65 1838 2001 164 

Radcliffe UK 51.761 -1.2639 1827 2014 188 

Zagreb  Croatia 45.817 15.978 1860 2015 154 

Vlissingen Netherlands 51.441 3.5956 1854 2015 158 

Eelde Netherlands 53.124 6.5847 1846 2015 169 

Den Helder Netherlands 52.933 4.75 1850 2015 165 

Helsinki Finland 60.167 24.933 1845 2015 171 

Lisbon Portugal 39.2 -9.25 1863 2013 150 

Prague Czech republic 50.051 14.246 1804 2014 211 

Uppsala Sweden 59.86 17.63 1836 2014 179 

Stykkisholmur Iceland 65.083 -22.733 1856 2015 160 

Athens Greece 37.973 23.72 1863 2014 152 
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Toronto Canada 43.667 -79.4 1840 2015 162 

 722 

Table 2 ΔAIC differences among the seasonal models (one, two or three seasons) under Average 723 

Based (AB) and Complete Data (CD) methods. A zero ΔAIC value indicates the model with the 724 

smallest AIC value which stands for the best model. 725 

Stations 

AB method  CD method  

Uniform distribution Weibull distribution Gamma distribution 

Number of seasons Number of seasons 

1 2 3 1 2 3 1 2 3 

Bologna 0 0.047 2.9 27.55 27.51 35.12 0 4.91 9.04 

Palermo 5.29 0 1.72 0 50.32 41.37 0.372 9.6 5.15 

Mantova  0 0.414 3.92 28.22 25.76 13.43 0 8.58 7.12 

Milan  0 0.639 3.86 8.633 10.75 0 30.72 33.5 34.7 

Genoa  3.38 0 0.67 9.215 0 6.641 5.797 10.5 18 

Florence 1.85 0 3.62 15.52 8.421 0 48.55 54.8 9.9 

Padua 0 1.058 4.914 0 9.72 11.12 100.19 56.43 65.84 

Newcastle  0.75 0 3.88 60.23 34.25 40.68 8.414 0 15.7 

Deniliquin  0 2.894 6.41 18.11 16.3 20.18 0 3.68 9.11 

Melbourne  0 0.903 4.58 139.1 76.04 78.35 37.31 0 5.27 

Robe  1.45 0 5.09 3.475 36.71 40.45 0 1.7 7.29 

Sydney  0 0.556 2.88 37.92 40.93 41.35 0 0.02 2.24 

Jena Sternwarte 4.6 0 3.69 208.1 123.2 131.6 46.77 0 1.45 

Hohenpeissenberg 5.5 0 3.25 85.83 63.77 67.7 0 8.93 6.95 

Armagh  0 0.78 3.71 161.3 103.2 106.9 3.412 0 3.04 

Radcliffe 0 0.682 3.68 129.6 70.5 77.79 0 0.74 0.75 

Zagreb  0.5 0 3.68 42.95 17.99 23.94 0 19.9 25.87 

Vlissingen  0.66 0 3.34 78.03 36.79 36.18 0 4.02 9.84 

Eelde 1.79 0 3.55 135.8 61.08 67.77 3.338 0 6.24 

Den Helder 0.36 0 3.7 201.4 137.5 118.7 27.93 3.58 0 

Helsinki 1.9 0 3.69 108.9 48.3 35.58 1.161 0 6.95 

Lisbon 8.18 0 7.07 58.26 0 3.646 72.71 7.33 3.04 

Prague 2.7 0 1.44 133.3 64.84 58.67 36.75 0.06 0 

Uppsala 4.73 0 3.17 187 72.35 58.84 27.02 0.38 0 

Stykkisholmur  0 0.657 4.39 103.1 75.99 82.57 2.13 0 6.42 

Athens 8.11 0 2.81 104 19.73 23.16 65.54 0 1.45 

Toronto  0 1.704 5.14 183.5 121.3 113.1 18.24 0 2.2 
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Table 3 Temporal changes in seasonality identified by application of Average Based (AB) and 726 

Complete Data (CD) methods for non-overlapping sub-periods for the four longest stations of the 727 

dataset. For the longer station of Padua, an additional sub-period is investigated (4th window). 728 

 

Station 

 

Record length 

Number of Seasons 

1st window 2nd window 3rd window 4th window 

Method Method Method Method 

AB CD AB CD AB CD AB CD 

Padua 1725-2013 1 1 1 1 1 1 1 1 

Bologna 1813-2007 1 1 2 1 1 1 − − 

Radcliffe 1827-2014 1 1 1 1 1 1 − − 

Prague 1804-2014 2 1 2* 2* 2 2 − − 

 

 

Span of wet season in months for Prague  

5-8 − 5-9 5-9 5-8 5-8 − − 

 729 

Table 4 Comparative statistics of the GEV annual and seasonal parameters, i.e., shape parameter 730 

κ, scale parameter σ and location parameter ψ, as estimated via Maximum Likelihood method for 731 

the stations in which two or three seasons are identified by Average Based (AB) and Complete 732 

Data (CD) methods. The last column of each table shows the percentage (%) of stations in which 733 

the parameter value for the wet season is higher than the corresponding value for the dry season. 734 

AB method (16 stations) CD method (16 stations) 

 

Parameter 

 

Annual 

 

Wet 

season 

 

Dry 

season 

 

Parameter 

Variation:  

(wet>dry)% 

Annual 

 

Wet 

season 

 

Dry 

season 

 

Parameter 

Variation:  

(wet>dry)% 

 

 

κ 

Mean 0.1121 0.091 0.097 62.5 0.115 0.106 0.104 45 

Percent 

Positive 
93.8 93.8 87.5 - 93.8 93.8 75 - 

σ Mean 12.207 12.706 8.747 93.8 12.187 13.238 9.2872 100 

ψ Mean 39.265 35.602 23.772 100 39.652 40.998 34.333 100 

 735 
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Table 5 Statistics of the GEV parameters, i.e., shape parameter κ, scale parameter σ and location 736 

parameter ψ, as estimated for the Annual Maxima series for all stations (27) via Maximum 737 

Likelihood (ML), method of moments (MM) and Least Squares method (LS). 738 

Parameter of the annual model ML MM LS 

κ 

Mean 0.099 0.062 0.120 

Percent 

Positive  
92.6 88.9 96.3 

σ Mean 12.638 10.500 12.732 

ψ Mean 40.510 42.246 40.295 

 739 

 740 

 741 

 742 

 743 
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Figures 744 

745 
Figure 1. Map of the 27 analyzed stations with daily rainfall records spanning over 150 years. 746 

 747 

748 
Figure 2. Climatograms showing the partition in two seasons (a) and three seasons (b) after 749 

application of the SSD clustering algorithm for the station of Florence. 750 
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751 
Figure 3. Spatial and climatological coherence of the identified seasons for the regions of 752 

Europe (a,c,e) and Australia (b,d,f). Figures a,b show the location of the stations on a Köppen 753 

climatological map, while the rest show the stations clustered by similarity. White dots represent 754 

stations having one season; the remaining dots denote stations having at least 60% overlap of 755 

months belonging to the wet season. Red dots denote stations with a lower percentage of 756 

similarity to their neighboring stations.757 
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758 
Figure 4. Gumbel probability plots of the fitting of the GEV distribution to the annual maxima 759 

(red solid line), to the wet season maxima (blue dashed line) and to the dry season maxima (cyan 760 

dash-dotted line) for the stations of Prague (a) and Florence (b). For the station of Florence (b), 761 

the fitting of the GEV distribution to the transition season maxima (green dotted line) is also 762 

shown. 763 

764 
Figure 5. Gumbel probability plot of the fitting of the GEV distribution to the annual maxima by 765 

the maximum likelihood method (blue color), least-squares method (magenta color) and method 766 

of moments (yellow color) along with 95% Monte Carlo Prediction Limits (MCPL) for each 767 

method for the station of Genoa (a). The crossing over distance observed in the area of high 768 

return periods, where the wet-season probability line (blue solid line)  crosses the annual 769 

probability line (red solid line), is greatly eliminated when a common shape parameter is 770 

employed via the least-squares method (b). 771 
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772 
Figure 6. Partition in seasons resulting from application of the proposed season identification 773 

method versus the fixed 4-season partition for the stations of Athens (a, b respectively) and Jena 774 

(c, d respectively). 775 

 776 
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 777 

Figure 7. Gumbel probability plots of the fitting of the GEV distribution to the annual and 778 

seasonal maxima resulting from the proposed season identification method (a) vs Gumbel 779 

probability plot of the fitting of the GEV distribution to the annual and seasonal maxima 780 

according to the fixed 4-season partition (b) for the station of Athens.          781 

 782 


