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Giants of the Moscow School of Mathematics 
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On names and definitions: A contrast 
 

Ἀρχὴ παιδεύσεως ἡ τῶν ὀνομάτων ἐπίσκεψις” 
(The beginning of education is the inspection of 
names)  

Attributed to Socrates by Epictetus, Discourses, Ι.17,12 

What’s in a name? That which 
we call a rose, by any other 
name would smell as sweet. 

William Shakespeare, “Romeo and 
Juliet” (Act 2, scene 2) 

Each definition is a piece of secret ripped from 
Nature by the human spirit. I insist on this: any 
complicated thing, being illumined by definitions, 
being laid out in them, being broken up into 
pieces, will be separated Into pieces completely 
transparent even to a child, excluding foggy and 
dark parts that our intuition whispers to us while 
acting, separating into logical pieces, then only 
can we move further, towards new successes due 
to definitions . . . 

Nikolai Luzin (from Graham and Kantor, 2009) 

Let me argue that this 
situation [absence of a 
definition] ought not create 
concern and steal time from 
useful work. Entire fields of 
mathematics thrive for 
centuries with a clear but 
evolving self-image, and 
nothing resembling a 
definition  

Benoit Mandelbrot (1999, p. 14) 
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Part A 
Premises for a stochastic framework about 
change  
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The general framework: Seeking theoretical consistency in 
analysis of geophysical data (Using stochastics) 
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Why stochastics in geophysics and hydrology? 

 Geophysics is the branch of physics that relies most decisively on data. 
 Geophysical data are numbers but to treat them we need to use stochastics, not arithmetic. 
 Stochastics is the mathematics of random variables and stochastic processes. 
 Random variables and stochastic processes are abstract mathematical objects, whose properties 

distinguish them from typical variables that take on numerical values. 
 It is important to understand these properties before making calculations with data, otherwise 

the results may be meaningless (not even wrong). 
 The numerical data allow us to estimate (not to determine precisely) expectations.  
 Expectations are defined as integrals of products of functions. For a continuous random variable 

x with probability density function f(x), the expectation of an arbitrary function g of x (where g(x) 
is a random variable per se), the expectation of g(x) is defined as 𝜃 ≔ E[𝑔(𝑥)] ≔ ∫ 𝑔(𝑥)𝑓(𝑥)d𝑥

∞

−∞
. 

 Central among expectations are the moments, in which g(x) is a power of x (or a linear 
expression of x). 

 To estimate true parameters 𝜃 from data we need estimators; the estimator 𝜃 of θ is a random 

variable depending on the stochastic process of interest x(t) and is a model per se, not a number. 

 The estimate 𝜃 is a number, calculated by using the observations and the estimator. 

 Characteristic statistics of the estimator 𝜃 are its bias, E[𝜃] − 𝜃, and its variance var[𝜃]. When 

E[𝜃] = 𝜃 the estimator is called unbiased.  

 Estimation is made possible thanks to two concepts of stochastics: stationarity and ergodicity.  
 Stationarity and ergodicity are not incompatible with, or contradictory to, change. 
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Change is crucial in Hydrology: 
‘Panta Rhei’—The scientific decade of IAHS 2013-2022 

 

http://iahs.info/Commissions--W-Groups/Working-Groups/Panta-Rhei.do 
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‘Panta Rhei’: © Heraclitus  
Change and randomness 
 

Πάντα ῥεῖ 
Everything flows 

(Heraclitus; quoted in Plato’s Cratylus, 339-340) 

Αἰών παῖς ἐστι παίζων πεσσεύων  
Time is a child playing, throwing dice 

(Heraclitus; Fragment 52)  
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Change, logic, precision: © Aristotle 
 

 

 

 

Μεταβάλλει τῷ χρόνῳ πάντα 
All is changing in the course of time 

(Aristotle; Meteorologica, I.14, 353a 16)  

…τοσοῦτον τἀκριβὲς ἐπιζητεῖν καθ᾽ ἕκαστον γένος, ἐφ᾽ 
ὅσον ἡ τοῦ πράγματος φύσις ἐπιδέχεται 

… look for precision in each class of things just so far as the 
nature of the subject admits 

(Aristotle, Nicomachean Ethics 1094b)  

Λογική, συλλογισμός, επαγωγή, 
ορθός λόγος 
Logic, deduction, induction,  
(right) reason  

(Aristotle, Organon & Nicomachean Ethics) 
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Hurst-Kolmogorov dynamics—Or: Earth’s perpetual change 
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The climacogram: A simple statistical tool to quantify change 
across time scales 
• Take the Nilometer time series, x1, x2, ..., x849, and calculate the sample estimate of 

variance γ(1), where the superscript (1) indicates time scale (1 year) 

• Form a time series at time scale 2 (years):  

𝑥1
(2)

≔
𝑥1  +  𝑥2

2
, 𝑥2

(2)
∶=

𝑥3 + 𝑥4

2
, . . . , 𝑥424

(2)
∶=

𝑥847 + 𝑥848

2
 (1) 

and calculate the sample estimate of the variance γ(2). 

• Repeat the same procedure and form a time series at time scale 3, 4, … (years), up to 
scale 84 (1/10 of the record length) and calculate the variances γ(3), γ(4),… γ(84). 

• The climacogram is the variance γ (κ) as a function of scale κ; it is visualized as a double 
logarithmic plot of γ (κ) vs. κ (or alternatively of the standard deviation σ(κ)). 

• If the time series xτ represented a pure random process, the climacogram would be a 
straight line with slope –1 (the proof is very easy). 

• In real world processes, the slope is different from –1, designated as 2H – 2, where H 
is the so-called Hurst coefficient (0 < H < 1). 

• The scaling law γ(κ) = γ(1) / κ2 – 2H defines the Hurst-Kolmogorov (HK) process. 

• High values of H (> 0.5) indicate enhanced change at large scales, else known as 
long-term persistence, or strong clustering (grouping) of similar values. 
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The climacogram of the Nilometer time series 
• The Hurst-Kolmogorov process 

seems consistent with reality. 

• The Hurst coefficient is H = 0.87 
(Similar H values are estimated 
from the simultaneous record of 
maximum water levels and from 
the modern, 131-year, flow 
record of the Nile flows at 
Aswan). 

• The Hurst-Kolmogorov 
behaviour, seen in the 
climacogram, indicates that:  

(a) long-term changes are 
more frequent and intense 
than commonly perceived, and 

(b) future states are much 
more uncertain and 
unpredictable on long time 
horizons than implied by pure 
randomness. 
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Change and predictability 

 

Simple systems – Short time horizons
Important but trivial

Complex systems – Long time horizons
Most interesting

Change

Predictable
(regular)

Unpredictable
(random)

Purely random
e.g. consecutive 
outcomes of dice

Non-periodic
e.g. acceleration of 

a falling body

Periodic
e.g. daily and 
annual cycles

Structured 
random

e.g. climatic 
fluctuations

Koutsoyiannis, 2013a  
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The cause of change: © Peter Atkins 
 

 

Atkins, 2007  

Atkins, 2004  
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Entropy ≡ Uncertainty quantified 
• Historically entropy was introduced in thermodynamics but later it was 

given a rigorous definition within probability theory (owing to Boltzmann, 
Gibbs and Shannon). 

• Thermodynamic and probabilistic entropy are essentially the same thing 
(Koutsoyiannis, 2010, 2013b, 2014; but others have different opinion). 

• Entropy acquires its importance from the principle of maximum entropy 
(Jaynes, 1957), which postulates that the entropy of a random variable 
should be at maximum, under the conditions (constraints) which incorporate 
the available information about this variable. 

• The tendency of entropy to become maximal explains a spectrum of 
phenomena from the random outcomes of dice to the Second Law of 
thermodynamics as the driving force of natural change. 

• Entropy is a dimensionless measure of uncertainty: 

Discrete random variable z Continuous random variable z 

Φ[z]
 
:=

 
E[–ln P(z)]

 
=

 
∑ 𝑃

𝑗
ln 𝑃

𝑗
𝑤
𝑗 = 1

 

where Pj ≔ P{z = zj} (probability) 

Φ[z] := E[– ln
𝑓(z)

ℎ(z)
]  = – ∫ ln

𝑓(𝑧)

ℎ(𝑧)
𝑓(𝑧)d𝑧

∞

−∞
 

where f(z) is probability density and h(z) 
is the density of a background measure 
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Memorable moments in the history of stochastics 

    

Ludwig Boltzmann 

(1844 –1906, Universities of 
Graz and Vienna, Austria, and 
Munich, Germany) 

George D. Birkhoff  

(1884 – 1944; 
Princeton, Harvard, 
USA)  

Aleksandr Khinchin 

(1894 – 1959; Moscow 
State University, 
Russia) 

Andrey N. Kolmogorov  

(1903 – 1987; Moscow State 
University, Russia) 

1877 Explanation of the 
concept of entropy in 
probability theoretic context.  

1884/85 Introduction of the 
notion of ergodic* systems 
which however he called 
“isodic”  

* The term is etymologized from 
Greek words but which ones 
exactly is uncertain (options: (a) 
έργον + οδός; (b) έργον + είδος; 
(c) εργώδης; see Mathieu, 1988). 

1931 Discovery of 
the ergodic 
(Birkhoff–
Khinchin) theorem 

1933 Purely measure-
theoretic proof of the 
ergodic (Birkhoff–
Khinchin) theorem 

1934 Definition of 
stationary stochastic 
processes and 
probabilistic setting of 
the Wiener-Khinchin 
theorem relating 
autocovariance and 
power spectrum  

1931 Introduction of the terms 
process to describe change of a 
certain system and stationary to 
describe a probability density 
function that is unchanged in time 

1933 Definition of the concepts of 
probability & random variable 

1937-1938 Probabilistic 
exposition of the ergodic 
(Birkhoff–Khinchin) theorem 
and stationarity  

1947 Definition of wide sense 
stationarity 
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Stationarity and nonstationarity 
Central to the notion of a stochastic process are the concepts of stationarity and 
nonstationarity, two widely misunderstood and broadly misused concepts (Montanari 
and Koutsoyiannis, 2014; Koutsoyiannis and Montanari, 2015); their definitions apply 
only to stochastic processes (e.g., time series cannot be stationary, nor nonstationary).  

Reminder of definitions 

Following Kolmogorov (1931, 1938) and Khinchin (1934), a process is (strict-
sense) stationary if its statistical properties are invariant to a shift of time 
origin, i.e. the processes x(t) and x(t΄) have the same statistics for any t and t΄*.  

Following Kolmogorov (1947), a stochastic process is wide-sense stationary if its 
mean is constant and its autocovariance depends on time difference only, i.e.: 

 E[x(t)] = μ = constant,    Ε[(x(t) – μ) (x(t + τ) – μ)] = c(τ)  (2) 

Conversely, a process is nonstationary if some of its statistics are changing through 
time and their change is described as a deterministic† function of time. 

 

                                           
*See further details in Papoulis (1991); see also further explanations in Koutsoyiannis (2006a, 2011) and Koutsoyiannis 
and Montanari (2015). 
† See Koutsoyiannis(2000, 2011) and Koutsoyiannis and Montanari (2015) about clarification of “deterministic”. 
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Ergodicity 
• Stationarity is also related to ergodicity, which in turn is a prerequisite to make inference from 

data, that is, induction.  
• By definition (e.g., Mackey, 1992, p. 48; Lasota and Mackey, 1994, p. 59), a transformation of a 

dynamical system is ergodic if all its invariant sets are trivial (have zero probability). In 
other words, in an ergodic transformation starting from any point, a trajectory will visit all other 
points, without being trapped to a certain subset. (In contrast, in non-ergodic transformations 
there are invariant subsets, such that a trajectory starting from within a subset will never depart 
from it). 

• The ergodic theorem (Birkhoff, 1931; Khinchin, 1933; see also Mackey, 1992, p. 54) allows 
redefining ergodicity within the stochastic processes domain (Papoulis 1991 p. 427; 
Koutsoyiannis 2010) in the following manner: A stochastic process x(t) is ergodic if the time 
average of any (integrable) function g(x(t)), as time tends to infinity, equals the true 

(ensemble) expectation E[g(x(t))], i.e., lim𝑇→∞
1

𝑇
∫ 𝑔 (𝑥(𝑡)) 𝑑𝑡 = E[𝑔(𝑥(𝑡))]

𝑇

0
. 

• If the system that is modelled in a stochastic framework has deterministic dynamics (meaning 
that a system input will give a single system response, as happens for example in most 
hydrological models) then a theorem applies (Mackey 1992, p. 52), according to which a 
dynamical system has a stationary probability density if and only if it is ergodic. Therefore, a 
stationary system is also ergodic and vice versa, and a nonstationary system is also non-
ergodic and vice versa.  

• If the system dynamics is stochastic (a single input could result in multiple outputs), then 
ergodicity and stationarity do not necessarily coincide. However, recalling that a stochastic 
process is a model and not part of the real world, we can always conveniently device a 
stochastic process that is ergodic (see example in Koutsoyiannis and Montanari, 2015).  
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Both stationarity and ergodicity are immortal!* 
From a practical point of view ergodicity can always be assumed when there is stationarity. 
Without stationarity and ergodicity inference from data would not be possible. Ironically, several 
studies use time series data to estimate statistical properties, as if the process were ergodic, while 
at the same time what they (cursorily) estimate may falsify the ergodicity hypothesis. 

Misuse example 1: By analysing the time series xτ (where τ denotes time), I concluded that it is 
nonstationary and I identified an increasing trend with slope b.  

Corrected example 1: I analysed the time series xτ based on the hypothesis that the stochastic 
process xτ – bτ is stationary and ergodic, which enabled the estimation of the slope b. 

Misuse example 2: From the time series xτ, I calculated the power spectrum and found that its 
slope for low frequencies is steeper than –1, which means that the process is nonstationary.  

Possible correction (a) of example 2: I cursorily interpreted a slope steeper than –1 in the power 
spectrum as if indicated nonstationary, while a simple explanation would be that the frequencies on 
which my data enable calculation of the power spectrum values are too high.  

Possible correction (b) of example 2: I cursorily applied the concept of the power spectrum of a 
stationary stochastic process, forgetting that the empirical power spectrum of a stationary 
stochastic process is a (nonstationary) stochastic process per se. The high variability of the latter 
(or the inconsistent numerical algorithm I used) resulted in a slope for low frequencies steeper 
than –1, which is absurd. Such a slope would suggest a non-ergodic process while my calculations 
were based on the hypothesis of a stationary and ergodic process.  

Possible correction (c) of example 2: I cursorily applied the concept of the power spectrum of a 
stationary stochastic process using a time series which is realization of a nonstationary stochastic 
process and I found an inconsistent result; therefore, I will repeat the calculations recognizing that 
the power spectrum of a nonstationary stochastic process is a function of two variables, frequency 
and “absolute” time.  *Montanari and Koutsoyiannis (2014) 
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Part B 
Change in rainfall  
in the era of climate change concerns  
 

(or how to avoid one step back) 
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Climate change concerns are real and affect people 
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Climate change concerns affect hydrology: The surge of 
studies of nonstationary extremes  
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Is “stationarity dead” and is there “rainfall intensification”? 

  
 

The climatic value of annual maximum daily rainfall of the 30-year period 1980 – 2010, compared 
to that of 1960-80, is greater by 5% for dry areas and by 2% for wet areas Donat et al. (2016). 

 

 Dry   Wet 
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Do climate models allow a nonstationary approach on rainfall 
extremes or do they simulate a process other than rainfall? 
• Tsaknias et al. (2016—multirejected paper) tested the reproduction of extreme events by 

three climate models of the IPCC AR4 at 8 test sites in the Mediterranean which had long time 
series of temperature and precipitation.  

• They concluded that model results are irrelevant to reality as they seriously underestimate the 
size of extreme events.  

 

 

Upper row: Daily annual maximum precipitation at Perpignan and Torrevieja;  
Lower row: empirical distribution functions of the data in upper row (Tsaknias et al., 2016) 
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Decadal change as seen in a long daily precipitation record 
Dataset details 
Station: BOLOGNA, 
Italy, 44.50oN, 
11.35oE, +53.0 m 
a.m.s.l., 
period: 1813-2007 
(195 years); 
https://climexp.kn
mi.nl/gdcnprcp.cgi
?WMO=ITE00100
550 

The plots show moving averages of ratios for a time 
window of 10-year length.  

P: precipitation; K351,1 and U5 represent the maximum 
daily rainfall intensity for a return period of 2 years. 
Same are K31,1 and U60 but for a return period of 2 
months (see definitions below); P1: probability wet. 

The Hurst-Kolmogorov behaviour is evident. 
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Part C 
The non-scientific concept of upper limits and 
the Probable Maximum Precipitation 
 

 

(or how to avoid a second step back) 
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Deterministic thinking and its impact on rainfall modelling 
 Deterministic thinking in science is strong enough and has been dominant even in extreme 

rainfall, despite strong resistance of the rainfall process to comply with deterministic 
descriptions and despite spectacular failures in adequate modelling of rainfall based on first 
principles. 

 Perhaps the oldest of the attempts, yet very popular even today, aims to determine physical 
upper bounds to precipitation that could be used to design risk-free constructions or practices.  

 The resulting concept of probable maximum precipitation (PMP), that is, an upper bound of 
precipitation that is physically feasible (WMO, 1986, 2009), is perhaps one of the biggest failures 
in hydrology but it is still in wide use as a research topic*. In addition, the method is still quite 
popular in engineering studies.  

 Even the terminology is self-contradictory, and thus not scientific. Namely, the word “probable” 
contradicts the existence of a deterministic upper limit.  

 Note that the “probable maximum” concept began as “maximum possible” and was later 
renamed in an attempt to salvage the failed concept (Benson, 1973).  

 Rational thinking and fundamental philosophical and scientific principles can help dispel such 
fallacies. In particular, the Aristotelian notions of potentia (potentiality; Greek ‘δύναμις’) and of 
potential infinity (Greek ‘άπειρον’; Aristotle, Physics, 3.7, 206b16) that “exists in no other way, 
but ... potentially or by reduction” (and is different from mathematical complete infinity) would 
help us to avoid the PMP concept.  

                                           
*A Google Scholar search reveals that about 1000 recent publications (since 2014) include the term “probable maximum 
precipitation”. More than 100 of them contain the term (or the acronym PMP) in their title, and half of them also refer to 
climate change. 
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 World records of rainfall depth: are they upper limits?  
 

Depiction of the record 
rainfall values over the globe 
from literature and from 
daily rainfall analysis in 
Koutsoyiannis and 
Papalexiou (2017). 

The equation fitted is 

𝑖 =
𝑎

(1 + 𝑑/𝜃)𝜂
, ℎ =

𝑎𝑑

(1 + 𝑑/𝜃)𝜂
  

(3) 

where i is rainfall intensity averaged over time scale d and h is the corresponding rainfall depth, 
whereas the parameter values are a = 1615 mm/h, θ = 0.07 h and η = 0.52. 
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Records are not upper limits; sooner or later they will be broken  
 Apparently, the values shown the figure of world rainfall records do not represent any physical 

upper bound of precipitation rate. They just represent what was observed as record rainfall.  
 Certainly, higher rates have occurred in places where no raingages exist or in longer periods of 

history.  
 Furthermore, values registered in 

older publications as record values 
no longer represent record values. 
Obsolete record values from older 
publications, which now have been 
exceeded, are shown in the figure on 
the right.  

 Logically, we can be confident that 
the records presented here will 
surely be broken in the future. 

The graph from Koutsoyiannis and 
Papalexiou (2017) shows some points 
that had been registered as world 
rainfall records in the three indicated 
publications and are broken now. 
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On Hershfield’s statistical approach to PMP 
 Several methods to determine PMP exist in literature and are described by WMO (1986, 2009). 

All suffer logically from the fallacious concept of an upper limit.  
 Thorough examination of each of the specific methods separately will reveal that each one is 

affected by additional logical inconsistencies. While they all assume the existence of a 
deterministic upper limit, they determine this limit statistically (inference from data) rather 
than deducing it in a causative deterministic manner using physical principles. 

 The statistical character is clear in the so-called “statistical approach” by Hershfield (1961, 
1965), who used about 95 000 station-years of annual maximum daily rainfall belonging to 2645 
stations, standardized each record and found the maximum over the 95 000 standardized 
values, which was Km = 15.  

 Naturally, one of the 95 000 standardized values would be the greatest of all others, but this is 
not a deterministic limit to call PMP. In fact Koutsoyiannis (1999) provided a consistent 
statistical analysis of the data set and showed 
that the values are consistent with a Pareto 
distribution without an upper bound.  

 Thus the logical problem here is the incorrect 
interpretation that an observed maximum in 
precipitation is a physical upper limit. 

 Koutsoyiannis and Papalexiou (2017) examined 
a bigger data set (17 490 stations, 1 394 593 
station-years) and found much larger values of 
Km as shown in the graph on the right. 0
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On the hydrometeorological approach to PMP 
 “Physically based” or “hydrometeorological” methods are only seemingly so and may be even 

more problematic than Hershfield’s statistical approach.  
 Among hydrometeorological methods, most representative and most popular is the so-called 

moisture maximization approach, which is based on the simple formula ℎm = (𝑊m/𝑊) ℎ, where 
hm is the maximized rainfall depth, h is the observed precipitation, W is the precipitable water in 
the atmosphere during the day of rain, estimated by the corresponding dew point Td, and Wm is 
the maximized precipitable water.  

 The latter is estimated from the maximum dew point for the corresponding month, which is 
either the maximum recorded value from a sample of at least 50 years length, or the value 
corresponding to a 100-year return period, for samples smaller than 50 years (WMO, 1986).  

 The method suffers twice by the incorrect interpretation that an observed maximum is a 
physical upper limit (Papalexiou and Koutsoyiannis, 2006): 
o It uses a record of observed dew point temperatures to determine an upper limit, which is 

the maximum observed value.  
o Then it uses this “limit” for the so called “maximization” of an observed sample of storms, 

and asserts the largest value among them as PMP.  
 Even as a pure statistical approach, this is a questionable, particularly because it is based only on 

one observed value (known in statistics as the largest order statistic), rather than on the whole 
sample, and thus it is enormously sensitive to one particular observation of the entire sample 
(Papalexiou and Koutsoyiannis, 2006; Koutsoyiannis, 2007).  

 Furthermore, the logic of moisture maximization at a particular location is unsupported given 
that a large storm at this location depends on the convergence of atmospheric moisture from 
much greater areas.  
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Towards a probabilistic approach to extreme rainfall 
 According to Popper (1982) the extension of the Aristotelian idea of potentia in modern terms is 

the notion of probability.  
 Probability provides a different way to perceive the intense rainfall and flood, and by assigning 

to each value a certain probability of exceedence it avoids:  
o the delusion of an upper bound of precipitation; 
o the fooling of decision makers that we can build risk-free constructions; 
o the logical, technical, philosophical and ethical issues that are associated with the PMP 

concept (Benson, 1973)  
 Naturally, the probabilistic approach is inductive and relies on local rainfall observations as only 

observations can provide a sound basis for quantification of extreme rainfall. Currently, the 
analysis of global rainfall behaviours (Koutsoyiannis, 2004a,b; Papalexiou and Koutsoyiannis, 
2013) assist in formulating the probability distribution function. 

 The typical arguments against the use of probabilistic approaches and in favor of PMP are naïve 
indicating ignorance of probability theory.* 

 In general, stochastic approaches in modelling the rainfall process —in particular its extremes—
are more logical and efficient than deterministic ones and thus the latter ought to be abandoned.  

  

                                           
* One example is the statement by Horton (1931; from Klemes, 2000): “It is, however, important to recognize the nature of 
the physical processes involved and their limitations in connection with the use of statistical methods. … Rock Creek cannot 
produce a Mississippi River flood any more than a barnyard fowl can lay an ostrich egg.” A discussion of this naïve argument 
can be found in Koutsoyiannis and Papalexiou (201?). 
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Part D 
Elements of a consistent stochastic methodology 
 

 

(or how to make one step forward) 
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Introductory notes on statistical moments 
 As mentioned in the introduction, statistical inference (induction) is based on expectations 

of functions or random variables, and in particular, moments, which are estimated from 
samples by virtue of stationarity and ergodicity. 

 The ergodic theorem enables, in theory, estimation of moments from data as n → ∞, but 
what happens for finite n? 

 It is recalled that the classical definitions of raw and central moments of order p are:  

𝜇𝑝
′ ≔ E[𝑥𝑝], 𝜇𝑝 ≔ E[(𝑥 − 𝜇)

𝑝
]  (4) 

respectively, where 𝜇 ≔ 𝜇1
′ = E[𝑥] is the mean of the random variable x. Their standard 

estimators from a sample xi, i = 1, …, n, are  

�̂�𝑝
′ =

1

𝑛
∑ 𝑥𝑖

𝑝𝑛
𝑖=1 ,      �̂�𝑝 =

𝑏(𝑛,𝑝)

𝑛
∑ (𝑥𝑖 − �̂�)

𝑝𝑛
𝑖=1   (5) 

where a(n, p) is a bias correction factor (e.g. for the variance μ2 =: σ2, b(n, 2) = n/(n – 1)).  
 The estimators of the raw moments �̂�𝑝

′  are in theory unbiased*, but it is practically 

impossible to use them in estimation for p > 2: 

cf. Lombardo et al. (2014), “Just two moments”.  

 When dealing with maxima, two moments may not be enough, as the behaviour of maxima 
is strongly related to high-order moments. 

                                           
* Central moment estimators �̂�𝑝 are also unbiased in the (uncommon) case that μ is a priori known, in which case 

it replaces �̂�  in the rightmost equation in (5), while b(n, p)=1. 
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Illustration of slow convergence of moment estimates 

  

Convergence of the sample estimate of the eighth 
non-central moment to its true value (thick 
horizontal line) corresponding to a lognormal 
distribution LN(0,1) where the process is an 
exponentiated Hurst-Kolmogorov process with 
Hurst parameter H = 0.9. The sample moments 
(∑ 𝑥𝑖

𝑝𝑛
𝑖=1 /𝑛 with p = 8; continuous lines), are 

estimated from a single simulation of length 
64 000, subset to sample size n from 10 to 64 000, 
with the subsetting being done either from the 
beginning to the end or from the end to the 
beginning. Dashed lines represent maximum 
values (max1≤ 𝑖≤𝑛(𝑥𝑖))𝑝/𝑛. 

As in the example on the left but for 200 
simulated series of length 1000 each. The 
sampling distribution of the eighth moment 
estimator ∑ 𝑥𝑖

8𝑛
𝑖=1 /𝑛 is visualized by the 

percentiles, the median and the average, 
plotted as ratios to the true value. 
Theoretically, the ratio should be 1, but it is 
smaller by many orders of magnitude, and the 
convergence to 1 is very slow. (The 
convergence of the average could also be 
achieved if we used millions of simulated 
series instead of 200). In contrast, the ratio to 
(max1≤ 𝑖≤𝑛(𝑥𝑖))8/𝑛 is ≈1.  
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The reason of slow convergence  
 What is the result of raising to a power and adding, i.e. ∑ 𝑥𝑖

𝑝𝑛
𝑖=1  – like in estimating 

moments? 

Linear, p = 1 Pythagorean, p = 2 Cubic, p = 3 High order, p = 8 

3 + 4 = 7 32 + 42 = 52 33 + 43 = 4.53 38 + 48 ≈ 48 

3 + 4 +12 = 19 32 + 42 + 122 = 132 33 + 43 + 123 = 12.23 38 + 48 + 128 ≈ 128 

 Symbolically, for relatively large p the estimate of 𝜇𝑝
′  is*: 

�̂�𝑝
′ =

1

𝑛
∑ 𝑥𝑖

𝑝

𝑛

𝑖=1

≈
1

𝑛
( max

1≤ 𝑖≤𝑛
(𝑥𝑖))

𝑝

 (6) 

 Thus, for an unbounded variable x and for large p, we can conclude that �̂�𝑝
′  is more an 

estimator of an extreme quantity, i.e., the nth order statistic (the largest) raised to 
power p, than an estimator of 𝝁𝒑

′ . 

 Thus, unless p is very small, 𝝁𝒑
′  is not a knowable quantity: we cannot infer its value 

from a sample. This is the case even if n is very large! 
 Also, the various �̂�𝑝

′  are not independent to each other as they only differ on the 

power to which the maximum value is raised. 

                                           
* This is precise if xi are positive; see also p. 39. Note that for large p the term (1/n) in the rightmost part of the equation 
could be omitted with a negligible error. 
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Definition of K-moments 
 To derive knowable moments for high orders p, in the expectation defining the pth 

moment we raise (x – μ) to a lower power q < p and for the remaining (p – q) terms 
we replace (x – μ) with (2F(x) – 1), where F(x) is the distribution function. This leads 
to the following definition of the central K-moment of order (p, q) (Koutsoyiannis, 
2018): 

𝐾𝑝𝑞 ≔ (𝑝 − 𝑞 + 1)E[(2𝐹(𝑥) − 1)
𝑝−𝑞

(𝑥 − 𝜇)𝑞]  (7) 

 Likewise, we define the non-central K-moment of order (p, q) as: 

𝐾𝑝𝑞
′ ≔ (𝑝 − 𝑞 + 1)E [(𝐹(𝑥))

𝑝−𝑞
𝑥𝑞]  (8) 

 The quantity (2𝐹(𝑥) − 1)
𝑝−𝑞

 is estimated from a sample without using powers of x. 
Specifically, for the ith element of a sample x(i) of size n, sorted in ascending order, 
F(x(i)) and (2F(x(i)) – 1) are estimated as, 

�̂�(𝑥(𝑖)) =
𝑖−1

𝑛−1
,    2�̂�(𝑥(𝑖)) − 1 =

2𝑖−𝑛−1

𝑛−1
  (9) 

taking values in [0, 1] and [–1, 1], respectively, irrespective of the values x(i). Hence, 
the estimators are:  

�̂�𝑝𝑞
′ =

𝑝−𝑞+1

𝑛
∑ (

𝑖−1

𝑛−1
)

𝑝−𝑞
𝑥(𝑖)

𝑞𝑛
𝑖=1 ,    �̂�𝑝𝑞 =

𝑝−𝑞+1

𝑛
∑ (

2𝑖−𝑛−1

𝑛−1
)

𝑝−𝑞
(𝑥(𝑖) − �̂�)

𝑞𝑛
𝑖=1   (10) 



  D. Koutsoyiannis, Modelling extreme rainfall  38 

Rationale of the definition  
1. Assuming that the distribution mean is close to the median, so that F(μ) ≈ 1/2 (this is precisely 

true for a symmetric distribution), the quantity whose expectation is taken in (7) is  

𝐴(𝑥) ≔ (2𝐹(𝑥) − 1)
𝑝−𝑞

(𝑥 − 𝜇)𝑞 and its Taylor expansion is 

𝐴(𝑥) = (2𝑓(𝜇))
𝑝−𝑞

(𝑥 − 𝜇)𝑝 + (𝑝 − 𝑞)(2𝑓(𝜇))
𝑝−𝑞−1

𝑓′(𝜇)(𝑥 − 𝜇)𝑝+1 + 𝑂((𝑥 − 𝜇)𝑝+2) (11) 

where f(x) is the probability density function of x. Clearly then, 𝐾𝑝𝑞  depends on 𝜇𝑝 as well as 
classical moments of x of order higher than p. The independence of 𝑲𝒑𝒒from classical 
moments of order < p makes it a good knowable surrogate of the unknowable 𝝁𝒑.  

2. As p becomes large, by virtue of the multiplicative term (𝑝 − 𝑞 + 1) in definition (7), 𝐾𝑝𝑞  shares 

similar asymptotic properties with �̂�𝑝
𝑞/𝑝

 (the estimate, not the true 𝜇𝑝
𝑞/𝑝

). To illustrate this for q = 
1 and for independent variables 𝑥𝑖 , we consider the variable 𝑧𝑝 ≔ max1≤𝑖≤𝑝 𝑥𝑖 and denote f( ) 
and h( ) the probability densities of 𝑥𝑖 and 𝑧, respectively. Then (Papoulis, 1990, p. 209): 

ℎ(𝑧) = 𝑝𝑓(𝑧)(𝐹(𝑧))
𝑝−1

 (12) 

and thus, by virtue of (8),  

E[𝑧𝑝] = 𝑝E [(𝐹(𝑥))
𝑝−1

𝑥] = 𝐾𝑝1
′  (13) 

On the other hand, for positive x and large p → n, 

(E [�̂�𝑝
′ ])

1/𝑝
= (E [(

1

𝑛
∑ 𝑥𝑖

𝑝𝑛
𝑖=1 )])

1/𝑝
≈ (E [

1

𝑛
max1≤ 𝑖≤𝑛(𝑥𝑖

𝑝
)])

1/𝑝
≈ 𝑛−1/𝑝E [ max

1≤ 𝑖≤𝑛
𝑥𝑖] ≈ E[𝑧𝑛]  (14) 

Note also that the multiplicative term (𝑝 − 𝑞 + 1) in definition (7) and (8) makes K-moments 
generally increasing functions of p. 
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Asymptotic properties of moment estimates 

 Generally, as p becomes large approaching n*, estimates of both classical and K 
moments, central or non-central, become estimates of expressions involving extremes 

such as (max1≤𝑖≤𝑝 𝑥𝑖)
𝑞

 or max1≤𝑖≤𝑝(𝑥𝑖 − 𝜇)𝑞 . For negatively skewed distributions 

these quantities can also involve minimum, instead of maximum quantities.  
 For the K-moments this is consistent with their theoretical definition. For the classical 

moments this is an inconsistency.  
 A common property of both classical and K moments is that symmetrical 

distributions have all their odd moments equal to zero. 
 For unbounded variables both classical and K moments are non-decreasing functions 

of p, separately for odd and even p. 
 In geophysical processes we can justifiably assume that the variance μ2 ≡ γ1 ≡ σ2 

≡ K22 is finite (an infinite variance would presuppose infinite energy to materialize, 
which is absurd). Hence, high order K-moments Kp2 will be finite too, even if classical 
moments μp diverge to infinity beyond a certain p (i.e., in heavy tailed distributions). 

 

                                           
* It is possible to take p > n and get a Kpq value that is extrapolation beyond the maximum contained in the sample. In 
contrast, with the classical moments we cannot get any value beyond the sample maximum. 
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Justification of the notion of unknowable vs. knowable 

  

 
Note: Sample sizes are ten times higher than the maximum p shown in graphs, i.e., 1000.  
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Relationship among different moment types 
 The classical moments can be recovered as a special case of K-moments: 𝑀𝑝 ≡ 𝐾𝑝𝑝. In 

particular, in uniform distribution, classical and K-moments are proportional to each other: 

𝐾𝑝𝑞
′ ≔ (𝑝 − 𝑞 + 1)𝜇𝑝

′ ,   𝐾𝑝𝑞 ≔ (𝑝 − 𝑞 + 1)𝜇𝑝 (15) 

 The probability weighted moments (PWM) can also be recovered from the K- moments. The 

typical PWM form 𝛽𝑝 ≔ E [𝑥 (𝐹(𝑥))
𝑝

] is a special case of K- moments corresponding to q = 1: 

𝐾𝑝1
′ = 𝑝𝛽𝑝−1  (16) 

 The L-moments are defined as 𝜆𝑝 ≔
1

𝑝
∑ (−1)𝑘 (

𝑝 − 1
𝑘

) E[𝑥(𝑝−𝑘):𝑝]
𝑝−1
𝑘=0 , where 𝑥𝑘:𝑝 is the kth order 

statistic in a sample of size p. L-moments are also related to PWM and through them to K-
moments. The relationships for the different types of moments for the first four orders are: 

𝐾11
′ = 𝜇 = 𝛽0, 𝐾11 = 0 

𝐾21
′ = 2𝛽1, 𝐾21 = 2(𝐾21

′ − 𝜇) = 4𝛽1 − 2𝛽0 = 2𝜆2  

𝐾31
′ = 3𝛽2, 𝐾31 = 4(𝐾31

′ − 𝜇) − 6(𝐾21
′ − 𝜇) = 12𝛽2 − 12𝛽1 + 2𝛽0 = 2𝜆3 

𝐾41
′ = 4𝛽3,  𝐾41 = 8(𝐾41

′ − 𝜇) − 16(𝐾31
′ − 𝜇) + 12(𝐾21

′ − 𝜇) 

= 32𝛽3 − 48𝛽2 + 24𝛽1 − 4𝛽0 =
8

5
𝜆4 +

12

5
𝜆2  

(17) 

 Both PWM and L-moments are better estimated from samples than classical moments but they 
are all of first order in terms of the random variable of interest. PWM and L-moments are good 
to characterize independent series or to infer the marginal distribution of stochastic processes, 
but they cannot characterize even second order dependence of processes; K-moments can. 
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Characteristics a marginal distribution using K-moments 
• Within the framework of K-moments, while respecting the rule of thumb “Just two 

moments” in terms of the power of x, i.e. q = 1 or 2, we can obtain knowable statistical 
characteristics for much (even enormously) higher orders p.  

• In this manner, for p > 1 we have two alternative options to define statistical 
characteristics related to moments of the distribution, as in the table below. (Which of 
the two is preferable depends on the statistical behaviour, and in particular, the 
mean, mode and variance, of the estimator.) 

Characteristic Order p Option 1 Option 2 Option 3*  

Location 1 𝐾11
′ = 𝜇 (the classical mean) 

Variability 2 𝐾21 = 2(𝐾21
′ − 𝜇) = 2𝜆2 

𝐾22 = 𝜇2 = 𝜎2  
(the classical variance) 

Skewness 
(dimensionless) 

3 
𝐾31

𝐾21
=

𝜆3

𝜆2
 

𝐾32

𝐾22
 

𝐾33

𝐾22
3/2

 
=

𝜇3

𝜎3
 

Kurtosis 
(dimensionless) 

4 
𝐾41

𝐾21
=

4

5

𝜆4

𝜆2
+

6

5
 

𝐾42

𝐾22
 

𝐾44

𝐾22
2  

=
𝜇4

𝜎4
 

* Option 3 is based on the classical moments and is not recommended for distribution fitting.  
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 Statistical behaviour of variability, skewness and kurtosis indices 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-0.5 -0.25 0 0.25 0.5

P
ro

b
ab

ili
ty

 d
en

si
ty

Distance from sample mean

K(q=1) - Bias = 0

classical and K(q=2) -
Bias = 0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 -0.25 0 0.25 0.5

P
ro

b
ab

ili
ty

 d
en

si
ty

Distance from sample mean

K(q=1) - Bias = 4%

classical and K(q=2) -
Bias = 157%

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-1 -0.5 0 0.5 1

P
ro

b
ab

ili
ty

 d
en

si
ty

Distance from sample mean

classical  - Bias = -0.01

L and K(q=1) - Bias = 0

K(q=2) - Bias = 0

0

0.2

0.4

0.6

0.8

1

1.2

-0.5 -0.25 0 0.25 0.5

P
ro

b
ab

ili
ty

 d
en

si
ty

Distance from sample mean

classical  - Bias = -76%

L and K(q=1) - Bias = -6%

K(q=2) - Bias = -6%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-0.5 -0.25 0 0.25 0.5

P
ro

b
ab

ili
ty

 d
en

si
ty

Distance from sample mean

classical  - Bias = -9%

L - Bias = 0%

K(q=1) - Bias = 2%

K(q=2) - Bias = 0%

0

0.2

0.4

0.6

0.8

1

1.2

-0.5 -0.25 0 0.25 0.5

P
ro

b
ab

ili
ty

 d
en

si
ty

Distance from sample mean

classical  - Bias = -95%

L - Bias = -11%

K(q=1) - Bias = -3%

K(q=2) - Bias = -4%

Illustration of the probability 
density function of:  

(upper) variability index 

(𝐾11/𝐾21, 𝜇/𝜎 ≡ 𝐾11/√𝐾22; 

note that the latter is inverse 
of the common coefficient of 
variation);  

(middle) skewness index 

(𝜇3
1/3

/𝜎, 𝐾31/𝐾21, 

sign(𝐾32)√|𝐾32|/𝐾22);  

(lower) kurtosis index 

(𝜇4
1/4

/𝜎, 𝜆4/𝜆2, 𝐾41/𝐾21, 

√𝐾42/𝐾22).  

The panels of the left column 
correspond to the normal 
distribution Ν(0,1) and those 
of the right column to the 
lognormal distribution 
LN(0, 2). 
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High order moments for stochastic processes:  
the K-climacogram and the K-climacospectrum 
• The full description of the third-order, fourth-order, etc., properties of a stochastic 

process requires functions of 2, 3, …, variables.  
• For example, the third order properties are expressed in terms of the two-

variable function: 

c3(h1, h2) := E[(x(t) – μ) (x(t + h1) – μ) (x(t + h2) – μ)] (18) 

• Such a description is not parsimonious and its accuracy holds only in theory, 
because sample estimates are not reliable.  

• This problem is remedied if we introduce single-variable descriptions for any 
order p, expanding the idea of the climacogram and climacospectrum based on K-
moments. 

K-climacogram:  𝛾𝑝𝑞(𝑘) = (𝑝 − 𝑞 + 1)E[(2𝐹(𝑋(𝑘)/𝑘) − 1)
𝑝−𝑞

(𝑋(𝑘)/𝑘 − 𝜇)𝑞]  (19) 

K-climacospectrum: 𝜁𝑝𝑞(𝑘) =
𝑘(𝛾𝑝𝑞(𝑘)−𝛾𝑝𝑞(2𝑘))

ln 2
  (20) 

where 𝛾22(𝑘) ≡ 𝛾(𝑘) and 𝜁22(𝑘) ≡ 𝜁(𝑘).  

• While the standard climacogram 𝛾22(𝑘) ≡ 𝛾(𝑘) provides a description precisely 
equivalent to the classical, this is not the case for q > 2. In this case, the single-variable 
K-climacogram description is obviously not equivalent to the multivariate high-order 
one. However, it suffices to define the marginal distribution at any scale k. 
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Part E 
The ombrian curves 



  D. Koutsoyiannis, Modelling extreme rainfall  46 

The concept of ombrian curves 
 An ombrian relationship or ombrian curve (from the Greek ‘όμβρος’, rainfall) is a 

mathematical relationship estimating the average rainfall intensity i over a given time scale d for 
a given return period T. 

 Ombrian curves are a major tool in hydrologic design. 
 They are more widely known by the misnomer rainfall intensity-duration-frequency (IDF) 

curves (the “duration” is not duration but time scale and the “frequency” is not frequency but 
return period, or inverse frequency).  

 Several forms of ombrian relationships are found in the literature, most of which have been 
empirically derived and validated by the long use in hydrologic practice. However it has been 
shown (Koutsoyiannis et al. 1998) that the empirical considerations usually involved in the 
construction of ombrian curves are not at all necessary, and create difficulties and confusion. 

 Attempts to give them a theoretical basis (e.g. in multifractal literature) have often used 
inappropriate assumptions and resulted in oversimplified and inaccurate relationships.  

 In fact, as shown in Koutsoyiannis et al. (1998), an ombrian relationship is none other than a 
family of distribution functions of rainfall intensity for multiple time scales. This is because, the 
return period is tied to the distribution function, i.e., T = Δ/(1 – F(x)), where Δ is the mean 
interarrival time of an event that is represented by the variable x. When annual maxima are 
examined, Δ = 1 year, while when the complete time series (at time step d) is analysed, Δ = d.  

 Thus, the distribution function is at the same time an ombrian relationship, once generalized for 
a multitude of time scales.  

 The marginal distribution and the dependence structure of the rainfall process, once known, 
determine the form of the ombrian curves. However their mathematical expression may be 
difficult to derive from the stochastic structure of the process. 
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Basic assumptions for expressing ombrian curves 
1. Separability of the influences of return period and time scale (Koutsoyiannis et al., 

1998), i.e.,  

𝑖(𝑑, 𝑇) =
𝑎(𝑇)

𝑏(𝑑)
 (21) 

 where a(T) and b(d) are mathematical expressions to be determined. 

2. Pareto distribution for the rainfall intensity over some threshold at any time scale 
(it corresponds to EV2 distribution of maxima). This readily provides a simple 
expression for a(T) of the form 𝜆((𝛵/𝛥)𝜅 − 𝜓), where λ and ψ are scale and location 
parameters of the Pareto distribution, while κ is the shape parameter (Koutsoyiannis 
et al., 1998, Koutsoyiannis, 2004a,b). 

3. General power law expression of b(d), i.e., 𝑏(𝑑)~ (1 + 𝑑/𝜃)𝜂 , where θ > 0 and η > 0 
are parameters.  

Based on assumptions 1-3, we deduce that the final form of the ombrian relationship is 

𝑖(𝑑, 𝑇) = 𝜆
(𝛵/𝛥)𝜅 − 𝜓

(1 + 𝑑/𝜃)𝜂
 (22) 

Equation (22) is dimensionally consistent, provided that θ and Δ have units of time, λ΄ 
has units of intensity, and κ and ψ are dimensionless.  
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Justification of the assumptions  
 We first note that the assumptions are not valid for the entire ranges of scales and 

distribution quantiles as a fully consistent multiscale distribution function may be too 
complicated. They provide satisfactory approximations for the ranges of scales and quantiles 
which are of interest in engineering studies. Specifically they are good for relatively small 
time scales, up to several days, and for the distribution tails.  

 The Pareto distribution is satisfactory for the distribution tail and for relatively small scales. 
This has theoretical support based on maximum entropy considerations (Koutsoyiannis, 2005) 
as well as extended empirical backing (Koutsoyiannis, 2004b; Papalexiou and Koutsoyiannis, 
2006; Koutsoyiannis and Papalexiou, 2017).  

 Once the Pareto distribution is assumed, the shape parameter κ should be the same for all time 
scales d. This can be understood considering that the moments of the distribution of order > 1/κ 
are infinite and if they are infinite for one time scale d1 they should be infinite for any other 
time scale d. This is consistent with the assumption of separability. 

 The general power law expression 𝑏(𝑑)~ (1 + 𝑑/𝜃)𝜂 is more consistent in comparison to the 
frequently used simple power law expression 𝑏(𝑑)~ 𝑑𝜂 . The latter entails infinite intensity of 
the instantaneous process (d = 0), which would require infinite energy to materialize, and hence 
it is absurd. Further justification of the general power law expression, based on maximum 
entropy considerations, can be found in Koutsoyiannis (2006b).  
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Notes on parameter estimation methods 
 Ombrian curve fitting is equivalent to probability distribution fitting. However, because 

ombrian curves focus on a specific part of the distribution (the tail and not the body) typical 
fitting methods (moments, L-moments, maximum likelihood) are not suitable.  

 Consistent parameter estimation techniques for ombrian relationships have been discussed in 
Koutsoyiannis et al. (1998). Two methods have been proposed, the one-step least squares 
method and a two-step procedure, where in the first the parameters of the denominator of 
(22) are estimated so that, the quantities 𝑖(𝑑, 𝑇)(1 + 𝑑/𝜃)𝜂 have the same distribution for all 
time scales d and in the second step the parameters of the numerator of (22) are estimated.  

 These methods make use of order statistics of the statistical sample. By definition the order 
statistic x(i) is equal to the ith-smallest value of the sample of size n, while the (unbiased) 
estimate of its distribution function is �̂�(𝑥(𝑖)) =  𝑖/(𝑛 + 1).  

 Likewise, the estimate of the non-exceedence probability of the jth-largest value, 𝑈𝑗 ≔ 𝑥(𝑛+1−𝑗) 

will be 1 − �̂�(𝑥(𝑛+1−𝑗)) = 1 − �̂�(𝑈𝑗) =  𝑗/(𝑛 + 1).  

 As an alternative to order statistics, below we develop a methodology based on the K-
climacogram. 

 The statistical sample used to estimate parameters can be of two types:  
(a) complete series of rainfall intensities at a time step D for a large period of N years; the 

total number of data values is n = NΔ/D, where Δ = 1 year, but a portion of them (the largest 
N or so) are used in the fitting; 

(b) time block (typically annual) maxima, e.g. one value per year forming a sample of N values.  
 Eventually, the ombrian curves should correspond to the actual rainfall process, naturally 

represented in the sample of type (a). Therefore, if a sample of type (b) is used, an adaptation of 
the distribution function is required (see Koutsoyiannis et al., 1998, for details); in particular, 
the distribution function to be fitted should be EV2 instead of Pareto. 
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Data requirements for parameter estimation  

1. The parameter θ, which is typically smaller than 1 h, needs sub-hourly data to be estimated. 
These can be provided by observations from autographic rain recorders with high temporal 
resolution, or from digital sensors with sub-hourly time step. Without such data the estimated θ 
tends to approach zero.  

2. For the estimation of the parameter η, data for hourly or multi-hour time step can also be quite 
useful. 

3. The parameters of the numerator of equation (22) are better deduced from daily raingage data 
rather than from autographic rain recorder data, because the latter are generally available for 
shorter periods and are more susceptible to measurement errors. 

4. For the parameters ψ and λ of the numerator (which are, respectively, the location and scale 
parameters of the Pareto/EV2 distributions), daily raingage data of an adequate length (of 
several decades) usually suffice for a reliable estimation. 

5. Finally the parameter κ (which is the shape parameter of the Pareto/EV2 distributions), unless 
the period of observations is very large, should be estimated based on multi-station data of the 
area, or be assumed independently of data.  
In particular, the literature supports a typical value of κ = 0.15 (Koutsoyiannis, 2004b), if a 
method based on least squares on order statistics is used, while the L-moments method results 
in lower estimates (κ = 0.10 in Koutsoyiannis, 2004b or κ = 0.114 in Papalexiou and 
Koutsoyiannis, 2013).  
An absolute minimum value is κ = 0, for which the Pareto/EV2 distribution becomes 
Exponential/EV1 and equation (22) becomes 

𝑖(𝑑, 𝑇) = 𝜆
ln(𝛵/𝛥)−𝜓

(1+𝑑/𝜃)𝜂   (23) 
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Ombrian curves as K-climacograms 
 In consistency with (8) and (19), we can define the non-central K-climacogram 𝛾𝑝1

′ (𝑘) 
as: 

𝛾𝑝1
′ (𝑘) = 𝑝E [(𝐹(𝑋(𝑘)/𝑘))

𝑝−1
(𝑋(𝑘)/𝑘)𝑞] (24) 

 By definition, it represents the expected value of the maximum of p realizations of a 
process averaged on time-scale k. Therefore, for appropriate p determined in 
connection to the return period T, and for time scale k = d, 𝛾𝑝1

′ (𝑑) represents the 
ombrian curve i(d, T).  

 To determine the theoretical return period 𝑇(𝛾𝑝1
′ (𝑑)) we introduce the ratio 𝛬𝑝 

which happens to vary very slightly with p:  

𝑇(𝛾𝑝1
′ (𝑑)) =

𝑑

1−𝐹(𝛾𝑝1
′ (𝑑))

,   𝛬𝑝 ≔
𝑇(𝛾𝑝1

′ (𝑑))

𝑑 𝑝
=

1

𝑝(1−𝐹(𝛾𝑝1
′ (𝑑)))

  (25) 

 The slight variation of 𝛬𝑝 with p can be very well approximated if we first accurately 
determine from (24) the specific values 𝛬1 and 𝛬∞. For the approximation of 𝛬𝑝 we 
use any of the following relationships: 

𝛬𝑝 ≈ 𝛬∞ (
𝛬1

𝛬∞
)

1

𝑝𝑐
,     𝛬𝑝 ≈ 𝛬∞ + (𝛬1 − 𝛬∞)

1

𝑝𝑐  (26) 

where c is a constant depending on the distribution function with default value c = 1.  
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Exact and approximate relationships between p and T 
 For given p and distribution function 𝐹(𝑋(𝑘)/𝑘), 𝛾𝑝1

′ (𝑘) is theoretically determined from (24); 

then 𝑇(𝛾𝑝1
′ (𝑑)) is determined from (25) (left part). In absence of analytical solutions, we can 

establish an exact relationship between p and T by doing numerical calculations for several p.  
 Alternatively, we can make exact calculations only for 𝛬1 and 𝛬∞ (the latter as a limit for large p) 

and use the approximate equations (26) for any p. The table below provides such results.  

Table for 𝛬1 and 𝛬∞ for customary distributions (along with some exact relationships for 𝛬𝑝). 

Distribution Distribution 𝛬1  𝛬∞  Exact relationship 

Normal 𝑓(𝑥) =
exp(−

(𝑥−𝜇)2

2𝜎2 )

√2π 𝜎
  𝛬1 = 2  𝛬∞ = e1/2 = 1.649§   

Exponential 𝑓(𝑥) = e−𝑥/𝛽/𝛽  𝛬1 = e = 2.718  𝛬∞ = eγ = 1.781  𝛬𝑝 = e𝐻𝑝/𝑝  

Gamma 𝑓(𝑥) =
𝑥𝑎−1e−𝑥/𝛽

𝛽𝛼 Γ(𝛼)
  𝛬1 =

Γ(𝛼)

Γ𝛼(𝛼)
  𝛬∞ = eγ = 1.781§   

Pareto  

𝐹(𝑥) = 

1 − (1 + 𝜅 (
𝑥

𝛽
− 𝜓))

−
1

𝜅

  
𝛬1 = (

1

1−𝜅
)

1

𝜅
  𝛬∞ = (

π

sin(𝜅 π)Γ(𝜅)
)

1

𝜅
  𝛬𝑝 = (

π

sin(𝜅 π)Β(𝜅,𝑝+1−𝜅)
)

1

𝜅 1

 𝑝 
  

Lognormal* 𝑓(𝑥) =
exp(−

(ln(𝑥/𝛽))2

2𝜎2 )

√2π 𝜎 𝑥
  𝛬1 =

2

erfc(𝜎/23/2)
  𝛬∞ ≈ 1.31𝛬1

0.4   

*For the lognormal distribution, the value 𝑐 = 𝛬∞/𝛬1 gives a better approximation than the default value c = 1. 
§To be cross-checked.  

Explanations of symbols: γ = 0.5772 the Euler constant; Γ( ) the gamma function; Γα( ) the incomplete gamma 
function; erfc( ) the complementary error function; 𝐻𝑝 ≔ ∑ 1/𝑖

𝑝
𝑖=1  the harmonic number. 
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Practical considerations for the relationships between p and T 
 Depending on the required degree of accuracy, we can determine the moment order p for a 

specified return period T by either of the following relationships (with the first being very rough 
and the last being exact).  

𝑝(𝐴) =
𝑇

2𝑑
,    𝑝(𝐵) =

𝑇

𝛬∞𝑑
−

𝛬1

𝛬∞
+ 1,    𝑝(𝐶) = 𝑝(𝑇/𝑑, 𝜶)  (27) 

where α is a vector of the shaper parameters of the distribution function (the location and scale 
parameters should not affect the relationship between p and T). 

 The rationale of 𝑝(𝐴) is that the table in the previous page supports a rough approximation (for 
preliminary estimates) of 𝛬𝑝 ≈ 𝛬1 ≈ 𝛬∞ ≈ 2. As an example, any symmetric distribution for 

p = 1 will give exactly 𝛬1= 2 because 𝛾11
′ (𝑘) is the mean, which because of symmetry is equal to 

the median and thus has a return period of 2d. 
 The justification for 𝑝(𝐵) is that it is readily derived combining (25) (right part) and (26) (right 

part with the default c = 1). 

Example with comparison of the three options for Pareto distribution with shape parameter κ = 0.15. 

 d = 10 min d = 1 h d = 1 d 
 𝑝(𝐴)  𝑝(𝐵)  𝑝(𝐶)  𝑝(𝐴)  𝑝(𝐵)  𝑝(𝐶)  𝑝(𝐴)  𝑝(𝐵)  𝑝(𝐶)  

T = 2 months 4 383 4 307 4307 731 717 717 30 29 29 

T = 1 year 26 298 25 842 25 842 4 383 4 307 4 307 183 179 179 

T = 2 years 52 596 51 684 51 684 8 766 8 614 8 614 365 358 358 

T = 100 years 2 629 800 2 584 212 2 584 212 438 300 430 702 430 702 18 263 17 945 17 945 
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Advantages of using K-climacogram in ombrian curve fitting 
 Generally, the K-moments contain similar information with order statistics. However, the 

order statistics can be evaluated only at a limited number of points as �̂�(𝑈𝑗) = 𝑗/(𝑛 + 1), 

j = 1, …, n. For example, assuming a sample covering a period of 100 years, the largest order 
statistic corresponds to a return period of 101/1 = 101 years and the next one to a return period 
of 101/2 = 50.5 years, while no information can be extracted from the sample for return periods 
between 50.5 and 101 years . In contrast, there is no such limitation in using K-moments, 
where, referring to this example, we can make estimates of maxima for any return period, by 
appropriately specifying the order p as detailed above.  

 Even for smaller return periods, the K-moments admit a more detailed representation of the 
behaviour of maxima, in comparison to order statistics, whose variation appears in the form of 
steps (see figure below, which contains those of the curves appearing in the figure in p. 25 which 
correspond to return period of 2 years; see also graph on p. 55). 

 In contrast to classical moments, whose estimates are reliable only for very low orders 
(usually 1 and 2, and, for very large sample sizes, 3 to 
4), the K-moments can give reliable estimates for 
orders of several millions (see graph on p. 56), such 
as those appearing in the table of the previous page.  

 Similar to classical moments and unlike order 
statistics whose estimation depends on one data 
value only, K-moments represent the entire data 
set (with bigger weights on larger values); this is 
consistent with the “Save the observations” principle 
(Volpi et al. 2018). 
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Application to the Uccle climatological station, Belgium 
Data set: The long-term 
10-min rainfall series at 
the climatological station 
of the Royal 
Meteorological Institute 
of Belgium at Uccle 
(1898-2002) (Demarée, 
2003, De Jongh et al., 
2006, Ntegeka and 
Willems, 2008).  

The data are 
homogeneous (same 
location, same measuring 
instrument and 
measuring accuracy, 
identical quality of 
processing since 1898) 
and without gaps. 

The daily data of the station plotted above (available at http://climexp.knmi.nl/data/bpeca17.dat) 
is longer, covering the period 1880-2018. The daily data are fully consistent with the 10-min data. 

The graph, based on the daily rainfall record, which is similar to that of Bologna in p. 25 (with an 
additional plot of the order statistics for 10 min rainfall), shows the typical fluctuations at the 10-
year scale, but indicates smaller variation than in Bologna (i.e., smaller Hurst parameter). 
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Ombrian curves at Uccle  
The ombrian curves have been fitted 
based on the K-climacogram 𝛾𝑝1

′ (𝑑), 

evaluated at several return periods up to 
~150 years (extrapolating beyond the 
observation period of 105 years). The 
entire data set was used in a single 
optimization step, with the objective 
function being the overall square error of 
the fitting to be minimized. 

The graph shows the obtained ombrian 
curves in comparison to empirical 
estimates of 𝐾𝑝1

′  and order statistics Uk. 

The two series of points are in good 
agreement to each other and to 
theoretical curves. 

Note: It is clarified that the analyses and 
the final result refer to specified time 
scales d regularly formed, without 
considering the case of a moving time 
window and “optimizing” its location so 
as to obtain the maximum possible Uk or 
Kp1. This problem is not covered here.  
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Ombrian curve expression: 
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Concluding remarks 
 Awareness of stochastics is important in analysing and modelling geophysical 

processes. 
 Nature is perpetually changing, yet stochastics describe it efficiently in terms of 

stationary stochastic processes. 
 So-called “nonstationary” analyses of rainfall and flood extremes are not actually 

nonstationary, as they do not describe change in causative deterministic terms; their 
use is dangerous as they underestimate the actual uncertainty that is related to long-
term variations. 

 Statistical description of extremes is related to high-order classical moments but in 
fact these are unknowable for typical geophysical samples.  

 The recently introduced knowable moments (K-moments and K-climacograms), 
which constitute alternatives to both classical moments and order statistics, can 
support the consistent stochastic modelling of extremes and the fitting of 
distributions of extremes or distribution tails.  

 A simple and consistent formula based on justified assumptions provides a possibly 
universal frame for ombrian (intensity – time scale – return period) curves. 

 The case study using a 105-year long uninterrupted rainfall record at a 10-min time 
step shows an impressive fitting of the general ombrian curve and illustrates the 
usefulness of the K-climacogram in its construction and visualisation.  
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