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The general framework: Seeking theoretical consistency in 
analysis of geophysical data (Using stochastics) 
 

Book in preparation: 

D. Koutsoyiannis, Stochastics of Hydroclimatic 
Extremes – A Cool Look at Risk (2020) 
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Data for illustration 
Bologna, Italy (44.50°N, 
11.35°E, +53.0 m).  

Available from the Global 
Historical Climatology 
Network (GHCN) - Daily. 

Uninterrupted for the period 
1813-2007: 195 years.  

For the most recent period, 
2008-2018 daily data are 
provided by the repository 
Dext3r of ARPA Emilia 
Romagna. 

Total record length: 206 
years. 

Main observation:  
The 10-year climatic variables have varied irregularly by a factor of 2 for the average daily 
precipitation and by a factor > 3 for the maximum daily precipitation. 

Are “nonstationary” analyses and trend identification useful or necessary?  

Author’s opinion: Such analyses are both fashionable and funny—but of little scientific value. 
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Block maxima, values over threshold, or all data? 
Traditionally, hydrometeorological records are analysed in two ways:  

 Block maxima—typically annual maxima (most frequent). We extract the highest of all recorded 
values for a given time period (typically year) and form a statistical sample with size equal to the 
number of blocks (typically years) in the record.  

 Values over threshold (VOT, aka peaks-over-threshold—POT). We form a sample of values 
exceeding a certain threshold irrespective of the time they occurred. Usually the threshold is 
chosen so that the sample size is again equal to the number of years of the record.  

At first glance, the block maxima option corresponds to the extreme value theory and the resulting 
limiting distributions. In fact, however, the latter are only approximations as the convergence to the 
limit is very slow. What is useful to keep from the extreme value theory is this:  

 If the limiting distribution of maxima is Gumbel, then the tail of the parent distribution is 
exponential. 

 If the limiting distribution of maxima is type II, then the tail of the parent distribution is Pareto. 

Today there is abundance of hydrometeorological data on daily and sub-daily scales and there is no 
need to extract annual or seasonal maxima. Thus, it is preferable to use the entire observational 
record; second best option is the VOT. Only if the available observations are originally given for time-
blocks (e.g., annual maxima), it is justified to refer to extreme value distribution.  

Studying the complete series of observations has the advantage of not wasting information, in accord 
to the motto “Save hydrological observations!” (Volpi et al., 2019).  

A final advantage is that the design quantities do correspond to the parent distribution, rather than 
the artificially induced maxima over an arbitrarily defined time period. 
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Entire data set or values above threshold? 

 
The graph shows the fitting of 2 theoretical distributions: 

 exponential (with 1 parameter for all data and 2 for VOT), 
 Pareto (with 2 parameters for all data and 3 for VOT). 

Two samples of daily rainfall in Bologna were used, namely: 

 the sample of all nonzero values (size: 19426 for 206 years – 94.3 rain days per year on average), 
 the sample above a threshold of 47 mm (VOT, size: 206). 

Clearly, the second option (VOT) gives a better fitting on the maxima—but at the expense of an additional 
parameter and an unrealistic nonzero minimum. Can we improve the first option? 
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The plots of empirical distributions were 
based on order statistics (see p. 8) with 

𝑇(𝑥(𝑖)) =
𝑛+1

𝑛+1−𝑖
𝑑, where 𝑥(𝑖) is the ith 

smallest value of the sample of size n and d 
is a time unit. 
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Classical moments or L-moments? 
 We fit to all data a 2-parameter 

Pareto distribution with zero 
lower bound:  

𝐹(𝑥) = 1 − (1 + 𝜅 𝑥 𝜆⁄ )−1 𝜅⁄  
 To estimate the two parameters 

we need two moments (or more?).  
 The fitting (blue lines) is quite 

unsatisfactory for the distribution 
tail (extremes), with the classical 
moments showing better 
performance than the L-moments. 

 If we used the sample over 
threshold (red lines) and a 3-
parameter Pareto, classical 
moments and L-moments give 
fittings very close to each other 
(with slight advantage of the latter 
on both small and high values). 

Questions 

1. How can we use the entire data set and fit on the distribution tail? 
2. How can we compare (validate) the distribution fitting? Any means better that order statistics? 
3. How many moments do we need for fitting and comparison? Of what order and of which type? 
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Classical, L-, or Probability Weighted Moments? 
 If we need to go to moment order higher than 2 to 3, we should exclude classical 

moments (cf. Lombardo et al., 2014: “Just two moments”) because they are unknowable 
(Koutsoyiannis, 2019). 

 L-moments are popular and have unbiased estimators for high orders, and thus are 
preferable. 

 However, L-moments are connected to Probability Weighted Moments via one-to-one 
relationships; the latter are more directly defined and estimated and therefore are 
preferable. (In fact the estimation of L-moments is made from that of Probability 
Weighted Moments). 

 Definition of Probability Weighted Moments: 

𝛽𝑝 ≔ E [𝑥 (𝐹(𝑥))
𝑝

] 

 Relationships of Probability Weighted Moments and L-moments (for the first four 
orders): 

𝜆1 = 𝛽0 = 𝜇, 𝜆2 = 2𝛽1 − 𝛽0, 𝜆3 = 6𝛽2 − 6𝛽1 + 𝛽0, 

  𝜆4 = 20𝛽3 − 30𝛽2 + 12𝛽1 − 𝛽0 
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Probability Weighted Moments or K-moments? 
The newly introduced (Koutsoyiannis, 2019, 2020) knowable (opposite to unknowable) moments or 
K-moments contain as special cases (or are one-to-one connected to) classical moments, Probability 
Weighted Moments and L-moments, as well as order statistics. The related definitions follow: 

Noncentral knowable moment of order (p, 1) [analogous to Probability Weighted Moments] 

𝐾𝑝1
′ ≔ 𝑝E [(𝐹(𝑥))

𝑝−1
𝑥] , 𝑝 ≥ 1 

Noncentral knowable moment (or noncentral K-moment) of order (p, q) [recovering classical 
noncentral moments for p = q]:  

𝐾𝑝𝑞
′ ≔ (𝑝 − 𝑞 + 1)E [(𝐹(𝑥))

𝑝−𝑞
𝑥𝑞] , 𝑝 ≥ 𝑞 

Central knowable moment of order (p, q) [recovering classical central moments for p = q] 

𝐾𝑝𝑞 ≔ (𝑝 − 𝑞 + 1)E [(𝐹(𝑥))
𝑝−𝑞

(𝑥 − 𝜇)
𝑞

] , 𝑝 ≥ 𝑞 

where μ is the mean of 𝑥, i.e., 𝜇 ≔ E[𝑥(𝑝)] ≡ 𝐾11
′ .  

Hypercentral knowable moment (or central K-moment) of order (p, q) [analogous to L-moments] 

𝐾𝑝𝑞
+ ≔ (𝑝 − 𝑞 + 1)E[(2𝐹(𝑥) − 1)

𝑝−𝑞
(𝑥 − 𝜇)

𝑞
], 𝑝 ≥ 𝑞 

Noncentral K-moments of order (p, 1) are closely related to order statistics and, through them, to the 
extremes. 
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K-moments or order statistics? 
Let 𝑥 be a random variable and 𝑥1, 𝑥2, … , 𝑥𝑝 be copies of it, independent and identically distributed 

(iid), forming a sample. The highest (pth) order statistic of 𝑥 is by definition: 

𝑥(𝑝) ≔ max(𝑥1, 𝑥2, … , 𝑥𝑝) 

It is readily obtained that if 𝐹(𝑥) is the distribution function of 𝑥 and 𝑓(𝑥) its probability density 

function, then those of 𝑥(𝑝) are 

𝐹(𝑝)(𝑥) = (𝐹(𝑥))
𝑝

, 𝑓(𝑝)(𝑥) = 𝑝𝑓(𝑥)(𝐹(𝑥))
𝑝−1

 

Based on the definition of K-moments it is readily seen that  

𝐾𝑝1
′ = E[𝑥(𝑝)] = E[max(𝑥1, 𝑥2, … , 𝑥𝑝)] 

More generally, K-moments of all categories represent expected values of maxima. For example, for 

odd q or for nonnegative 𝑥, 𝐾𝑝𝑞
′ = E [𝑥(𝑝−𝑞+1)

𝑞
]. 

In a sample of size n arranged in ascending order (𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛)), the random variable 𝑥(𝑟), 

𝑟 = 1, … , 𝑛, is the rth order statistic. Its distribution function is (David and Nagaraja, 2004, p. 10): 

𝐹(𝑟,𝑛)(𝑥) = 𝑃{𝑥(𝑟) ≤ 𝑥} = 𝑃{𝐹(𝑥(𝑟)) ≤ 𝐹(𝑥)} =
B𝐹(𝑥)(𝑟, 𝑛 − 𝑟 + 1)

B(𝑟, 𝑛 − 𝑟 + 1)
 

which means that the random variable 𝑢𝑟 ≔ 𝐹(𝑥(𝑟)) has beta distribution and its mean is 

E[𝑢𝑟] = E[𝐹(𝑥(𝑟))] =
𝑟

𝑛+1
 (hence, the so-called Weibull plotting positions). For 𝑟 = 𝑛, E[𝑢𝑛] =

𝑛

𝑛+1
.  

Similar to order statistics, where we use orders up to the sample size n, we should use high orders, 
up to n, for K-moments, with higher importance given to the highest moments.  
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Are those high-order K-moments knowable? 
Yes, because we can construct an unbiased estimator with good properties such as small variance. 

The unbiased estimator of the noncentral moment 𝐾𝑝1
′  and its extension for q > 1 are  

�̂�𝑝1
′ = ∑ 𝑏𝑖𝑛𝑝 𝑥(𝑖)

𝑛

𝑖=1

, �̂�𝑝𝑞
′ = ∑ 𝑏𝑖,𝑛,𝑝−𝑞+1 𝑥(𝑖)

𝑞

𝑛

𝑖=1

 

with (Koutsoyiannis, 2020): 

𝑏𝑖𝑛𝑝 = {

0, 𝑖 < 𝑝

𝑝

𝑛
 
Γ(𝑛 − 𝑝 + 1)

Γ(𝑛)
 

Γ(𝑖)

Γ(𝑖 − 𝑝 + 1)
, 𝑖 ≥ 𝑝 ≥ 0

 

where p is any positive number (usually, but not necessarily, integer). It can be verified that  

∑ 𝑏𝑖𝑛𝑝
𝑛
𝑖=1 = 1  

which is a necessary condition for unbiasedness. Furthermore, for p = 1, 𝑏𝑖𝑛1 = 1/𝑛, while for p = 2, 

the quantity (𝑛/2)𝑏𝑖𝑛2 is the estimator �̂�(𝑥(𝑖)), i.e., 

�̂�(𝑥(𝑖)) =
𝑖 − 1

𝑛 − 1
 

The fact that 𝑏𝑖𝑛𝑝 = 0 for i < p suggests that, as the moment order increases, progressively, fewer 

data values determine the moment estimate, until it remains only one, the maximum, when p = n, 
with 𝑏𝑛𝑛𝑛 = 1. Furthermore, if p > n then 𝑏𝑖𝑛𝑝 = 0 for all i, 1 ≤ i ≤ n, and therefore estimation 

becomes impossible.  
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Illustration that high-order K-moments are preferable to 
low-order K-moments  
For the sake of illustration we intentionally choose the simplest and blatantly unsuitable model, the 
1-parameter exponential distribution, 𝐹(𝑥) = 1 − e−𝑥/𝜆. 

One moment suffices to estimate the single (scale) parameter λ—but which moment to choose? 

The theoretical K-moments are: 𝐾𝑝1 = (𝐻𝑝 − 1)𝜆, 𝐾𝑝2 = ((𝐻𝑝 − 1 − 1)
2

+  𝐻𝑝 − 1
(2)

) 𝜆2, 𝐾𝑝𝑝 = 𝜇𝑝 =

(! 𝑝)𝜆𝑝, where 𝐻𝑝 is the pth harmonic number and 𝐻𝑝
(2)

 is the pth harmonic number of order 2. 
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The moment order 
p affects the fitting 
dramatically. 

The scale parameter 
λ increases with 
increasing p, q.  

If we wish to model 
maxima, it is better 
to fit based on the 
1000th K-moment 
than on the 1st! 
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What return period should the maximum value be assigned? 
Option 1: 𝑇/𝑑 = 1/(1 − E[𝐹(𝑥(𝑛))]) = 𝑛 + 1.  

Option 2: 𝑇/𝑑 = 1/ (1 − 𝐹(E[𝑥(𝑛)])) = 1/(1 − 𝐹(𝐾𝑛1)). 

Assumptions for illustration:  
 Exponential distribution 𝐹(𝑥) = 1 − exp(−𝑥/𝜆) with λ = 1.  
 𝑛 = 2, max(𝑥1, 𝑥2) = 𝑥(2) = �̂�21  

 For the two options we compare the standard error of the estimates of 𝑥𝑇 and 𝐹𝑇  at 𝑇 = 𝑛 + 1 
= 3; for convenience a time unit d = 1 is assumed. 

True vales: Distribution parameter 𝜆 = 1, 𝐹𝑇 = 2/3, 𝑥𝑇 = ln 3  

Option 1: �̂�(𝑥(2)) = 2/3, 𝐹𝑥(2)
(𝑥) = (𝐹(𝑥))2, �̂�𝑇 = 𝑥(2), E[𝐹(𝑥(2))] = 2/3 (unbiased) 

E [(�̂�𝑇 − 𝑥𝑇)
2

] = E [(𝑥(2) − ln 3)
2

] = 7/2 + (ln 3)2 − 3 ln 3 = 1.411 ,  

E [(𝐹(𝑥(2)) − 2/3)
2

] = E [(1 − exp(−𝑥(2))  − 2/3)
2

] = 1/18 = 0.0556  

Option 2: �̂� = (𝑥1 + 𝑥2)/2, �̂�21  = 𝑥(2) = max(𝑥1, 𝑥2) 

�̂�𝑇 = �̂� ln 3 = (𝑥1 + 𝑥2) ln 3 /2, E [((𝑥1 + 𝑥2) ln 3 /2 − ln 3)
2

] = (ln 3)2/2 = 0.603 <  1.411 

�̂�(𝑥(2)) = 𝐹(�̂�21) = 1 − exp (−2𝑥(2)/(𝑥(1) + 𝑥(2))) , E[�̂�(𝑥(2))] = E[𝐹(�̂�21)] = 0.7675 ≠ 2/3 (bias) 

E [(𝐹(𝑥(2)) − 2/3)
2

] = E [(𝐹(�̂�21)  − 2/3)
2

] = 0.0146 < 0.0556. (Note: the numerical results were 

calculated by numerical integration). 

Result: Option 2 is preferable for estimating both 𝑥 and 𝐹 even though it entails bias for the latter.  
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What return period should the maximum value be assigned? (2) 
The graphs show results of Monte Carlo simulations for the three indicated distributions again for 
the maximum of two variables, 𝑥(2) = max(𝑥1, 𝑥2)  

 

Pareto distribution, κ =0.5 

𝐹(𝑥) = 1 − (1 + 𝜅𝑥)−
1

𝜅 

𝑥(𝐹) =
(1−𝐹)−𝜅−1

𝜅
  

Exponential distribution 

𝐹(𝑥) = 1 − exp(−𝑥)  

𝑥(𝐹) = − ln(1 − 𝐹)  

Normal distribution 

𝑓(𝑥) = exp(−𝑥2/2)/√2π  

 

The graphs show that:  
 Differences resulting from Options 1 and 2 can be substantial. Particularly for the Pareto 

distribution the average of 𝑥(2) for Options 1 and 2 corresponds to 𝑇 = 3 and T = 7.2, 

respectively. The value 𝑇 = 3 looks unrealistically low, except for the normal distribution. 
 Practically, the median of 𝑥(2) corresponds to 𝑇 = 3 for all distributions. 
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Assigning return periods to K-moments of any order 
 The non-central K-moment for q = 1 is: 

𝐾𝑝1
′ = 𝑝E [(𝐹(𝑥))

𝑝−1
𝑥] 

 By definition, it represents the expected value of the maximum of p realizations of 𝑥.  

 To determine the theoretical return period 𝑇(𝐾𝑝1
′ ) we introduce the ratio 𝛬𝑝 which 

happens to vary only slightly with p:  

𝑇(𝐾𝑝1
′ ) =

𝑑

1−𝐹(𝐾𝑝1
′ )

,    𝛬𝑝 ≔
𝑇(𝐾𝑝1

′ )

𝑑 𝑝
=

1

𝑝(1−𝐹(𝐾𝑝1
′ ))

  

 The slight variation of 𝛬𝑝 with p can be very well approximated if we first accurately 
determine the specific values 𝛬1 and 𝛬∞. For the approximation of 𝛬𝑝 we use one of 
the following relationships: 

𝛬𝑝 ≈ 𝛬∞ (
𝛬1

𝛬∞
)

1

𝑝𝑐
,     𝛬𝑝 ≈ 𝛬∞ + (𝛬1 − 𝛬∞)

1

𝑝𝑐  

where c is a constant depending on the distribution function with default value c = 1. 
The former approximation is more accurate, but the latter more convenient as for c = 1 
it yields a linear relationship between the return period T and the K-moment order p: 

𝑇(𝐾𝑝1
′ )

𝑑
= 𝑝𝛬𝑝 ≈ 𝛬∞𝑝 + (𝛬1 − 𝛬∞)  
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Exact and approximate relationships between p and T 
 For given p and distribution function 𝐹(𝑥), 𝐾𝑝1

′  is theoretically determined; then 𝑇(𝐾𝑝1
′ ) is 

determined from the exact relationship. In absence of an analytical solution, we can establish an 
exact relationship between p and T by doing numerical calculations for several p.  

 Alternatively, we can make exact calculations only for 𝛬1 and 𝛬∞ (the latter as a limit for large p) 
and use the approximate equations for any p. The table below provides such results.  

Distribution Distribution definition 𝛬1  𝛬∞  Exact Λp  Approximate Λp  

Normal 𝑓(𝑥) =
exp(−

(𝑥−𝜇)2

2𝜎2 )

√2π 𝜎
  𝛬1 = 2  eγ = 1.781   𝛬∞ + (𝛬1 − 𝛬∞)/𝑝  

Exponential 𝑓(𝑥) = e−𝑥/𝜆+𝜓/𝜆  e = 2.718  eγ = 1.781  e𝐻𝑝 𝑝⁄   𝛬∞ + (𝛬1 − 𝛬∞)/𝑝 

Gamma 𝑓(𝑥) =
𝑥𝜉−1e−𝑥/𝜆

𝜆1/𝜅 Γ(𝜉)
  

Γ(𝜉)

Γ𝜉(𝜉)
  eγ = 1.781   𝛬∞ + (𝛬1 − 𝛬∞)/𝑝  

Weibull 
𝐹(𝑥) = 

1 − exp (− (
𝑥

𝜆
− 𝜓)

𝜉

)  e(Γ(1+𝜅))
1
𝜅 eγ = 1.781    𝛬∞ (

𝛬1

𝛬∞
)

1

𝑝𝑐
  

𝑐 =  𝛬∞/ 𝛬1 

Pareto  

𝐹(𝑥) = 

1 − (1 + 𝜅 (
𝑥

𝜆
− 𝜓))

−
1

𝜅
  

(
1

1−𝜅
)

1

𝜅
  (Γ(1 − 𝜅))

1

𝜅  
((𝑝+1−𝜅) Β(1−𝜅,𝑝+1))

1
𝜅

𝑝
  𝛬∞ + (𝛬1 − 𝛬∞)/𝑝 

Lognormal 𝑓(𝑥) =
exp(−

(ln(𝑥/𝜆−𝜓))2

2𝜎2 )

√2π 𝜎 𝑥
  

2

erfc(𝜎/23/2)
  eγ = 1.781    𝛬∞ (

𝛬1

𝛬∞
)

1

𝑝𝑐
  

𝑐 = 0.12(1 +  𝛬∞/ 𝛬1)  

Explanations of symbols: γ = 0.5772 the Euler constant; Γ( ) the gamma function; Γα( ) the incomplete gamma function; B( , ) 
is the beta function; erfc( ) the complementary error function;  𝐻𝑝 ≔ ∑ 1/𝑖

𝑝
𝑖=1  is the pth harmonic number. 
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Practical considerations for the relationships between p and T 
 Depending on the required degree of accuracy, we can determine the moment order p for a 

specified return period T by any of the following relationships (with the first being very rough 
and the last being exact).  

𝑝(A) =
𝑇

2𝑑
,    𝑝(B) =

𝑇

𝛬∞𝑑
−

𝛬1

𝛬∞
+ 1,    𝑝(C) = 𝑝(𝑇/𝑑, 𝜶)  

where α is a vector of the shaper parameters of the distribution function (the location and scale 
parameters should not affect the relationship between p and T). 

 A justification of 𝑝(A) is that the table in the previous page supports a rough approximation (for 
preliminary estimates) of 𝛬𝑝 ≈ 𝛬1 ≈ 2. Furthermore, any symmetric distribution for p = 1 will 

give exactly 𝛬1= 2 because 𝛫11
′  is the mean, which in this case equals the median and thus has a 

return period of 2d. 
 A justification for 𝑝(B) is that it is readily derived from the last approximate equation of p. 13. 

Example with comparison of the three options for Pareto distribution with shape parameter κ = 0.15. 

 d = 10 min d = 1 h d = 1 d 
 𝑝(A)  𝑝(B)  𝑝(C)  𝑝(A)  𝑝(B)  𝑝(C)  𝑝(A)  𝑝(B)  𝑝(C)  

T = 2 months 4 383 4 307 4307 731 717 717 30 29 29 

T = 1 year 26 298 25 842 25 842 4 383 4 307 4 307 183 179 179 

T = 2 years 52 596 51 684 51 684 8 766 8 614 8 614 365 358 358 

T = 100 years 2 629 800 2 584 212 2 584 212 438 300 430 702 430 702 18 263 17 945 17 945 
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Final fitting on K-moments for orders p from ~100 to 10 000 
(T = ~2 to 200 years) 
We assume Pareto distribution with zero lower 
bound (for physical consistency): 

𝐹(𝑥) = 1 − (1 + 𝜅 𝑥 𝜆⁄ )−
1

𝜅 or  
𝑇(𝑥)

𝑑
= (1 + 𝜅 𝑥 𝜆⁄ )

1

𝜅  

The estimated K-moments have return period: 

�̂�(�̂�𝑝1
′ )

𝑑
= 𝑝𝛬𝑝 = (

1

𝜅
+ (𝑝 + 1 − 𝜅) Β(1 − 𝜅, 𝑝 + 1))  

We estimate the parameters by minimizing the 
mean square error of the logarithms of the 

empirical �̂�(�̂�𝑝1
′ ) from the theoretical 𝑇(�̂�𝑝1

′ ). 

We calculate the error for a range of T from 2 to 
200 years. The fitted parameters are κ = 0.096, λ = 8.37 mm/d. 

The graph shows a perfect fit of theoretical and empirical curves for T > 1 year (the two curves are 
indistinguishable).  

For comparison, empirical curves for the order statistics are also plotted but these have not been 
used at any step of the fitting procedure. 

Note: Minimizing the error of �̂�𝑝1
′  with respect to 𝐾𝑝1

′ , without reference to T, is another possibility but 

presupposes exact relationships for 𝐾𝑝1
′ , which may be infeasible to derive for some distributions. In the Pareto 

case this is feasible and the resulting parameters are practically the same as above.  

1
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T)
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m

/d
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A note on the behaviour of the Λ factor 
The exact relationship for Pareto 
distribution is:  

𝛬𝑝 =
((𝑝 + 1 − 𝜅) Β(1 − 𝜅, 𝑝 + 1))

1
𝜅

𝑝
 

The approximate relationship is:  

𝛬𝑝 = 𝛬∞ + (𝛬1 − 𝛬∞)/𝑝 

with 

𝛬1 = (
1

1 − 𝜅
)

1
𝜅

, 

  𝛬∞ = (Γ(1 − 𝜅))
1
𝜅  

The graph shows that the 
approximation is perfect. 

Note that for p > 10, 𝛬𝑝 ≈ 2. 

Note also that the procedure and the approximation work well even for p < 1. 

1
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0.1 1 10 100 1000 10000

Λp

Moment order, p

Exact

Approximation



  D. Koutsoyiannis, Extreme-oriented selection and fitting of probability distributions  18 

Slight improvement for a global fitting 
By adding one parameter to the 
theoretical distribution function we 
can get a model applicable for the 
entire range of rainfall depth. 

Namely, we use the Pareto-Burr-
Fuller (PBF) distribution with zero 
lower bound (for physical 
consistency for rainfall): 

𝐹(𝑥) = 1 − (1 + 𝜅(𝑥 𝜆⁄ )𝑐 )−
1

𝑐𝜅 

We use the same estimation 
procedure as above but calculate the 
error on the entire range of values. 
However, in order not to distort the 
good fitting on the tail, we keep the 
tail index κ as estimated for the 
Pareto distribution (κ =0.096). 

The estimated parameters are: κ = 0.096, c= 0.883, λ = 5.04 mm/d. 

A perfect fit of the model (green continuous line) and empirical curve (blue dashed line) is seen for 
the entire range. 

For comparison, empirical curves for the order statistics are also plotted but these have not been 
used at any step of the fitting procedure. 
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Is this the last word? 
No. 

Time dependence and in particular long-term persistence (Hurst-Kolmogorov behaviour) 
is present in the Bologna record—and in most of rainfall records. 

Time dependence induces bias to estimators of K-moments. A K-moment is a 
characteristic of the marginal (first order) distribution of the process and therefore is not 
affected by the dependence structure. However, the estimator is. Thus, we need to 
quantify the bias of the estimator of K-moments and take it into consideration in the 
model fitting. 

Naturally by considering the bias, the resulting model will give higher rainfall values for 
specified return periods. 

Cyclostationarity (periodic seasonal variation and possibly diurnal variation) also affect 
the rainfall process and need to be considered in the model building.  

These issues are covered in Koutsoyiannis (2020). 
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Conclusions 
 The K-moments are powerful tools that unify other statistical moments (classical, L-, 

probability weighted) and order statistics, offering several advantages. 

 In particular, they offer a sound basis for distribution fitting with emphasis on extremes. 

 For independent identically distributed variables, K-moments offer unbiased, reliable and 
workable estimators for low and high orders p, up to the sample size n. 

 For practical applications the following steps can be used for an extreme-oriented 
distribution fitting: 
o Use all available data without exceptions (not block maxima, not values over 

threshold). 
o Estimate noncentral K-moments �̂�𝑝1

′  for a set of orders p up to the sample size n.  

(Do not hesitate to calculate moments or orders of several thousands or millions.)  
o Choose a distribution tail according to the theory of extreme value distributions 

(Pareto for rainfall and streamflow, exponential or normal for temperature, etc.) 
o For that tail, estimate the empirical return periods (T) of the estimated values �̂�𝑝1

′ . 

o Also determine the theoretical return periods of the estimated values �̂�𝑝1
′  as functions 

of the distribution parameters. 
o Determine the parameters by numerically minimizing a fitting metric, such as the 

mean square error of (logarithms of) empirical and theoretical T for, say, T > 2 years. 

 Time dependence influences the estimates and fitting but this topic has not been covered in 
this presentation.  
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