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Foreword 

I feel really honoured and pleased to have received invitation from Professor 

Koutsoyiannis to write a foreword to his fascinating scientific book entitled Stochastics of 

Hydroclimatic Extremes: A Cool Look at Risk. As a matter of fact, Professor Koutsoyiannis 

and myself do not always agree on different aspects of the science of climate change and 

its impact as well as on the justification behind mitigation and adaptation. However, we 

are both doing our best to heed the story that the raw observation data are telling us, 

without forcing them to say what they are expected to say. The book is in this spirit, taking 

a reader for a guided magical mystery tour to objective, and rational, methods and being 

free of ideology or pre-conceptions.  

 The book opens the door to the thoughts of Professor Koutsoyiannis that deserve to 

be broadly known. He is an established scientist with respectful publication track. He 

authored or co-authored many journal papers that have attracted considerable attention 

and multiple citations. Now, when the book is available, the scientific community can 

conveniently access the findings reported in his seminal works in one place, instead of 

having to refer to many journal papers. There are no restrictions in the book that are 

usually imposed on journal articles, such as the word count or the need to bow to 

recommendations by reviewers and editors. The author of a book is free to shape the 

contents as he wants. Essential is that, on the one hand, the book must be scientifically 

sound and rigorous, but on the other hand, it must be interesting, so that the reader does 

not give up and walk away. In my opinion, these conditions are convincingly met by this 

volume. In his works before writing the book, Demetris has contributed to each and every 

subarea covered by the book. He reports on his own experience. 

 Professor Koutsoyiannis is a prolific writer, but some of his excellent papers, 

challenging conventional wisdoms, had been rejected in established journals, so that they 

are available in author’s portal on internet. Possibly, some of them conveyed inconvenient 

truth. At times, rejection decisions were based on superficial, or simply wrong, reviews. I 

witnessed one disappointing publication attempt, first hand, sharing with Demetris the 

misfortune of having a joint paper rejected, based on two unfair, arrogant, reviews. 

Demetris promotes eponymous reviewing, when the authors’ identity is disclosed to the 

reviewers and the reviewers’ identity is disclosed to the authors. The symmetry of such 

an arrangement improves responsibility. Yet, I am proud to state that I have co-authored 

a few journal papers with Koutsoyiannis. 

 Professor Koutsoyiannis is fascinated by the overwhelming wealth of data available 

nowadays in public domain, in our brave new world. Large sets of real observation data 

can be freely accessed. So, the reader is welcome to help oneself to the data and to try 

exploratory data analysis on one’s own, to search for a pattern.  

 I can imagine that many readers will go through the whole book, possibly skipping 

the masses of equations present in some chapters. For instance, there are 249 numbered 

equations in Chapter 6 and 131 in Chapter 2. However, these equations are needed for 
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those readers who wish to undertake a detailed study of selected parts of the book that 

deal with the material of relevance to the particular problem at hand. 

 Professor Koutsoyiannis is a genuine ambassador of Hellenism. There are great 

recourses to ancient Greek thoughts, philosophy and poetry in the book. It is fascinating 

to observe how he explains Greek roots of words that everybody knows but not everyone 

is truly aware of their Greek origin. He teaches us his interpretation of the very term 

stochastics, playing the central role in the book and in its title. This essential notion is 

derived from Greek roots, but has been broadly used in a different way. Demetris has 

proposed new names, originating from Greek, to baptize scientific constructs, such as “climacogram”, “ombrian”. They are indeed better justified than the existing terms that 

are already in circulation, but it is clear from the google search counter that they are 

certainly less known yet. 

 We live in the era of bibliometric indices being used as the principal, parametric, 

measure of scientific achievements of an individual scientist or a scientific institution (at 

times, even an entire country). Indeed, nowadays, citation count and Hirsch index are the 

currencies in which scientists are evaluated. Hence, a book is not a product that gets 

adequately rewarded by the bibliometric indices. So, in a way, writing a book is a sacrifice 

for the author in comparison to publication of articles in leading peer-reviewed journals 

from the top quartile of a disciplinary division of the Web of Science list, with respectful value of the impact factor. The very terms “bibliometry” and “bibliometric” are clearly of 
Greek origin, stemming from two words: βιβλίον (biblion) meaning a book, and the verb 

μετριάω / μετρέω (metriao / metreo) meaning to measure. By the way, even if the terms 

bibliometry or bibliometric refer to books by construction, in real world they now mostly 

refer to journal articles rather than books or book chapters. 

 The book reads really well. It contains numerous illustrations (131 figures, 36 tables). 

There are also a wealth of interesting digressions and appendices, and, finally, an 

excellent, truly international and multi-lingual, list of references, including little known 

works of Soviet or Russian scientists.  

 In my view, this is the best book ever published in this area, successfully competing 

with other recognized giants. I might consider this book as a candidate to a short list of 

books I would pack in my luggage for a visit to an uninhabited island, where I would have 

much time to study it over and over again. Forty-five years ago, I would take a handbook 

entitled Probability, Random Variables and Stochastic Processes, written by another 

scientist of Greek origin, Athanassios Papoulis. Now, I would swap Papoulis by 

Koutsoyiannis. One could rightly ask, what would be the sense of taking such a book to an 

uninhabited island, where the concepts of extremes, probability, statistics and stochastic 

processes are of little practical relevance. Well, there is an internal beauty in the theory 

exposed by Demetris. There are ample illuminating examples, in particular related to 

hydroclimatic processes and extremes. Considerable time is needed to study this volume 

in detail, especially coming back to the bits and pieces that were skipped during the first 

pass. I find the book enriching and I am really confident that it would be enriching to any 

readership. 



   xv 

 I am pretty sure that our common friend, the late Vit Klemeš, would applaud this book, 

greeting Demetris now from his cloud #17. This is how Vit projected his eternal residence 

address, even if cloud numbering, assuming some stability, is more a construct of poetry 

than a climatologically-justified notion. I see spiritual similarities between Vit and 

Demetris. Indeed, Koutsoyiannis is using pins against balloons in Klemeš’s style. 

 There are ample references to the return period in the book, so I wish the readers to 

have many happy returns to the book. I am sure that the return period will be finite. Once 

in, again in. 

 In Greek mythology, it was believed that drinking from the Pierian Spring of 

Macedonia, sacred to the Muses, would bring great knowledge and inspiration. I wish the 

readership to enjoy drinking from the Pierian Spring of Koutsoyiannis. 

Zbigniew W. Kundzewicz 

Corresponding Member of Polish Academy of Sciences 

Member of Academia Europaea 





 

Prolegomena 

In 2005, my colleague and friend at the U.S. Geological Survey, the late Timothy A. Cohn, 

and I began looking at the inherent weakness in standard approaches to testing the 

statistical significance of hydroclimatic trends. The subject was of interest because both 

of us had used trend tests in our investigations of discharge and water quality time series 

and realized that although trend magnitude was easily determined with little ambiguity, 

the corresponding statistical significance was less certain because significance depended 

critically on the null hypothesis. The latter, of course, reflects subjective assumptions 

about the underlying stochastic process. Our curiosity was fostered by an awareness that 

the standard approaches to significance testing of hydroclimatic time series were all 

based on the assumption of independence.  

 We knew based on the work of Harold Edwin Hurst, and subsequently discussed by Mandelbrot and Wallis, Klemeš, Hosking, among others, that hydroclimatic records are 
realizations of physical processes whose behaviour exhibits long-term persistence (LTP). 

Such behaviour was sometimes modelled as fractional Gaussian noise (fGn) or fractionally 

differenced ARIMA processes. Importantly, LTP is a stationary process. Our specific 

interest, however, was not in evaluating LTP, but rather in exploring what effects LTP had, 

if present, on the significance of observed trends. What we found was an effect that was 

much more noteworthy than we had imagined. In looking at a nearly 150-year record of 

northern hemisphere temperature, we found that the standard test of significance, which 

assumes no LTP, yielded a highly significant increasing trend with p-value of 1.8 × 10–27. 

We then applied a test which assumed the presence of LTP and found an increasing trend 

with p-value of 7.1 × 10–2, i.e., a trend not significant at the p = 0.05 level. In changing from 

one test to another, 25 orders of magnitude of significance vanished. This result was and 

remains somewhat troubling given the uncertainty about the stochastic process and the 

possibility that the observed temperature warming over the past 150 years could be 

explained by natural dynamics in the form of long-term persistence and complexity in the 

climate system. 

 During our initial literature review on long-term persistence, we noticed a number of 

very recent papers by a Greek hydrologist named Demetris Koutsoyiannis whom neither 

of us knew. After digesting and discussing these papers, it became clear that Demetris had 

an unusually profound understanding of stochastics, and particularly its relevance to the 

field of hydroclimatology. Accordingly, we quickly contacted him to learn more about his 

work. We also sent him a draft of our paper and solicited his thoughts and comments. Demetris’ comments were astute, yet humble, and conveyed a clarity in his understanding 
of this subject that went well beyond what we had seen described by others. His 

suggestions substantially improved the manuscript, even going so far as to suggest a more 

meaningful, less contentious, yet still provocative title… Nature’s Style: Naturally Trendy. 

The paper was published in Geophysical Research Letters shortly thereafter with minor 

revisions. 
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 That initial contact opened a dialog that has continued to this day and dramatically 

expanded our perspective on stochastic hydrology. Along the way, we have witnessed an evolution in Demetris’ own thinking on the subject; from the more conventional 
understanding of stochastics, wherein the notions of stationarity and nonstationarity are 

defined; to his innovative articulation of Hurst-Kolmogorov dynamics, which is (1) 

stationary and demonstrates how stationarity can coexist with change at all time scales, 

(2) linear, thus emphasizing the fact that stochastic dynamics need not be nonlinear to 

produce realistic trajectories, (3) simple, parsimonious, and inexpensive, and (4) 

transparent, because it does not hide uncertainty nor pretend to predict the distant future 

deterministically; to his theoretical development of stochastics in defining moments for 

use in assessing hydroclimatic extremes, a major focus of this book. 

 A consummate teacher, Demetris always presents his theses with precision, logic and 

imagination. Readers will find themselves following the concept of stochastics from its 

original usage by classical Greek philosophers to its modern formulation and application 

in hydroclimatology. Its applicability, however, extends to all areas of geophysics. This 

book incorporates the contributions of many of the most influential researchers in 

stochastic hydrology over the past half-century, with a significant number of those 

contributions coming from the author himself, as well as his students and collaborators. 

It is the pinnacle of nearly two decades of scholarship from someone who has become 

recognized as the leading and most influential voice for stochastics among modern 

hydrologists, joining a very select circle of late 20th century scholars who influenced his 

early work.  

 Stochastics of Hydroclimatic Extremes: A Cool Look at Risk is the single most 

authoritative discourse on the theory and application of stochastics from a geophysical 

perspective available to any interested scholar. It is an essential resource in any serious stochastic hydrologist’s library, and an incomparable reference for every advanced 
student in hydrology. It will undoubtedly become the standard reference on stochastic 

hydrology for decades to come. 

Harry F. Lins 

Past-President, Commission for Hydrology, World Meteorological Organization 

U.S. Geological Survey, Retired  
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τἀν βροτοῖς δὲ πήματα 

ἀκούσαθ᾽, ὥς σφας νηπίους ὄντας τὸ πρὶν 

ἔννους ἔθηκα καὶ φρενῶν ἐπηβόλους. 
λέξω δέ, μέμψιν οὔτιν᾽ ἀνθρώποις ἔχων, 
ἀλλ᾽ ὧν δέδωκ᾽ εὔνοιαν ἐξηγούμενος· 
οἳ πρῶτα μὲν βλέποντες ἔβλεπον μάτην, 
κλύοντες οὐκ ἤκουον, ἀλλ᾽ ὀνειράτων 

ἀλίγκιοι μορφαῖσι τὸν μακρὸν βίον 

ἔφυρον εἰκῇ πάντα, κοὔτε πλινθυφεῖς 

δόμους προσείλους ᾖσαν, οὐ ξυλουργίαν· 
κατώρυχες δ᾽ ἔναιον ὥστ᾽ ἀήσυροι 
μύρμηκες ἄντρων ἐν μυχοῖς ἀνηλίοις. 
ἦν δ᾽ οὐδὲν αὐτοῖς οὔτε χείματος τέκμαρ 

οὔτ᾽ ἀνθεμώδους ἦρος οὔτε καρπίμου 

θέρους βέβαιον, ἀλλ᾽ ἄτερ γνώμης τὸ πᾶν 

ἔπρασσον, ἔστε δή σφιν ἀντολὰς ἐγὼ 

ἄστρων ἔδειξα τάς τε δυσκρίτους δύσεις. 
καὶ μὴν ἀριθμόν, ἔξοχον σοφισμάτων, 
ἐξηῦρον αὐτοῖς, γραμμάτων τε 

συνθέσεις, 
μνήμην ἁπάντων, μουσομήτορ᾽ ἐργάνην. 
κἄζευξα πρῶτος ἐν ζυγοῖσι κνώδαλα 

ζεύγλαισι δουλεύοντα σώμασίν θ᾽ ὅπως 

θνητοῖς μεγίστων διάδοχοι μοχθημάτων 

γένοινθ᾽, ὑφ᾽ ἅρμα τ᾽ ἤγαγον φιληνίους 

ἵππους, ἄγαλμα τῆς ὑπερπλούτου χλιδῆς. 
θαλασσόπλαγκτα δ᾽ οὔτις ἄλλος ἀντ᾽ ἐμοῦ 

λινόπτερ᾽ ηὗρε ναυτίλων ὀχήματα. 
τοιαῦτα μηχανήματ᾽ ἐξευρὼν τάλας 

βροτοῖσιν, αὐτὸς οὐκ ἔχω σόφισμ᾽ ὅτῳ 

τῆς νῦν παρούσης πημονῆς ἀπαλλαγῶ. 

But listen to the tale 

Of human sufferings, and how at first 

Senseless as beasts I gave men sense, possessed them 

Of mind. I speak not in contempt of man; 

I do but tell of good gifts I conferred. 

In the beginning, seeing they saw amiss, 

And hearing heard not, but, like phantoms huddled 

In dreams, the perplexed story of their days 

Confounded; knowing neither timber-work 

Nor brick-built dwellings basking in the light, 

But dug for themselves holes, wherein like ants, 

That hardly may contend against a breath, 

They dwelt in burrows of their unsunned caves. 

Neither of winter’s cold had they fix’d sign, 

Nor of the spring when she comes decked with 

flowers, 

Nor yet of summer’s heat with melting fruits 

Sure token: but utterly without knowledge 

Moiled, until I the rising of the stars 

Showed them, and when they set, though much 

obscure. 

Moreover, number, the most excellent 

Of all inventions, I for them devised, 

And gave them writing that retaineth all, 

The serviceable mother of the Muse. 

I was the first that yoked unmanaged beasts, 

To serve as slaves with collar and with pack, 

And take upon themselves, to man's relief, 

The heaviest labour of his hands: and I 

Tamed to the rein and drove in wheeled cars 

The horse, of sumptuous pride the ornament. 

And those sea-wanderers with the wings of cloth, 

The shipman’s waggons, none but me devised. 

These manifold inventions for mankind 

I perfected, who, out upon’t, have none,— 

No, not one shift—to rid me of this shame. Αἰσχύλος, Προμηθεὺς Δεσμώτης (442-471)* Aeschylus, Prometheus Bound (442-471), 

Translated by G. M. Cookson† 

 
* http://www.greek-language.gr/digitalResources/ancient_greek/library/browse.html?page=12&text_id=132  † https://en.wikisource.org/wiki/Four_Plays_of_Aeschylus_(Cookson)/Prometheus_Bound 

http://www.greek-language.gr/digitalResources/ancient_greek/library/browse.html?page=12&text_id=132
https://en.wikisource.org/wiki/Four_Plays_of_Aeschylus_(Cookson)/Prometheus_Bound




 

Preface 

A year ago, a flash flood claimed the lives of 24 people in Mandra, a small town near 

Athens*. The losses are a result of lack of infrastructure for flood protection, while the 

natural stream network had been abused by urban development. If the storm had been 

predicted and if there were alert systems and evacuation plans in place, the consequences 

would not be that tragic. However, predictions for storms of small duration and extent, 

occurring at dry places, are difficult. This year some meteorologists in Greece (not the 

official meteorological service), perhaps envying the glory of American meteorologists 

who deal with storms of different type such as hurricanes—and at the same time facing 

the fact that in Greece there are no hurricanes—decided to give names to every 

meteorological depression entering Greece. The journalists received this initiative 

enthusiastically advertising the names in all media, while authorities started to react by 

closing schools in days of predicted (named) bad weather. At the very day I am writing 

these lines, the weather in Athens is wintry (as it should normally be in February). In 

preceding days, meteorological predictions spoke of an unprecedented, “historical snow 

event” (ιστορικός χιονιάς)†. But, to the forecasters’ disappointment, this so-called 

historical snowfall was, once again, not to come about. 

 If meteorological predictions are difficult, especially those for a week after, what 

about climate predictions which are for really long time horizons? A few years ago, it was 

predicted that “snowfalls are now just a thing of the past”‡ Soon this prediction changed to 

the opposite one, “Extreme snowfall is actually an expected consequence of a warmer 

world”.§ However, despite their variety, reaching self-contradiction, all these predictions 

have some things in common. For most people, they are scary. And in contrast to Cassandra’s sorrowing prophesies, which were true but not believed by people, current 
prophesies of catastrophes usually are widely believed but very often do not come true. 

 Apocalyptic prophesies have been common in history and were mostly connected—
and owed their power—to religion. Modern prophesies are instead connected to the 

ideology of environmentalism and owe their power to scientists. However, they share 

several characteristics with prophesies of old; most prominently, the scare-mongering 

and world-saviour attitudes. Since 1970, several environmental scientists predicted lots 

of catastrophes, with which apparently God laughed and, as they did not come to pass, we 

too may laugh now**. I believe that bombarding people with negative predictions is 

detrimental to society—and is objectively contrary to these world-saving pretences. It 

makes the society more vulnerable. This has been vividly expressed more than 2600 years 

 

* https://en.wikipedia.org/wiki/Mandra  † https://tvxs.gr/news/ellada/erxetai-istorikos-xionias  ‡ https://web.archive.org/web/20150905124331/http://www.independent.co.uk/environment/snowfalls-
are-now-just-a-thing-of-the-past-724017.html 

§ http://www.bbc.com/earth/story/20160127-will-snow-become-a-thing-of-the-past-as-the-climate-warms  
** Koutsoyiannis, D., 2017. Saving the world from climate threats vs. dispelling climate myths and fears, 
Invited Seminar, Lunz am See, Austria, WasserCluster Lunz – Biologische Station GmbH, doi: 
10.13140/RG.2.2.34278.42565. 

https://en.wikipedia.org/wiki/Mandra
https://tvxs.gr/news/ellada/erxetai-istorikos-xionias
https://web.archive.org/web/20150905124331/http:/www.independent.co.uk/environment/snowfalls-are-now-just-a-thing-of-the-past-724017.html
https://web.archive.org/web/20150905124331/http:/www.independent.co.uk/environment/snowfalls-are-now-just-a-thing-of-the-past-724017.html
http://www.bbc.com/earth/story/20160127-will-snow-become-a-thing-of-the-past-as-the-climate-warms
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 ago in the Aesop’s fable originally entitled “shepherd playing” («Ποιμήν παίζων»), better 

known in English as “the boy who cried wolf.”* More than 2300 years ago, Epicurus 

pronounced science as the enemy of fear and of superstition. And a couple of centuries 

before Epicurus, other philosophers such as Plato and Aristotle clarified the meaning and 

the ethical value of science as the pursuit of the truth—pursuit that is not driven by 

political agendas and economic interests. For the latter, they used the term sophistry.  

 I believe what is needed is a cool look at risk. For risk exists—as it existed all the time 

in the past and will certainly exist in the future. Because of the rapid growth of population 

in the 20th century, increasing by an order of magnitude since 1800 and two orders of 

magnitude since the era of Plato and Aristotle, and becoming now a significant percentage 

(>7%) of the people that have ever lived on Earth, one would think that the risk, measured 

in terms of damages and human losses due to natural hazards, has increased. This 

however is not the case. Thanks to substantial progress in engineering and technology the 

risk has decreased.†  

 Engineers’ profession is tightly connected to risk. The infrastructure they build 
generally decreases risk from natural hazards but does not eliminate it. At the same time, 

infrastructure is subject to risk per se. The comedian and writer John Oliver gave it an 

interesting definition: “Infrastructure: it’s our roads, bridges, dams, levees, airports, power 
grids—basically anything that can be destroyed in an action movie.”‡ Accordingly, the 

engineers’ profession is socially sensitive and responsible at an enormous degree. Unlike Aesop’s shepherd, an engineer cannot play with risk; the consequences, in case of a failure 
of infrastructure or its management, are not as ecologically friendly as wolves eating 

sheep.  

 Being an engineer, I have dealt with risk for decades. It is my intent to convey my 

experience to the readers of this book. Although I have published a lot of articles and gave 

even more conference talks related to this subject, what is contained in the book is mostly 

new.  

 One important issue that I have consistently tried to communicate is my belief that 

the current standard methodologies underestimate substantially the probability of 

extreme events. I hope I have substantiated my claims in this book. The reasons of 

underestimation are basically two. The first is an inappropriate assumption of classical 

statistical methodologies: that the different events are independent of each other. They 

are not. This will repeatedly be illustrated in the book using long records of 

hydrometeorological processes, as well as invoking theoretical arguments. The second is 

the assumption that the upper tail of the distribution of those processes exhibits a rapid 

decay as we go to larger and larger values: an exponential descent, like in the exponential 

or even the normal distribution. The inappropriateness of both these assumptions has not 

been widely known because the relevant behaviours are hidden if the time series of 

 
* https://en.wikisource.org/wiki/The_Shepherd%27s_Boy_and_the_Wolf; original Greek text: https://el.wikisource.org/wiki/Αισώπου_Μύθοι/Ποιμήν_παίζων. † Related data are given in the last chapter of the book. ‡ Infrastructure: Last Week Tonight, https://www.youtube.com/watch?v=Wpzvaqypav8.  

https://en.wikisource.org/wiki/The_Shepherd%27s_Boy_and_the_Wolf
https://el.wikisource.org/wiki/Αισώπου_Μύθοι/Ποιμήν_παίζων
https://www.youtube.com/watch?v=Wpzvaqypav8
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observations are not long enough. And both assumptions are connected to each other and 

act synergistically to underestimate the probability of occurrence of extremes and hence 

the risk.  

 In particular, the independence assumption is virtually equivalent to a static climate. 

Accordingly, if we remove this assumption, we get a varying climate, which is consistent 

with the real-world climate. These statements may sound counterintuitive or even wrong, 

because typically dependence is interpreted as memory rather than change. Nonetheless, 

the close relationship of dependence, particularly the long-range one, with change is 

illustrated in the book both empirically and theoretically. Given, on the one hand, the 

adherence to independence in typical studies of extremes and, on the other hand, the fact 

that independence entails a static climate, it is not surprising that most recent studies try 

to remedy the consequences of the inappropriate assumptions by invoking climate 

change—or anthropogenic global warming, the global scapegoat of our era. Methods to 

embed climate change into studies dealing with occurrence probability vary, but all have 

several weaknesses—examples are provided in the book. I believe that just removing the 

independence assumption—and thus representing a changing climate without additional 

assumptions—resolves most of the underestimation problems.  

 The language used in this book is the language of stochastics. This may be 

inapprehensible at first glance, but it is an effective language. The book tries to adhere to 

the rigorous use of stochastics, on the one hand, and to make its presentation both easy 

and self-contained, on the other hand. In this respect, the biggest part of the book is 

devoted to the theory of stochastics which is necessary for inferences about extremes. 

Stochastics is a scientific area broader than statistics—actually, according to the 

definition I adopt, statistics is part of stochastics. Another part is the theory of stochastic 

processes, in which time has a hypostasis that is typically absent in statistics. The direct 

analogy is dynamics vs. statics. This does not mean that statistics is underrepresented in 

the book. On the contrary, several new developments are presented—most notably the 

new tool of knowable moments, which have two relevant characteristics: they are closely 

connected to extremes and their estimation is unbiased in the framework of classical 

statistics or involves small bias in stochastic processes with dependence in time, whilst 

the bias in the estimation of classical statistical moments can be huge. As will be seen in 

the book, knowable moments help to develop an extreme-oriented fitting methodology of 

probability distributions.  

 In parallel to being theoretical, the book is oriented to application. The new 

theoretical developments are supported by derivations and proofs, which to improve 

readability are contained in a number of Appendices in each chapter. The application is 

supported by several examples and illustrations, usually standing out as parenthetical 

sections or Digressions, as well as by tabulations of mathematical formulae that are used 

for each task. 

Athens, 24 February 2019 

Demetris Koutsoyiannis  
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Notational conventions 

The book follows the Guidelines for the use of units, symbols and equations in hydrology*. In turn, these 

guidelines are based on (i) the Système International (SI) brochure†; (ii) the ISO 80000-2 Standard, 
Mathematical Signs and Symbols to Be Used in the Natural Sciences and Technology; and (iii) Unicode 
Technical Report #25, Unicode Support for Mathematics.‡ We list some of the conventions here for the reader’s convenience. 
Physical dimensions and units 

(a) All quantities are dimensionally consistent. In particular, arguments of functions such as exp( ) and 
ln( ) are dimensionless.  

(b) We use s, min, h, and d for second, minute, hour and day respectively. We do not abbreviate week, 

month or year, which are non-SI units.§  
(c) Multiplication of units is indicated by a space, e.g. N m, and division either by negative exponents (e.g. 

m s–2) or by use of the solidus (oblique line, e.g. m/s2); however repeated use of the solidus (e.g. m/s/s) 
is not permitted.  

(d) Prefixes of units such as M (mega = 106) and μ (micro = 10–6) have no space between (e.g. μs, MW). 
According to the SI, the prefix for kilo is lower case k (e.g. km—K is the symbol of the kelvin). 

(e) For areas and volumes, we use m2 and m3; the hectare (ha) and the litre (L) are also allowed in SI. A 
million m2 is denoted as square kilometre (1 km2 = 106 m2). A million m3 is denoted as cubic hectometre 
(1 hm3 = 106 m3—not 1 Mm3 because 1 Mm3 = 1018 m3; note that in SI any power to a unit applies also 
to the prefix); a billion m3 is denoted a cubic kilometre (1 km3 = 109 m3).  

(f) All units are typeset in upright (Roman) fonts, not italic or bold.  
(g) Numerals are also typeset in upright fonts. The symbol for the decimal marker is the dot. To facilitate 

reading, numbers are divided in groups of three using a thin space (e.g. 12  345.6). (Note that neither 
dots nor commas are permitted as group separators). A space is used to separate the unit from the 
number (e.g. 10 m). 

Symbols and equations 

(a) We prefer single-letter variables (if necessary, with subscripts, e.g. ERMS) over multi-letter ones. Single-
letter variables or parameters and user-defined function symbols are italic (e.g. x, Y, β, f(x)). Multi-letter 
variables, if cannot be avoided, are typeset in upright, not italic (e.g. RMSE).  

(b) Common, explicitly defined, functions are not italic, whether their symbols are single-letter (e.g. Γ(x) 
for the gamma function, Β(y, z) for the beta function) or multi-letter (e.g. ln x, exp(x + y)). 

(c) Textual subscripts or superscripts are not italic (e.g. 𝑥max, 𝑇min where ‘max’ and ‘min’ stand for 
maximum and minimum, respectively). 

(d) Mathematical constants are upright (e.g. e = 2.718…, π = 3.141…, i2 = −1). Also, mathematical operators 
are upright (e.g. dx in integrals and derivatives, Δ𝛾 for the difference operator on γ). 

(e) Vectors, matrices and vector functions are bold and, for single-letter variables, italic. In particular, 
vectors are usually denoted with lower case letters (e.g. x, ω as vectors; f(x) as a vector function of a 
vector variable) and matrices with upper case letters (e.g. A as matrix; AB as the product of matrices A 
and B, AT as the transpose of A, det 𝑨 as the determinant of a square matrix A). 

(f) We use nested parentheses for grouping (e.g. ln(a (b + c)) rather than ln[a (b + c)] 
(g) To distinguish between stochastic variables from common variables we use the Dutch convention**, 

i.e., we underline the stochastic variables. Further, we use the curly brackets for sets (e.g. P{x ≤ x} for a 
scalar x or P{x ≤ x} for a vector x; note that the argument of probability (P) is a set, not a number). 

(h) We use square brackets for expectations, variances and other operators on stochastic variables (e.g. E[𝑥], var[𝑥], cov[𝑥, 𝑧]; note that E[𝑥] is not a function of x and thus it should not be denoted as E(𝑥).)  
(i) Definitions by mathematical equations are denoted using the symbols ‘≔’ and ‘≕’ (e.g. to define c as 

the sum of a and b we write 𝑐 ≔ 𝑎 + 𝑏 or 𝑎 + 𝑏 ≕ 𝑐). 

 
* Prepared by D. Koutsoyiannis and H.H.G. Savenije, 2013, doi: 10.13140/RG.2.2.10775.21922 † Ninth edition, http://www.bipm.org/en/si/si_brochure/  ‡ http://www.unicode.org/reports/tr25  
§ We avoid ‘a’ for year, because in SI ‘a’ is the prefix atto, meaning 10−18; also it is the symbol of an ‘are’, a 
non-SI unit whose multiple hectare is accepted in SI (1 a = 100 m2; 1 ha = 100 a = 104 m2 = 1 hm2). 
** Hemelrijk, J., 1966. Underlining random variables. Statistica Neerlandica, 20(1), pp.1-7. 

http://www.bipm.org/en/si/si_brochure/
http://www.unicode.org/reports/tr25
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Main use of single-letter symbols 

a coefficients of stochastic generators  α time scale parameter in stochastic processes 
A  Α as Latin A 
b  β background measure 
B as a standard, the beta function B( , ) Β as Latin B 
c autocovariance γ climacogram; as a standard, the Euler’s 

constant, γ = 0.577216… 
C  Γ cumulative climacogram; as a standard, the 

gamma function Γ( ) and the incomplete gamma function Γα( ). 
d as a standard, the differential operation d δ  
D time unit, discretization time step Δ  
e as a standard, e = 2.71828… ε dimensionless location parameter in 

distributions 
E  Ε  
f probability density function ζ dimensionless shape parameter (lower-tail 

index) in distributions; as a standard, the 
Riemann zeta function ζ( ) 

F probability distribution function Ζ as Latin Z 
g  η time lag, dimensionless 
G  Η as Latin H 
h time lag, dimensional θ angle (phase); also ombrian parameter  
H Hurst parameter (also, 𝐻𝑝 ≔ ∑ 1/𝑖𝑝𝑖=1  and 𝐻𝑝(𝑎) ≔ ∑ 1/𝑖𝑝𝑖=1 𝑎

 are the pth harmonic numbers 

of orders 1 and a, respectively). 

Θ bias correction factor 

i  ι  
I identity matrix (in bold); as a standard, the 

indicator function I𝐴 
Ι as Latin I 

j  κ time scale, dimensionless (also cumulants) 
J  Κ as Latin K 
k time scale, dimensional λ state scale parameter in distributions 
K K-moment Λ Λ-coefficient 
l  μ mean, moment 
L Length of observation period Μ as Latin M 
m moment ν similar to n (size of sample or vector) 
M Mandelbrot parameter Ν as Latin N 
n size of sample or vector ξ dimensionless shape parameter in distributions 

(upper-tail index) 
N size of sample or vector Ξ  
o  ο  
O  Ο as Latin O 
p moment order π as a standard, π = 3.14159… 
P probability Π  
q moment order ρ standardized cross-climacogram 
Q  Ρ as Latin P 
r correlation coefficient σ standard deviation 
R  Σ sum 
s power spectrum τ time, dimensionless 
S  Τ as Latin T 
t time, dimensional υ structure function 
T return period (as a superscript, ‘T’: transpose)  Υ as Latin Y 
u  φ entropy production 
U  Φ Entropy 
v white noise process χ  
V  Χ as Latin X 
w frequency ψ climacospectrum; as a standard, the digamma 

function ψ(𝑥) or the polygamma function ψ(𝑛)(𝑥) 
W as a standard, the Lambert W function W𝑘(𝑥) Ψ  𝑥, 𝑦, 𝑧 stochastic variables and processes or time series ω frequency, dimensionless 𝑋, 𝑌, 𝑍 cumulative stochastic processes or time series Ω  



 



 



 

Chapter 1. An introduction by examples 

1.1 General setting 

We will start our journey to the hydroclimatic extremes with some illustrative examples. 

The purpose is to recognize the physical behaviours before we start discussing the 

mathematical and technical weaponry to tackle the problems about the risk related to the 

occurrence of extremes. In particular, by studying these examples we may understand 

how hard (perhaps infeasible) it is (and most probably will ever be) to deal with extremes 

using deterministic methods, while at the same time the theory of stochastics provides 

suitable means to quantify the extremes and the related risks. Generally speaking, 

deterministic approaches are popular as they are simple to understand and our education 

system is based on them, but methods offered by stochastics are much more powerful. 

 An interesting example of a spectacular failure of a deterministic approach in 

quantifying extremes is the so-called probable maximum precipitation (PMP), regarded 

to be an upper bound of precipitation that is physically feasible. Such an upper bound is 

philosophically and scientifically inconsistent. Moreover, the methods devised to 

determine it, even though they are thought to be physically-based deterministic methods, 

are statistical methods using bad statistics. Therefore, we will not consider approaches of 

this type, while the reader interested to see the reasoning about the inconsistency of these 

methods is referenced to Koutsoyiannis (1999, 2007) and Koutsoyiannis and Papalexiou 

(2017). More recently, the National Academies of Sciences (2024), by providing a new  

probabilistic definition of PMP, effectively abolished the concept, retaining only the term. 

 But what is stochastics, the term appearing also in the title of the book? In the modern 

scientific vocabulary, it is used to collectively refer to (a) probability theory, (b) statistics 

and (c) stochastic processes. More loosely speaking, stochastics is the mathematics of 

stochastic variables and stochastic processes, which will formally be introduced in 

Chapter 2 and Chapter 3. However, the notion of stochastics, long before being implanted 

to the scientific vocabulary by Jacob Bernoulli, had originally appeared in ancient Greek 

philosophical texts. These appearances both enrich and elucidate the notion of stochastics 

and it is thus useful to trace back its different meanings through the history of philosophy 

and science. Relevant information is contained in Digression 1.A, which helps us to 

perceive the meaning of a stochastic approach, a rich meaning with several facets, 

including those of being: 

• probability theoretic; 

• adept at quantifying the imprecise, the uncertain, or else the random; 

• insightful—not superficial; 

• capable of prediction in a probabilistic sense, using information from the past; 

• suitable for the calculation of the mean, or expectation, of uncertain quantities. 

 Naturally, once we have adopted a stochastic approach, we will deal with 

probabilities and expectations of extreme quantities, and our inferences will be based on 

past observations of the processes of interest. Thus, the examples below make use of the 

available information to make inferences of probabilistic type. But before we make 
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inferences of quantitative type, we need to (a) identify the most important characteristics 

of the process behaviour and (b) assume a model consistent with this behaviour. The 

examples discuss three types of models, namely (1) the classical probabilistic model 

according to which the different events are independent of each other, (2) a linear trend 

model and (3) a model assuming a certain type of dependence in time. By comparing these 

three models with the help of the examples, we will form a general guide with directions 

that we should follow in studying extremes, which are also the directions underlying the 

next chapters of this book. 

Digression 1.A: The meaning of stochastics  

Literally, stochastics is a term of Greek origin, stemming from the adjective ‘stochasticos’ 
(στοχαστικός), or better its feminine gender, ‘stochastice’ (στοχαστική). It is generated from the verb ‘stochazesthai’ (στοχάζεσθαι), which in turn comes from the noun ‘stochos’ (στόχος), 
meaning the target. 
 Aristotle, in his treatise Nicomachean Ethics (written ~350 BC) uses the term stochastice in 
its original meaning, related to the target, which, according to him, is the mean: “virtue, therefore, 

is a balance [‘mesotes’], in the sense that it is able to hit [as a target – ‘stochos’] the mean”1. 
Furthermore, in his treatise Rhetoric he uses the term with a metaphorical meaning, which could 
be translated into English as guessing or guesswork: “men have a sufficient natural instinct for what 

is true, and usually do arrive at the truth. Hence the man who makes a good guess at truth is likely 

to make a good guess at probabilities [stochastically].”2  
 However, it was Plato who used the term with a meaning closer to the modern one, i.e., 
related to uncertainty. In his dialogue Philebus (written ~360 BC) he contrasts “arithmetic and the 

sciences of measurement” to stochastics and parallels the latter with music, which “attains harmony 

by guesswork […] so that the amount of uncertainty mixed up in it is great, and the amount of 

certainty small.” 3  
 The contrast between stochasticity and precision is made clear later by Galenus using the example of a city’s clock: “When a city is being built, let the following problem be set before those 

who will inhabit it: they want to expertly know, not stochastically but precisely, on an everyday basis, 

how much time has passed, and how much is left before sunset.”4 
 The connection of stochastics with prediction or forecast becomes evident in an excerpt from 
Basilius Caesariensis who contrasts a prophet to a ‘stochastes’ (στοχαστής, a noun usually 
translated into English as diviner): “On the one hand, a prophet is he who foretells the future by 

revelation of the Spirit; on the other hand, a stochastes is he who infers the future by prudence, 

comparing similar states, and by the experience of forefathers.”5 It seems that this comment has 
influenced later scholars (e.g. Procopius) and perhaps determined the meaning of stochastic in 
modern Greek, which is imaginative, insightful, thoughtful, cogitative, contemplative, meditative.  
 The transplantation of stochastics, as an international scientific term, to the modern 
vocabulary is due to Jacob Bernoulli, evidently aware of the Greek language and literature, and in 
particular of the passage from Plato’s Philebus mentioned above. In his famous book Ars 

Conjectandi (written in Latin in 1684-89 but published after his death; Bernoulli, 1713) he writes: “To conjecture about something is to measure its probability. Therefore we define the art of 

conjecture, or stochastics, as the art of measuring the probabilities of things as exactly as possible, 

to the end that, in our judgments and actions, we may always choose or follow that which has been 

found to be better, more satisfactory, safer, or more carefully considered. On this alone turns all the 

wisdom of the philosopher and all the practical judgment of the statesman.”6 
 The term was revived by Bortkiewicz (1917; Russian economist and statistician of Polish 
ancestry) and also by Slutsky (1925, 1928a,b, 1929; Ukrainian/Russian/Soviet mathematical 
statistician and economist). It appears that the prevalence in USSR of the more sophisticated term 
stochastic (over the term random) must have been related to political and ideological reasons 
(incongruence of randomness with the dialectic materialism: models beyond strict deterministic 
were considered with a priori suspicion; see Mazliak 2018). 
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 But it was Kolmogorov (1931) who made the term popular and widespread, as he introduced 
the term stochastic process, also clarifying that process means change of a certain system. 
Additionally, he used the term stationary to describe a probability density function that is 
unchanged in time (while at the same time the system state changes). Soon after, Kolmogorov 
(1933) introduced the modern and consistent definition of probability in an axiomatic manner, 
based on the measure theory (see section 2.1). 
__________ 
1 «μεσότης τις ἄρα ἐστὶν ἡ ἀρετή, στοχαστική γε οὖσα τοῦ μέσου» (Aristot. Nic. Eth. 1106b, translation into 
English adapted from that by H. Rackham. Cambridge, MA, Harvard University Press; London, William Heinemann Ltd. 1934). The notion of ‘mesotes’ (μεσότης), loosely translated as balance, middle, mean between a respective ‘too much’ and ‘too little’, is a key concept in Aristotle’s ethical philosophy and thus 
to hit it as a target is important for him. 
2 «οἱ ἄνθρωποι πρὸς τὸ ἀληθὲς πεφύκασιν ἱκανῶς καὶ τὰ πλείω τυγχάνουσι τῆς ἀληθείας: διὸ πρὸς τὰ ἔνδοξα 
στοχαστικῶς ἔχειν τοῦ ὁμοίως ἔχοντος καὶ πρὸς τὴν ἀλήθειάν ἐστιν» (Aristot. Rh. 1.1, translation into 
English by W. Rhys Roberts, http://classics.mit.edu/Aristotle/rhetoric.1.i.html).  
3 The complete passage is: ΣΩΚΡΑΤΗΣ: «οἷον πασῶν που τεχνῶν ἄν τις ἀριθμητικὴν χωρίζῃ καὶ μετρητικὴν 
καὶ στατικήν, ὡς ἔπος εἰπεῖν φαῦλον τὸ καταλειπόμενον ἑκάστης ἂν γίγνοιτο. […] τὸ γοῦν μετὰ ταῦτ᾽ εἰκάζειν 
λείποιτ᾽ ἂν καὶ τὰς αἰσθήσεις καταμελετᾶν ἐμπειρίᾳ καί τινι τριβῇ, ταῖς τῆς στοχαστικῆς προσχρωμένους 
δυνάμεσιν ἃς πολλοὶ τέχνας ἐπονομάζουσι, μελέτῃ καὶ πόνῳ τὴν ῥώμην ἀπειργασμένας. […] οὐκοῦν μεστὴ 
μέν που μουσικὴ πρῶτον, τὸ σύμφωνον ἁρμόττουσα οὐ μέτρῳ ἀλλὰ μελέτης στοχασμῷ, καὶ σύμπασα αὐτῆς 
αὐλητική, τὸ μέτρον ἑκάστης χορδῆς τῷ στοχάζεσθαι φερομένης θηρεύουσα, ὥστε πολὺ μεμειγμένον ἔχειν 
τὸ μὴ σαφές, σμικρὸν δὲ τὸ βέβαιον.» (SOCRATES: “For example, if arithmetic and the sciences of measurement and weighing were taken away from 
all arts, what was left of any of them would be, so to speak, pretty worthless. […] All that would be left for us 
would be to conjecture and to drill the perceptions by practice and experience, with the additional use of the 
powers of guessing, which are commonly called arts and acquire their efficacy by practice and toil. […] Take 
music first; it is full of this; it attains harmony by guesswork based on practice, not by measurement; and flute 
music throughout tries to find the pitch of each note as it is produced by guess, so that the amount of 
uncertainty mixed up in it is great, and the amount of certainty small” (Plat. Phileb. 55e, translation by Harold 
N. Fowler; Cambridge, MA, Harvard University Press; 1925.) 
4 «πόλεως κτιζομένης προκείσθω τοῖς οἰκήσουσιν αὐτὴν ἐπίστασθαι βούλεσθαι, μὴ στοχαστικῶς ἀλλ’ 
ἀκριβῶς, ἐφ’ ἑκάστης ἡμέρας, ὁπόσον τε παρελήλυθεν ἤδη τοῦ χρόνου τοῦ κατ’ αὐτήν, ὁπόσον θ’ ὑπόλοιπόν 
ἐστιν ἄχρι δύσεως ἡλίου.» (Γαληνοῦ Περὶ Διαγνώσεως καὶ Θεραπείας τῶν ἐν τῇ ἑκάστου Ψυχῇ Ἁμαρτημάτων — De Dignotione et Curatione cujusque Animi Peccatorum, 80, 
http://www.poesialatina.it/_ns/greek/testi/Galenus/De_animi_cuiuslibet_peccatorum_dignotione_et_cur
atione.html).  
5 «Οὐκοῦν Προφήτης μέν ἐστιν, ὁ κατὰ ἀποκάλυψιν τοῦ Πνεύματος προαγορεύων τὸ μέλλον· στοχαστὴς δὲ, 
ὁ διὰ σύνεσιν ἐκ τῆς τοῦ ὁμοίου παραθέσεως, διὰ τὴν πεῖραν τῶν προλαβόντων, τὸ μέλλον 
συντεκμαιρόμενος.» (Basilius, Ερμηνεία εις τον προφήτην Ησαΐαν —Enarratio in prophetam Isaiam, 
3.102.26). 
6 “Conjicere rem aliquam est metiri illius probabilitatem: ideoque Ars Conjectandi sive Stochastice nobis 
definitur ars metiendi quàm fieri potest exactissimè probabilitates rerum, eo fine, ut in judiciis & actionibus 
nostris semper eligere vel sequi possimus id, quod melius, satius, tutius aut consultius fuerit deprehensum; in 
quo solo omnis Philosophi sapientia & Politici prudential versatur” (Bernoulli, 1713). 
1.2 Introductory notes on the examples 

The examples that follow make use for some of the longest available records of 

hydroclimatic observations. Only long records reveal the secrets of hydroclimate and its 

behaviours, which seem peculiar as they are very different from our perception of “random events”. As we will see with the help of the examples: 

1. While classical probability and statistics adhere to the assumption that different 

events are independent, this assumption is totally inappropriate when dealing 

with hydroclimatic processes—and most other natural and artificial real-world 

processes. An illustration of the difference is provided in Digression 1.B. 

http://classics.mit.edu/Aristotle/rhetoric.1.i.html
http://www.poesialatina.it/_ns/greek/testi/Galenus/De_animi_cuiuslibet_peccatorum_dignotione_et_curatione.html
http://www.poesialatina.it/_ns/greek/testi/Galenus/De_animi_cuiuslibet_peccatorum_dignotione_et_curatione.html
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2. Popular “modern” approaches, such as those discovering “nonstationarity” are 

even more inappropriate. Models of this type identify mostly linear trends 

everywhere, trying to reconcile, in an inappropriate and inefficient manner, the 

disagreement between natural behaviours and those resulting from the 

independence assumption. 

3. Less popular approaches assuming dependence of events in time, in particular the 

type of dependence known as long-range dependence or persistence, can provide 

consistent quantification of extremes and the uncertainty thereof, which turns out 

to be much higher than captured by the other two alternatives.  

 One may think that an approach leading to high uncertainty is unsuccessful and, in 

this respect, approaches of type 2 are advantageous. Indeed, such approaches have been 

promoted as physically based and consistent with the popular anthropogenic global 

warming literature and with the industry of climate models and their predictions (or 

projections). If climate model information was really incorporated in the stochastic model 

and if this information was consistent with reality, then, indeed, the resulting 

nonstationary model, in which the trend was derived by a deterministic model, would be 

a progress. However, climate model outputs in their original form (without cosmetic 

reformations known as “bias correction” or “downscaling”) are irrelevant to reality 
(Koutsoyiannis et al., 2008a; Anagnostopoulos et al., 2010), particularly if we focus on 

extremes (Tsaknias et al., 2016). Attempts to incorporate climate model information 

within a stochastic framework in a consistent manner (Tyralis and Koutsoyiannis, 2017; 

Koutsoyiannis and Montanari, 2022b) lead to increased uncertainty or, in the best case, 

in indifferent results. For these reasons, we will not consider approaches based on climate 

model outputs in this book.  

 A necessary note about the examples which follow is that they do not refer to the 

details of the marginal distribution of extremes. Certainly, this is quite an important issue 

that will be studied in subsequent chapters—and of course there is a large body of 

publications that study it. However, it is equally important to study the variation of the 

occurrence of extremes in time, which actually is the focus of the examples. This problem, 

which severely influences modelling of hydroclimatic risk and decisions related to it, has 

not been given the deserved attention in the literature, or has been dealt with using naïve 

methods.  

Digression 1.B Practical difference of dependence and independence 

We assume that, using observational data of river discharge, we have concluded that the 
probability of the event that the mean daily discharge at a certain location of a river exceeds 500 
m3/s is small, equal to 10–3. Practically, this means that this event happens on the average once 
every 1000 days or once every 2.74 years. What is the probability that this event occurs for five 
consecutive days? 
 Even though we have not yet defined what independence formally is (this will be done in 
section 2.5 and 3.5 and Digression 3.B), we intuitively know that the probability of independent 
events occurring all together equals the product of the probabilities of the separate events. Thus, 
under independence, the probability sought is simply (10−3)5 = 10−15. This is an extremely low 
probability: it means that we have to wait on the average 1015 days or 2.74 trillion years, or about 
200 times the age of the universe, to see this event happen. However, such events (successive 
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occurrences of extreme events for multiday periods) have been observed in several historical 
samples. This indicates that the independence assumption is not a justified assumption and yields 
erroneous results. Thus, we should avoid such an assumption if our target is to estimate 
probabilities for periods longer than the reference period. Methodologies admitting dependence, 
i.e., based on the theory of stochastic processes, are more appropriate for such problems and will 
result in probabilities much greater than 10–15; these will be described in next chapters.  
 Now let us assume that for four successive days our extreme event has already occurred, i.e., 
that the mean daily river discharge was higher than 500 m3/s in all four days. What is the 
probability that this event will also occur in the fifth day? 
 Many people, based on an unrefined intuition, may answer that the occurrence of the event 
already for four days will decrease the probability of another consecutive occurrence, and would 
be inclined to give an answer in between 10–3 and 10–15. This is totally incorrect. If we assumed 
independence, then the correct answer would be exactly 10–3; the past does not influence the 
future. If we assume positive dependence, which is a more correct assumption for natural 
processes, then the probability sought becomes higher, not lower, than 10–3; it becomes more 
likely that a flood day will be followed by another flood day.  
 As we will see in next chapters, similar things happen if we move from the daily scale of the 
above example to the annual scale, or even larger. For example, if several warm winters have 
occurred in a series, then the probability that the next winter would also be warm is increased—
not decreased. Ignorance of this simple truth may have severe consequences for those who aspire 
to predict the future and those who believe their predictions. A didactic historical example is the failed prediction of Hitler’s meteorologist Franz Baur about the 1941-42 winter in Russia, which 
marked the Battle of Moscow. Quoting a fascinating paper by Neumann and Flohn (1987)1: 

 Baur was requested by the headquarters of the German Air Force to distribute his long-range 

forecasts to about 25 military offices. A forecast for winter 1941-42 was issued by him, probably 

at the end of October 1941, based on regional climatology and (supposed) sun-spot-climate 

relationships. The prediction called for a normal or a mild winter. Baur’s main justification for 

this rested with the assertion that never in climatic history did more than two severe winters 

occur in a row. Since both of the preceding two winters, 1939-40 and 1940-41, were severe in 

Europe, he did not expect that the forthcoming winter would also be severe.  

However, that winter, in which the first major Soviet counteroffensive of the war was launched, 
turned out to be one of the coldest in record: 

 The cold outbreak of early December, coming after a cool to cold October and November […] 

gravely hit the German armies that were not appropriately clothed (Hitler expected to break 

the resistance of the USSR before the coming of winter) and which were not equipped with 

armaments, tanks, and motorized vehicles that could properly function even in a “normal” 

winter in the northern parts of the USSR, let alone in a winter as rigorous as that of 1941-42. 

 On or about 8 December, K. Diesing, chief of the CWG and scientific adviser to the chief of the 

Weather Service of the Air Force (General Spang), asked Flohn to listen in on a second earphone 

to a telephone call to Baur. In the call, Diesing cited to Baur the reports of very low temperatures 

in the East and asked him if he maintains his seasonal forecast in face of the reports. Baur’s 

response was “the observations must be wrong”.  

Those who interact with deterministic modellers of today may recognize in the last phrase in 
quotation marks a pretty modern attitude. 
__________ 
1 A more detailed account about Baur’s infamous prognosis, which is now public, can be found in Wiuff 
(2023). 

1.3 Precipitation and its extremes as seen in a long record 

Extreme behaviour in precipitation causes floods and droughts and therefore its study is 

very useful. Notably, even when flow records exist, rainfall probability has still a major 
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role in engineering design; for instance, in major hydraulic structures, the design floods 

are generally estimated from appropriately synthesized design storms, which are rare 

extreme-rainfall events (e.g. U.S. Department of the Interior, 1987).  

 Therefore, we start our exploration of extremes with precipitation. In our example 

we study one of the longest daily rainfall records worldwide, that of Bologna, Italy 

(44.50°N, 11.35°E, 53.0 m). The time series of observations is available online in the frame 

of the Global Historical Climatology Network – Daily (GHCN-Daily; Menne et al., 2012)*. It 

is uninterrupted for the period 1813-2007, 195 years in total. For the most recent period, 

2008-2018, daily data are provided by the online data repository Dext3r of ARPA Emilia 

Romagna (Rete di monitoraggio RIRER).† With these additional data, the record length 

becomes 206 years. The analyses that follow are based on the GHCN 195-year data set, 

while the most recent 11-year data are used for validation purposes.  

 Figure 1.1 depicts the daily time series as well the (right-aligned) moving averages 

and moving maxima for a time window of 10 years, representing the 10-year climatic 

values (for clarification of the meaning of climatic in our context see Digression 1.C). The 

most spectacular behaviour shown in the figure is the changing climate: The 10-year 

climatic average daily rainfall has been changing between a minimum of 1.2 mm (having 

occurred in the 1820s) and a maximum of 2.5 mm (having occurred at the decade ending 

in 1902)—more than twice the minimum. At the same time the 10-year climatic value of 

the maximum daily rainfall has varied between a minimum of 48.5 mm (having occurred 

in the 1820s) and a maximum of 155.7 mm (having occurred in the 1930s)—more than 

three times the minimum. These changes do not follow a linear pattern but have the form 

of long-term non-periodic fluctuations, up and down. In the most recent years, after 1950, 

there is a roughly increasing trend in both climatic indices, but such increasing trends 

were also observed before 1900, followed by drops thereafter.  

 A popular approach to deal with such changing patterns is to assume linear trends; 

publications adopting this approach abound (see Iliopoulou and Koutsoyiannis, 2020). A 

linear trend is presumably a deterministic model (even though we use the data to fit it), 

as it describes the change of the mean of the process as a deterministic linear function of 

time. Here it is pertinent to recall the good practice of fitting deterministic models to data, 

which is typical for hydrological modelling, albeit commonly overlooked in fitting trend 

models. This practice is the so-called split sample testing, in which the available record is 

split into two segments one of which is used for calibration and the other for validation, 

as emphatically suggested by Klemeš (1986).  

 We have applied the split-sample technique to the annual values of some indices 

extracted from the Bologna rainfall record. These are:  

 
* GHCN Version 3; data retrieved on 2019-02-17 from https://climexp.knmi.nl/gdcnprcp.cgi?WMO= 
ITE00100550.  † Data retrieved on 2019-02-17 from http://www.smr.arpa.emr.it/dext3r/. In particular, the data from the 
station Bologna Idrografico (coordinates 44.499883°N, 11.346156°E, 84.0 m, practically the same as those 
given for the GHCN station (except a 31 m difference in the elevation, perhaps indicating that this particular 
station is located at the roof of a building), were used except for year 2008 for which no data are provided 
for this station. For this year, as well as for very few days with missing values in other years, the daily 
precipitation values of the station Bologna Urbana (44.500754°N, 11.328789°E, 78.0 m) were used instead. 

https://climexp.knmi.nl/gdcnprcp.cgi?WMO=ITE00100550
https://climexp.knmi.nl/gdcnprcp.cgi?WMO=ITE00100550
http://www.smr.arpa.emr.it/dext3r/
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• the annual total precipitation, i.e., the sum of daily precipitation from all (wet) days 

of each year; 

• the annual maximum daily precipitation, i.e., the greatest of all daily rainfall depths 

over the (wet) days of a specific year; 

• the probability dry, i.e., the ratio of the days with zero precipitation to the total number of a year’s days (365 or 366); and  

• the annual average wet-day precipitation, i.e., the ratio of the annual total 

precipitation to the number of wet days.  

The annual maximum daily rainfall is related to the generation of floods. At the other end 

of extremes, as the annual minimum daily rainfall does not vary but it is always zero, an 

index of extreme behaviour is the probability dry, related to the occurrence of droughts.  

 Plots of these annual indices are shown in Figure 1.2 along with fitted trends. Using 

the split-sample technique, we fitted the linear model on the mean of each index on the 

most recent part of the GHCN time series, namely the period 1950-2007. The linear trend 

model is 𝜇(𝑡) = 𝑎 + 𝑏𝑡 (1.1) 

where μ is the mean of each process (index as a function of time), t is time and a and b are 

the parameters fitted by the standard linear regression method. As the simplest possible 

alternative, the constant mean model was used (not shown in the graph), i.e., 𝜇(𝑡) = 𝑎 = constant (1.2) 

 

Figure 1.1 Plot of the time series of daily rainfall in Bologna, along with moving averages and 
moving maxima for a time window of 10 years (right-aligned, i.e., the value plotted at a specific 
year is the average or the maximum of the previous 10 years). The lines in darker colour represent 
the GHCN time series while those in lighter colour represent the newer data which are not 
included in the GHCN time series.  
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Figure 1.2 Plots of annual indices related to the (daily) rainfall process, namely annual total 
precipitation, annual maximum daily precipitation, probability dry and annual average wet day 
precipitation, with trends fitted on the most recent part of the GHCN time series, namely the 
period 1950-2007, for which the graphs are plotted with thicker lines. For the plots of the bottom 
row, namely the probability dry and the annual average wet day precipitation, trends are also 
plotted for the earliest 25-year period, 1813-1837. The newer data that are not included in the 
GHCN time series are plotted with dotted lines. 

 Two validation periods were used, namely the earlier period 1813-1949 of the GHCN 

time series, and the next period with the newer data of 2008-18, not contained in the 

GHCN time series. The comparison of the two models for each of the two validation 

periods is made in Table 1.1 in terms of the root mean square error in each case, defined 

as 

𝐸RMS ≔ √1𝑛∑(𝑥𝜏 − 𝜇𝜏)2𝑛
𝜏=1  (1.3) 
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where 𝑥𝜏 denotes the τth item of the observed time series, 𝜇𝜏 = 𝜇(𝜏𝐷), and D is a time 

step. Clearly, the comparison shows that the simpler, constant-mean model outperforms 

the linear model in all cases and in both validation periods. The inferior performance of 

the linear model is also seen visually in Figure 1.2. Therefore, we have no good reason to 

choose the linear-trend model.  

Table 1.1 Root mean square error for the two validation periods and the two models, linear trend 
and constant mean, fitted to the calibration period (1950-2007). 

 Annual total 

precipitation 

(mm) 

Annual maxi-

mum daily pre-

cipitation (mm) 

Probability 

dry (-) 

Annual average 

wet-day pre-

cipitation (mm) 

Validation period 1813-1949    

Assuming linear trend 206.9 36.8 0.194 6.12 

Assuming constant mean 204.0 21.8 0.076 2.38 

Validation period 2008-2018     
 

Assuming linear trend 138.3 16.3 0.064 1.54 

Assuming constant mean 127.7   8.7 0.053 0.85 

 Actually, there are additional reasons not to choose the linear-trend model, even if its 

performance was good. These are related to the poor logical background (or complete 

lack thereof) in using time per se as an exploratory variable in a natural process, as well 

as in fundamental concepts of stochastics, namely stationarity and ergodicity, which 

despite being fundamental are widely misunderstood. These concepts will be discussed 

in Chapter 3, while the reasons for excluding such models (including the exceptions in 

which such models are valid) are discussed elsewhere (Koutsoyiannis, 2011a; Montanari 

and Koutsoyiannis, 2014; Koutsoyiannis and Montanari, 2015). And even assuming that 

there were no theoretical obstacles and inferior performance, again we might adopt the 

constant mean model because of its parsimony (Iliopoulou and Koutsoyiannis, 2020). Specifically, philosophical reasoning (principle of parsimony, also known as Occam’s 
razor) and practical considerations (model uncertainty) suggest preferring the more 

parsimonious model (Gauch, 2003). Quantification of such comparison of the model, 

which is not given here, is routinely done within stochastics—cf. the Akaike (1973, 1974) 

criterion and the Bayesian information criterion (Schwarz, 1978), as well as Serinaldi and 

Kilsby (2015), Serinaldi et al. (2018), and Iliopoulou and Koutsoyiannis (2020).  

 But even without these theoretical reasons, one can easily understand the absurdity 

of the linear-trend model by examining Figure 1.2. For example, if we assumed that the 

record of measurements did not reach that far back in time and we had adopted the linear-

trend model for the annual maximum daily precipitation, we would conclude that about 

1800 there was no intense rainfall at all, and that in the 18th century the precipitation was 

negative.  

 To further this example, let as make a thought experiment and assume that in the 

beginning of the 19th century there lived in the area three scientists, Drs A, B and C. Dr A 

kept records of the dry days of each year and Dr B observed the storm severity. In the 

1830s, Dr A cast the prediction that rainfall will totally cease by 1850. In contrast, Dr B 
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said that storms become more severe and by 1850 the storm activity will be tripled at 

least. Then came Dr C who reconciled the two theories stating that dry becomes drier and 

wet becomes wetter, and that the storms are much more severe while the regular rainfall 

events are becoming more and more rare, and will soon disappear. Now if we look again 

at Figure 1.2, in particular the bottom panels where trends are also plotted for the 25-year 

period 1813-1837, we will understand that these claims would stand if we were ready to 

accept the trend model as a decent one. Fortunately, however, scientists of our modern 

epoch do not use such naïve approaches to make groundless predictions, particularly of 

catastrophic or even apocalyptic events*.  

 Now having rejected the widespread practice of fitting linear trends, the question is, 

can we think a better alternative? Apparently, the answer is positive within stochastics. 

Otherwise, it would be a big failure, because the behaviour seen in our rainfall example is 

neither a peculiarity of rainfall, nor one of Bologna. It is quite common everywhere, even 

though we often do not see it for at least two reasons: (a) we do not have long enough 

records and (b) we are misled by the fact that we learnt probability by examples such as 

idealized (not even real) dice and roulettes.  

 In an idealized die, the probabilities of the six possible outcomes are always the same, 

irrespective of the results of previous throws. Macroscopically this simple system 

undergoes no change at all. That is, if we take the moving average of very many outcomes, 

we will have a flat line. In real-world processes the situation is different. There is change 

all the time and over all scales. Also, all events depend on each other. Dependence and 

change are closely related. We will see this relation later on (Digression 3.B). For now, we 

may take a note that dependence should not be interpreted as memory, as typically seen 

in literature, but as change. In particular, long-range dependence is not long-term 

memory but long-term change.  

 How is change quantified in stochastics? A simple way would be to describe some of 

the statistical characteristics as deterministic functions of time, but this is neither so 

effective nor rational, as we have seen in this Bologna rainfall example. Another option is 

to make this quantification in a stochastic, rather than deterministic, manner. In this case 

we view the change as variability across different time scales. In turn, the variability is 

quantified in terms of the variance.  

 Referring again to the annual time series of rainfall indices of Bologna for the entire 

206-year period, which we denote as 𝑥1, 𝑥2, … , 𝑥206, we take the following steps: 

• We calculate the estimate 𝛾(1) of the variance 𝛾(1), where ‘1’ indicates the time 

scale of 1 year, as: 𝛾(1) ≔ (𝑥1 − 𝜇̂)2 +⋯+ (𝑥𝑛 − 𝜇̂)2𝑛 − 1 , 𝜇̂ ≔ 𝑥1  + ⋯+ 𝑥𝑛𝑛  (1.4) 

 
* By the way, by examining the frequency of word usage in books with the help of Google’s Ngram Viewer 
(https://books.google.com/ngrams/), we see that the word ‘catastrophic’ was practically not used in the 
19th century but its frequency per million of words increased linearly in the 20th century to reach a recent peak value of 3.6. The usage of the word ‘apocalyptic’ peaked in 1808 with a frequency of 2.8 and again 
more recently in 1995 with a frequency of 3.6 (Koutsoyiannis, 2013b).  

https://books.google.com/ngrams/
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where 𝜇̂ is the estimate of the mean and 𝑛 = 206 is the sample size. The notion of 

estimate, which we denote with the accent “^”, will be clarified later on, in Chapter 

4. 

• We form a time series at time scale 2 (years) by averaging pairs of consecutive 

items of the time series, i.e.:  𝑥1(2) ≔ 𝑥1  +  𝑥22 , 𝑥2(2)  ≔ 𝑥3 + 𝑥42 ,… , 𝑥103(2)  ≔ 𝑥205 + 𝑥2062  (1.5) 

and we calculate the estimate of the variance 𝛾(2) in a similar manner. 

• We repeat the same procedure to form time series at time scales 3, 4, …, up to scale 
20 (1/10 of the record length) and calculate the variances 𝛾(3), 𝛾(4),… 𝛾(20). 

• We plot (in double logarithmic axes) the variance 𝛾(𝜅) as a function of time scale 

κ. 

 The function of the variance vs. time scale is called the climacogram* (Koutsoyiannis, 

2010). If we have assumed a model for our process and we determine the variance, γ(κ), 

from the model, we have the theoretical climacogram. If we estimate the variance, 𝛾(𝜅), 
from a time series, then we have the empirical climacogram. Notably, if we have produced 

the times series from a model, the empirical climacogram will not necessarily coincide 

with the theoretical, because there is estimation bias. To make them coincide, we must 

add the bias to the theoretical climacogram. This is not difficult because, once we know 

the model, the bias is readily determined from that model by a simple and explicit 

relationship (see sections 4.3 for the definition of bias and 4.6 for its calculation). 

 Now, if the time series 𝑥𝜏 represented the so-called white noise, i.e., a pure random 

process, in which all events are independent of each other, the double logarithmic plot of 

the climacogram would be a straight line with slope –1; the proof is straightforward (see 

equation (3.50)). In real-world processes, the slope is different from –1, designated as 2𝐻 − 2, where H is the so-called Hurst parameter which takes on values in the interval (0, 

1). We will see later on (section 3.7) that H is identical to the entropy production in 

logarithmic time. The case where this slope is constant for all time scales corresponds to 

a simple scaling behaviour (e.g. Koutsoyiannis, 2006b), or the power law: 𝛾(𝜅) = 𝛾(1)𝜅2 – 2𝐻 (1.6) 

which defines the Hurst-Kolmogorov (HK) process, a name giving credit to Hurst (1951), 

who was the first to discover this behaviour in natural processes, and to Kolmogorov 

(1940) who was the first to introduce the process as a mathematical object.  

 
* The term climacogram, from the Greek κλιμακόγραμμα, deriving from κλίμαξ (climax = scale, as well as 
ladder; pl. κλίμακες) and γράμμα (gramma = written, drawn), was coined by Koutsoyiannis (2010) and could 
be translated in English as scale(o)gram, but the latter term is used for another concept. Climacogram should 
not be confused to climatogram which has another meaning related to climate and, specifically, the climatic 
regime of temperature and precipitation at a site or area. The term κλίμα (climate) was first used in the 
Hellenistic period by Hipparchus (see Digression 1.C), in relationship to the slope of the sun’s rays, and is 
different from the other derivative noun κλίμαξ. Interestingly though, both κλίμαξ and κλίμα are eventually 
etymologized from the same verb κλίνειν (klinein = to slope).  
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Figure 1.3 Empirical and theoretical climacograms of annual indices of daily rainfall at Bologna: 
(left) probability dry; (right) annual average wet-day precipitation. Note that bias is a negative 
number. 

 It is easily seen that the value H = 1/2 corresponds to white noise as the slope is –1. 

High values of H (> 1/2) indicate enhanced change at large scales, also known as long-term 

persistence, or strong clustering (grouping) of similar values. This is quite common in 

natural processes (O’Connell et al., 2016; Dimitriadis et al., 2021). Low values of H (< 1/2) 

indicate quite a different behaviour, called antipersistence. This is often confused with a 

periodic behaviour and hence called quasi-periodic (because the period of fluctuations is 

not constant). Such behaviour is much less frequent in hydroclimatic processes. 

 Now we apply this method to the annual indices of daily Bologna rainfall. Figure 1.3 

depicts the climacograms of the probability dry and the annual average wet-day 

precipitation. In both cases, the observed behaviour is spectacularly different from white 

noise while the Hurst-Kolmogorov behaviour is evident with Hurst parameter H as high 

as 0.95 for the probability dry and 0.90 for the wet-day precipitation. The situation is 

somewhat more complex for the annual total rainfall (not shown in Figure 1.3), in which 

the slope is different for small and large scales, an effect already known and analysed in 

Markonis and Koutsoyiannis (2016). The slope for large scales again suggests a strongly 

persistent behaviour with Hurst parameter 𝐻 = 0.86. The annual maxima series tend to 

hide the Hurst behaviour, as explained in Iliopoulou and Koutsoyiannis (2019) and indeed 

the estimated 𝐻 in this case is much smaller, ~0.60 (again not shown in Figure 1.3). 

 The Bologna precipitation example, as well as those that follow and many others, help 

shape a classification of change shown in the hierarchical chart of Figure 1.4. In simple 

systems (left part of the graph) the change is regular, either periodic or aperiodic. Regular 

change in simple cases is predictable in deterministic terms, using equations of dynamical 

systems. But this type of change is rather trivial. More interesting are the more complex 

systems at long time horizons (right part of the graph), where change is unpredictable in 

deterministic terms, or random. Pure randomness, like in classical statistics, where 

different variables are identically distributed and independent, is a useful model for 

idealized dice experiments, but in most natural systems it is inadequate. A structured 
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randomness, like in the HK process, should be assumed instead. The structured 

randomness is enhanced randomness, expressing enhanced unpredictability of enhanced 

multi-scale change. 

 

Figure 1.4 Classification of change (from Koutsoyiannis 2013b). 

Digression 1.C: What is climate?  

As is the case with stochastics (Digression 1.A), the concept of climate is an old one. Aristotle in 
his Meteorologica describes the climates on Earth in connection with latitude but he uses a 
different term, crasis (κρᾶσις1, literally meaning mixing, blending of things which form a 
compound, temperament).2 The term climate (κλίμα, plural κλίματα) was coined as a geographical 
term by the astronomer Hipparchus3 (190 –120 BC). He was the founder of trigonometry but is 
most famous for his discovery and calculation of the precession of the equinoxes (μετάπτωσις 

ἰσημεριών) by studying measurements on several stars. In the 20th century, this precession would 
be found to be related to the climate of Earth and constitutes one of the so-called Milankovitch 

cycles. The term climate originates from the verb κλίνειν, meaning ‘to incline’ and originally 
denoted the angle of inclination of the celestial sphere and the terrestrial latitude characterized 
by this angle (Shcheglov, 2007).  
 Hipparchus’s Table of Climates is described by Strabo the Geographer (63 BC – AD 24), from 
whom it becomes clear that the Climata of that Table are just latitudes of several cities, from 16° 
to 58°N (see Shcheglov, 2007, for a reconstruction of the Table). However, Strabo himself uses the 
term climate with a meaning close to the modern one.4 Furthermore Strabo, defined the five 
climatic zones, torrid, temperate and frigid, as we use them to date.5  
 The term climate was used with the ancient Greek geographical meaning until at least 1700 
as imprinted in a dictionary of that era.6 A search on old books7 reveals that the term climatology 
appears after 1800. With the increasing collection of meteorological measurements, the term 
climate acquires a statistical character as the average weather. Indeed, the geographer A.J. 
Herbertson (1907) in his book entitled “Outlines of Physiography, an Introduction to the Study of 

the Earth”, gave the following definition of climate, based on, but also distinguishing it from, 
weather: 

Simple systems – Short time horizons

Important but trivial

Complex systems – Long time horizons

Most interesting

Change

Predictable
(regular)

Unpredictable
(random)

Purely random
e.g. consecutive 
outcomes of dice

Non-periodic
e.g. acceleration of 

a falling body

Periodic
e.g. daily and 
annual cycles

Structured 
random

e.g. climatic 
fluctuations
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 By climate we mean the average weather as ascertained by many years’ observations. Climate 

also takes into account the extreme weather experienced during that period. Climate is what on 

an average we may expect, weather is what we actually get.8 

Herbertson also defined climatic regions of the world based on statistics of temperature and 
rainfall distribution, a work that was influential for the famous and most widely used Köppen 
(1918) climate classification; this includes six main zones and eleven climates which are on the 
same general scale as Herbertson’s (Stamp, 1957). Herbertson’s definition is kept virtually 
without essential changes till now; for example, Lamb (1972) states:  

 Climate is the sum total of the weather experienced at a place in the course of the year and over 

the years. It comprises not only those conditions that can obviously ‘near average’ or ‘normal’ 
but also the extremes and all the variations. 

Modern scientific glossaries also provide similar definitions of climate. We quote a few:  • By the USA National Weather Service: 
 Climate – The composite or generally prevailing weather conditions of a region, throughout the 

year, averaged over a series of years.9 • By the Climate Prediction Center of the latter: 
 Climate – The average of weather over at least a 30-year period. Note that the climate taken 

over different periods of time (30 years, 1000 years) may be different. The old saying is climate 

is what we expect and weather is what we get.10 • By the American Meteorological Society11, 
 Climate – The slowly varying aspects of the atmosphere–hydrosphere–land surface system. It is 

typically characterized in terms of suitable averages of the climate system over periods of a 

month or more, taking into consideration the variability in time of these averaged quantities. 

Climatic classifications include the spatial variation of these time-averaged variables. 

Beginning with the view of local climate as little more than the annual course of long-term 

averages of surface temperature and precipitation, the concept of climate has broadened and 

evolved in recent decades in response to the increased understanding of the underlying 

processes that determine climate and its variability. 

 In turn, the climate system is defined as: 
 The system, consisting of the atmosphere, hydrosphere, lithosphere, and biosphere, determining 

the earth’s climate as the result of mutual interactions and responses to external influences 

(forcing). Physical, chemical, and biological processes are involved in the interactions among 

the components of the climate system. • By the WMO (1992): 
 C0850 climate – Synthesis of weather conditions in a given area, characterized by long-term 

statistics (mean values, variances, probabilities of extreme values, etc.) of the meteorological 

elements in that area. 

 C0900 climate system – System consisting of the atmosphere, the hydrosphere (comprising the 

liquid water distributed on and beneath the Earth’s surface, as well as the cryosphere, i.e. the 

snow and ice on and beneath the surface), the surface lithosphere (comprising the rock, soil and 

sediment of the Earth’s surface), and the biosphere (comprising Earth’s plant and animal life 

and man), which, under the effects of the solar radiation received by the Earth, determines the 

climate of the Earth. Although climate essentially relates to the varying states of the atmosphere 

only, the other parts of the climate system also have a significant role in forming climate, 

through their interactions with the atmosphere. • By the IPCC (2013b): 
 Climate – Climate in a narrow sense is usually defined as the average weather, or more 

rigorously, as the statistical description in terms of the mean and variability of relevant 

quantities over a period of time ranging from months to thousands or millions of years. The 

classical period for averaging these variables is 30 years, as defined by the World 
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Meteorological Organization. The relevant quantities are most often surface variables such as 

temperature, precipitation and wind. Climate in a wider sense is the state, including a statistical 

description, of the climate system. 

 A useful observation is that all definitions use the term “average” (an exception is the 
definition by Lamb who uses the loose term sum total with the same meaning). Thus, by its 
definition, climate is a statistical concept. And since climate is not static but dynamic, it is better 
to think of it as a stochastic concept. 
 By scrutinizing these definitions, several questions may arise. A first one might be: Why “at 

least a 30-year period”? Is there anything special with the 30 years? Probably this reflects a 
historical belief that 30 years are enough to smooth out “random” weather components and 
establish a constant mean. In turn, this reflects a perception of a constant climate—and a hope 
that 30 years would be enough for a climatic quantity to get stabilized to a constant value. It can 
be conjectured that the number 30 stems from the central limit theorem (see section 2.17) and in 
particular the common (but not quite right) belief that the sampling distribution of the mean is 
normal for sample sizes over 30 (e.g. Hoffman, 2015). Such a perception roughly harmonizes with 
classical statistics of independent events. This perception is further reflected in the term anomaly 
(from the Greek ανωμαλία, meaning abnormality), commonly used in modern climatology to 
express the difference from the mean. Thus, the dominant idea is that a constant climate would 
be the norm and a deviation from the norm would be an abnormality, perhaps caused by an 
external agent (a forcing). However, such a belief is incorrect. The examples given in this chapter 
support the idea of an ever changing climate.  

Actually, this was pointed out almost 50 years ago by Lamb (1977): 

 the view, regarded as scientific, which was widely taught in the earlier part of this century, that 

climate was essentially constant apart from random fluctuations from year to year was at 

variance with the attitudes and experience of most earlier generations. It has also had to be 

abandoned in face of the significant changes in many parts of the world that occurred between 

1900 and 1950 and other changes since. Clearly, however, even the later generations were not able to get rid of this “view regarded as scientific”, which remains dominant as manifested by the popularity of the term climate change 
(as if change is not inherent to climate) and reflected in the above definitions. It is noted, though, 
that the changing character of climate is recognized in the definition of the American 
Meteorological Society, which highlights the “slowly varying aspects of the atmosphere–
hydrosphere–land surface system”. 
 A second question inspired by Climate Prediction Center’s definition is: Why the climate 
taken over 30 or 1000 years is different? The obvious reply is: Because different 30-year periods 
have different climate. This contradicts the tacit belief of constancy and harmonizes with the 
perception of an ever-changing climate. With the latter perception, Herbertson’s idea (whose 
origin the Climate Prediction Center seems not aware of, referring to as an “old saying”) that “climate is what we expect, weather is what we get” can be reformulated as “weather is what we get 

immediately, climate is what we get if you keep expecting for a long time” (Koutsoyiannis, 2011a). 
 As many of the above definitions refer to weather, it is useful to clarify its meaning, noting 
that it represents a popular notion, often used with respect to its effects upon life and human 
activities, rather than a rigorously scientific one. Interestingly, in its colloquial use in Greek and 
Romance (Neo-Latin) languages, weather is almost indistinguishable from time (Greek: καιρός; 
Italian: tempo; French: temps; Spanish: tiempo; Portuguese: tempo). On the other hand, in English 
and Greek, weather refers to short-scale variations in the atmosphere and is distinguished from 
climate; note however that in colloquial Spanish and Portuguese there is no such distinction (the 
term clima is used interchangeably with tiempo and tempo, respectively). In scientific terms, the 
definition given by the WMO (1992) is this: 

 W0410 weather – State of the atmosphere at a particular time, as defined by the various 

meteorological elements. 
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 Based on the above discussion, here we attempt to give a definition of climate, which is used 
in this book, in a hierarchical manner (avoiding circular logic) starting from the concept of climatic 
system, as follows: • Climatic system is the system consisting of the atmosphere, the hydrosphere (including its 

solid phase—the cryosphere), the lithosphere and the biosphere, which mutually interact 
and respond to external influences (system inputs) and particularly those determining the 
solar radiation reaching the Earth, such as the solar activity, the Earth’s motion and the 
volcanic activity.  • Climatic processes are the physical, chemical and biological processes, which are produced by 
the interactions and responses of the climatic system components through flows of energy 
and mass, and chemical and biological reactions.  • Climate is a collection of climatic processes at a specified area, stochastically characterized 
for a range of time scales.  

According to this latter definition—and given that the term process means change 
(Kolmogorov, 1931), climate is changing by definition. Thus, there is no need to define or use the 
term climate change; actually, this latter term, which appeared in literature only after the 1970s, 
serves non-scientific purposes (Koutsoyiannis, 2020b,c, 2021). Change occurs at all scales 
(Koutsoyiannis, 2013b), and there is nothing particular in any specific one, like the commonly 
assumed 30-year scale. By studying long observation series of atmospheric and hydrological 
processes, one would see that the only characteristic scale with clear physical meaning is the 
annual—beyond that there is no objective “border scale” that would support a different definition 
of climate. The above definition includes all scales beyond the annual, thus leaving out the smaller 
scales (e.g. of several minutes or days) to be associated to weather.  
 The stochastic characterization, appearing in the definition of climate, includes all statistics 
used in other definitions, such as averages, variability, extremes, etc., and collectively 
encompasses all related concepts of the scientific areas of probability, statistics and stochastic 
processes (Koutsoyiannis, 2021).  
 The main distinction between weather and climate is this. While weather, according to its 
definition by WMO (1992) which is kept unchanged here, refers to a particular time, climate refers 
to the entire climatic process, throughout all times.  
 As stated in the WMO (1992) definition of climate quoted above, the typical use of the term 
climate relates to the atmosphere only, leaving out the other parts of the climatic system. 
However, since the climatic system includes the hydrosphere, there is no reason to exclude the 
hydrological processes from the climatic processes. Therefore, our definition includes them. 
Nevertheless, to give more emphasis on the inclusion of hydrological processes, the term 
hydroclimatic has been used even in the title of the book. This provides additional clarity or 
emphasis, but it is rather a pleonasm as the hydrosphere is already included in the climatic system 
and water is, in fact, the most important driver of climate (Koutsoyiannis, 2021). 
__________ 
1 The same root has the modern Greek word κρασί for wine. Yet the term is still in use today in Greek for 
derivative names related to climate such as εύκρατος (well-tempered, temperate) and ευκρασία (eucracy). 

2 [Aristot. Mete., 362b.17] «…ὅ τε γὰρ λόγος δείκνυσιν ὅτι ἐπὶ πλάτος μὲν [τὴν οἰκουμένην] ὥρισται, τὸ δὲ 

κύκλῳ συνάπτειν ἐνδέχεται διὰ τὴν κρᾶσιν, -οὐ γὰρ ὑπερβάλλει τὰ καύματα καὶ τὸ ψῦχος κατὰ μῆκος, ἀλλ’ 
ἐπὶ πλάτος, ὥστ’ εἰ μή που κωλύει θαλάττης πλῆθος, ἅπαν εἶναι πορεύσιμον, —καὶ κατὰ τὰ φαινόμενα περί 
τε τοὺς πλοῦς καὶ τὰς πορείας·» “… theoretical calculation shows that [inhabited Earth] is limited in breadth, but could as far as climate is 

concerned, extend round the Earth in a continuous belt; for it is not difference of longitude but of latitude that 

brings great variation of temperature, and if were not for the ocean which prevent it, the complete the 

complete circuit could be made. And the facts known to us from journeys by sea and land also confirm the 

conclusion…” (English translation by H.D.P. Lee, Harvard University Press, Cambridge, Mass. USA, 1952). 
3 In his Commentary on Aratus (Ιππάρχου των Αράτου και Ευδόξου φαινομένων εξηγήσεως; Shcheglov, 
2007). 
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4 [Strab. 1.1] «πάντες, ὅσοι τόπων ἰδιότητας λέγειν ἐπιχειροῦσιν, οἰκείως προσάπτονται καὶ τῶν οὐρανίων 
καὶ γεωμετρίας, σχήματα καὶ μεγέθη καὶ ἀποστήματα καὶ κλίματα δηλοῦντες καὶ θάλπη καὶ ψύχη καὶ ἁπλῶς 
τὴν τοῦ περιέχοντος φύσιν.» “Every one who undertakes to give an accurate description of a place, should be particular to add its 

astronomical and geometrical relations, explaining carefully its extent, distance, degrees of latitude, and 

‘climate’—the heat, cold, and temperature of the atmosphere.” (English translation by H.C. Hamilton, and W. 
Falconer, M.A., 1903) 
5 [Strab. 2.3] «αὕτη δὲ τῷ εἰς τὰς [πέντε] ζώνας μερισμῷ λαμβάνει τὴν οἰκείαν διάκρισιν: αἵ τε γὰρ 

κατεψυγμέναι δύο τὴν ἔλλειψιν τοῦ θάλπους ὑπαγορεύουσιν εἰς μίαν τοῦ περιέχοντος φύσιν συναγόμεναι, αἵ 
τε εὔκρατοι παραπλησίως εἰς μίαν τὴν μεσότητα ἄγονται, εἰς δὲ τὴν λοιπὴν ἡ λοιπὴ μία καὶ διακεκαυμένη.» “In the division into [five] zones, each of these is correctly distinguished. The two frigid zones indicate the want 

of heat, being alike in the temperature of their atmosphere; the temperate zones possess a moderate heat, and 

the remaining, or torrid zone, is remarkable for its excess of heat.” (English translation by H.C. Hamilton, and 
W. Falconer, M.A., 1903). Notice the use of the Aristotelian crasis (κρᾶσις) in the term εὔκρατοι (temperate) 
zones. 
6 The following definition appears in Moxon (1700): “Climate, From the Greek word Clima. of the same 

signification; it is a portion of the Earth or Heaven contained between two Parallels. And for distinction of 

Places, and different temperature of the Air, according to their situation; the whole Globe of Earth is divided 

into 24 Northern, and 24 Southern Climates, according to the half-hourly encreasing of the longest days; for 

under the Equator we call the first Climate: from thence as far as the Latitude extends, under which the longest 

day is half an hour more than under the Equator, viz. 12 hours and an half, is the second Climate: where it is 

encreased a whole hour, the third Climate: and so each Northerly and Southerly Climate respectively hath its 

longest day half an hour longer than the former Climate, till in the last Climate North and South, the Sun Sets 

not for half a year together, but moves Circularly above the Horizon.” 
7 https://books.google.com/ngrams/graph?content=climatology. 
8 Thus, Herbertson appears to be the father of the famous quotation “climate is what we expect, weather is 

what we get”, often attributed to Mark Twain. What Twain has actually written, attributing it to an anonymous student, is “Climate lasts all the time and weather only a few days”; see 
https://quoteinvestigator.com/2012/06/24/climate-vs-weather/. 
9 https://w1.weather.gov/glossary/index.php?letter=c  
10 https://www.cpc.ncep.noaa.gov/products/outreach/glossary.shtml#C  
11 http://glossary.ametsoc.org/wiki/Climate  

1.4 Temperature and its extremes as seen in a long record 

Next, we study temperature data of the same site, Bologna, Italy (coordinates same as in 

the GHCN station above), again one of the longest temperature records worldwide, which 

has been thoroughly studied for that reason. The time series of average daily temperature 

is available online in the frame of the European Climate Assessment & Dataset (ECAD; 

Klein Tank et al., 2002).* It is uninterrupted for the period 1814-2003, 190 years in total. 

For the most recent period, 2004-2018, daily data are provided by the online data 

repository Dext3r, described above.† With these additional data, the record length 

becomes 205 years. The analyses that follow were based on the ECAD 190-year data set, 

while the most recent data were used for validation purposes. Additional time series for 

 
* Data retrieved on 2019-02-17 from https://climexp.knmi.nl/ecatemp.cgi?WMO=169.  † In particular, the average daily temperature values of the station Bologna Urbana (44.500754°N, 
11.328789°E, 78.0 m) were used (note that no temperature data are provided for Bologna Idrografico, 
which was used for rainfall). The data at Bologna Urbana were adjusted by adding a constant temperature 
difference of 0.19 °C to become consistent with those of the ECAD station. To find this adjustment, as there 
is no common period of observation between the ECAD station and Bologna Urbana, a third station whose 
observations have common periods with both, namely the Bologna Meteo station (44.501223°N, 
11.328197°E, 80.0 m) was used. 

https://books.google.com/ngrams/graph?content=climatology
https://quoteinvestigator.com/2012/06/24/climate-vs-weather/
https://w1.weather.gov/glossary/index.php?letter=c
https://www.cpc.ncep.noaa.gov/products/outreach/glossary.shtml#C
http://glossary.ametsoc.org/wiki/Climate
https://climexp.knmi.nl/ecatemp.cgi?WMO=169
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earlier periods that go back to 1715 have been compiled and made available online by 

Camuffo et al. (2017a,b), but they were not used in this study except as background 

information. 

 Figure 1.5 shows plots of the time series of daily temperature, along with moving 

averages and moving maxima and minima for a time window of 10 years (right-aligned), 

representing the 10-year climatic values. We may first observe that the temperature has 

varied from –13 to 34.2 °C, a range of 47.2 °C, which would be much higher than 50 °C if 

we also considered the diurnal variation. The minimum value of –13 °C occurred on 

January 1830 and the maximum of 34.2 °C on August 2017. This latter value is thus not 

contained in the ECAD time series, whose maximum is 33.8 °C, occurring on August 1947. 

If we focus on the 10-year climatic values we will see again change, which however is 

small compared to the 47.2 °C range. Specifically, the 10-year climatic average daily 

temperature has been changing between 12.6 °C (for the 10-year period ending in 1861) 

and 15.6 °C (for 2007). At the same time, the 10-year climatic value of the maximum daily 

temperature has varied between 29.6 °C (for 1904) and 34.2 °C (in 2016 or 33.8 °C in 

1947). Finally, the 10-year climatic value of the minimum daily temperature has varied 

between –13 °C (for 1830) and –2.4 °C (in 2007 or –3.8 °C in 1917). 

 

Figure 1.5 Plot of the time series of daily temperature in Bologna, along with moving averages 
and moving maxima and minima for a time window of 10 years (right-aligned). The lines in darker 
colour represent the ECAD time series while those in lighter colour represent the data of the most 
recent years, which are not included in the ECAD time series.  

 As in precipitation, the climatic changes of temperature do not follow a linear pattern 

but have the form of long-term non-periodic fluctuations, up and down. After 1970 the 

trends are increasing for average, maximum and minimum temperatures, but such 

increasing trends were also observed in other periods (most prominently after 1900), 

lasting several decades and followed by drops thereafter. As shown in Figure 1.6, the 
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recent trends for the 35-year period 1969-2003 are very intense. Interestingly, by 

examining graphs of mean annual temperature for earlier periods, before 1814, published 

in Camuffo et al. (2017a,b), we note that there was an equally (or even more) intense 

increasing trend between 1740 and 1780, preceded by an even more rapid decreasing 

trend from 1720 to 1740. Thus, the minimum temperature in the last 300 years was 

observed in 1740.  

 However, if we follow the split-sample logic expounded in section 1.3, we will reject 

the linear-trend model. Even the visual information in Figure 1.6 suffices to realize its bad 

performance for the early period, as well as the more recent period, after 2003. 

Furthermore, Figure 1.7 tells the same story as in precipitation (section 1.3): The Hurst 

behaviour is evident, with a Hurst parameter H = 0.94 for the annual average temperature 

and H = 0.74 for the annual maximum daily temperature.  

 

Figure 1.6 Plots of annual average, maximum and minimum daily temperature in Bologna, with 
trends fitted on the most recent 35-year part of the ECAD time series representing the most 
warming period 1969-2003, for which the graphs are plotted with thicker lines. The newer data 
that are not included in the ECAD time series are plotted with dotted lines.  
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Figure 1.7 Empirical and theoretical climacograms of annual indices of daily temperature at 
Bologna: (left) annual average; (right) annual maximum daily. 

1.5 A severe drought in a historical context 

Discussions about droughts have been intense in the 21st century, triggered by climate 

change fears as well as by the severity of some droughts that have occurred: in Australia 

(2001-09), California (2011–17; Griffin and Anchukaitis, 2014) and Europe (2003, 2015; 

Hanel et al., 2018). Nonetheless, even though the 21st-century droughts in Europe have 

been broadly regarded as exceptionally severe, the Hanel et al. (2018) study shows that 

they were much milder in severity and areal extent in comparison to many older extensive 

drought events in Europe.  

 About a decade before these droughts, a prolonged and severe one hit Greece. It 

particularly influenced the Athens water supply system and shook society. Despite that, 

the resulting water crisis is not as famous as the current economic crisis in Greece. 

Certainly, the reason for not being famous is the very successful management of the water 

crisis, in contrast to the economic crisis. Indeed, the entire campaign to handle the 

drought in Athens was very successful and, despite the long (7-year) duration (1988-95) 

and severity of the drought, there was not even one day of system failure (cf. 

Koutsoyiannis, 2011a); all inhabitants had water in their tap all the time.  

 Here we will study the hydrological conditions behind this water crisis using 

streamflow data for one of the major three catchments that supply water to Athens, 

namely, the Boeoticos Kephisos River at the Karditsa station (close to the outlet to 

Karditsa tunnel; catchment area 1930 km2). The monthly runoff time series we use 

(compiled by Koutsoyiannis et al., 2007 and updated by Makropoulos et al., 2018 and 

Efstratiadis et al., 2019), is the longest streamflow time series in Greece, beginning in 

1907 and uninterrupted since then (112 years up to 2018-19; note that the convention of 

a hydrological year is used, from October of previous year to September of the current 

year). In contrast to floods, whose study requires high temporal resolution data, the 

monthly time scale is more than sufficient for studying droughts.  
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 The 112-year monthly series of river discharge is shown in Figure 1.8, along with the 

10-year moving average (right-aligned; left panel), as well as a linear trend fitted to the 

latest 50-year period before the beginning of the drought, i.e., the period 1937-87. It is 

seen in the left panel of the figure that, after the drought period, the climatic value of 

streamflow recovered (increased), but not to the level that was before the 1980s. The 

trend model would predict that the falling trend would continue.  

 Comparison of the two models introduced in section 1.3, the linear-trend model and 

the constant mean model, is given in Table 1.2 for two validation periods, before and after 

the calibration period. The constant-mean performs better. Furthermore, if, in spite of 

that, we preferred the trend model and if we plan for a period of, say, 50 years in the 

future, we must think what we will do as we approach the end of the planning period. For 

extrapolation of the trend will give negative streamflow at 2060, forty years from now. 

This is similar to the early trend discussed in section 1.3, according to which the 

probability dry in Bologna would become 1 just after 1850. Therefore, it is again better 

not to trust the linear trend model. Later on (section 4.10), we will discuss how to make 

better future predictions for a specified prediction horizon with the constant-mean model 

along with Hurst-Kolmogorov dynamics. 

 

Figure 1.8 Plots of the time series of monthly average discharge of Boeoticos Kephisos, with (left) 
10-year moving averages (right-aligned) and (right) trend fitted to the period 1937-87 (the 50-
year period before the beginning of the drought).  

Table 1.2 Root mean square errors (in m3/s) for the two validation periods for the linear-trend 
model and the constant-mean model, fitted to the calibration period (1937-87). 

Validation period 1907-37 1987-2019 

Assuming linear trend 13.4 12.7 

Assuming constant mean 9.3 10.3 

 It is useful to study in more detail the drought period. In contrast to a flash flood, a 

drought is not a rapid event, but its evolution usually extends over many years. To 

characterize that evolution stochastically, we may use a multi-scale representation of the 

time series, as we did to define the climacogram. Figure 1.9 shows such a representation 
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at scales ranging from 1 to 10 years. The difference from the definition of the climacogram 

is that the values plotted in Figure 1.9 are constructed for a sliding window of length equal 

to the time scale, while in the standard definition of the climacogram the time windows 

are fixed in position. It is seen in the plots of the time series that the minima for all time 

scales for the entire period of observations are concentrated at that particular drought 

period. This is a characteristic of the HK behaviour; had the series been produced by a 

white noise model, that clustering would be quite improbable. 

 

Figure 1.9 (left) Plot of the (right-aligned) moving average of the Boeoticos Kephisos discharge 
for the time scales noted in the legend; the time locations of the observed minima at each scale 
are also shown with dashed lines of the same colour as the corresponding moving-average time 
series. (right) Close up of the left panel for years 1980-2000.  

 

Figure 1.10 (left) Empirical and theoretical climacograms of the Boeoticos Kephisos discharge 
time series; (right) return periods of the lowest and highest observed average discharge over time 
scale 1 (annual scale) to 10 years (decadal scale) assuming normal distribution. 

 Indeed, the climacogram plotted in Figure 1.10 suggests Hurst behaviour of the 

process with Hurst parameter H = 0.82. Again, the difference from white noise is 

substantial. This difference is further illustrated in the right panel of Figure 1.10 in which 
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the return periods of the lowest and highest observed average discharge over time scale 

1 to 10 years.  

The concept of return period will be discussed in detail in Chapter 5. For the current 

discussion of our example, it suffices to say that, theoretically, the return period T of an 

event, which has probability P to occur in a time interval D, is related to P and D by the 

almost obvious relationship: 𝑃 = 𝐷𝑇  (1.7) 

If we consider the highest or the lowest value that have been observed in a time period 𝑛𝐷 (where 𝑛 is the sample size), then we can empirically assign to each of them a 

probability 𝑃 ≈ 1/𝑛 and thus 𝑇 = 𝑛𝐷 (these are rough estimates, which will be refined 

later, in Chapter 5 and Chapter 6). If we change the time interval D to κD then the sample 

size of the observations becomes 𝑛/𝜅 and again the empirical return period will be 𝑇 =𝑛𝐷 (= (𝑛/𝜅)𝜅𝐷). Thus, in our record of 112 years (𝑛 = 112, D = 1 year) the empirical 

return period of the highest or the lowest observed value can for now be assumed to be 

112 years, regardless of the time scale we consider.  

 That is about the empirical return period. Now let us make a model for the process 

assuming normal marginal distribution with mean μ and standard deviation σ at time 

scale 1 (year), and time dependence consistent with the HK model. The estimates of these 

parameters for the HK model from the 110-year sample of annual values are μ = 11.69 

m3/s, σ = 5.56 m3/s and H = 0.82. The method proposed in Koutsoyiannis (2003) was used 

for this estimation. For scales κ > 1 the normal distribution is preserved and so does the 

mean, while, according to equation (1.6), the standard deviation 𝜎(𝜅) = √𝛾(𝜅) will 

decrease according to 𝜎(𝜅) = 𝜎 𝜅1 – 𝐻⁄ . Therefore, for each scale we can determine the 

theoretical mean and standard deviation, find the theoretical probabilities of the highest 

and lowest values 𝑥H and 𝑥L, i.e., 𝑃H  =  𝑃{𝑥 > 𝑥H} and 𝑃L  =  𝑃{𝑥 ≤ 𝑥L}, respectively, from 

the distribution function of the normal distribution, and determine the return period T 

from equation (1.7). The results of this exercise are visually shown in the right panel of 

Figure 1.10, where an agreement of theoretical and empirical distributions (T = 112 

years) is observed. An underestimation of the theoretical return period of the lowest 

values for time scales 1-3 years is attributed to the fact that the normal distribution is not 

good enough for the distribution lower tail, as it is not bounded by 0, as it should; this 

deficiency ceases for larger scales, as the ratio σ/μ becomes smaller. All in all, the story 

told by the graph for the case that we assumed the HK model is that, in whatever time 

scale, the severe drought was as severe as expected for a 112-year period. Nothing more 

severe than expected. 

 Now let us assume that an expert on extremes, acting in 1995—around the end of the 

drought—was asked by water managers to assess the severity of the drought in terms of 

its return period. Further, let us assume that our extreme expert was ignorant of the HK 

behaviour and used classical statistics, as usually extreme experts usually do. Apart from 

that, let us assume that he adopted the same approach as above except the HK behaviour, 

which is equivalent to assuming H = 0.5. The expert at that time, based on the data and 
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ignoring the estimation bias, which is absent in classical statistics, would estimate for the 

annual scale the mean as μ = 12.56 m3/s and the standard deviation as σ = 5.01 m3/s, 

which are not quite different from the estimates given before. However, by assuming 

independence and going to larger time scales, the standard deviation will differ 

substantially (see the details in quantified terms in section 4.5) and, as a result, the return 

period will elevate. As seen in Figure 1.10, according to classical statistics, for time scales 

> 6 years the return periods of the lowest values exceed 100 000 years! Even for the 

largest values, high return periods are estimated, of the order of 10 000 years. Thus, the 

extreme expert would conclude that something extraordinarily extreme has happened, 

which requires an attribution study to relate it most probably to anthropogenic global 

warming. Evidently, such attributions differ substantially from similar ones in previous 

centuries. For example, after the great flood of the Arno River in Florence in November 

1333 (the first recorded, which killed more than 3 000 people), it was chronicled by 

Giovanni Villani* that “the great debate in Florence was on whether the flood occurred for 

God’s will or for natural causes.” 

 Therefore, it is the Hurst-Kolmogorov dynamics that characterizes the natural 

changes, restores the estimates of extremes to reality and enables a cool look at extremes 

and their uncertainty, which is useful, if not absolutely necessary, for their management. 

And indeed, the HK behaviour has been the theoretical (stochastic) backing of the 

modelling and the successful handling of the Athens drought episode. On the other hand, 

it is striking that the name “Hurst” does not even appear in recent publications related to 

drought episodes (some of which have already been cited). 

1.6 Maximum and minimum water level of the Nile 

The longest instrumental record in history is that of the water level of the Nile. 

Observations have been taken even before 3000 BC and have survived in archaeological 

findings such as inscriptions on cliffs or stones (Koutsoyiannis and Iliopoulou, 2023). 

However, these do not provide a continuous record over those millennia. Yet there is an 

almost uninterrupted record of observations, registered, documented and preserved to 

date, which covers more than eight centuries. These comprise maximum and minimum 

water levels, taken at the Roda Nilometer, near Cairo (Figure 1.11). Toussoun (1925) 

processed and published these data for the period 622 to 1921 AD. Koutsoyiannis (2013b) 

made the measurements available on the internet†, also converting water levels into 

water depths, assuming a datum for the river bottom of +8.80 m a.s.l. (above sea level). 

To account for the change of the riverbed due to sedimentation through the centuries, 

Koutsoyiannis and Iliopoulou (2023), based on documented information, assumed a 

linearly increasing datum, starting at +8.15 m a.s.l. in 622 AD and reaching +8.81 m a.s.l. 

in 1861 AD. After 1470 AD, there are large gaps in the record. Therefore, here we analyse 

the data of the period 622-1470 AD, 849 years, and, regarding the riverbed, we follow the 

 
* Cronica, Tomo III, Libro XII, II; original text: “D’una grande questione fatta in Firenze se ‘l detto diluvio venne 
per iudicio di Dio o per corso naturale …” † http://www.itia.ntua.gr/1351/. 

http://www.itia.ntua.gr/1351/
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convention by Koutsoyiannis and Iliopoulou (2023). A few missing values before 1470 

(namely, of the years 1285, 1297, 1303, 1310, 1319, 1363 and 1434) were filled in by 

Koutsoyiannis (2013b) using a simple method from Koutsoyiannis and Langousis (2011; 

p. 57), refined in Pappas et al. (2014). 

    

Figure 1.11 The Roda Nilometer, near Cairo. Water entered through three tunnels and filled the 
Nilometer chamber up to river level. The measurements were taken on the marble octagonal 
column (with a Corinthian crown) standing in the centre of the chamber; the column is graded 
and divided into 19 cubits (each slightly more than 0.5 m) and could measure floods up to about 
9.2 m. A maximum level below the 16th mark could portend drought and famine and a level above 
the 19th mark meant catastrophic flood (Photos by Loai Samen and Mohamd Mubarak; Google 
maps, https://goo.gl/maps/T8NUgoDAorK2 and https://goo.gl/maps/dsdJHJYVv572).  

 The annual minimum and maximum water levels of this period are plotted in Figure 

1.12 along with their climatic values given as 30-year moving averages. Due to the large 

extent of the Nile basin, the climatic fluctuation shown in the figure reflects the climate 

evolution of a very large area in the tropics and subtropics. We may notice that at the 780s 

the climatic (30-year) minimum value was 1.8 meters, while at AD 1130 it was 4.5 meters, 

2.5 times higher. In the lower panel of Figure 1.12 we can see a simulated series from a 

roulette wheel, which has equal variance as the minimum water depth Nilometer series. Despite equal “annual” variability, the roulette wheel produces a static “climate”, while 
the actual climate has varied substantially over time.  

Comparing the two Nilometer series, we observe that the series of maximum water 

depths exhibits much smaller variability than that of the minimum depths. This seems 

counterintuitive at first glance, but we should bear in mind that, while the minimum depth 

refers to water confined in the riverbanks, the maximum one refers to a wide area 

inundated by the Nile water during flooding. One may express doubts about the accuracy 

of the measurements and record keeping in that era, several centuries ago, particularly in 

view of some points in the graph that look extraordinarily low or high outliers in each of 

the time series. On the other hand, one may observe that the measuring equipment used 

https://goo.gl/maps/T8NUgoDAorK2
https://goo.gl/maps/dsdJHJYVv572
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(Figure 1.11) is much more elaborate than modern measuring devices. Also, in some 

instances the data can be crosschecked by historical information.  

 

 

Figure 1.12 (upper) Nile River annual minimum and maximum water depth at Roda Nilometer 
(849 and 848 values, respectively, from Toussoun, 1925, as provided by Koutsoyiannis, 2013b, 
after the modification by Koutsoyiannis and Iliopoulou, 2023). (lower) Synthetic time series, each 
value of which is the minimum of m = 36 roulette wheel outcomes; the value of m was chosen so 
that the standard deviation equals that of the minima of Nilometer series (where the latter is 
expressed in metres). In all series the climatic values, given as 30-year moving averages, are also 
plotted (right aligned).  

 As an example, we have evidence for the year 1200 AD, in which the second lowest 

maximum water depth was registered (elevation 15.70 m, depth 7.24 m; see Figure 1.12), by the Arab physician, philosopher, historian, grammarian and traveller, ʿAbd al-Laṭīf al-Baghdādī (2022), who stayed in Egypt in that period. His text goes far beyond confirming 
that there was a drought. It describes extreme social behaviours triggered by the drought 
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and the resulting famine (most horrific reactions in history, such as cannibalism with 

parents eating their children). A similar drought (elevation 15.58 m, depth 7.25 m) 

occurred in 967 AD with similar social reactions (Hassan, 2007, quoting the Egyptian 

historian Taqi el-Dine Al-Maqrizi, 1365–1441), while it was estimated that 600 000 

people died of starvation and famine-related diseases, a quarter of Egypt’s population 
(Fagan, 2008). 

While both decreasing and increasing trends appear in both time series, with most 

prominent the increasing trend in the series of maximum depths in the 14th and early 15th 

century, their alternating and aperiodic character defies a deterministic description. On 

the other hand, the stochastic description of the changes based on the HK dynamics is 

efficient. Indeed, Figure 1.13, which depicts the empirical and theoretical climacograms 

of the two Nilometer time series, shows that the natural changes are consistent with the 

HK behaviour.  

 The big length of these time series enables the validation of the HK hypothesis for a 

large range of time scales, from 1 to 84 (years). The difference from the popular white 

noise model (slope –1) is striking, as well as that of other popular models such as the 

Markov, which will be discussed in section 3.11. The Hurst parameters are high, H = 0.85 

for the series of minima and H = 0.82 for the series of maxima. Similar H values have been 

estimated from the contemporary, 131-year long, flow record of the Nile (naturalized) 

flows at Aswan (Koutsoyiannis and Georgakakos, 2006; Koutsoyiannis and Iliopoulou, 

2023). The most notable deviation of the empirical behaviour and the HK model, shown 

in Figure 1.13, appears at scale 1 year for the series of maxima. The difference 

corresponds to the occurrence of extraordinarily high or low maxima at isolated years. 

And as discussed above, these occurrences have been responsible for famines with 

thousands of lives lost.  

  

Figure 1.13 Empirical and theoretical climacograms of the two Nilometer series: (left) minimum 
and (right) maximum water depth; in the left graph the empirical climacogram of the roulette 
wheel time series is also shown, which, as expected, is consistent with the white noise model. 
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 In summary, the long Nilometer time series augments our confidence in the 

applicability in hydroclimatic processes of the HK behaviour, which appeared in all our 

examples. According to this behaviour:  

• long-term changes are more frequent and intense than commonly perceived;  

• these changes are irregular and aperiodic (as thoroughly assessed by 

Koutsoyiannis and Iliopoulou, 2023), appear as alternating trends that can persist 

even for centuries, and are unpredictable per se; 

• future states are much more uncertain and unpredictable on long time horizons 

than implied by pure randomness. 



 

Chapter 2. Basic concepts of probability with focus on extreme events 

2.1 Definition of probability 

For the proper understanding and use of probability, it is very important to insist on the 

definitions and clarification of its fundamental concepts. Such concepts may differ from 

other, more familiar, arithmetic and mathematical concepts, and this may cause confusion 

or even collapse of our cognitive construction, if we do not base it on solid foundations. 

For instance, in our everyday use of mathematics, we expect that all quantities are 

expressed by numbers and that the relationship between two quantities is expressed by 

the notion of a function, which to a numerical input quantity associates (maps) another 

numerical quantity, a unique output. Probability too makes such a mapping, but, instead 

of a number, the input quantity is an event, which mathematically can be represented as 

a set. Probability is then a quantified likelihood that the specific event will occur. This type 

of representation was proposed by Kolmogorov (1933). There are other probability systems different from Kolmogorov’s axiomatic system, according to which the input is 
not a set. Thus, in Jaynes (2003)* the input of the mapping is a logical proposition and 

probability is a quantification of the plausibility of the proposition. The two systems are 

conceptually different, but the differences lie mainly on interpretation rather than on the mathematical results. Here we will follow Kolmogorov’s system. 
 Kolmogorov was an outstanding member of the Moscow School of Mathematics, 

which gave importance to definitions and to clarity, following the Aristotelian tradition of 

sapheneia (Digression 2.A). His approach to probability theory is based on the notion of 

measure, which maps sets onto numbers. The objects of probability theory, the events, to 

which probability is assigned, are thought of as sets. For instance, the outcome of a 

roulette spin, i.e. the pocket in which the ball eventually falls on to the wheel, is one of 37 

(in a European roulette pockets numbered 0 to 36 and coloured black or red except 0 which is coloured green). Thus, all sets {0}, {1}, … {36} are events (also called elementary 
events). But they are not the only ones. All possible subsets of Ω, including the empty set 

Ø, are events. The set Ω ≔ {0, 1, …, 36} is an event too. Because any possible outcome is 

contained in Ω, the event Ω occurs in any case and it is called the certain event. The sets 

ODD ≔ {1, 3, 5, …, 35}, EVEN ≔ {2, 4, 6, …, 36}, RED ≔ {1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 

23, 25, 27, 30, 32, 34, 36}, and BLACK ≔ Ω – RED – {0} are also events (in fact, betable). 

While events are represented as sets, in probability theory there are certain differences 

from set theory in terminology and interpretation, which are shown in Table 2.1. 

 According to Kolmogorov’s (1933) axiomatization, probability theory is based on 
three fundamental concepts and four axioms. The concepts form the triplet (Ω, Σ, P), called 

probability space, where:  

1. Ω is a non-empty set, which Kolmogorov calls the basic set (sometimes also called 

sample space or the certain event), whose elements ω are called elementary events 

(also known as outcomes or states). 

 
* Jaynes’s book cited here was published posthumously (he died in 1998). 
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2. Σ is a set known as σ-algebra or σ-field whose elements E are subsets of Ω, known 

as events. Ω and Ø are both members of Σ, and, in addition, (a) if E is in Σ then the 

complement Ω – E is in Σ; (b) the union of countably many sets in Σ is also in Σ.  

3. P is a function called probability that maps events (i.e., sets) to real numbers, 

assigning to each event E (member of Σ) a number between 0 and 1.  

Table 2.1 Terminology correspondence in set theory and probability theory (adapted from 
Kolmogorov, 1933). 

Set theory Events 𝐴 = Ø Event A is impossible 𝐴 = 𝛺 Event A is certain 𝐴𝐵 = Ø (or 𝐴 ∩ 𝐵 = Ø; disjoint sets) Events A and B are incompatible (mutually 

exclusive) 𝐴𝐵⋯𝑁 = Ø  Events A, B, …, N are incompatible 𝑋 ≔ 𝐴𝐵⋯𝑁 Event X is defined as the simultaneous 

occurrence of A, B, …, N 𝑋 ≔ 𝐴 + 𝐵 +⋯+ 𝑁  

(or 𝑋 ≔ 𝐴 ∪ 𝐵 ∪⋯ ∪ 𝑁) 

Event X is defined as the occurrence of at least 

one of the events A, B, …, N 𝑋 ≔ 𝐴 − 𝐵 Event X is defined as the occurrence of A and, at 

the same time, the non-occurrence of B 𝐴 ≔ 𝛺 − 𝐴 (the complement of A) The opposite event 𝐴 consisting of the non-

occurrence of A 𝐵 ⊆ 𝐴 (B is a subset of A) From the occurrence of event B follows the 

inevitable occurrence of event A 

The four axioms, which define the properties of P, are: 

I. Non-negativity: For any event A, P(A) ≥ 0. 
II. Normalization: P(Ω) = 1. 

III. Additivity: For any incompatible events A and B (i.e., 𝐴𝐵 = Ø), 𝑃(𝐴 + 𝐵) = 𝑃(𝐴) +𝑃(𝐵). 
IV. Continuity at zero: If A1  A2  …  An  … is a decreasing sequence of events, with 𝐴1𝐴2⋯𝐴𝑛⋯ = Ø, then lim𝑛→∞ 𝑃(𝐴𝑛) = 0. 

We note that in the case that Σ is finite, axiom IV follows from axioms I-III; however, for 

infinite fields it should be put forward as an independent axiom.  

Digression 2.A: What is sapheneia?  

It is stunning that before Kolmogorov, the concept of probability was in wide use for almost three 
centuries, since its introduction by Jacob Bernoulli, without a proper definition. Earlier definitions 
were problematic (e.g. affected by circular logic). For this reason, they are not referred to here, 
but the interested reader can find them in any probability book.  
 One may have noticed that more recently there is an increasing trend of disrespect of clarity 
in science, and this also affects definition. This disrespect is theorized in the following statement 
by Mandelbrot (1999, p. 14): 
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 Let me argue that this situation [absence of a definition] ought not create concern and steal 
time from useful work. Entire fields of mathematics thrive for centuries with a clear but evolving 
selfimage, and nothing resembling a definition. 

 Perhaps the reason why modern science prefers a pace of fuzziness over that of clarity is its 
strengthening links to politics and finance. Fuzziness indeed better serves contemporary politics. 
On the other hand, fuzziness per se has been theorized by the modern fuzzy set theory, which 
however is one of the several modern reinventions of probability.  
 Probability and stochastics try to replace fuzziness with rigour in fields where uncertainty 
dominates. Therefore, it needs a rigorous definition per se, and this has been provided by 
Kolmogorov. The Moscow School of Mathematics, and in particular its founders Dimitri Egorov 
and Nikolai Luzin (the latter being Kolmogorov’s mentor) had a different approach, opposite to 
Mandelbrot’s. This is vividly expressed by the following Luzin’s note, quoted by Graham (2011): 

 Each definition is a piece of secret ripped from Nature by the human spirit. I insist on this: any 

complicated thing, being illumined by definitions, being laid out in them, being broken up into 

pieces, will be separated into pieces completely transparent even to a child, excluding foggy and 

dark parts that our intuition whispers to us while acting; only by separating into logical pieces 

can we move further, towards new successes due to definition. 

 In fact, Luzin’s approach was formed much earlier, in the first steps of the development of 
science. Aristotle promoted sapheneia (σαφήνεια1), which includes clarity and is also related to 
the accurate accounting of the phenomena and the attainment of accurate scientific knowledge 
(Lesher, 2010). Aristotle clearly linked sapheneia with truth: 

 We must always endeavor, from statements that are true but not clearly expressed [οὐ σαφῶς], 

to arrive at a result that is both true and clear [σαφῶς] (Aristotle, Eudemian Ethics 1220a).2 

The importance he attributes to sapheneia is understood by his parallelism of those who do not 
practice it to untrained soldiers:  

 These thinkers […] seem to have grasped […] the causes […] only vaguely and indefinitely 

[ἀμυδρῶς καὶ οὐθὲν σαφῶς]. They are like untrained soldiers in a battle, who rush about and 

often strike good blows, but without science; in the same way these thinkers do not seem to 

understand their own statements, since it is clear that upon the whole they seldom or never 

apply them (Aristotle, Metaphysics 985a).3 

 The introduction of terminology, i.e., of sophisticated terms, which either do not exist in the 
colloquial language or exist with a loose meaning, and their definitions, is another reflection of 
the sapheneia desideratum. Note that, in Greek, the names term and definition have common 
origin (ὅρος and ὁρισμός, respectively), and Aristotle sometimes uses the two interchangeably, 
perhaps reflecting the fact that a term without a definition is not a proper term. He emphasizes 
the need to name scientific concepts: 

 Now most of these [concepts] have no names, and we must try […] to invent names ourselves 

for the sake of clarity [σαφήνεια] and ease to follow (Aristotle, Nicomachean Ethics, 985a).4 

 Furthermore, Aristotle attributed the first endeavours to introduce definitions to Socrates 
and emphasized that the need for them is linked to the use of abstract theoretical concepts rather 
than of sensible things: 

 Socrates, disregarding the physical universe and confining his study to moral questions, sought 

in this sphere for the universal and was the first to concentrate upon definitions [ὁρισμῶν]. 

[Plato] followed him and assumed that the problem of definition is concerned not with any 

sensible thing but with entities of another kind; for the reason that there can be no general 

definition [ὅρος] of sensible things which are always changing (Aristotle, Metaphysics 
1.987b).5 

 The importance of names, especially in mathematics, has been emphasized by Graham 
(2011), who asserts that naming plays an essential role because mathematical objects that have 
not yet been named are difficult to work with. For mathematicians naming is the path toward 
gaining control over the objects they just conceive. In their book Naming Infinity, Graham and 



32  CHAPTER 2 – BASIC CONCEPTS OF PROBABILITY WITH FOCUS ON EXTREME EVENTS 

 

Kantor (2009) gave a detailed account of how naming of abstract concepts contributed to the 
development of the Moscow School of Mathematics and the founding of descriptive set theory, 
which gave birth to the modern definition of probability and the development of stochastics. 
__________ 
1 Greek words related to the noun σαφήνεια (sapheneia) are the adjective σαφής/σαφές (saphes), the 
adverb σαφῶς (saphos) and the verb σαφηνίζειν (saphenizein). 
2 Ἀεὶ διὰ τῶν ἀληθῶς μὲν λεγομένων οὐ σαφῶς δὲ πειρᾶσθαι λαβεῖν καὶ τὸ ἀληθῶς καὶ σαφῶς. (Ἀριστοτέλης, Ήθικά Ευδήμια, 1220a). 
3 Οὗτοι μὲν οὖν […] ἡμμένοι φαίνονται, […] ἀμυδρῶς μέντοι καὶ οὐθὲν σαφῶς ἀλλ᾽ οἷον ἐν ταῖς μάχαις οἱ 
ἀγύμναστοι ποιοῦσιν: καὶ γὰρ ἐκεῖνοι περιφερόμενοι τύπτουσι πολλάκις καλὰς πληγάς, ἀλλ᾽ οὔτε ἐκεῖνοι ἀπὸ 
ἐπιστήμης οὔτε οὗτοι ἐοίκασιν εἰδέναι ὅ τι λέγουσιν: σχεδὸν γὰρ οὐθὲν χρώμενοι φαίνονται τούτοις ἀλλ᾽ ἢ 
κατὰ μικρόν (Ἀριστοτέλης, Μετά τα Φυσικά, 985a). 

4 Εἰσὶ μὲν οὖν καὶ τούτων τὰ πλείω ἀνώνυμα, πειρατέον δ᾽ […] αὐτοὺς ὀνοματοποιεῖν σαφηνείας ἕνεκα καὶ 
τοῦ εὐπαρακολουθήτου (Ἀριστοτέλης, Ἠθικὰ Νικομάχεια, 1108a). 
5 Σωκράτους δὲ περὶ μὲν τὰ ἠθικὰ πραγματευομένου περὶ δὲ τῆς ὅλης φύσεως οὐθέν, ἐν μέντοι τούτοις τὸ 
καθόλου ζητοῦντος καὶ περὶ ὁρισμῶν ἐπιστήσαντος πρώτου τὴν διάνοιαν, [Πλάτων] ἐκεῖνον ἀποδεξάμενος 
διὰ τὸ τοιοῦτον ὑπέλαβεν ὡς περὶ ἑτέρων τοῦτο γιγνόμενον καὶ οὐ τῶν αἰσθητῶν: ἀδύνατον γὰρ εἶναι τὸν 
κοινὸν ὅρον τῶν αἰσθητῶν τινός, ἀεί γε μεταβαλλόντων (Αριστοτέλης, Μετά τα Φυσικά, 1.987b). 

2.2 The concept of a stochastic variable 

A stochastic variable or random variable* is a function that maps outcomes to numbers, i.e. 

enumerates the basic set Ω. More formally, according to Kolmogorov’s (1933) definition, 
a real single-valued function 𝑥(𝜔), defined on the basic set Ω, is called a random variable 

if for each choice of a real number 𝑎, the set {𝑥(𝜔) < 𝑎} for all ω for which the inequality 𝑥(𝜔) < 𝛼 holds true, belongs to Σ. With the concept of the stochastic variable, we can 

conveniently express events using basic mathematics. In most cases enumeration is done 

almost automatically. For instance, a stochastic variable that takes values 1 to 6 is 

intuitively assumed when we deal with a die throw experiment. If the phenomenon we 

study is related to the physical world and the quantity in study is represented as a real 

number, then this real number (e.g. 𝑎) has some dimension (e.g. length) and hence a 

physical unit (e.g. m) associated with it. It is convenient to extend the notion of the 

stochastic variable to also include the same unit, so that {𝑥(𝜔) < 𝑎} be meaningful.  

 We must be attentive that a stochastic variable is not a number but a function. 

Intuitively, we could think of a stochastic variable as an object that represents 

simultaneously all possible outcomes and only them. The following analogy may help us 

to develop intuition about stochastic variables. Let us consider the equation 𝑥3(𝑥 − 1)2 =0. This has five roots, three of them being 𝑥 = 0 and two being 𝑥 = 1. What do we mean 

when we say “root of this equation”? Probably we mean both 𝑥 = 0 and 𝑥 = 1 and also we 

have in mind that there is no symmetry between the two; rather we would give a weight 

3/5 on the former and 2/5 on the latter. Similar is the situation with a stochastic variable 

which takes on the values 0 and 1 with probabilities 3/5 and 2/5, respectively.  

 While formally a stochastic variable is a function 𝑥(𝜔), we usually omit reference to 

its argument ω and keep the symbol 𝑥. However, in this case we need to distinguish it 

symbolically from a common variable; the best notation devised to this aim and used here 

is the so-called Dutch convention (see Hemelrijk, 1966, who mentions that it was 

 
* The two terms stochastic variable and random variable have identical meaning. Here we prefer the former, 
even though the latter is more common. 
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introduced by D. Van Dantzig in 1947, i.e., later than Kolmogorov’s foundation of 
probability). According to it, stochastic variables are underlined, i.e. 𝑥. In this case the 

inequality {𝑥(𝜔) < 𝑎} used for the formal definition of the stochastic variable is written 

as {𝑥 < 𝑎}. Accordingly, {𝑥 < 𝑎} denotes an event (a subset of Ω), and therefore it has a 

probability, 𝑃({𝑥 < 𝑎}). For simplicity, in the latter notation we drop the parenthesis and 

we write 𝑃{𝑥 < 𝑎}. Some texts drop the curly brackets instead of the parentheses, but this 

practice misrepresents the important fact that the argument of probability is a set. The 

notation is further explained in Digression 2.B, along with its importance.  

 From a practical point of view, compared to a common variable, a stochastic variable 

is a more abstract mathematical entity, which we use when a quantity of interest is 

something uncertain, unpredictable, unknown; this is the meaning of stochastic and 

random (cf. Koutsoyiannis, 2010; Dimitriadis et al., 2016). While a common variable takes 

on one value at a time, a stochastic variable can be thought of as taking on all of its possible 

values at once, but not necessarily in a uniform manner. Therefore, a probability 

distribution function, defined in section 2.3, should always be associated with a stochastic 

variable. A stochastic variable becomes identical to a common variable only if it can take 

on only one value.  

 When an observation of a quantity that is modelled as a stochastic variable is made, 

then this observation is usually a common variable. For example, we model a die throw 

with a stochastic variable 𝑥 with possible values 1 to 6. After a specific throw of the die 

and before we observe the outcome, we still have the same uncertainty as described by 

stochastic variable 𝑥. When we observe the outcome, it becomes a common variable 𝑥 (e.g. 𝑥 = 5). The particular value is called a realization of 𝑥 and is denoted by the non-

underlined symbol 𝑥. This happens when our observation is exact. Sometimes the 

observation is contaminated by error—our observations are not always exact 

(particularly those of real valued variables). Then we can use another stochastic variable 

to describe the uncertain outcome. For example, if an observer has presbyopia combined 

with astigmatism (like the author) he may not be sure whether the outcome was 5 or 4 

and he could model it as a stochastic variable 𝑧 with possible outcomes 4 and 5. 

 Considering a certain (deterministic) function 𝑦 = 𝑔(𝑥), mapping the common 

variable 𝑥 to the common variable y (e.g. 𝑦 = 𝑔(𝑥) = 𝑥2), we can extend its meaning to 

apply to stochastic variables, i.e., 𝑦 = 𝑔(𝑥) (e.g. 𝑦 = 𝑔(𝑥) = 𝑥2). As implied by the notation, when the function’s argument 𝑥 is a stochastic variable, the result 𝑦 is also a 

stochastic variable (formally, it is the composite function 𝑦(𝜔) = 𝑔(𝑥(𝜔)). In other 

words, functions of stochastic variables are stochastic variables.  

Digression 2.B: The importance of notation  

The following simple example shows that the common practice of not distinguishing the notation 
of common and stochastic variables is a bad practice. Let 𝑥 and 𝑦 represent the outcomes of each 

of two dice. What is the probability of the following cases?  

(a) {𝑥 < 𝑦},  (b) {𝑥 < 𝑦},  (c) {𝑥 < 𝑦},  (d) {𝑥 < 𝑦}. 
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(a) First, the formal meaning of the notation 𝑥 < 𝑦 is that for any 𝑥 ∈ ℝ, 𝑃{𝑥 > 𝑥} < 𝑃 {𝑦 > 𝑥} 
(Shaked and Shanthikumar, 2007). Here, we approach the question in a practical manner. There 
are 62 = 36 different possible combinations of outcomes of 𝑥 and 𝑦. In six of them 𝑥 = 𝑦. Due to 

symmetry, in half of the remaining 30, 𝑥 < 𝑦. Thus: 𝑃 {𝑥 < 𝑦} = 1536 = 512 

(b) Now y is a number, not a stochastic variable. For convenience we assume that y is integer, even 
though it can also be assumed to be real. If y > 6 then obviously the event {𝑥 < 𝑦} is certain. If 𝑦 =6 then the probability of {𝑥 < 𝑦} is 5/6. Continuing like this we conclude that: 𝑃{𝑥 < 𝑦} = max (0,min(1, 𝑦 − 16 ) ) 

(c) Thinking as in (b) and noting that 𝑥 is a number, assumed integer, and 𝑦 a stochastic variable 

we find that: 𝑃 {𝑥 < 𝑦} = max(0,min(1, 1 − 𝑥6) ) 

(d) As both 𝑥 and 𝑦 are numbers, the expression {𝑥 < 𝑦} does not denote an event and therefore, 
strictly there is no probability associated with this expression. Loosely we may say that 𝑃{𝑥 < 𝑦} = 1 if 𝑥 < 𝑦 and 0 otherwise. 
 Obviously, if we did not distinguish y from 𝑦, we would not even be aware of the fact that 𝑃 {𝑥 < 𝑦} is a number while 𝑃 {𝑥 < 𝑦} is a function of 𝑥.  

 Many texts (research articles and probability theory books) make the notational distinction 
of stochastic and common variables, but they use upper case letter for stochastic variables and 
lower case ones for common variables. This practice may also be inadequate. If in our context we 
used another quantity denoted with the Greek letter χ (and actually χ is quite common in 
statistical texts—cf. the chi and chi-squared distributions), how would we distinguish the 
stochastic variables corresponding to 𝑥 and χ? (In both cases the upper case letter is 𝑋, while in 
our convention 𝑥 and 𝜒 are distinguishable.) Furthermore, this would be too restrictive in our use 

of mathematical symbols. For example, the symbol H used in Chapter 1 (and many other chapters) 
to denote the Hurst parameter would be an incorrect notation if we adopted the upper- vs. lower-
case notation. Another convention was used by Papoulis (1990, 1991), who denoted stochastic 
variables in bold letters. However, the typical use of bold letters is to denote vectors. Therefore, 
the Dutch convention of underlining the stochastic variables is the most convenient, clearest and 
safest.  

2.3 Distribution function According to Kolmogorov’s (1933) foundation* of probability theory, the function of the 

real variable 𝑥, 𝐹(𝑥) ≔ 𝑃{𝑥 ≤ 𝑥} (2.1) 

where 𝑥 is a stochastic variable, is called the distribution function. We notice that the 

stochastic variable with which this function is associated is not an argument of the 

function. Even though we use the same letter for both 𝑥 and 𝑥, the two are fundamentally 

different. For example, in a die throw, the stochastic variable 𝑥 represents the whole 

 
* We note that Kolmogorov used ‘<’ in his definition but modern literature uses ‘≤’ as in (2.1). 
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numbers 1 to 6 and the common variable 𝑥 takes on any real value from –∞ to +∞. (The 
domain of 𝐹(𝑥) is not identical to the range of the stochastic variable 𝑥; rather it is always 

the set of real numbers.) If there is risk of confusion (e.g., if we study a problem with many 

stochastic variables), the stochastic variable should also appear in the notation of the 

distribution function. Usually, it is denoted as a subscript: 𝐹𝑥(𝑥). 
 Typically, 𝐹(𝑥) has a mathematical expression depending on some parameters. It is a 

non-decreasing function of 𝑥 obeying the relationship: 0 =  𝐹(–∞)  ≤  𝐹(𝑥)  ≤  𝐹(+∞)  =  1 (2.2) 

For its non-decreasing attitude, in the English literature 𝐹(𝑥) is also known as cumulative 

distribution function, but here we adhere to Kolmogorov’s (1933) original terminology, 

which did not contain the adjective cumulative. In practical applications the distribution 

function is also known as non-exceedance probability. Likewise, the non-increasing 

function: 𝐹(𝑥) ≔ 𝑃{𝑥 > 𝑥} = 1 − 𝐹(𝑥) (2.3) 

i.e., the complement of 𝐹(𝑥) from 1, is called here the distribution function complement. It 

is also known as tail function, survival function, or survivor function, and represents 

exceedance probability.  

 The distribution function is always continuous on the right; however, if the basic set 

Ω is finite or countable, 𝐹(𝑥) is discontinuous on the left at all points 𝑥𝑖  that correspond 

to outcomes 𝜔𝑖, and it is constant between them (staircase-like). Such a stochastic 

variable is called discrete. If 𝐹(𝑥) is a continuous function, then the stochastic variable is 

called continuous. A mixed case is also common; in this the distribution function has some 

discontinuities on the left, but is not staircase-like. These are better explained in 

Digression 2.C. 

 For continuous stochastic variables, the inverse function 𝐹−1( ) of 𝐹( ) exists. 

Consequently, the equation 𝑢 = 𝐹(𝑥) has a unique solution for 𝑥, called u-quantile of the 

variable 𝑥, that is:  𝑥𝑢 = 𝐹−1(𝑢) (2.4) 

2.4 Probability mass and density function 

In discrete stochastic variables, the probability of each event: 𝑃𝑗 ≡ 𝑃(𝑥𝑗)  ≔  𝑃{𝑥 = 𝑥𝑗} = 𝐹(𝑥𝑗) − 𝐹(𝑥𝑗−1), 𝑗 =  1, … , 𝐽 (2.5) 

where J is the number of possible outcomes (which can be infinite), is the probability mass 

function. It is easy then to see that the step (discontinuity) of the distribution function 𝐹(𝑥) at point 𝑥𝑗  equals 𝑃𝑗 .  
 In continuous variables there are no discontinuities and hence any particular value 𝑥 

has zero probability to occur. However, we can still tell which of two outcomes is more 

probable and by how much, by examining the ratio of the two probabilities. As this is a 
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0/0 expression, having in mind l’Hôpital’s rule, we need to examine the ratio of derivatives 

of probabilities.  

 The derivative of the distribution function is called the probability density function 

(PDF) or simply density: 𝑓(𝑥) ≔ d𝐹(𝑥)d𝑥  (2.6) 

and its basic properties are: 𝑓(𝑥) ≥ 0, ∫ 𝑓(𝑥)d𝑥 = 1 
∞
−∞  (2.7) 

Obviously, the probability density function does not represent a probability; therefore, it 

can take on values higher than 1. Its relationship with probability is described by the 

following equation:  𝑓(𝑥) = limΔ𝑥→0𝑃{𝑥 ≤ 𝑥 ≤ 𝑥 + Δ𝑥}Δ𝑥  (2.8) 

The distribution function can be calculated from the density function by: 𝐹(𝑥) =  ∫ 𝑓(𝑦)d𝑦 
𝑥
−∞  (2.9) 

 In discrete stochastic variables, the density is a sequence of Dirac δ functions (see 

definition of δ in equation (3.52)), while in mixed distributions Dirac δ functions appear 

at the points of discontinuity. This text mostly deals with continuous variables, but mixed-

type variables appear in several cases as will be discussed in Chapter 6 and Chapter 8.  

 Some of the most common distributions of discrete and continuous variables are 

shown in Table 2.2. Additional continuous distributions are shown in Table 2.3, along with 

their moments, while the derivation of these and other distributions in terms of the 

principle of maximum entropy is discussed in section 2.10 (see also Table 2.4 and Table 

2.5). 

 As already discussed (section 2.2), the one-to-one mathematical transformation on 𝑥, 𝑦 = 𝑔(𝑥) defines a new stochastic variable 𝑦. If the function 𝑔(𝑥) is invertible, then the 

event {𝑦 ≤ 𝑦} is identical to the event {𝑥 ≤ 𝑔−1(𝑦)} where 𝑔–1 is the inverse function of 𝑔. Consequently, the distribution functions of 𝑥 and 𝑦 are related by: 𝐹𝑦(𝑦) = 𝑃 {𝑦 ≤ 𝑦} = 𝑃{𝑥 ≤ 𝑔−1(𝑦)} = 𝐹𝑥(𝑔−1(𝑦))  (2.10) 

 In the case that the variables are continuous and the function g differentiable, it can 

be shown that the density functions of 𝑥 and 𝑦 are related by:  

𝑓𝑦(𝑦) = 𝑓𝑥(𝑔−1(𝑦))|𝑔′(𝑔−1(𝑦))|  (2.11) 

where g΄ is the derivative of g.  
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Table 2.2 Some of the simplest and most common distributions.  

Name (and 
parameters) 

Probability mass function or 
probability density function 

Probability distribution function 

Discrete variable 𝑥 with values 𝑥𝑗 ≡ 𝑗 
Discrete uniform, 𝑗 = 1,… , 𝐽 𝑃(𝑥𝑗) = 1𝐽  𝐹(𝑥) = max(0,min(⌊𝑥⌋ 𝐽⁄ , 1)) 
Geometric 𝑗 = 0,1, … (𝜇 > 0) 𝑃(𝑥𝑗) =  

11 + 𝜇 ( 𝜇1 + 𝜇)𝑗  𝐹(𝑥) = max(0, 1 − ( 𝜇1 + 𝜇)⌊𝑥⌋+1) 

Poisson 𝑗 = 0,1, … (𝜇 > 0) 
𝑃(𝑥𝑗) =  𝑒−𝜇 𝜇𝑗𝑗!  𝐹(𝑥) = 𝑒−𝜇  ∑𝜇𝑗𝑗!⌊𝑥⌋

𝑗=0 = Γ⌊𝑥+1⌋(𝜆)⌊𝑥⌋!  

Continuous variable 𝑥 

Uniform in [0, J] 𝑓(𝑥) =  {1/𝐽, for 0 ≤ 𝑥 ≤ 𝐽0, otherwise  

 
 𝐹(𝑥) = max(0,min(𝑥 𝐽⁄ , 1)) 

Exponential  
(𝜇 >  0) 

𝑓(𝑥) =  {e–𝑥 𝜇⁄   𝜇⁄ ,  𝑥 ≥ 00,  𝑥 < 0 

 
 𝐹(𝑥) =  {1 − e–𝑥 𝜇⁄ ,  for 𝑥 ≥ 00, for 𝑥 < 0 

 
 

Normal  
(𝜇 ∈ ℝ, 𝜎 > 0) 

𝑓(𝑥) = 1√2π𝜎 exp (− (𝑥 − 𝜇)22𝜎2 ) 𝐹(𝑥) = 12 erfc (− 𝑥 − 𝜇√2𝜎 ) 

Note: ⌊𝑥⌋ denotes the floor of the number 𝑥 (the greatest integer less than or equal to 𝑥). 

Digression 2.C: Illustration of distribution function by an example 

For clarification of the basic concepts of probability theory, we give the following example of 
hydroclimatic interest. In particular, we study (a) the occurrence of rainfall at a particular site and 
a specific time of the year, and (b) the rainfall depth at that site and time.  
 In (a) we are interested on the mathematical description of the possibilities that a certain day 
in the specified site and time is wet or dry. These are the outcomes or states of our problem, so 
the basic set is: 

Ω = {wet, dry} 

The field Σ contains all possible events, i.e.: 𝛴 = {∅, {wet}, {dry}, 𝛺} 
To fully define probability on Σ it suffices to define the probability of one of the two states, say 
P{wet}. In fact, this is not easy – usually it is done by induction, and it needs a set of observations 
to be available and concepts of the statistics theory (see Chapter 4) to be applied. For the time 
being let us arbitrarily assume that P{wet} = 0.2. The remaining probabilities are obtained by 
applying the axioms. Clearly, P(Ω) = 1 and P() = 0. Since wet and dry are incompatible, P{wet} + 
P{dry} = P({wet} + {dry}) = P(Ω) = 1, so P{dry} = 0.8.  
 We define a stochastic variable 𝑥 based on the rule 𝑥(dry) = 0, 𝑥(wet) = 1 

We can now easily determine the distribution function of 𝑥. For any 𝑥 < 0,  𝐹(𝑥) = 𝑃{𝑥 ≤ 𝑥} = 0 
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(because 𝑥 cannot take negative values). For 0 ≤ 𝑥 < 1, 𝐹(𝑥) = 𝑃{𝑥  ≤  𝑥} = 𝑃{𝑥 = 0} = 0.8 

Finally, for 𝑥 ≥ 1, 𝐹(𝑥) = 𝑃{𝑥 ≤ 𝑥} = 𝑃{𝑥 = 0} + 𝑃{𝑥 = 1} = 1 

The graphical depiction of the distribution function is shown in Figure 2.1 (left). The staircase-
like shape reflects the fact that the stochastic variable is discrete. 

 
Figure 2.1 Distribution function of a stochastic variable representing events related to rainfall of 
a given day at a certain area and time of the year: (left) the dry or wet state; (right) the rainfall 
depth. 

 In (b) the state is described by the rainfall depth which can be zero or positive. Therefore, the 
basic set is the set ℝ+ ∪ {0}. The stochastic variable 𝑥 is given by the rule 𝑥(𝜔)  =  𝜔. Again, the 
distribution function of 𝑥 will be 𝐹(𝑥) = 𝑃{𝑥 ≤ 𝑥} = 0 for 𝑥 < 0 with a discontinuity at 0, so that 𝐹(0+) = 𝑃{𝑥 = 0} = 0.8. For 𝑥 ≥ 0 the distribution function will be continuous and increasing, 
approaching 1 as 𝑥 → ∞. To construct a plausible distribution function, without examining 
observations, we make an assumption that smaller values are more probable than higher and 
specifically that for two values 𝑥1 and 𝑥2 > 𝑥1, the ratio of densities (expressing the ratio of 
probabilities according to l’Hôpital’s rule) depends on the difference 𝑥2 − 𝑥1, i.e., 𝑓(𝑥1)𝑓(𝑥2) = 𝑔(𝑥2 − 𝑥1) 
where it is easy to see that the function g( ) should be given as 𝑔(𝑥) = 𝑓(0)/𝑓(𝑥). In turn, it can 
be shown (homework) that 𝑓(𝑥) = 𝐴 exp(−𝐵𝑥) where A and B are constants. By integrating 
(according to equation (2.9)) we find:  𝐹(𝑥) = 𝐴𝐵 (1 − exp(−𝐵𝑥)) + 𝐶 

and, since 𝐹(0+) = 0.8 and 𝐹(∞) = 1, C = 0.8 and A/B = 0.2, thus: 𝐹(𝑥) = 0.2(1 − exp(−𝐵𝑥)) + 0.8 

where B can be any positive number. An example is depicted in Figure 2.1 (right) for B = 1. The 
result is a modified exponential distribution (see Table 2.2), where the modification resulted from 
the fact that the distribution is not continuous everywhere but mixed.  
 If this mathematical model is to represent a physical phenomenon, we must keep in mind that 
all probabilities depend on a specific location and a specific time of the year. So, the model cannot 
be a global representation of the wet and dry state of a day, nor of the rainfall depth. The model 
as formulated here is extremely simplified. It does not make any reference to the succession of 
dry or wet states in different days. This is not an error; it simply diminishes the predictive capacity 
of the model. A better model would describe separately the probability of a wet day following a 
wet day, a wet day following a dry day (we anticipate that the latter should be smaller than the 
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former), etc. In addition, while the assumption on the rainfall depth leading to a mixed exponential 
distribution seems plausible at a first glance, it does not fully correspond to the empirically 
observed behaviour. There are better models than the exponential. We will discuss these issues 
in subsequent sections.  

2.5 Conditional probability, independent and dependent events 

By definition (Kolmogorov, 1933), conditional probability of the event A given B (i.e. under 

the condition that the event B has occurred) is the quotient:  𝑃(𝐴𝐵)𝑃(𝐵) ≕ 𝑃(𝐴|𝐵) (2.12) 

Obviously, if P(B) = 0, this conditional probability cannot be defined. It follows that: 𝑃(𝐴𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) (2.13) 

From this it follows that: 𝑃(𝐵|𝐴) = 𝑃(𝐵)𝑃(𝐴|𝐵)𝑃(𝐴)   (2.14) 

Equation (2.14) is known as the Bayes theorem.  

 If it happens that 𝑃(𝐴|𝐵) = 𝑃(𝐴), i.e., the probability of A does not depend on whether 

or not B has occurred, then the events A and B are called (stochastically) independent. In 

this case from equation (2.12) it follows that: 𝑃(𝐴𝐵) = 𝑃(𝐴)𝑃(𝐵) (2.15) 

Otherwise, A and B are called (stochastically) dependent.  

 The definition can be extended to many events. Thus, the events 𝐴1, 𝐴2, … are 

independent (or mutually independent) if for any finite set of distinct indices 𝑖1, 𝑖2, … , 𝑖𝑛: 𝑃(𝐴𝑖1𝐴𝑖2 …𝐴𝑖𝑛) = 𝑃(𝐴𝑖1) 𝑃(𝐴𝑖2)…𝑃(𝐴𝑖𝑛) (2.16) 

Thus, handling probabilities of independent events is easy. However, this is a special case 

because usually macroscopic natural events are dependent. In handling dependent events 

the notion of conditional probability is vital. 

 It is easy to show that the generalization of (2.16) for dependent events takes the 

forms: 𝑃(𝐴𝑛…𝐴1) = 𝑃(𝐴𝑛|𝐴𝑛−1…𝐴1)⋯𝑃(𝐴2|𝐴1)𝑃(𝐴1) (2.17) 𝑃(𝐴𝑛…𝐴1|𝐵) = 𝑃(𝐴𝑛|𝐴𝑛−1…𝐴1𝐵)⋯𝑃(𝐴2|𝐴1𝐵)𝑃(𝐴1|𝐵) (2.18) 

which are known as the chain rules. It can also be proved (homework) that if A and B are 

mutually exclusive, then 𝑃(𝐴 + 𝐵|𝐶) = 𝑃(𝐴|𝐶) + 𝑃(𝐵|𝐶) (2.19) 

𝑃(𝐶|𝐴 + 𝐵) = 𝑃(𝐶|𝐴)𝑃(𝐴) + 𝑃(𝐶|𝐵)𝑃(𝐵)𝑃(𝐴) + 𝑃(𝐵)  (2.20) 

and if 𝐴 + 𝐵 = 𝛺, so that 𝑃(𝐴 + 𝐵) = 1, then 
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 𝑃(𝐶) = 𝑃(𝐶|𝐴)𝑃(𝐴) + 𝑃(𝐶|𝐵)𝑃(𝐵) (2.21) 

Digression 2.D: An example on the dependence of probability on 

information 

We assume that, at a certain place on Earth (say, in a city in the United Kingdom) and a certain 
period of the year, a dry and a wet day are equiprobable and that in the different days the states 
(wet or dry) are independent. What is the probability that two consecutive days are wet under 
the following conditions? (a) Unconditionally. (b) If we know that the first day is wet. (c) If we 
know that the second day is wet. (d) If we know that one of the two days is wet. 

 We denote 𝐴 ≔ {first day wet}, 𝐴̅ ≔ {first day dry}, 𝐵 ≔ {second day wet}, 𝐵̅ ≔ {second day 
dry}. The basic set is {𝐴𝐵, 𝐴𝐵̅, 𝐴̅𝐵, 𝐴̅𝐵̅}. 
(a) We seek to find 𝑃(𝐴𝐵). Obviously, given the independence assumption, 𝑃(𝐴𝐵) = 𝑃(𝐴)𝑃(𝐵) =(1/2)2 = 1/4. Because of equiprobability and independence, each of the four events has 
probability 1/4. 

(b) Now the probability sought is 𝑃(𝐴𝐵|𝐴). Using the chain rule in equation (2.18) we find 𝑃(𝐴𝐵|𝐴) = 𝑃(𝐴|𝐴𝐵)𝑃(𝐵|𝐴) = 1 × 1/2 = 1/2. 

(c) Like in (b), we find 𝑃(𝐴𝐵|𝐵) = 1/2. 

(d) The condition that one of the two days is wet corresponds to the composite even 𝐴𝐵 + 𝐴𝐵̅ +𝐴̅𝐵. Thus, the probability sought is  𝑃(𝐴𝐵|𝐴𝐵 + 𝐴𝐵̅ + 𝐴̅𝐵) = 𝑃(𝐴𝐵(𝐴𝐵 + 𝐴𝐵̅ + 𝐴̅𝐵))𝑃(𝐴𝐵 + 𝐴𝐵̅ + 𝐴̅𝐵) = 𝑃(𝐴𝐵)𝑃(𝐴𝐵 + 𝐴𝐵̅ + 𝐴̅𝐵) = 1/43/4 = 13 

where we have used the definition of conditional probability and the fact that 𝐴𝐵, 𝐴𝐵̅, 𝐴̅𝐵 are 
mutually exclusive.  
 To connect the example to the real world, let us assume that a friend travelled to this city for 
a specified couple of days. If we do not have any information except the specific dates, then to the 
event that she used her umbrella in both days we will assign probability 1/4. If we have seen (e.g. 
in her social media posts) a photo showing her in the city holding an umbrella, then to the same 
event we may assign a probability of 1/3. If, in addition, the photo has a time stamp on it, then we 
will change the probability to 1/2. In other words, the information we have in a problem may 
introduce dependencies in events that are initially assumed independent. More generally, the 
probability is not an invariant quantity, characteristic of physical reality in absolute terms, but a 
quantity that depends on our knowledge or information on the examined phenomenon. It may 
sound paradoxical that the probability depends on information, but it is not. The rules according 
to which we are assigning probabilities are objective and theoretically consistent. Yet it may not 
always be direct to assign probabilities and also the assigned values may depend on the way the 
information was obtained (see relevant discussion for the particular problem examined here in 
Bar-Hillel and Falk,1982). We may additionally recall that even in classical deterministic physics 
we are dealing with similar situations. For instance, the location and velocity of a moving particle 
are not absolute objective quantities. If we change the coordinate system, the numerical values of 
the coordinates and the velocity will also change.  
 

Digression 2.E: An example on dependent events 

The independence assumption in the problem in Digression 2.D is obviously a poor 
representation of the physical reality. To construct a slightly more realistic model, let us assume 
that the probability of today being wet (B) or dry (𝐵̅) depends on the previous day’s state (A or 𝐴̅). It is reasonable to assume that the following inequalities hold: 𝑃(𝐵|𝐴) > 𝑃(𝐵) = 0.5, 𝑃(𝐵̅|𝐴̅) > 𝑃(𝐵̅) = 0.5 
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Now, the problem becomes more complicated than before. Let us arbitrarily assume that 𝑃(𝐵|𝐴) = 0.6. Then the probability that both days are wet is 𝑃(𝐴𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) = 0.6 × 0.5 =0.3 > 1/4. For the sake of completeness, we also calculate the probabilities of the other 
combinations. From (2.21), we get 𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) + 𝑃(𝐵|𝐴̅)𝑃(𝐴̅), from which we find: [𝑃(𝐵|𝐴) 𝑃(𝐵|𝐴̅)𝑃(𝐵̅|𝐴) 𝑃(𝐵̅|𝐴̅)] [𝑃(𝐴)𝑃(𝐴̅)] = [𝑃(𝐴)𝑃(𝐴̅)],   [𝑃(𝐴|𝐵) 𝑃(𝐵|𝐵̅)𝑃(𝐵̅|𝐴) 𝑃(𝐵̅|𝐴̅)] [𝑃(𝐵)𝑃(𝐵̅)] = [𝑃(𝐵)𝑃(𝐵̅)],   [𝑃(𝐵)𝑃(𝐵̅)] = [𝑃(𝐴)𝑃(𝐴̅)] 
where for convenience we have used matrix/vector representation. Thus, 𝑃(𝐵|𝐴̅) = 𝑃(𝐵) − 𝑃(𝐵|𝐴)𝑃(𝐴)𝑃(𝐴) = 0.5 − 0.6 × 0.50.5 = 0.4 

Hence, 𝑃(𝐴̅𝐵) = 𝑃(𝐵|𝐴̅)𝑃(𝐴̅) = 0.4 × 0.5 = 0.2 < 1/4. Because of symmetry 𝑃(𝐴̅𝐵̅) = 0.3 and 𝑃(𝐴𝐵̅) = 0.2. Thus, the dependence resulted in higher probabilities that the consecutive events 
are similar and smaller probabilities that they are dissimilar. This corresponds to a general 
natural behaviour (see also Chapter 3). 

2.6 Random number generation for stochastic simulation 

One of the important scientific advances offered by stochastics in the last several decades 

is the Monte Carlo method, else known as stochastic simulation. It was originally 

developed for the numerical solution of integro-differential equations in Los Alamos in 

the framework of the Manhattan Project (Metropolis and Ulam, 1949). It can easily be 

shown (e.g. Niederreiter, 1992) that in high dimensional numerical integration (specifi-

cally for a number of dimensions d > 4), a stochastic (Monte Carlo) integration method (in 

which the function evaluation points are taken at random) is more accurate (for the same 

total number of evaluation points) than classical numerical integration (based on a grid 

representation of the integration space). 

 This gave importance to the much older concept of random numbers, whose first 

appearance in a scientific publication was Tippett’s (1927) table, with 41 600 random 

digits taken from a 1925 census report. Before that (and even after; see Digression 3.F) 

random sampling was performed by means of dice and cards. Thus, Galton (1890) 

invented a set of three modified dice to generate samples from a normal distribution. “Student” (pseudonym of W.S. Gosset) in 1908 performed simulation experiments using 
3000 cards (in 750 groups of size 4) to find the distribution of the t-statistic and of the 

correlation coefficient (see more information in Stigler, 2002). 

 With today’s meaning, a sequence of random numbers is a sequence of numbers 𝑥𝑖  
whose every statistical property is consistent with that of realizations from a sequence of 

independent identically distributed stochastic variables 𝑥𝑖 with specified distribution 

function 𝐹(𝑥) (adapted from Papoulis, 1990). In turn, a random number generator is a 

device (typically computer algorithm) that generates a sequence of random numbers 𝑥𝑖  
with given distribution 𝐹(𝑥). Random number generation is also known as Monte Carlo 

sampling. 

 The basis of practically all random generators is the uniform distribution in [0,1] (see 

Table 2.2). A typical procedure for that distribution is the following: 

• We generate a sequence of integers 𝑞𝑖 from the recursive algorithm 𝑞𝑖 =(𝑘 𝑞𝑖 − 1 + 𝑐) mod 𝑚 where k, c and m are appropriate integers (e.g. 𝑘 =  69 069, 
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 𝑐 =  1, 𝑚 =  232  =  4 294 967 296 or alternatively 𝑘 =  75  =  16 807, 𝑐 =  0, 𝑚 =  231 − 1 =  2 147 483 647; Ripley, 1987, p. 39). 

• We calculate the sequence of random numbers 𝑢𝑖  with uniform distribution in 

[0,1] as 𝑢𝑖 = 𝑞𝑖/𝑚. 

 Obviously, this is a simple algorithm, purely deterministic. Why the numbers it 

generates are regarded as random? The answer is simple: Because if we do not know the 

algorithm and the initial condition (𝑞0 or 𝑞𝑖 − 1) we cannot predict these numbers. As most 

algorithms, like this one, are purely deterministic, sometimes the numbers are called 

pseudorandom. But this implies the idea that there exists another category of true or 

genuine random numbers. Even though in the literature references to true random 

numbers abound, this may reflect a misunderstanding of the notion of randomness and a 

dichotomic view of natural processes (cf. Koutsoyiannis, 2010; Dimitriadis et al., 2016). 

In any process of the macroscopic world, if we were able to know the “algorithm” (the 
system dynamics), and the initial conditions with full precision, the situation would be the 

same as with the simple algorithm described. The fact that we are not able to precisely 

know the algorithm of a physical process and the initial conditions does not make the 

numbers of different type.  

 A more recent and better algorithm for random number generation with uniform 

distribution is the so-called Mersenne twister, which is available in most computer 

languages and software packages*.  

 Once we have a random generator for the uniform distribution, we can make one for 

any distribution 𝐹(𝑥). A direct (but sometimes time demanding) algorithm to produce 

random numbers 𝑥𝑖  from any distribution 𝐹(𝑥) is given by: 𝑥𝑖 = 𝐹−1(𝑢𝑖) (2.22) 

where 𝑢𝑖  is the sequence of random numbers with uniform distribution in [0,1]. This is 

very easy to apply in any computational environment.† However, there exist algorithms 

much faster than this for the most common distribution, which the interested reader can 

find in relevant probability books (e.g. Papoulis, 1990). 

2.7 Expectation 

Expectation is a key concept of stochastics, enabling a macroscopic view of a phenomenon 

or process in which the details are intentionally neglected. It converts a stochastic 

variable into a common one. 

 For a discrete stochastic variable 𝑥, taking on the values 𝑥1, 𝑥2, … , 𝑥𝐽 (where J could be ∞) with probability mass function 𝑃𝑗 ≡ 𝑃(𝑥𝑗) = 𝑃{𝑥 = 𝑥𝑗}, if 𝑔(𝑥) is an arbitrary 

function of 𝑥 (so that 𝑔(𝑥) is a stochastic variable per se), we define the expectation or 

expected value or mean of 𝑔(𝑥) as: 

 
* For example, for Excel (which by default includes the function rand) the Mersenne twister algorithm, called 
NtRand, can be found in www.ntrand.com/download/.  † For example, in Excel the function normsinv(rand()) generates random numbers from the normal 
distribution.  

http://www.ntrand.com/download/


CLASSICAL MOMENTS AND CUMULANTS  43 

E[𝑔(𝑥)] ≔∑𝑔(𝑥𝑗)𝑃(𝑥𝑗)𝐽
𝑗=1  (2.23) 

Likewise, for a continuous stochastic variable 𝑥 with density 𝑓(𝑥), the expectation is 

defined as: 

E[𝑔(𝑥)] ≔ ∫ 𝑔(𝑥)𝑓(𝑥)d𝑥∞
−∞  (2.24) 

 Expected values are common variables: for example, E[𝑥] and E[𝑔(𝑥)] are 

constants—neither functions of 𝑥 nor of 𝑥. That justifies the notation E[𝑥] instead of E(𝑥) 
or E(𝑥), which would imply functions of 𝑥 or 𝑥. 

2.8 Classical moments and cumulants 

For certain types of functions 𝑔(𝑥) we get very commonly used statistical parameters, as 

specified below: 

• The noncentral moment of order q (or the qth moment about the origin): 𝑔(𝑥) =  𝑥𝑞 , 𝜇𝑞′ ≔ E[𝑥𝑞] (2.25) 

• The mean (or the first moment): 𝑔(𝑥) =  𝑥, 𝜇 ≔ 𝜇1′ = E[𝑥] (2.26) 

• The central moment of order q: 𝑔(𝑥) = (𝑥 − 𝜇)𝑞 , 𝜇𝑞 ≔ E[(𝑥 − 𝜇)𝑞] (2.27) 

For q = 0 and 1 the central moments are respectively 1 and 0.  

• The variance: 𝑔(𝑥) = (𝑥 − 𝜇)2, 𝛾 ≔ E[(𝑥 − 𝜇)2] ≔ 𝜎2 (2.28) 

The variance is also denoted as var[𝑥]; its square root σ (also denoted as std[𝑥]) is 

called the standard deviation. 

 To distinguish the above quantities from other types of moments, to be introduced 

below, we call them classical moments. Amongst the moments of order higher than two, 

most used are the third and fourth. If we standardize them by appropriate powers of σ to 

make them dimensionless, we get, respectively, the coefficients of skewness and kurtosis: 𝐶s ≔ 𝜇3𝜎3 , 𝐶k ≔ 𝜇4𝜎4 (2.29) 

Other dimensionless indices are the ratios: 𝜇𝜎 , 𝜎𝜇 ≕ 𝐶v (2.30) 
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Where the former is always meaningful, while the latter is meaningful for 𝜇 ≠ 0 (e.g. for 

nonnegative stochastic variables) and is called coefficient of variation.  

 Central and noncentral moments are related to each other by: 

𝜇𝑞′ =∑(𝑞𝑖)𝑞
𝑖=0 𝜇𝑞−𝑖𝜇𝑖, 𝜇𝑞 =∑(𝑞𝑖)𝑞

𝑖=0 (−𝜇)𝑞−𝑖𝜇𝑖′ (2.31) 

where 𝜇0 = 𝜇0′ = 1, 𝜇1 = 0, 𝜇1′ = 𝜇. Proof of these relationships is given in Appendix 6-II. 

For small q they take the following forms: 𝜇2′ = 𝜎2 + 𝜇2, 𝜇3′ = 𝜇3 + 3𝜎2𝜇 + 𝜇3, 𝜇4′ = 𝜇4 + 4𝜇3𝜇 + 6𝜎2𝜇2 + 𝜇4 (2.32) 

and can be inverted as follows: 𝜎2 = 𝜇2′ − 𝜇2, 𝜇3 = 𝜇3′ − 3𝜇2′ 𝜇 + 2𝜇3, 𝜇4 = 𝜇4′ − 4𝜇3′ 𝜇 + 6𝜇2′ 𝜇2 − 3𝜇4 (2.33) 

 For ready reference, Table 2.3 provides the analytical expressions of the moments of 

some common distribution functions. 

 Another useful expectation is formed by choosing 𝑔(𝑥) = e𝑡𝑥 for any t. The logarithm 

of the resulting expectation is called the cumulant generating function: 𝐾(𝑡) ≔ ln E[e𝑡𝑥] (2.34) 

The power series expansion of the cumulant generating function i.e.: 

𝐾(𝑡) =  ∑𝜅𝑞 𝑡𝑞𝑞!∞
𝑞=1  (2.35) 

defines the cumulants 𝜅𝑞 . These are related to noncentral moments of similar order by 

(Smith, 1995): 

𝜇𝑞′ =∑(𝑞 − 1𝑖 )𝑞−1
𝑖=0 𝜅𝑞−𝑖𝜇𝑖′, 𝜅𝑞 = 𝜇𝑞′ −∑(𝑞 − 1𝑖 )𝑞−1

𝑖=1 𝜅𝑞−𝑖𝜇𝑖′ (2.36) 

For small q they take the following forms: 𝜅0 = 𝜇1 = 0, 𝜅1 = 𝜇1′ = 𝜇, 𝜅2 = 𝜇2, 𝜅3 = 𝜇3, 𝜅4 = 𝜇4 − 3𝜇22 (2.37) 

The importance of cumulants results from their homogeneity and additivity properties. 

Namely, for a stochastic variable that is the weighted sum of r independent variables 𝑣𝑖, 
i.e., 𝑥 = 𝑎1𝑣1 +⋯+ 𝑎𝑟𝑣𝑟 , the qth cumulant of 𝑥 is given as 𝜅𝑞 = 𝑎1𝑞 𝜅𝑞(𝑣1) +⋯+ 𝑎𝑟𝑞 𝜅𝑞(𝑣𝑟)  (2.38) 

where 𝜅𝑞(𝑣𝑙) is qth cumulant of 𝑣𝑙 . This property is quite useful in stochastic simulation 

(see Chapter 7). 
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Table 2.3 Some common distributions of continuous variables and their moments (and 
cumulants when their expressions are simple). 

Name, parameters, 

domain 

Probability density or 

distribution function 

Moments and cumulants 

Uniform in [𝑎, 𝑏], 𝑎 ≤ 𝑥 ≤ 𝑏 
𝑓(𝑥) =  

1𝑏 − 𝑎 𝜇1′ = 𝑎 + 𝑏2 ,    𝜇2 = (𝑏 − 𝑎)212 ,    𝜇𝑞′ = 𝑏𝑞+1 − 𝑎𝑞+1(𝑞 + 1)(𝑏 − 𝑎) 
Beta, 0 ≤ 𝑥 ≤ 𝑏 𝘁 > 0, 𝜍 > 0, 𝜆 > 0 𝑓(𝑥)  = (𝑥𝑏)𝜁−1 (1 − 𝑥𝑏)𝜍−1Β(𝘁, 𝜍)   𝜇𝑞′ = Γ(𝘁 + 𝜍) Γ(𝑞 + 𝘁)Γ(𝘁) Γ(𝑞 + 𝘁 + 𝜍) 𝑏𝑞 = Β(𝑞 + 𝘁, 𝜍)Β(𝘁, 𝜍)  

Exponential  𝜇 > 0, 𝑥 ≥ 0 𝑓(𝑥) = e–𝑥𝜇𝜇  
𝜇1′ = 𝜇, 𝜇2 = 𝜇2, 𝜇𝑞′ = 𝑞! 𝜇𝑞 , 𝜅𝑞 = (𝑞 − 1)! 𝜇𝑞  

Gamma 𝘁 > 0, 𝜆 > 0, 𝑥 ≥ 0 
𝑓(𝑥) = (𝑥 𝜆⁄ )𝜁−1e–𝑥/𝜆𝜆 Γ(𝘁)   𝜇1′ = 𝘁𝜆, 𝜇2 = 𝘁𝜆2, 𝜇𝑞′ = Γ(𝑞 + 𝘁)Γ(𝘁) 𝜆𝑞 , 𝜅𝑞 = 𝘁(𝑞 − 1)! 𝜆𝑞  

Weibull 𝘁 > 0, 𝜆 > 0, 𝑥 ≥ 0 
𝐹(𝑥) = 1 − exp (−(𝑥𝜆)𝜁) 

𝜇1′ = Γ(1 + 1𝘁) 𝜆,    𝜇2 = (Γ(1 + 2𝘁) − Γ (1 + 1𝘁)2) 𝜆2 𝜇𝑞′ = Γ (1 + 𝑞𝘁) 𝜆𝑞  

Normal  𝜇 ∈ ℝ, 𝜎 > 0,𝑥 ∈ ℝ 
𝑓(𝑥) = exp (− (𝑥 − 𝜇)22𝜎2 )√2π𝜎  

𝜇1′ = 𝜇, 𝜇2 = 𝜎2, 𝜇𝑞 = {0, 𝑞 odd𝜎𝑞(𝑞 − 1)‼, 𝑞 even ,   
𝜅𝑞 = {𝜇1′ = 𝜇, 𝑞 = 1𝜎2 𝑞 = 20 𝑞 > 2 

Lognormal (ln 𝑥 is Ν(ln 𝜆 , 𝜍)) 𝜍 > 0, 𝜆 > 0, 𝑥 ≥ 0 
𝑓(𝑥) = exp (− 12𝜍2 (ln (𝑥𝜆))2)√2π 𝜍𝑥  𝜇1′ = e𝜍22 𝜆,     𝜇2 = e𝜍2(e𝜍2 − 1)𝜆2,     𝜇𝑞′ = e𝑞2𝜍22 𝜆𝑞  

Pareto1  𝜉 > 0, 𝜆 > 0, 𝑥 ≥ 0 𝐹(𝑥) = 1 − (1 + 𝜉 𝑥𝜆)−1𝜉  

𝐾1′ = 𝜆1 − 𝜉 , 𝜇2 = 𝜆2(1 − 𝜉)2(1 − 2𝜉) 𝜇𝑞′ = B(1𝜉 − 𝑞, 𝑞 + 1) 𝜆𝑞𝜉𝑞+1 

Pareto-Burr-
Feller1 (PBF)2 𝘁 > 0, 𝜉 > 0,𝜆 > 0, 𝑥 ≥ 0 

𝐹(𝑥) = 1 − (1 + 𝘁𝜉 (𝑥𝜆)𝜁)− 1𝜉𝜁  
𝜇𝑞′ = B( 1𝜉𝘁 − 𝑞𝘁 , 𝑞𝘁 + 1) 𝜆𝑞(𝜉𝘁)𝑞𝜁+1 

Dagum1 𝘁 > 0, 𝜉 > 0,𝜆 > 0, 𝑥 ≥ 0 
𝐹(𝑥) = (1 + 1𝘁 (𝑥𝜆)−1𝜉)−𝜁𝜉  𝜇𝑞′ = 𝜉𝘁1−𝜉𝑞  B(1 − 𝜉𝑞, 𝜉(𝑞 + 𝘁))𝜆𝑞  

Extreme value 
type I (EV1) 𝜆 > 0, 𝑥 ∈ ℝ 

𝐹(𝑥) = exp (−e−𝑥𝜆) 𝜇1′ = γ𝜆, 𝜇2 = π2𝜆26 , 𝜅𝑞 = (−1)𝑞ψ(𝑞−1)(1)𝜆𝑞  

Extreme value 

type II (EV2)1 𝜉 > 0, 𝜆 > 0, 𝑥 ≥ 0 

𝐹(𝑥) = exp (−𝜉 (𝑥𝜆)−1𝜉) 
𝜇1′ = 𝜉𝜉Γ(1 − 𝜉)𝜆, 𝜇2 = 𝜉2𝜉(Γ(1 − 2𝜉) − Γ(1 − 𝜉)2)𝜆2 𝜇𝑞′ = 𝜉𝑞𝜉Γ(1 − 𝑞𝜉)𝜆𝑞  

1 The moments exist (have finite values) only for order 𝑞 < 1 𝜉⁄ ; for larger q they are infinite.  
2 Also known as Pareto III and IV, Burr XII and Feller; for justification of the name PBF see Koutsoyiannis et al. (2018). 
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Digression 2.F: Illustration of the first four classical moments and related 

statistical characteristics 

The geometrical meaning of the first four classical moments is visualized in Figure 2.2. Essentially, 
the first moment, i.e. the mean, describes the abscissa of the centre of gravity of the shape defined 
by the probability density function and the horizontal axis (Figure 2.2a). It is also equivalent with 
the static moment of this shape about the vertical axis (given that the area of the shape equals 1). 
Often, the following quantities are alternatively used as location parameters:  • The mode, or most probable value, 𝑥m, is the value of 𝑥 for which the density 𝑓(𝑥) becomes 

maximum, if the stochastic variable is continuous, or, for discrete variables, the probability 
mass becomes maximum. If 𝑓(𝑥) has one, two or many local maxima, we say that the 
distribution is unimodal, bi-modal or multi-modal, respectively.  • The median, 𝑥0.5, is the value for which 𝑃{𝑥 ≤ 𝑥0.5} ≥ 1/2 and 𝑃{𝑥 ≥ 𝑥0.5} ≥ 1/2. Thus, for a 
continuous stochastic variable, a vertical line at the median separates the graph of the density 
function into two equivalent parts each having an area of 1/2. 

 Generally, the mean, the mode and the median are not identical unless the density has a 
symmetrical and unimodal shape.  

 

Figure 2.2 Graphical illustration of the geometrical interpretation of moments of a stochastic variable: (a) 

Effect of the mean. Curves (0) and (1) have means 4 and 2, respectively, whereas they both have standard 
deviation 1, coefficient of skewness 1 and coefficient of kurtosis 4.5. (b) Effect of the standard deviation. 
Curves (0) and (1) have standard deviation 1 and 2 respectively, whereas they both have mean 4, coefficient 
of skewness 1 and coefficient of kurtosis 4.5. (c) Effect of the coefficient of skewness. Curves (0), (1) and (2) 
have coefficients of skewness 0, +1.33 and –1.33, respectively, but they all have mean 4 and standard 
deviation 1; their coefficients of kurtosis are 3, 5.67 and 5.67, respectively. (d) Effect of the coefficient of 

kurtosis. Curves (0), (1) and (2) have coefficients of kurtosis 3, 5 and 2, respectively, whereas they all have 
mean 4, standard deviation 1 and coefficient of skewness 0.  

 The variance of a stochastic variable and its square root, the standard deviation, which has 
the same dimensions as the stochastic variable, describe a measure of the scatter or dispersion of 
the probability density around the mean. Thus, a small variance shows a concentrated 
distribution (Figure 2.2b). The variance cannot be negative; its lowest possible value is zero. This 
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corresponds to a variable that takes one value only (the mean) with absolute certainty. 
Geometrically, the variance is equivalent to the moment of inertia about the vertical axis passing 
from the centre of gravity of the shape defined by the probability density function and the 
horizontal axis.  
 Alternative measures of dispersion are provided by the so-called interquartile range, defined 
as the difference 𝑥0.75 − 𝑥0.25, i.e., the difference of the 0.75 and 0.25 quantiles (or upper and 
lower quartiles) of the stochastic variable (they define an area in the density function equal to 
0.5).  
 The third central moment is used as a measure of skewness. A zero value indicates that the 
density is symmetric. This can be easily verified from the definition of the third central moment. 
If the third central moment is positive or negative, we say that the distribution is positively or 
negatively skewed respectively (Figure 2.2c). In a positively skewed unimodal distribution, 𝑥m ≤𝑥0.5 ≤ 𝜇; the reverse inequality holds for a negatively skewed distribution.  
 The fourth central moment is used as a measure of kurtosis, a term which describes the “peakedness” of the probability density function around its mode. A reference value for kurtosis 
is provided by the normal distribution, which has 𝐶k = 3. Distributions with kurtosis greater than 
the reference value are called leptokurtic (acute, sharp) and have typically heavy upper tail (see 
below), so that more of the variance is due to infrequent extreme deviations, as opposed to 
frequent modestly-sized deviations. Distributions with kurtosis less than the reference value are 
called platykurtic (flat; Figure 2.2d). 

2.9 Definition and importance of entropy 

The enumeration of the basic set and hence the definition of a stochastic variable entails 

arbitrary choices and one could think of different options. In turn, expectations and 

moments depend on the option chosen. One may think of defining the function g( ) whose 

expectation is sought, in terms of the probability per se, i.e. 𝑔(𝑥) = ℎ(𝑃(𝑥)) for a discrete 

variable or 𝑔(𝑥) = ℎ (𝑓(𝑥)) for a continuous variable, where h( ) is any specified 

function. Among the several choices of ℎ( ), most useful is the logarithmic function, which 

results in the definition of entropy. The emergence of the logarithm in the definition of 

entropy follows some postulates originally set up by Shannon (1948). Assuming a discrete 

stochastic variable 𝑥 taking on values 𝑥𝑗  with probability mass function 𝑃𝑗 ≡ 𝑃(𝑥𝑗) =𝑃{𝑥 =  𝑥𝑗}, 𝑗 =  1, … , 𝐽, which satisfies the obvious relationship: 

∑𝑃𝑗 = 1J

j = 1  (2.39) 

the postulates, as reformulated by Jaynes (2003, p. 347), are: 

(a) It is possible to set up a numerical measure Φ of the amount of uncertainty which 

is expressed as a real number. 

(b) Φ is a continuous function of 𝑃𝑗 . 
(c) If all the 𝑃𝑗  are equal (𝑃𝑗 = 1/𝐽) then Φ should be a monotonic increasing function 

of J. 

(d) If there is more than one way of working out the value of Φ, then we should get the 

same value for every possible way.  
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Quantification of postulate (d) is given, among others, in Robertson (1993, p. 3) and Uffink 

(1995; theorem 1), and is related to refinement of partitions to which the probabilities 𝑃𝑗  
refer.  

 From these general postulates about uncertainty, a unique (within a multiplicative 

factor) function Φ results, which serves as the definition of entropy: 

𝛷[𝑥] ≔ E[– ln 𝑃(𝑥)]  = –∑Pj ln Pj

J
j = 1  (2.40) 

Shannon’s work leading to the above definition was on information theory, but followed 
the works of Boltzmann, Gibbs and Planck in thermodynamics. Additional notes on the 

historical evolution of the entropy concept are given in Digression 2.G. We note that in 

classical thermodynamics, entropy is denoted by S (the original symbol used by Clausius), 

while probability texts use the symbol H. Here Φ was preferred as a unifying symbol for 

information and thermodynamic entropy, under the interpretation that the two are 

essentially the same thing* (see Koutsoyiannis, 2013a, 2014a, even though others are of 

different opinion).  

 Extension of the above definition for the case of a continuous stochastic variable 𝑥 

with probability density function 𝑓(𝑥), where: 

∫ 𝑓(𝑥)d𝑥 = 1∞
−∞  (2.41) 

is possible, although not contained in Shannon’s (1948) original work. This extension 

presents some additional difficulties. Specifically, if we discretize the domain of 𝑥 into 

intervals of size δ𝑥, then (2.40) would give an infinite value for the entropy as δ𝑥 tends to 

zero (the quantity − ln𝑃 = − ln(𝑓(𝑥) δ𝑥) will tend to infinity). However, if we involve a 

(so-called) background measure with density 𝛽(𝑥) and take the ratio (𝑓(𝑥)δ𝑥)/(𝛽(𝑥)δ𝑥) = 𝑓(𝑥)/𝛽(𝑥), then the logarithm of this ratio will generally converge. This 

allows the definition of entropy for continuous variables as (see e.g. Jaynes, 2003, p. 375, 

Uffink, 1995): 

𝛷[𝑥] ≔ E [– ln 𝑓(𝑥)𝛽(𝑥)] = − ∫ ln 𝑓(𝑥)
β(𝑥) f(𝑥)d𝑥∞

−∞  (2.42)  

The background measure 𝛽(𝑥) can be any probability density, proper (with integral equal 

to 1, as in (2.41)) or improper (meaning that its integral diverges); typically, it is an 

(improper) Lebesgue density, i.e. a constant with dimensions [𝛽(𝑥)] = [𝑓(𝑥)] = [𝑥−1], so 

that the argument of the logarithm function be dimensionless. It can be easily shown that 

for 𝛽(𝑥) = 𝛽 = constant, equation (2.42) can be expressed in a simpler manner in terms 

of the derivative of the quantile function 𝑥(𝐹) as: 

 
* One of the reasons for this preference is historical: for a long time, entropy used to be denoted by Φ (Perry, 
1903; Swinburne, 1904; Ewing, 1920), and this is still echoed in the term tephigram (T-Φ-gram) used in 
meteorology. 
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𝛷[𝑥] ≔ ∫ ln(β 𝑥′(𝐹))d𝐹1
0  (2.43)  

This is useful for the numerical evaluation of 𝛷[𝑥], particularly when the quantile function 

is estimated empirically, provided that the estimated 𝑥(𝐹) is smooth, so that its derivative 

can be reliably estimated (see Chapter 6). 

 It is easily seen that for both discrete and continuous variables the entropy 𝛷[𝑥] is a 

dimensionless quantity. For discrete variables it can only take positive values, while for 

continuous variables it can be either positive or negative, depending on the assumed 𝛽(𝑥). 
In contrast to the discrete variables where the entropy for a specified probability mass 

function is a unique number, in continuous variables the value of entropy depends on the 

assumed 𝛽(𝑥). 
 The importance of the entropy concept relies on the principle of maximum entropy 

(Jaynes, 1957). This postulates that the entropy of a stochastic variable 𝑥 should be at 

maximum, under some conditions, formulated as constraints, which incorporate the 

information that is given about this variable. This principle can be used for logical 

inference as well as for modelling physical systems; for example, the tendency of entropy 

to become maximal (Second Law of thermodynamics), a tendency that is the driving force 

of natural change, can result from this principle. On the other hand, the same principle 

equips the entropy concept with a powerful tool for logical inference. 

Digression 2.G: The meaning of entropy 

Entropy is etymologized from the ancient Greek ἐντροπία (from the verb ἐντρέπειν, to turn into, 
to turn about) but was introduced as a scientific term by Rudolf Clausius only in 1865, although 
the concept appears also in his earlier works (as described in Clausius, 1872). The rationale for 
introducing the term is explained in his own words (Clausius, 1867, p. 358, which indicates that 
he was not aware of the existence of the word ἐντροπία in ancient Greek): 

 We might call S the transformational content of the body […]. But as I hold it to be better to 

borrow terms for important magnitudes from the ancient languages, so that they may be 

adopted unchanged in all modern languages, I propose to call the magnitude S the entropy of 

the body, from the Greek word τροπή, transformation. I have intentionally formed the word 

entropy so as to be as similar as possible to the word energy; for the two magnitudes to be 

denoted by these words are so nearly allied in their physical meanings, that a certain similarity 

in designation appears to be desirable. 

 In addition to its semantic content, this quotation contains a very important insight: the 
recognition that entropy is related to transformation and change and the contrast between 
entropy and energy, where the latter is a quantity that is conserved in all changes. This meaning has been more clearly expressed in Clausius’ famous aphorism (Clausius, 1865): 

 Die Energie der Welt ist konstant. Die Entropie der Welt strebt einem Maximum zu. 

 (The energy of the world is constant. The entropy of the world strives to a maximum). 

 In other words, entropy and its ability to increase (as contrasted to energy and other 
quantities that are conserved) is the driving force of change. This property of entropy has seldom 
been acknowledged (Hill and Holman, 1986; Atkins, 2003, 2007). Instead, in common perception entropy epitomizes all “bad things”, as if it were disconnected from change, or as if change can 
only have negative consequences, always leading to deterioration (Koutsoyiannis and Sargentis, 
2021; see also Digression 2.I).  
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 Mathematically, the thermodynamic entropy, S, is defined in the same Clausius’ texts through 
the equation δ𝑆 = δ𝑄/𝑇, where Q and T denote heat and temperature. The definition, however, 
applies to a reversible process only. The fact that in an irreversible process δ𝑆 > δ𝑄/𝑇 makes the 
definition imperfect and affected by circular reasoning, as, in turn, a reversible process is one in 
which the equation holds.  
 Two decades later, Ludwig Boltzmann (1877; see also Swendsen, 2006) gave entropy a 
statistical content as he linked it to probabilities of statistical mechanical system states, thus 
explaining the Second Law of thermodynamics as the tendency of the system to run toward more 
probable states, which have higher entropy. The probabilistic concept of entropy was advanced 
later in thermodynamics by Gibbs (1902), while Planck (1906, 1914) generalized its definition, 
thus approaching the modern one. 
 The next important step was made by Shannon (1948) who used a definition essentially similar to Planck’s to describe the information content, which he also called entropy, at von Neumann’s suggestion (Robertson, 1993; Brissaud, 2005; Koutsoyiannis, 2011b). According to 
the latter definition, entropy is a probabilistic concept, a measure of information or, equivalently, 
uncertainty. In the same year, in his famous book Cybernetics,1 Wiener (1948a) used the same 
definition for information, albeit with a negative sign (p. 62) because he regarded information as 
the negative of entropy (p. 11).  
 A few years later, von Neumann (1956) obtained virtually the same definition of entropy as 
Shannon, in a slightly different manner. Notably, as von Neumann, in addition to being a 
mathematician and computer scientist, was also a physicist, engineer and polymath, he clearly 
understood the connection of the probabilistic definition of entropy with its pre-existing physical 
content. Specifically, he wrote: 

 An important observation about this definition is that it bears close resemblance to the 

statistical definition of the entropy of a thermodynamical system. […] Pursuing this, one can 

construct a mathematical theory of the communication of information patterned after 

statistical mechanics. 

He also cited an earlier work in physics by Szilard (1929), who implied the same definition of 
entropy in a thermodynamic system. However, mathematical expressions similar to Shannon’s 
definition of entropy had already appeared in a thermodynamic context in Boltzmann 
(1896/1898), Gibbs (1902) and especially Planck (1906, 1914). 
 The last fundamental contribution to the entropy concept was made a year later by Jaynes 
(1957), who introduced the principle of maximum entropy, which is described in section 2.9. 
 More than half a century later, the meaning of entropy is still debated and a diversity of 
opinion among experts is encountered (Swendsen, 2011). In particular, despite having the same 
name, probabilistic (or information) entropy and thermodynamic entropy are still regarded by 
many as two distinct notions having in common only the name. The classical definition of 
thermodynamic entropy (as above) does not give any hint about similarity with the probabilistic 
entropy. The fact that the latter is a dimensionless quantity and the former has units (J/K) has 
been regarded as an argument that the two are dissimilar. Even Jaynes (2003), the founder of the 
maximum entropy principle, states: 

 We must warn at the outset that the major occupational disease of this field is a persistent 

failure to distinguish between the information entropy, which is a property of any probability 

distribution, and the experimental entropy of thermodynamics, which is instead a property of a 

thermodynamic state as defined, for example by such observed quantities as pressure, volume, 

temperature, magnetization, of some physical system. They should never have been called by 

the same name; the experimental entropy makes no reference to any probability distribution, 

and the information entropy makes no reference to thermodynamics. Many textbooks and 

research papers are flawed fatally by the author’s failure to distinguish between these entirely 

different things, and in consequence proving nonsense theorems. 

 However, the units of thermodynamic entropy are only an historical accident, related to the 
arbitrary introduction of temperature scales (Atkins, 2007). In a recent book, Ben-Naim (2008) 
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has attempted to replace the concept of entropy altogether with the concept of information. Still, 
such a replacement is unnecessary or even meaningless (and opposite to von Neumann’s 
suggestion to Shannon) if we accept that the two concepts are identical. As has recently been 
shown (Koutsoyiannis, 2013a, 2014a), the thermodynamic entropy of gases can be easily 
produced by the formal probability theory without the need of strange assumptions (e.g. 
indistinguishability of particles). The logical basis of the latter study includes the following points: • The classical definition of thermodynamic entropy is not necessary; it can be abandoned and 

replaced by the probabilistic definition. • The thus defined entropy is the fundamental thermodynamic quantity, which supports the 
definition of all other derived ones. For example, the temperature is defined as the inverse of 
the partial derivative of entropy with respect to the internal energy (see Digression 10.D). • The entropy retains its dimensionless character even in thermodynamics, thus rendering the 
unit of kelvin an energy unit. • The entropy retains its probabilistic interpretation as a measure of uncertainty, leaving aside the traditional but obscure ‘disorder’ interpretation (see Digression 2.I).  • The entropy concept is complemented by the principle of maximum entropy, which states that 
entropy tends to take the maximum value that is allowed, given the available information 
about the system. The latter is incorporated into maximization in the form of constraints.  • The tendency of entropy to reach a maximum is the driving force of natural change. This 
tendency can be regarded both as a physical (ontological) principle obeyed by natural 
systems, as well as a logical (epistemological) principle applicable in making inference about 
natural systems. 

 Examples of deductive reasoning in deriving thermodynamic laws from the formal 
probabilistic principle of maximum entropy have been provided in Koutsoyiannis (2014a). 
Notable among them is the derivation of the law of phase transition of water (Clausius-Clapeyron 
equation) by maximizing entropy, i.e. uncertainty, at the microscopic level, yet leading to an 
expression that is virtually certain at a macroscopic level (see Digression 10.D). 
__________ 
1 Interestingly, Wiener formed the celebrated term Cybernetics from the Greek word κυβερνήτης, meaning 
steersman, pilot, skipper, or governor, albeit incorrectly spelling it in his book (p. 11) as χυβερνήτης. 

 

Digression 2.H: Illustration of the principle of maximum entropy  

Here we illustrate the maximum entropy (ME) principle in a few simple cases. The examples may 
look trivial. However, we must have in mind that, as already mentioned in Digression 2.G, with 
the same reasoning we can infer more interesting things, such as the saturation vapour pressure 
in the atmosphere (Digression 10.D). The logic is the same: we maximize the uncertainty with 
respect to the state of a die or a water molecule.  

(a) We thus start from the simple example of determining the probabilities of the outcomes of a 
die throw. For the die the entropy is:  𝛷 =  E[– ln 𝑃(𝑥)] = −𝑃1 ln 𝑃1 − 𝑃2 ln 𝑃2 − 𝑃3 ln 𝑃3 − 𝑃4 ln 𝑃4 − 𝑃5 ln 𝑃5 − 𝑃6 ln 𝑃6  
Considering also the equality constraint:  𝑃1 + 𝑃2 + 𝑃3 + 𝑃4 + 𝑃5 + 𝑃6 = 1 

we form the objective function to maximize as: 𝐴 ≔ −𝑃1 ln 𝑃1 − 𝑃2 ln 𝑃2 − 𝑃3 ln 𝑃3 − 𝑃4 ln 𝑃4 − 𝑃5 ln 𝑃5 − 𝑃6 ln 𝑃6+ 𝑎(𝑃1 + 𝑃2 + 𝑃3 + 𝑃4 + 𝑃5 + 𝑃6 − 1) 
where a is a Lagrange multiplier. We find the partial derivatives with respect to each of the 
variables and equate them to zero, obtaining: 
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 𝜕𝐴𝜕𝑃1 = −1 − ln𝑃1 + 𝑎 = 0 , … , 𝜕𝐴𝜕𝑃6 = −1 − ln𝑃6 + 𝑎 = 0  
 Obviously, the solution of these equations yields the single maximum: 𝑃1 = 𝑃2 = 𝑃3 = 𝑃4 = 𝑃5 = 𝑃6 = 1/6 

The entropy is Φ = –6 (1/6) ln (1/6) = ln 6. In general, the entropy for J equiprobable outcomes 
is: 𝛷 = ln 𝐽 (2.44) 

It is noted that entropy and information are complementary to each other. When we know 
(observe) that the outcome is 𝑖 (𝑃𝑖 = 1, 𝑃𝑗 = 0 for 𝑗 ≠ 𝑖), the entropy is zero. 
 In the above case of a fair die throw, the application of the ME principle is equivalent to the 
principle of insufficient reason (attributed to Bernoulli and Laplace). However, while the former is 
a variational law (equivalent to the solution of an optimization problem), the latter is formulated 
in terms of equations. A single variational law is always much more powerful than very many 
equations. Actually, from a variational law we derive as many equations as there are unknowns 
(even an infinite number of equations). And as we showed, in this case the variational ME 
principle entails the principle of insufficient reason, and thus there is no need at all to postulate 
the latter as an additional philosophical or scientific principle.  

(b) To illustrate that the variational ME principle is more powerful than the principle of 
insufficient reason, we consider the following variant of the problem in which uniformity is a 
priori excluded. Specifically, we assume that the die is loaded and that we have prior information 
that 𝑃6 = 2𝑃1. What is the probability that the outcome of a die throw will be 𝑖 in this case? For 
the ME optimization we only need to take into account the additional constraint, by adding to the 
objective function the term 𝑏(𝑃6 − 2𝑃1) where b is an additional Lagrange multiplier. The solution 
of the optimization problem is a single maximum, 𝑃2 = 𝑃3 = 𝑃4 = 𝑃5 = 0.1698 (slightly >1/6), 𝑃1 = 0.1069, 𝑃6 = 0.2139. The entropy is 𝛷 = 1.7732, smaller than in the case of equiprobability, 
in which 𝛷 = ln6 = 1.792. The decrease of entropy in the loaded die derives from the additional 
information incorporated in the constraints. 

(c) In another example we consider a roulette wheel which is not divided into pockets, but its 
outcome is a real number measured on a circular scale graded 0 to J. In this case our stochastic 
variable 𝑥 is of continuous type. Assuming background density 𝛽(𝑥) = 1, the entropy is  

𝛷[𝑥]  = −∫ ln 𝑓(𝑥) f(𝑥)d𝑥𝐽
0  

Considering also the constraint (2.41) with a Lagrange multiplier a, we should maximize: 

𝐴 ≔ −∫ ln 𝑓(𝑥) f(𝑥)d𝑥𝐽
0 − 𝑎(∫𝑓(𝑥)d𝑥 − 1𝐽

0 ) 

Finding the partial derivative with respect to f and equating it to zero we obtain: 𝜕𝐴𝜕𝑓 = −1 − ln𝑓 − 𝑎 = 0 

Hence 𝑓 = exp(−1 − 𝑎) = constant and from the constraint we obtain that the entropy 
maximizing density is: 𝑓(𝑥) = 1/𝐽 (2.45) 

and the entropy is: 
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𝛷 = ln 𝐽  (2.46) 

This is the uniform distribution, given in Table 2.2. Notice that the expression of maximum 
entropy for a discrete stochastic variable (equation (2.44)) is identical to that of a continuous 
stochastic variable (equation (2.46)). 

(d) If in the uniform distribution the upper bound J tends to ∞ (while the lower bound remains 
0), it becomes improper (𝑓(𝑥) = 0). Therefore, in this case we need an additional constraint to 
find a proper distribution. The simplest one that we can think of is that the distribution has a 
specified mean μ, i.e.: 

∫ 𝑥𝑓(𝑥)d𝑥 = 𝜇∞
0  

The expression of the entropy is the same as in the example (c), but the objective function to 
maximize becomes: 

𝐴 ≔ −∫ ln𝑓(𝑥) f(𝑥)d𝑥∞
0 − 𝑎(∫ 𝑓(𝑥)d𝑥 − 1∞

0 )− 𝑏(∫ 𝑥𝑓(𝑥)d𝑥 − 𝜇∞
0 ) 

Thus, 𝜕𝐴𝜕𝑓 = −1 − ln𝑓 − 𝑎 − 𝑏𝑥 = 0 

and  𝑓(𝑥) = 𝐵 exp(−𝑏𝑥) 
where from the two constraints we find, after the algebraic operations, that B = b = 1/μ. This is 
the exponential distribution given in Table 2.2. It is very common in physics, as the mean 
constraint, from which it results, is omnipresent. For example, if 𝑥 represents the kinetic energy 
of one of many particles moving in a box, we do not know the exact energy of each particle (which 
may change due to collisions, assumed to be elastic) but we may know the average μ, which is 
preserved according to the related physical principle (energy conservation). Consequently, the 
distribution of the kinetic energy is exponential.  

(e) If in the above example of moving particles, we limit the motion on a straight line and we 
choose as stochastic variable 𝑥 not the kinetic energy but the velocity, which can be either positive 
or negative, the kinetic energy constraint is written as  

∫ 𝑥2𝑓(𝑥)d𝑥 = 𝛾∞
0  

where γ is twice the average kinetic energy per unit mass. The objective function to maximize 
becomes: 

𝐴 ≔ −∫ ln𝑓(𝑥) 𝑓(𝑥) d𝑥∞
0 − 𝑎(∫ 𝑓(𝑥)d𝑥 − 1∞

0 )− 𝑏(∫ 𝑥2𝑓(𝑥)d𝑥 − 𝛾∞
0 ) 

Thus, 𝜕𝐴𝜕𝑓 = −1 − ln𝑓 − 𝑎 − 𝑏𝑥2 = 0 

and  𝑓(𝑥) = 𝐵 exp(−𝑏𝑥2) 
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where from the two constraints we find, after the algebraic operations, that 𝛣 = √2π𝛾, b = 1/2γ. 
This is the normal distribution given in Table 2.2, with μ = 0 and standard deviation 𝜎 = √𝛾. 
 In fact, all distributions of Table 2.2 turn out to be entropy maximizing distributions, either 
without a constraint or under a simple constraint in each case. The results are summarized in 
Table 2.4.  

Table 2.4 Entropy of the most common distributions of Table 2.2, which turn out to be entropy 
maximizing distributions for Lebesgue background density (𝛽(𝑥) = 1) with simple constraints. 

Name (and 
parameters) 

Probability density and 
distribution function 

Corresponding entropy for unit background 
measure 

Discrete variable 𝑥 with values 𝑥𝑗 
Discrete 
uniform, 𝑥𝑗 = 1,… , 𝐽  𝑃(𝑥𝑗) = 1 𝐽 ⁄ ,  𝐹(𝑥) = max(0,min(⌊𝑥⌋ 𝐽⁄ , 1)) 𝛷[𝑥] = ln 𝐽  

(the maximum among all distributions 
with 𝑥𝑗 = 1,… , 𝐽) 

Geometric 𝑥𝑗 = 0,1,… 
(𝜇 > 0) 

𝑃(𝑥𝑗) =  
11 + 𝜇 ( 𝜇1 + 𝜇)𝑗 𝐹(𝑥)= max(0, 1 − 11 + 𝜇 ( 𝜇1 + 𝜇)⌊𝑥⌋) 

𝛷[𝑥] = ln((𝜇 + 1)𝜇+1𝜇𝜇 ) ≈  1 + ln(𝜇 + 1/e)  
(the maximum among all distributions 
with 𝑥𝑗 = 0,1,… , and mean μ) 

Continuous variable 𝑥  

Uniform in 
[0, J] 

𝑓(𝑥) =  {1/𝐽 for 0 ≤ 𝑥 ≤ 𝐽0 otherwise  

 
 𝐹(𝑥) = max(0,min(𝑥/𝐽, 1)) 𝛷[𝑥] = ln 𝐽  

(the maximum among all distributions with 
domain [0, α]) 

Exponential  
(μ > 0) 

𝑓(𝑥) =  {e–𝑥/𝜇 / 𝜇  𝑥 ≥ 00  𝑥 < 0 

 
 

𝐹(𝑥) =  {1 − e–𝑥/𝜇 for 𝑥 ≥ 00 for 𝑥 < 0 

 
 

𝛷[𝑥] = 1 + ln 𝜇 

(the maximum among all distributions with 
domain [0, ∞) and mean μ) 

Normal  
(𝜇 ∈ ℝ, 𝜎 > 0) 

𝑓(𝑥) = 1√2π𝜎 exp (− (𝑥 − 𝜇)22𝜎2 ) 

𝐹(𝑥) = 12 erfc (−𝑥 − 𝜇√2𝜎 )   

𝛷[𝑥] = 12 (1 + ln(2π)) + ln𝜎 = 1.419 + ln𝜎 

(the maximum among all distributions with 
domain (–∞,∞), mean μ and standard 
deviation σ) 

Note: ⌊𝑥⌋ denotes the floor of the number 𝑥. 

 

Digression 2.I: On different interpretations of entropy 

In the public perception, entropy has a negative content, and is typically identified with 
disorganization, disorder, decadence, decay, deterioration etc. (Koutsoyiannis and Sargentis, 
2021). This misleading perception has its roots in the scientific community, albeit not with the 
founders of the concept (except one, as seen below). Boltzmann did not identify entropy with 
disorder, even though he used the latter word in a footnote appearing in two papers of his 
(Boltzmann, 1897, 1901), in which he speaks about the 

 agreement of the concept of entropy with the mathematical expression of the probability or 

disorder of a motion. 
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Clearly, he speaks about the irregular motion of molecules in the kinetic theory of gases, for which 
his expression makes perfect sense. Boltzmann also used the notion of disorder with the same 
meaning, in his Lectures on Gas Theory (Boltzmann,1896/1898). On the other hand, Gibbs (1902), 
Shannon (1948) and von Neumann (1956) did not use the terms disorder or disorganization at 
all. 
 One of the earliest uses of the term disorder is in a paper by Darrow (1944), in which he 
states: 

 The purpose of this article has been to establish a connection between the subtle and difficult 

notion of entropy and the more familiar concept of disorder. Entropy is a measure of disorder, 

or more succinctly yet, entropy is disorder: that is what a physicist would like to say. Epistemologically, it is interesting that a physicist prefers the “more familiar” but fuzzy concept of disorder over the “subtle and difficult”, yet well-defined at his time, concept of entropy. 
 However, it appears that Wiener (1948b) was the most influential scientist to support the 
disorder interpretation. In his keynote speech at the New York Academy of Sciences he declared 
that: 

 Information measures order and entropy measures disorder. 

Additionally, in his influential book Cybernetics (Wiener, 1948a, p. 11), he stated that 

 the entropy of a system is a measure of its degree of disorganization wherein he replaced the term “disorder” with “disorganization”, as in this book he extensively 
used the former term for mental illness. 
 Even in the 21st century, the disorder interpretation is dominant. For example, Chaitin 
(2002) stated: 

 Entropy measures the degree of disorder, chaos, randomness, in a physical system. A crystal has 

low entropy, and a gas (say, at room temperature) has high entropy. 

More recently, Bailey (2009) claimed: 

 As a preliminary definition, entropy can be described as the degree of disorder or uncertainty in 

a system. If the degree of disorder is too great (entropy is high), then the system lacks 

sustainability. If entropy is low, sustainability is easier. If entropy is increasing, future 

sustainability is threatened. 

It is relevant to remark that in the latter quotations disorder has been used as equivalent to 
uncertainty or randomness—where the latter two terms are in essence identical (Koutsoyiannis, 
2010). Furthermore, the claim that a high-entropy system lacks sustainability is at least puzzling, 
given that the highest entropy occurs when a system is in the most probable (and hence most 
stable) state (cf. Moore, 2003). 
 Interestingly, Atkins (2003) also explained entropy as disorder. Additionally, he noted: 

 That the world is getting worse, that it is sinking purposelessly into corruption, the corruption 

of the quality of energy, is the single great idea embodied in the Second Law of thermodynamics. 

 There is no doubt that the notion of entropy entails difficulties in understanding, but this 
happens because our education is based on a deterministic paradigm. Indeed, it is difficult to 
incorporate a clearly stochastic concept, i.e., entropy, into a deterministic mindset. The notion of 
order looks determinist-friendly, and its opposite, disorder, has a negative connotation in the 
deterministic mindset. 
 However, the notions of order and disorder are less appropriate and less rigorous as scientific terms, and more appropriate in describing mental states (as in Wiener’s use described above; cf. 
personality disorder, stress disorder, bipolar disorder, mental disorder), and even more so in 
describing socio-political states. The latter is manifest in the frequent use of expressions such as “world order”, “new order”, “new world order”, “global order”, etc., in political texts 
(Koutsoyiannis and Sargentis, 2021). 
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 In one of the earliest critiques of the disorder interpretation of entropy, Wright (1970) made a plea for moderation in the use of “intuitive qualitative ideas concerning disorder”. More 
recently, with a more absolute tone, Leff (2012) stated: 

 The too commonly used disorder metaphor for entropy is roundly rejected. 

Furthermore, in an even more recent article, Styer (2019) stated: 

 we cannot stop people from using the word “entropy” to mean “disorder” or “destruction” or 
“moral decay.” But we can warn our students that this is not the meaning of the word “entropy” 
in physics. 

Styer attributes an excessive contribution to the misconception of entropy as disorder to the autobiographical book “The Education of Henry Adams” (Adams, 1918). He relates that it proved 
to be enormously influential, as it won the 1919 Pulitzer Prize in biography, and in April 1999 was named by the Modern Library the 20th century’s best nonfiction book in English. As quoted by 
Styer, Adams dislikes chaos and anarchy, and states: 

 The kinetic theory of gas is an assertion of ultimate chaos. In plain words, Chaos was the law of 

nature; Order was the dream of man. 

This looks to be a very strong statement, which on the one hand contrasts nature with man and 
on the other hand implies that there is a single type of order dreamed by man—a rather naïve 
idea.  

Naturally, those viewing entropy as disorder have difficulties to understand the concept of life. 
In early 20th century, the Swiss physicist C.-E. Guye (1922) asked the question: How is it possible 
to understand life, when the whole world is ruled by such a law as the second principle of 
thermodynamics, which points toward death and annihilation? He was followed by many other 
scientists who were puzzled by the existence of life. As insightfully discussed by Brillouin (1949), 
scientists of the era wondered if there was a “life principle”, a new and unknown principle that 
would explain life as an entity that contrasts the second law of thermodynamics. A year after, 
Brillouin (1950) coined the term negentropy as an abbreviation of negative entropy. In this, he 
used information theoretical concepts to express the idea that every observation in a laboratory 
requires the degradation of energy, and is made at the expense of a certain amount of negentropy, 
taken away from the surroundings. 
 The term “negative entropy” had earlier been used by Schrödinger (1944) in his famous book “What is life?”. Specifically, he argued that “What an organism feeds upon is negative entropy”. At the same time, he did not mention any other “life principle” additional to the Second Law that 
would drive life and evolution. 
 There is no general agreement about the meaning of negative entropy or negentropy. Some 
(e.g., Lago-Fernández and Corbacho, 2009) use them as technical terms referring to the difference 
between the entropy of any variable and that of a variable with normal distribution, with the same 
mean and variance (distance to normality). However, others, in a rather metaphysical context and 
assuming a non-statistical definition of negentropy (e.g., Larouche, 1993), see a negentropic 
principle governing life, the biosphere, the economy, etc., because these convert things that have 
less order into things with more order. 

Today it makes sense to ask: Has this question been answered by now? Or is it still relevant, 
one hundred years after? Perhaps it is relevant to quote here Atkins (2003), who, as we have seen, 
explained entropy as disorder. Yet he neatly remarked: 

 The ceaseless decline in the quality of energy expressed by the Second Law is a spring that has 

driven the emergence of all the components of the current biosphere. […] The spring of change 

is aimless, purposeless corruption, yet the consequences of interconnected change are the 

amazingly delightful and intricate efflorescences of matter we call grass, slugs, and people. 

 Apparently, if we get rid of the disorder interpretation of entropy, we may also be able to stop seeking a negentropic “life principle”, which was never found and probably will never be. For, if 
we see entropy as uncertainty, we also understand that life is fully consistent with entropy 
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maximization. Human-invented steam engines (and other similar machines) increase entropy all 
the time, and are fully compatible with the Second law, yet they produce useful work. Likewise, 
the biosphere increases entropy, yet it produces interesting patterns, much more admirable than 
steam engines. Life generates new options and increases uncertainty (Sargentis et al., 2020; 
Koutsoyiannis and Sargentis, 2021). Compare Earth with a lifeless planet: Where is uncertainty 
greater? On which of the two planets would a newspaper have more events to report every day? 
 However, if entropy is not disorder, what is its consistent interpretation? This question is not 
as difficult to answer as the above discussion seems to imply. According to its standard definition 
(section 2.9), entropy is precisely the expected value of the minus logarithm of probability. If this 
sounds too difficult to interpret, an easy and accurate interpretation (again explained in section 
2.9) is that entropy is a measure of uncertainty. Hence, maximum entropy means the maximum 
uncertainty that is allowed in natural processes, given the constraints implied by natural laws (or 
human interventions). It should be stressed that, with this general definition, entropy and its 
maximization do not apply merely to physics—in particular to thermodynamics—but to any 
natural (or even uncontrolled artificial) process in which there is uncertainty that necessitates a 
(macroscopic) probabilistic description. This application is not meant as an “analogy” with 
physics. Rather, it is a formal application of the general definition of entropy, which relies on 
stochastics. 
 Not surprisingly, if “disorder” is regarded as a “bad thing” for many, the same is the case with uncertainty. The expressions “uncertainty monster” and “monster of uncertainty” appear in about 
250 scholarly articles registered in Google Scholar (samples are van der Sluijs, 2005, and Curry 
and Webster, 2011, to mention a couple of the most cited with the word “monster” appearing in 
their title). However, if uncertainty is a monster, it is thanks to this monster that life is liveable 
and fascinating. Uncertainty is not an enemy of science or of life; rather, it is the mother of creativity and evolution. Without uncertainty, life would be a “universal boredom” (to borrow a 
phrase by Saridis, 2004, and reverse its connotation), and concepts such as hope, will 
(particularly, free will), freedom, expectation, optimism, etc., would hardly make sense. A 
technocratic system wherein an elite comprising super-experts who, using super-models, could 
predict the future without uncertainty would also assume full control of the society 
(Koutsoyiannis et al., 2008b). Fortunately, this will never happen because entropy, i.e., 
uncertainty, is a structural property of nature and life. Hence, in our view, uncertainty is neither disorder nor a “bad thing”. How could the most important law of physics (the Second Law) be a “bad thing”? 
 In a deterministic world view, there is no uncertainty, and there is no meaning in speaking 
about entropy. If there is no uncertainty, each outcome can be accurately predicted, and hence 
there are no options. In contrast, in an indeterministic world, there is a plurality of options. This 
corresponds to the Aristotelian idea of δύναμις (Latin: potentia—English: potency or potentiality). 
The existence of options entails that there is freedom, in the following sequence: 

entropy ↔ uncertainty ↔ plurality of options ↔ freedom 

This view, also depicted in Figure 2.3, is consistent with what has been vividly expressed by 
Brissaud (2005): 

 Entropy measures freedom, and this allows a coherent interpretation of entropy formulas and 

of experimental facts. To associate entropy and disorder implies defining order as absence of 

freedom. 

 A final remark for this Digression is this. When speaking about entropy, we should have in 
mind that the scale is an important element, and that entropy per se, being a probabilistic concept, 
presupposes a macroscopic view of phenomena, rather than focus on individuals or small subsets. 
If we viewed the motion of a particular die-throw, we might say that it was irregular, uncertain, 
unpredictable, chaotic, or random. However, macroscopization, by removing the details, may also 
remove irregularity. For example, as seen in Digression 2.H, the application of the principle of 
maximum entropy to the outcomes of a die-throw results in equal probabilities (1/6) for each 
outcome. This is the perfect order that can be achieved macroscopically. Likewise, as already 
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 mentioned, the maximum uncertainty in a particular water molecule’s state (in terms of position, 
kinetic state and phase), on a macroscopic scale results in the Clausius–Clapeyron law. Again, we 
have perfect order, as the accuracy of this law is so high that most people believe that it is a 
deterministic law. 
 

 

Figure 2.3 An attempt at an artistic representation of the notion of entropy from Koutsoyiannis and 
Sargentis (2021). Uncertainty is depicted by Marc Chagall’s Palette (adapted from 
https://www.metmuseum.org/art/collection/search/493731) and freedom by Marc Chagall’s Self-Portrait 

with Seven Fingers (https://en.wikipedia.org/wiki/Self-Portrait_with_Seven_Fingers); δύναμις (Greek) or 
potentia (Latin) is the Aristotelian idea of potency or potentiality.  

2.10 Maximum entropy distributions 

In Digression 2.H we illustrated several simple cases of entropy maximization, in which 

we determined the entire probability mass or density function based on one or two 

constraints. We can generalize the result for a number of constraints of the form: 

 E[𝑔𝑖(𝑥)] = 𝛾𝑖 ⇔ ∫ 𝑔𝑖(𝑥)𝑓(𝑥)d𝑥∞
−∞ − 𝛾𝑖 = 0 (2.47) 

and for any background measure β. In this case, after incorporating the constraints to the 

entropy with Lagrange multipliers, the expression whose maximization is sought is: 

𝛹 ≔ − ∫ ln 𝑓(𝑥)𝛽(𝑥) 𝑓(𝑥)d𝑥∞
−∞ −𝑎 ( ∫ 𝑓(𝑥)d𝑥∞

−∞ − 1) −∑𝑏𝑖 ( ∫ 𝑔𝑖(𝑥)𝑓(𝑥)d𝑥∞
−∞ − 𝛾𝑖)𝑖  (2.48) 

Taking the partial derivative with respect to f and equating it to zero we find − ln 𝑓(𝑥)𝛽(𝑥) + 1 − 𝑎 −∑𝑏𝑖𝑔𝑖(𝑥)𝑖 = 0 (2.49) 

and, thus, the entropy maximizing density is: 

𝑓(𝑥) = 𝐴 𝛽(𝑥) exp(−∑𝑏𝑖𝑔𝑖(𝑥)𝑖 ) (2.50) 

where 𝐴 ≔ e1−𝑎 is a constant. 

 As we have seen in Digression 2.H, some of the most typical distributions which are 

used in a variety of scientific fields can be derived by entropy maximization using a simple 

constraint. Here we will try to get a plethora of distributions again using a single 

constraint but both with a Lebesgue background measure and a generalized one. 

https://www.metmuseum.org/art/collection/search/493731
https://en.wikipedia.org/wiki/Self-Portrait_with_Seven_Fingers
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 The background measure 𝛽(𝑥) reflects the way of measuring the distances d between 

values of 𝑥; the Lebesgue measure corresponds to the Euclidean distance, 𝑑(𝑥, 𝑥΄)  = |𝑥 −𝑥΄|. However, most hydrometeorological variables are non-negative physical quantities 

unbounded from above (e.g., precipitation, streamflow, temperature—absolute, 

expressed in kelvins). In positive physical quantities, often the Euclidean distance is not a 

proper metric; sometimes we use a logarithmic distance 𝑑(𝑥, 𝑥΄) = |ln(𝑥΄/ 𝑥)|, as shown 

in the example below referring to precipitation depth: 

 Euclidean distance Logarithmic distance 𝑥 = 0.1 mm, 𝑥΄ = 0.2 mm 0.1 mm ln 2 = 0.693 𝑥 = 100 mm, 𝑥΄ = 100.1 mm 0.1 mm ln 1.001=0.001 𝑥 = 100 mm, 𝑥΄ = 200 mm 100 mm ln 2 = 0.693 

Which of the second and third pairs of points is equidistant to the first one? In an attempt 

to merge (or unify) the Euclidean and logarithmic distance, we heuristically introduce 

(see Koutsoyiannis, 2014a) a background measure for nonnegative variables that is based 

on the hyperbola:  𝛽(𝑥) = 1𝜆 + 𝑥 (2.51) 

where λ is a characteristic scale parameter, which also serves as a physical unit for 𝑥. We 

will refer to it as the hyperbolic background measure and we note that for λ → ∞, it tends 

to Lebesgue measure (a constant 𝛽 as 𝑥 can be neglected over an infinite 𝜆). According to 

this measure, the distance of any point 𝑥 from 0 is:  

𝛣(𝑥) = ∫𝜆 𝛽(𝑠)d𝑠𝑥
0 = 𝜆 ln (1 + 𝑥𝜆) (2.52) 

An example plot for 𝛣(𝑥) is given in Figure 2.4. Its limiting properties are: lim𝑥→0𝐵(𝑥) = lim𝜆→∞𝐵(𝑥) = 𝑥, lim𝑥→∞(𝐵(𝑥)𝜆 + ln 𝜆) = lim𝜆→0(𝐵(𝑥)𝜆 + ln 𝜆) = ln 𝑥 (2.53) 

 

Figure 2.4 Illustration of the distance function 𝐵(𝑥); the example plot of 𝑦 = 𝐵(𝑥) is for λ = 10 
and shows that for small 𝑥 (< λ/10) 𝐵(𝑥) is indistinguishable from 𝑥, while for large 𝑥 (> 10λ) 𝐵(𝑥) becomes a linear function of ln 𝑥.  
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 The distance between any two points 𝑥 and 𝑥΄ is:  𝑑(𝑥, 𝑥΄) = |𝐵(𝑥΄)–  𝐵(𝑥)| = 𝜆 |ln (1 + 𝑥′ 𝜆⁄1 + 𝑥 𝜆⁄ )| (2.54) 

For small 𝑥 values, i.e., 𝑥 < 𝑥′ ≪ 𝜆, the distance is 𝑑(𝑥, 𝑥΄) = 𝜆 ln(1 + (𝑥΄– 𝑥)/(𝜆 + 𝑥)) ≈ 𝑥΄ –  𝑥 (Euclidean distance). For large values, 𝜆 ≪ 𝑥 < 𝑥΄, 𝑑(𝑥, 𝑥΄) ≈ 𝜆 ln(𝑥΄/𝑥) 
(logarithmic distance). We notice that both 𝐵(𝑥) and 𝑑(𝑥, 𝑥΄) have the same units as 𝑥 

(physical consistency). 

 In the general solution (2.50) we use a single constraint for 𝑔(𝑥) ≡ 𝐵(𝑥), that is E[𝐵(𝑥)] = 𝛾, where we have assumed dimensions [𝐵(𝑥)] = [𝑥] = [𝜆]. We note that 𝛽(𝑥) = 𝐵΄(𝑥)/𝜆, where the derivative 𝐵΄(𝑥) is dimensionless. Thus from (2.50) we get: 𝑓(𝑥) = 𝐴𝛣′(𝑥)𝜆 exp(−𝑏1 𝛣(𝑥)) = 𝐴𝜆 exp(−𝑏𝐵(𝑥)𝜆 + ln(𝐵′(𝑥))) (2.55) 

where 𝑏 = 𝑏1𝜆. We may notice that all quantities in the big parenthesis are dimensionless. 

Now we make the following generalizations by raising the following quantities in powers: (𝑥 𝜆⁄ ) → (𝑥 𝜆⁄ )𝑐, 𝐵(𝑥) 𝜆⁄ → (𝐵(𝑥) 𝜆⁄ )𝑑, 𝐵′(𝑥) → (𝐵′(𝑥))𝑒 (2.56) 

and get 

𝑓(𝑥) = 𝐴𝜆 exp (−𝑏 (𝐵(𝑥)𝜆 )𝑑 + 𝑒 ln(𝐵′(𝑥))) (2.57) 

where 𝐵(𝑥) = 𝜆 ln (1 + (𝑥𝜆)𝑐) , 𝐵′(𝑥) = 𝑐 (𝑥𝜆 (1 + (𝑥𝜆)−𝑐) )−1 (2.58) 

After the algebraic operations we find the generalized maximum entropy distribution:  𝑓(𝑥) = 𝐴′𝜆 (𝑥𝜆)(𝑐−1)𝑒 (1 + (𝑥𝜆)𝑐)−𝑒 exp (−𝑏 (ln (1 + (𝑥𝜆)𝑐))𝑑) (2.59) 

where 𝐴′ ≔ 𝐴𝑒𝑐. 

 As a special case, when 𝜆 → ∞, the hyperbolic background measure approaches the 

Lebesgue measure and the quantities in (2.58) become: 𝛣(𝑥) = 𝜆 (𝑥𝜆)𝑐 , 𝐵′(𝑥) = 𝑐 (𝑥𝜆)𝑐−1  (2.60) 

Hence, the density of (2.57) becomes 𝑓(𝑥) = 𝐴𝜆 exp(−𝑏 ((𝑥𝜆)𝑐)𝑑 + 𝑒 ln (𝑐 (𝑥𝜆)𝑐−1)) (2.61) 

or  𝑓(𝑥) = 𝐴′𝜆 (𝑥𝜆)(𝑐−1)𝑒 exp (−𝑏 (𝑥𝜆)𝑐𝑑) (2.62) 
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 The densities (2.62) and (2.59) contain as special cases most common distributions 

used in stochastics, including hydroclimatic stochastics. These special cases are listed in 

Table 2.5 in terms of their densities 𝑓(𝑥) and distribution functions complements 𝐹̅(𝑥) =1 − 𝐹(𝑥). In particular, the density (2.62), which is derived from the Lebesgue 

background measure, corresponds to a generalized gamma distribution also listed in 

Table 2.5, after suitable transformation of its parameters. The density (2.59), which is 

derived from the hyperbolic background measure, does not yield a closed expression for 𝐹(𝑥) in its general case, and therefore is not listed in Table 2.5. In this case, a sufficiently 

general form with a closed expression of 𝐹(𝑥) is derived if we set 𝑑 = 1; this is listed as 

the generalized (power transformed) beta prime distribution (where the standard beta 

prime corresponds to 𝑐 = 1). The generalized gamma and generalized beta prime 

distributions were also studied in Koutsoyiannis (2005a,c, where additional information 

for some of their characteristics are provided) and Papalexiou and Koutsoyiannis (2012).  

 The distributions and the special cases resulting from equations (2.62) and (2.59) 

correspond to nonnegative stochastic variables, 𝑥 ≥ 0. However, in some of the cases, in 

which the variable 𝑥 appears in Table 2.5 raised to power 2, the extension to the whole real line is direct. The distributions of this type are earmarked as “half” in the table, and their “full” versions (valid for all real numbers) are derived by dividing the expressions 
given in the table by 2; this case includes the normal and Student distributions. 

2.11 Tails, heavy-tailed and light-tailed distributions 

There is a substantial difference between the distributions corresponding to equation 

(2.62) on the one hand and (2.59) on the other hand. Specifically, the former are light-

tailed and the latter heavy-tailed. In heavy-tailed distributions for any t > 0 (however 

small) the following limit diverges to infinity: lim𝑥→∞ e𝑡𝑥𝐹̅(𝑥) = ∞ (2.63) 

 In turn, a heavy-tailed distribution is characterized by the so-called upper-tail index 

(or, if there is no risk of ambiguity, simply tail index), defined to be that number ξ for which 

the following asymptotic equation holds true:  lim𝑥→∞ 𝑥1/𝜉𝐹̅(𝑥) = 𝑙2 (2.64) 

where 𝑙2 is a nonzero and finite constant. The distributions listed in Table 2.5 under the 

title Hyperbolic background measure are heavy tailed. Those distributions in which a 

parameter ξ appears have upper-tail index ξ (e.g., Pareto, Pareto-Burr-Feller). The 

remaining (e.g., lognormal) have upper-tail index zero (except a specific case of the 

generalized log-gamma, shown in the table footnotes, whose upper-tail index is infinite). 

At the same time, the moments of heavy-tailed distributions also diverge beyond a certain 

order, i.e., E[𝑥𝑞] = ∞ for all q > 1/ξ. The distributions with zero upper-tail index, such as 

the lognormal distribution, have all their moments finite. For that reason, they are often 

regarded as light-tailed. However, the lognormal distribution clearly satisfies (2.63) and 

therefore according to this definition is heavy tailed. 
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Table 2.5 Special cases of maximum entropy distributions given by equations (2.62) and (2.59). 
(Expressions not to be used at face as different parameterizations may be used throughout the book.) 

Name Parameters 𝑓(𝑥) 𝐹̅(𝑥) = 1 − 𝐹(𝑥) 
Lebesgue background measure   

Exponential 𝑏 = 𝑐 = 𝑑 = 1  1𝜆  exp (−𝑥𝜆) exp (−𝑥𝜆) 

Gamma1  
𝑑 = 1/𝑐, 𝑏 = 1, 𝘁 = (𝑐 − 1)𝑒 + 1 

1𝜆 Γ(𝘁)  (𝑥𝜆)𝜁−1 exp (−𝑥𝜆) 
Γ𝑥/𝜆(𝘁) Γ(𝘁)  

Weibull2  
𝑏 = 𝑑 = 𝑒 = 1 𝘁 = 𝑐 

𝘁𝜆 (𝑥𝜆)𝜁−1 exp (−(𝑥𝜆)𝜁) exp (−(𝑥𝜆)𝜁) 

Half*- normal 
𝑐 = 1, 𝑑 = 2, 𝑏 = 1/2 

2𝜆√2π exp (−12 (𝑥𝜆)2) erfc ( 𝑥√2𝜆) 

Extended 
half* normal3  

𝑏 = 𝑑 = 1, 𝑐 = 2, 𝘁 = 𝑒 + 1 
2𝜆 Γ(𝘁/2) ((𝑥𝜆)2)𝜁2−12 exp (− (𝑥𝜆)2) 

Γ𝑦(𝘁)  Γ(𝘁) ,   𝑦 = (𝑥𝜆)2 

Generalized 
gamma4  

𝘁 = (𝑐 − 1)𝑒 + 1, 𝑏 = 1,  𝜍 = 𝘁 𝑐𝑑⁄   

𝘁𝜆 𝜍 Γ(𝜍)  (𝑥𝜆)𝜁−1 exp (−(𝑥𝜆)𝜁/𝜍) 
Γ𝑦(𝜍)  Γ(𝜍) ,   𝑦 = (𝑥𝜆)𝜁/𝜍  

Hyperbolic background measure   

Pareto5  
𝑏 = 𝑐 = 𝑑 = 1, 𝜉 = 1/𝑒 𝑐 = 𝑑 = 𝑒 = 1, 𝜉 = 1/𝑏 

1𝜆𝜉 (1 + 𝑥𝜆)−1𝜉−1 (1 + 𝑥𝜆)−1𝜉  

Pareto-Burr-
Feller (PBF)6 

𝑑 = 𝑒 = 1, 𝜉 = 1/𝑏𝑐 1𝜆𝜉 (𝑥𝜆)𝜁−1 (1 + (𝑥𝜆)𝜁)− 1𝜁𝜉−1 (1 + (𝑥𝜆)𝜁)− 1𝜁𝜉  

Half 
lognormal 
 

𝑐 = 𝑒 = 1, 𝑑 = 2, 𝑏 = 1/2 
2√2π 𝜆 exp (−12 (ln (1 + 𝑥𝜆))

2)1 + 𝑥/𝜆  erfc ( 1√2 ln (1 + 𝑥𝜆)) 

Generalized 
log-gamma7  

𝑏 = 𝑒 = 1 𝘁 = 𝑐, 𝜍 = 𝑑 
𝘁𝜍Γ(1/𝜍) 𝜆  exp (−(ln (1 + (𝑥𝜆)

𝜁))𝜍)(𝑥𝜆)1−𝜁 (1 + (𝑥𝜆)𝜁)  

Γ𝑧(1/𝜍) Γ(1/𝜍),   𝑧 = (ln (1 + (𝑥𝜆)𝜁))𝜍 
Half Student8 
 

𝑐 = 2, 𝑑 = 1, 𝑒 = 0 𝜉 = 1 (𝑏 + 𝑒 − 1⁄ )  2𝜆 B (12 , 12𝜉) (1 + (𝑥𝜆)2)
−12− 12𝜉

 
B 𝑦1+𝑦 (12 , 12𝜉)B (12 , 12𝜉) ,   𝑦 = (𝑥𝜆)2 

Half extended 
Student 

𝑐 = 2, 𝑑 = 1, 𝘁 = 𝑒 + 1, 𝜉 = 1 (𝑏 + 𝑒⁄ − 1)  2 ((𝑥𝜆)2)𝜁2−12 (1 + (𝑥𝜆)2)−𝜁2− 12𝜉𝜆 B (𝘁2 , 12𝜉)   B 𝑦1+𝑦 (𝘁2 , 12𝜉)B (𝘁2 , 12𝜉) ,   𝑦 = (𝑥𝜆)2 

Generalized 
beta prime 
(GBP)9 

𝑑 = 1, 𝜍 = 𝑐, 𝘁 = (𝑐 − 1)𝑒 + 1), 𝜉 = 1 (𝑏 + 𝑒⁄ − 1)  𝜍 (𝑥𝜆)𝜁−1 (1 + (𝑥𝜆)𝜍)−𝜁𝜍− 1𝜍𝜉𝜆 B (𝘁𝜍 , 1𝜍𝜉)   B 𝑦1+𝑦 (𝘁𝜍 , 1𝜍𝜉)B (𝘁𝜍 , 1𝜍𝜉) ,   𝑦 = (𝑥𝜆)𝜍 
Note: Distributions named “half” have their “full” version whose density 𝑓(𝑥) and exceedance 𝐹̅(𝑥) is obtained by dividing those given in the table by 2. The “half” version given here corresponds to 𝑥 ≥ 0, while the “full” version is supported on the 
whole real line, except for the full lognormal distribution in which 𝑥 ≥–𝜆.  
1 Special cases: Chi-squared and Erlang. 
2 Special case: Rayleigh. Antisymmetric case (in which 𝐹(𝑥) ←  𝐹̅(𝑥)): Fréchet. 
3 Also known as Chi. 
4 Special cases: Maxwell–Boltzmann, Maxwell–Jüttner, Nakagami. Antisymmetric: Inverse-chi-squared, Inverse-gamma, Lévy. 
5 More precisely, Pareto II or Lomax. 
6 Also known as Pareto III and IV, Burr XII and Feller. Antisymmetric: Log-logistic. 
7 For d = 1 becomes PBF with upper-tail index ξ = 1/c. For d > 1, ξ = 0 (all moments exist). For d < 1, ξ = ∞ (no moment exists). 
8 Also known as Tsallis or 1-particle kappa distribution (Olbert, 1968; Livadiotis and McComas 2013). Special case: Cauchy. 
9 Special cases: Beta prime, F. Antisymmetric: Dagum—often referred to in hydrology as the kappa distribution (Mielke, 1973; 
Mielke and Johnson, 1973; Hosking, 1994) but it is totally different from the kappa distribution of footnote 8. 
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 In a similar manner, we can define a lower-tail index. Whenever the domain of the 

distribution is the entire line of real numbers, we must replace ∞ with –∞ and 𝑥1/𝜉with (−𝑥)1/𝜉 . However, usually we deal with nonnegative quantities (lower bounded by 0) and, 

in this case, we need a different manner to define the lower-tail index. Specifically, the 

lower-tail index is that number ζ for which the following asymptotic equation holds true:  lim𝑥→0𝑥−𝜁𝐹(𝑥) = 𝑙3 (2.65) 

where 𝑙3 is again a nonzero and finite constant*. Those distributions listed in Table 2.5, in 

which a parameter ζ appears, have lower-tail index ζ (e.g., Gamma, Weibull, Pareto-Burr-

Feller). Using l’Hôpital’s rule, we see that lim𝑥→0 𝑥−𝜁𝐹(𝑥) = lim𝑥→0𝑥1−𝜁𝑓(𝑥) /𝘁 and, thus, if 𝘁 <1, the density 𝑓(𝑥) should necessarily be a decreasing function, at least close to the origin, 

with lim𝑥→0 𝑓(𝑥) = ∞. In contrast when 𝘁 > 1, the density 𝑓(𝑥) is increasing close to the 

origin, with 𝑓(0) = 0, and is usually bell-shaped. The particular case 𝘁 = 1 is 

characteristic of the exponential and Pareto distributions, in which 𝑓(0) is finite and the 

density 𝑓(𝑥) is a decreasing function.  

 Table 2.6 summarizes the above cases and extends them to all possible upper and 

lower tails and their indices. Later we will discuss how both tail indices can be visualized 

in a probability plot (see Digression 5.A). 

Table 2.6 Definitions of tail indices for the different cases of tail behaviour. 

Characteristic Definition of tail index1 

Upper bounded by 𝑐U, tail index 𝘁′  lim𝑥→𝑐U(𝑐U − 𝑥)−𝜁′𝐹(𝑥) = 𝑙1  

Upper unbounded, tail index 𝜉 lim𝑥→∞ 𝑥1 𝜉⁄  𝐹(𝑥) = 𝑙2  

Lower bounded by 𝑐L, tail index 𝘁 lim𝑥→𝑐L(𝑥 − 𝑐L)−𝜁𝐹(𝑥) = 𝑙3  

Lower unbounded, tail index 𝜉′  lim𝑥→−∞(−𝑥)1 𝜉′⁄ 𝐹(𝑥) = 𝑙4  

1 𝑙𝑖 , 𝑖 = 1, … ,4 are nonzero and finite constants. 

Digression 2.J: The hydrometeorological importance of heavy-tailed 

distributions  

In classical statistical mechanics the Lebesgue measure is used as background distribution. As a 
consequence, a constrained mean results in exponential distribution which notably has coefficient 
of variation σ/μ = 1. However, in several hydrometeorological processes, most notably rainfall, 
when the time scale is small (e.g., daily or hourly), the empirical σ/μ is greater than 1, which 
means that the exponential distribution is not suitable. One may think that adding one more 
constraint would fix the problem. The natural choice seems to be to constrain entropy 
maximization by both the mean 𝜇 and the variance 𝜎2. However, this does not work as, for 
nonnegative stochastic variables, entropy maximization with Lebesgue background measure 
cannot yield 𝜎 𝜇⁄ > 1. In other words, the exponential distribution is the upper limit.  

 
* It would be more natural to use 1/ζ instead of ζ in (2.65) so that it be more consistent with (2.64). However, 
we used that convention in order for the parameterization of common distributions, such as Gamma and 
Weibull, to be similar to the one dominating in the statistical literature. 
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 The next solution to try is either to use a trickier (less natural) constraint, to change the 
definition of entropy (using a generalized definition), or to change the background measure. The 
first two cases have been studied in Koutsoyiannis (2005a) and Papalexiou and Koutsoyiannis 
(2012) and the last one in Koutsoyiannis (2017). Whatever the choice may be, the result is 
practically the same: a heavy-tailed distribution. The easiest way to derive that distribution is by 
the framework described above, using the hyperbolic background measure and a single 
constraint, the mean of the distance function. The resulting Pareto distribution has 𝜎/𝜇 =  1 ∕√1− 2ξ  >  1.  
 In other words, by changing the background measure from Lebesgue to hyperbolic, the light-
tailed exponential distribution switches to the heavy-tailed Pareto one. The theoretical 
framework otherwise remains unaffected—the same probabilistic definition of entropy is used in 
both cases. But the change in the derived distribution may have important consequences in the 
design and management related to extreme events. To illustrate this based on real world data we 
use the daily rainfall data of Bologna, a data set already studied in section 1.3.  
 During the 206 years of observations there were 19 426 rain days, all of which are used in 
the modelling. The nonzero rainfall depths of all 19 426 days are plotted against their empirical 
return periods in Figure 2.5. Following the initial discussion of the concept of return period in 
section 1.5, the return period of an observed value 𝑥 is related to the probability of exceedance by 𝑇(𝑥) = 𝐷/𝐹̅(𝑥), where D would be 1 d if all days were considered, while, after neglecting the zero 
rain days, it should be adapted to 𝐷 = 365.25 × 206/19 426 = 3.87 d. More accurate and detailed 
discussion of return period will be provided in Chapter 5.  
 The 19 426 values range between 0.1 and 155.7 mm, with a mean of 7.2 mm. In the 
exponential distribution the single parameter λ equals the mean, which allows plotting the 
theoretical curve corresponding to it in Figure 2.5. Clearly, the comparison with the empirical 
points of the figure indicates a bad performance of the exponential model. In contrast, the Pareto 
model, also plotted in Figure 2.5 looks suitable. It is admirable that a model with only two 
parameters (the upper-tail index ξ and the scale parameter λ) can make such a good fitting on so 
many observations of 206 years. The parameter values, 𝜉 = 0.11 and 𝜆 = 7.78 mm (with 
parameterization as in Table 2.3), have been estimated by a least squares method to minimize the 
error between the empirical and theoretical return period. The empirical return period has been 
assigned by the method described in section 5.6. The good performance of the Pareto distribution 
suggests that the hypothesis of a hyperbolic background measure, along with the principle of 
maximum entropy, leads to a good predictive capacity. 
 Now, comparing the behaviour of the light-tailed exponential distribution with the heavy-
tailed Pareto distribution, and both with the empirical distribution, we clearly see that the former 
severely underestimates the magnitude of the extremes. Notably, for a return period of 10 000 
years, which is typically used in the engineering design of major projects such as dams, Figure 2.5 
shows that the exponential distribution predicts a rainfall depth of ~100 mm, a value that was in 
fact exceeded seven times in the 206-year available record. On the other hand, the Pareto 
distribution predicts a value of ~250 mm, 2.5 times higher (and as we will see in Digression 6.M, 
it becomes even higher if we also take into account the dependence structure of rainfall). Thus, 
inappropriate model selection, based on inappropriate theoretical considerations, may have 
substantial consequences in practical applications. Sooner or later, nature per se will reveal the 
inappropriateness (e.g. by frequent exceedances of the design values). In such cases, one could re-
examine the theory (even though an alternative and more popular practice is to blame external 
agents and find good scapegoats). 
 Indeed, in the 20th century, the light-tailed distributions constituted the dominant theoretical 
model in research and engineering practice. And given the substantial underestimation of 
extremes by this model, its failure (and its severe consequences) should not be regarded a 
surprise. By now, both theoretical advances and accumulated empirical evidence have shaken this 
model and have pointed towards heavy-tailed distributions. More details will be provided in 
Digression 8.G.  
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 In addition, Koutsoyiannis (2004a, 2005a, 2007) discussed several theoretical reasons that 
favour the heavy tailed distributions over the exponential case, which are consistent to the above 
discourse related to the hyperbolic background measure. Furthermore, the already discussed 
(Chapter 1) omnipresence of change and the non-static climate are consistent with heavy-tailed 
distributions, as will be further illustrated in Digression 3.H. 

 

Figure 2.5 Rainfall depth vs. return period for Bologna based on 19 426 daily rainfall depths 
observed throughout the observation period of 206 years.  

2.12 Two variables: joint distribution and joint moments 

The above sections have been devoted to concepts of probability pertaining to the analysis 

of a single variable 𝑥. Often, however, the simultaneous modelling of two (or more) 

variables is necessary. Let the pair of stochastic variables (𝑥, 𝑦) be defined on two basic 

sets (Ωx, Ωy), respectively. The intersection (simultaneous occurrence) of the two events {𝑥 ≤ 𝑥} and {𝑦 ≤ 𝑦}, denoted as {𝑥 ≤ 𝑥, 𝑦 ≤ 𝑦} is an event of the sample space 𝛺𝑥𝑦 =𝛺𝑥 × 𝛺𝑦. Based on the latter event, we can define the joint probability distribution function 

of (𝑥, 𝑦) as a function of the real variables (𝑥, 𝑦):  𝐹𝑥𝑦(𝑥, 𝑦)  ≔  𝑃{𝑥 ≤ 𝑥, 𝑦 ≤ 𝑦} (2.66) 

The subscripts 𝑥𝑦 can be omitted if there is no risk of ambiguity.  

 If 𝐹𝑥𝑦 is differentiable, then the function: 

𝑓𝑥𝑦(𝑥, 𝑦) ≔ 𝜕2𝐹𝑥𝑦(𝑥, 𝑦) 𝜕𝑥 𝜕𝑦  (2.67) 

is the joint probability density function of the two variables. Obviously, the following 

equation holds:  
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𝐹𝑥𝑦(𝑥, 𝑦) = ∫ ∫𝑓𝑥𝑦(𝑦
−∞

𝑥
−∞ 𝑢, 𝑣)d𝑢d𝑣 (2.68) 

 The functions: 𝐹𝑥(𝑥) ≔  𝑃{𝑥 ≤ 𝑥} = lim𝑦→∞𝐹𝑥𝑦(𝑥, 𝑦) , 𝐹𝑦(𝑦)  ≔  𝑃{𝑦 ≤ 𝑦} = lim𝑥→∞𝐹𝑥𝑦(𝑥, 𝑦) (2.69) 

are called the marginal probability distribution functions of 𝑥 and 𝑦, respectively. Also, the 

marginal probability density functions can be determined as 

𝑓𝑥(𝑥) = ∫ 𝑓𝑥𝑦(𝑥, 𝑦)d𝑦∞
−∞ , 𝑓𝑦(𝑦) = ∫ 𝑓𝑥𝑦(𝑥, 𝑦)d𝑥∞

−∞  (2.70) 

 Similar to the univariate case, we can define the expected value of any given function 𝑔 (𝑥, 𝑦) of the stochastic variables 𝑥 and 𝑦 by  

E [𝑔 (𝑥, 𝑦) ] = ∫ ∫ 𝑔(𝑥, 𝑦) ∞
−∞ 𝑓𝑥𝑦(𝑥, 𝑦)d𝑥d𝑦∞

−∞  (2.71) 

In this manner, we define the (noncentral or about the origin) joint moment of orders 𝑝, 𝑞 

as:  

𝜇𝑝𝑞′ ≔ E[𝑥𝑝𝑦𝑞] = ∫ ∫ 𝑥𝑝𝑦𝑞∞
−∞ 𝑓𝑥𝑦(𝑥, 𝑦)d𝑥d𝑦∞

−∞  (2.72) 

as well as the joint central moment of orders 𝑝, 𝑞: 

𝜇𝑝𝑞 ≔ E[(𝑥 − 𝜇𝑥)𝑝 (𝑦 − 𝜇𝑦)𝑞] = ∫ ∫(𝑥 − 𝜇𝑥)𝑝 (𝑦 − 𝜇𝑦)𝑞∞
−∞

∞
−∞ 𝑓𝑥𝑦(𝑥, 𝑦)d𝑥d𝑦 (2.73) 

 If 𝑝 = 0 or 𝑞 = 0, we get the marginal moments (e.g., means, 𝜇𝑥 ≔ 𝜇10′ , 𝜇𝑦 ≔ 𝜇01′ ; 

variances, var[𝑥] ≔ E [(𝑥 − 𝜇𝑥)2] ≡ 𝜇20 ≡ 𝛾𝑥 ≡ 𝜎𝑥2, var [𝑦] = 𝜇02 ≡ 𝛾𝑦 ≡ 𝜎𝑦2, etc.). The 

lowest-order joint central moment is the covariance:  cov [𝑥, 𝑦] ≔ E [(𝑥 − 𝜇𝑥) (𝑦 − 𝜇𝑦)] ≡ 𝜇11 ≡ 𝜎𝑥𝑦 = E [𝑥 𝑦] − E[𝑥]E [𝑦] (2.74) 

A dimensionless index derived from covariance is the correlation coefficient:  𝑟𝑥𝑦 ≔ 𝜎𝑥𝑦𝜎𝑥𝜎𝑦  (2.75) 

which obeys the inequality: 

 −1 ≤ 𝑟𝑥𝑦 ≤ 1 (2.76) 

where the values –1 and 1 indicate fully anti-correlated (fully negatively correlated) and 

fully (positively) correlated variables. Here is the mathematical proof about why this 
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happens: We start from the obvious relationship E [(𝑥 + 𝑦)2] = E[𝑥2] + E [𝑦2] + 2E [𝑥 𝑦], observing that terms involving squares are nonnegative quantities. We assume, 

without loss of generality, E[𝑥] = E [𝑦] = 0, so that E[𝑥2] = 𝜎𝑥2, E [𝑦2] = 𝜎𝑦2, E [𝑥 𝑦] = 𝜎𝑥𝑦. 

Thus, we get 𝜎𝑥2 + 𝜎𝑦2 + 2𝜎𝑥𝑦 ≥ 0 or 𝜎𝑥𝑦 𝜎𝑥𝜎𝑦⁄ ≥ −(1/2)(𝜎𝑥 𝜎𝑦⁄ + 𝜎𝑦 𝜎𝑥⁄ ) = −(1/2) (𝑎 +1/𝑎), where 𝑎 ≔ 𝜎𝑥 𝜎𝑦⁄ ≥ 0. It is easy to see that (𝑎 + 1/𝑎) has minimum value 2, so that 𝜎𝑥𝑦 𝜎𝑥𝜎𝑦⁄ ≥ −1. Furthermore, E [(𝑥 − 𝑦)2] = E[𝑥2] + E [𝑦2] −  2E [𝑥 𝑦] and, likewise, 𝜎𝑥𝑦 𝜎𝑥𝜎𝑦⁄ ≤ (1/2)(𝜎𝑥 𝜎𝑦⁄ + 𝜎𝑦 𝜎𝑥⁄ ) = (1/2)(𝑎 + 1/𝑎) ≤ 1. 

 The particular case where: 𝜎𝑥𝑦 = 𝑟𝑥𝑦 = 0 ⇔  E [𝑥 𝑦] = E[𝑥]E [𝑦] (2.77) 

defines uncorrelated variables. Independent variables are necessarily uncorrelated, but 

independence is a stricter concept whose definition is:  𝐹𝑥𝑦(𝑥, 𝑦) =  𝐹𝑥(𝑥)𝐹𝑦(𝑦), 𝑓𝑥𝑦(𝑥, 𝑦)  =  𝑓𝑥(𝑥)𝑓𝑦(𝑦) (2.78) 

 The joint entropy is defined in an analogous manner with that in the univariate case 

(section 2.9). For discrete stochastic variables the entropy is: 𝛷 [𝑥, 𝑦] ≔  E [– ln 𝑃 (𝑥, 𝑦)] =  −∑𝑃𝑖𝑗 ln 𝑃𝑖𝑗𝑖,𝑗  (2.79) 

where 𝑃𝑖𝑗 ≔ 𝑃 {𝑥 = 𝑥𝑖, 𝑦 = 𝑦𝑗}. For continuous stochastic variables it is: 

𝛷 [𝑥, 𝑦] ≔  E [– ln 𝑓 (𝑥, 𝑦)𝛽 (𝑥, 𝑦)]  = − ∫ ∫ ln𝑓(𝑥, 𝑦)
β(𝑥, 𝑦) f(𝑥, 𝑦)d𝑥∞

−∞
∞

−∞ d𝑦 (2.80) 

2.13 Conditional densities and expectations 

Of particular interest are the so-called conditional probability distribution function and 

conditional probability density function of 𝑥 for a specified value of 𝑦 = 𝑦; these are given 

by: 

𝐹𝑥|𝑦(𝑥|𝑦) ≔ ∫ 𝑓𝑥𝑦(𝜉, 𝑦)d𝜉𝑥−∞ 𝑓𝑦(𝑦) , 𝑓𝑥|𝑦(𝑥|𝑦) ≔ 𝑓𝑥𝑦(𝑥, 𝑦)𝑓𝑦(𝑦)  (2.81) 

respectively. Switching 𝑥 and 𝑦 we obtain the conditional functions of 𝑦. 

 The conditional expected value of a function 𝑔(𝑥) for a specified value of 𝑦 = 𝑦 is 

defined by  

 E[𝑔(𝑥)|𝑦] ≔ E [𝑔(𝑥)|𝑦 = 𝑦] = ∫ 𝑔(𝑥)𝑓𝑥|𝑦(𝑥|𝑦)d𝑥∞
−∞  (2.82) 
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An important quantity of this type is the conditional expected value of 𝑥: 

E[𝑥|𝑦] ≔ E [𝑥|𝑦 = 𝑦] = ∫ 𝑥𝑓𝑥|𝑦(𝑥|𝑦)d𝑥∞
−∞  (2.83) 

Likewise, the conditional variance is 

var[𝑥|𝑦] ≔ E [(𝑥 − E[𝑥|𝑦])2|𝑦 = 𝑦] = ∫(𝑥 − E[𝑥|𝑦])2𝑓𝑥|𝑦(𝑥|𝑦)d𝑥∞
−∞  (2.84) 

and can be also written as var[𝑥|𝑦] ≔ E[𝑥2|𝑦] − (E[𝑥|𝑦])2 (2.85) 

 It is obvious from the definition (2.82) that the conditional expectation E[𝑔(𝑥)|𝑦] is a 

function of the real variable y, call it ℎ(𝑦), rather than a constant. If we do not specify the 

value y of the stochastic variable 𝑦 in the condition, then the quantity E [𝑔(𝑥)|𝑦] = ℎ(𝑦) 
becomes a function of the stochastic variable 𝑦. Hence, it is a stochastic variable itself. Its 

own expected value is: 

E [E [𝑔(𝑥)|𝑦]] = ∫ E[𝑔(𝑥)|𝑦]𝑓𝑦(𝑦)d𝑦∞
−∞ = ∫ ∫ 𝑔(𝑥)𝑓𝑥𝑦(𝑥, 𝑦)∞

−∞ d𝑥d𝑦∞
−∞  (2.86) 

where we have utilized (2.82) and (2.81). As a result, E [E [𝑔(𝑥)|𝑦]] = E[𝑔(𝑥)] (2.87) 

This can be readily generalized for a function of two stochastic variables, i.e., E [E [𝑔 (𝑥, 𝑦) |𝑦]]  = E [𝑔 (𝑥, 𝑦)] (2.88) 

 Entropy, as formally defined for the univariate case in section 2.9 and for the bivariate 

case in equations (2.79) and (2.80), is an expectation and thus we can also define 

conditional forms of entropy which are quite useful. Thus, for a specified value of 𝑦 = 𝑦 

and for a discrete stochastic variable the entropy is: 𝛷[𝑥|𝑦] ≔  E[– ln 𝑃(𝑥|𝑦)] =  −∑𝑃𝑖|𝑗 ln 𝑃𝑖|𝑗𝑖,𝑗  (2.89) 

where 𝑃𝑖|𝑗 ≔ 𝑃 {𝑥 = 𝑥𝑖|𝑦 = 𝑦𝑗}, and for a continuous stochastic variable it is: 

𝛷[𝑥|𝑦] ≔  E [– ln 𝑓(𝑥|𝑦)𝛽(𝑥) ]  = − ∫ ln 𝑓(𝑥|𝑦)
β(𝑥) f(𝑥|𝑦)d𝑥∞

−∞  (2.90) 

These quantities depend on the specified conditioning value y of 𝑦. However, we can 

define a global conditional entropy, for an unspecified value of 𝑦.  
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E [𝛷 [𝑥|𝑦]] ≔ E [E [– ln 𝑃 (𝑥|𝑦) |𝑦]]  =  −∑∑𝑃𝑖|𝑗 ln 𝑃𝑖|𝑗𝑖,𝑗 𝑃𝑗𝑗  (2.91) 

For continuous stochastic variables it is: 

E [𝛷 [𝑥|𝑦]] ≔ E [E [– ln 𝑓 (𝑥|𝑦)𝛽(𝑥) |𝑦] ] = − ∫ ∫ ln 𝑓(𝑥|𝑦)
β(𝑥) f(𝑥|𝑦)f(𝑦)d𝑥∞

−∞
∞

−∞ d𝑦 (2.92) 

 A relationship analogous to (2.87) does not hold in this case. This is easy to verify as 

E [𝛷 [𝑥|𝑦]] = − ∫ ∫ ln 𝑓(𝑥|𝑦)
β(𝑥) f(𝑥, 𝑦)d𝑥∞

−∞
∞

−∞ d𝑦 ≠ − ∫ ∫ ln𝑓(𝑥)
β(𝑥) f(𝑥, 𝑦)d𝑥∞

−∞
∞

−∞ d𝑦 = 𝛷[𝑥] (2.93) 

In fact, the true relationship between the (global) conditional entropy and the marginal 

one is an inequality (e.g. Papoulis, 1991, p. 564): E [𝛷 [𝑥|𝑦]] ≤ 𝛷[𝑥] (2.94) 

Another distinction we have to stress is that:  E [𝛷 [𝑥|𝑦]] ≠ 𝛷[𝑥|𝑦] (2.95) 

because the quantity in the right-hand side is generally a function of y while that in the 

left-hand side is not. An interesting exception is the case of a bivariate normal distribution 

in which 𝛷[𝑥|𝑦] turns out to be a constant rather than a function of y (𝛷[𝑥|𝑦] ≕ 𝛷c[𝑥] ≤𝛷[𝑥]). Generally, we should stress that: 

• conditional expectations like E[𝑥|𝑦] are deterministic functions of the conditioning 

value y;  

• conditional expectations like E[𝑥|𝑦] are stochastic variables, depending on 𝑦; 

• expectations of conditional expectations, as in E [E [𝑔 (𝑥, 𝑦) |𝑦]] and E [𝛷 [𝑥|𝑦]], 
are constants. 

These remarks have to be added to the notes of Digression 2.B about the importance of 

notation.  

Digression 2.K: Does information decrease entropy? 

It is intuitive to say that, if a stochastic variable 𝑥 has some relationship with another stochastic 
variable 𝑦 then, if we observe the value of 𝑦, our uncertainty on 𝑥 would decrease. As entropy is a 

formal measure of uncertainty, this can be formally stated as follows: the conditional entropy of 𝑥 given information on 𝑦 is smaller than the unconditional entropy of 𝑥. However, this simple 

truth is sometimes contradicted in scientific texts. The reasons of the contradiction are the 
inattentive use of concepts and inattentive notation. We will illustrate them with the following 
example. 
 In Digression 2.D and Digression 2.E we studied the probabilities of the dry and wet (rain) 
state in an area. Continuing this study, we now introduce the stochastic variables and 𝑥 and 𝑦 for today’s and yesterday’s state, respectively, with {𝑥 = 0} and {𝑥 = 1} representing a dry and wet 
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state of today, respectively, and likewise for yesterday. We assume for illustration the conditional 
probabilities: 𝑃 {𝑥 = 1|𝑦 = 1} = 0.4, 𝑃 {𝑥 = 1|𝑦 = 0} = 0.15 

from which it directly follows that 𝑃 {𝑥 = 0|𝑦 = 1} = 0.6, 𝑃 {𝑥 = 0|𝑦 = 0} = 0.85 

and after some simple calculations (see Digression 2.E) we also find the marginal probabilities to 
be 𝑃{𝑥 = 0} = 0.8, 𝑃{𝑥 = 1} = 0.2 

 Hence the unconditional entropy is: 𝛷[𝑥] = E[− ln𝑃(𝑥)] = −0.8 ln 0.8 − 0.2 ln 0.2 = 0.500 

while the entropy conditional on yesterday being dry is: 𝛷 [𝑥|𝑦 = 0] = E [− ln 𝑃 (𝑥|𝑦 = 0)]  = −0.85 ln 0.85 − 0.15 ln 0.15 = 0.423 

and that conditional on yesterday being wet is: 𝛷 [𝑥|𝑦 = 1] = E [− ln𝑃 (𝑥|𝑦 = 1)] = −0.6 ln 0.6 − 0.4 ln 0.4 = 0.673 

 Now it is true that the information that yesterday was a wet day increased the entropy from 
0.5 (without any information) to 0.673. This happened because the probabilities of the two states, 
which initially were 0.8 vs. 0.2, far from the equiprobability (0.5) in which the entropy is 
maximized, have now approached each other (0.6 vs. 0.4) and thus the entropy increased. 
 But this happens for that particular value, 𝑦 = 1. If we consider all values (in our case two), 

on the average the (global) conditional entropy is  E [𝛷 [𝑥|𝑦]] = 0.423 × 0.8 + 0.673 × 0.2 = 0.473 < 0.500 

In other words, the reply to the question in the above title is: Yes, information decreases entropy, 
but we must be attentive about the correct use of the probabilistic concepts.  

2.14 Many variables 

All above theoretical analyses can be easily extended to more than two stochastic 

variables. For instance, the distribution function of the 𝑛 stochastic variables 𝑥1, … , 𝑥𝑛 is 𝐹𝑥1,…,𝑥𝑛(𝑥1, … , 𝑥𝑛)  ≔  𝑃{𝑥1 ≤ 𝑥1, … , 𝑥𝑛 ≤ 𝑥𝑛} (2.96) 

and is related to the 𝑛-dimensional probability density function by 

𝐹𝑥1,…,𝑥𝑛(𝑥1, … , 𝑥𝑛) = ∫ … ∫ 𝑓𝑥1,…,𝑥𝑛(𝑥𝑛
−∞

𝑥1
−∞ 𝜉1, … 𝜉𝑛)d𝜉𝑛⋯d𝜉1  (2.97) 

The variables 𝑥1, … , 𝑥𝑛 are independent if: 𝐹𝑥1,…,𝑥𝑛(𝑥1, … , 𝑥𝑛) = 𝐹𝑥1(𝑥1)⋯ 𝐹𝑥𝑛(𝑥𝑛) (2.98) 

 A useful rule to mention is the so-called chain rule, which allows expressing joint 

densities as products of conditional densities:  
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𝑓(𝑥1, … , 𝑥𝑛) = 𝑓(𝑥𝑛|𝑥𝑛−1, … , 𝑥1)⋯  𝑓(𝑥2|𝑥1)𝑓(𝑥1) (2.99) 

where for notational brevity we have omitted the subscripts of functions 𝑓( ), as these are 

identical to the arguments of the functions. A direct consequence for the evaluation of 

entropy is  𝛷[𝑥1, … , 𝑥𝑛] = E[𝛷[𝑥𝑛|𝑥𝑛−1, … , 𝑥1]]  + ⋯+  E [𝛷[𝑥2|𝑥1]] + 𝛷[𝑥1] (2.100) 

 The expected values and moments are defined in a similar manner as in the case of 

two variables, and all properties discussed in section 2.12 are likewise generalized for 

functions of many variables. 

 If we integrate 𝑓(𝑥1, … , 𝑥𝑛) with respect to some of the variables, we obtain the joint 

density of the remaining variables. For example 

𝑓(𝑥1, 𝑥3) = ∫ ∫ 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)∞
−∞

∞
−∞ d𝑥2d𝑥4 (2.101) 

and since  𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑓(𝑥1, 𝑥3|𝑥2, 𝑥4)𝑓(𝑥2, 𝑥4) (2.102) 

we obtain 

𝑓(𝑥1, 𝑥3) = ∫ ∫ 𝑓(𝑥1, 𝑥3|𝑥2, 𝑥4)∞
−∞ 𝑓(𝑥2, 𝑥4)∞

−∞ d𝑥2d𝑥4 (2.103) 

which can also be written as an expected value, i.e., 𝑓(𝑥1, 𝑥3) = E[𝑓(𝑥1, 𝑥3|𝑥2, 𝑥4)] (2.104) 

where the conditioning variables 𝑥2, 𝑥4 are taken as stochastic variables and the 

conditioned ones are taken as values.  

2.15 Linear combinations of stochastic variables 

A consequence of the definition of the expected value is the relationship E[𝑐1𝑔1(𝑥1, 𝑥2) + 𝑐2𝑔2(𝑥1, 𝑥2)] = 𝑐1E[𝑔1(𝑥1, 𝑥2)] + 𝑐2E[𝑔2(𝑥1, 𝑥2)] (2.105) 

where 𝑐1 and 𝑐2 are any constants, and 𝑔1 and 𝑔2 are any functions. This property can be 

extended to any number of functions 𝑔𝑖. Applying it for the weighted sum of two variables 

we obtain  E[𝑎1𝑥1 + 𝑎2𝑥2] = 𝑎1E[𝑥1] + 𝑎2E[𝑥2] (2.106) 

Likewise, we can calculate the variance of the weighted sum. After some algebraic 

operations we get var[𝑎1𝑥1 + 𝑎2𝑥2] = 𝑎12var[𝑥1] + 𝑎22var[𝑥2] + 2𝑎1𝑎2cov[𝑥1, 𝑥2] (2.107) 
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 It is much more difficult to calculate the probability distribution function of such 

combinations. As an example, for the simplest case, the sum 𝑧 = 𝑥1 + 𝑥2 of two 

independent variables 𝑥1 and 𝑥2 has density: 

𝑓𝑧(𝑧) = ∫ 𝑓𝑥1(𝑧 − 𝑥2)∞
−∞ 𝑓𝑥2(𝑥2)d𝑥2 (2.108) 

The right-hand side is known as the convolution integral of 𝑓𝑥1(𝑥) and 𝑓𝑥2(𝑥). For 

nonnegative variables it takes the form: 

𝑓𝑧(𝑧) = ∫𝑓𝑥1(𝑧 − 𝑥2)𝑧
0 𝑓𝑥2(𝑥2)d𝑥2, 𝑧 > 0 (2.109) 

2.16 Variance-based correlation and the climacogram 

While covariance and its equivalent standardized form, i.e., correlation, have been the 

most customary tools to characterize dependence, they are neither the only nor the most 

effective ones. Assuming two stochastic variables 𝑥1 and 𝑥2 (possibly representing 

different physical quantities) with means 𝜇𝑖 (𝑖 = 1,2), standard deviations 𝜎𝑖 , covariance 𝜎12 and correlation coefficient 𝑟12, we may form a different type of a correlation coefficient 

and covariance by examining a weighted sum of the two variables. Namely, we examine 

the average of the variables 𝑥𝑖  after standardizing them with their standard deviations 𝜎𝑖 , 
which is necessary if they represent different physical quantities, in order to make them 

compatible for addition. From (2.107) we obtain that the variance of this average is: var [12 (𝑥1𝜎1 + 𝑥2𝜎2)] = 12 + 12 cov [𝑥1𝜎1 , 𝑥2𝜎2] = 14E [(𝑥1 − 𝜇1𝜎1 + 𝑥2 − 𝜇2𝜎2  )2] (2.110) 

where we can recognize in the middle term the correlation coefficient 𝑟12. Defining 

𝜌12 ≔ var [12 (𝑥1𝜎1 + 𝑥2𝜎2)] , 𝛾12 ≔ 𝜎1𝜎2𝜌12 = var [12(√𝜎2𝜎1 𝑥1 +√𝜎1𝜎2 𝑥2)] (2.111) 

we find from (2.110) that 𝜌12 ≔ 1 + 𝑟122 , 𝛾12 ≔ 𝜎1𝜎2 + 𝜎122  (2.112) 

Obviously, the same information as in 𝑟12 is contained in 𝜌12, which lies in the interval 

[0, 1] with the values 0, 1/2, 1 representing fully anti-correlated, uncorrelated and fully 

correlated variables, respectively. Consequently, 𝛾12 lies in the interval [0, 𝜎1𝜎2] with the 

values 0, 𝜎1𝜎2/2, 𝜎1𝜎2 representing fully anti-correlated, uncorrelated and fully correlated 

variables, respectively. 

 The power of the notion of 𝜌12 and 𝛾12 is the fact that, unlike 𝑟12, they can be readily 

expanded to many variables to provide a macroscopic (or bulk) measure of correlation 

among all of them. Considering a number κ > 0 of stochastic variables, in the customary 

case where all have identical variances 𝛾1 = 𝜎2, we write: 
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𝜌𝜅 ≔ var [𝑋𝜅𝜅𝜎] = 𝛾𝜅𝛾1 , 𝛾𝜅 ≔ var [𝑋𝜅𝜅 ] = 𝛾1𝜌𝜅 , 𝑋𝜅 ≔ 𝑥1 +⋯+ 𝑥𝜅 (2.113) 

 Clearly, 𝛾𝜅 is the climacogram, already defined in Chapter 1, and 𝜌𝜅 is a dimensionless 

(standardized) climacogram. They range in the intervals (0, 𝛾1) and (0, 1), respectively, 

with the highest value representing full correlation (𝑥1 +⋯+ 𝑥𝜅 = 𝜅𝑥1 + 𝑐, where c is a 

constant) and the lowest representing deterministic linear dependence, i.e. the condition 

that 𝑥1 +⋯+ 𝑥𝜅 = 𝑐). In case of independence, 𝛾𝜅 ≔ 𝛾1/𝜅 and 𝜌𝜅 ≔ 1/𝜅.  

2.17 Limiting distributions and the central limit theorem 

As we have seen in section 2.15, it is rather difficult to calculate the distribution function 

of the sum of two stochastic variables from the distributions of the constituents. This 

difficulty increases as the number of constituents increases. However, if this number 

becomes quite large, paradoxically the problem becomes easier—this is the ease of 

macroscopization. Central role in resolving this paradox plays the central limit theorem*, 

one of the most important in probability theory. It concerns the limiting distribution 

function of a sum of stochastic variables–constituents, which, under some conditions but 

irrespectively of the distribution functions of the constituents, is always the same, the 

celebrated normal distribution. This is the most commonly used distribution in probability 

theory as well as in all scientific disciplines and, as we have seen in section 2.10, it is also 

derived from the principle of maximum entropy. 

 Let 𝑥𝑖 (𝑖 = 1,… , 𝑛) be stochastic variables whose sum 𝑧𝑛 ≔ 𝑥1 +⋯+ 𝑥𝑛 has mean 𝜇𝑧 

and variance 𝜎𝑧2. The central limit theorem states that, under some general conditions (see 

below), as 𝑛 tends to infinity, the distribution of 𝑧 will tend to the normal distribution 

(also known as Gauss or Gaussian distribution and denoted as N(𝜇𝑧, 𝜎𝑧)), i.e., 

lim𝑛→∞𝐹𝑧𝑛(𝑧) = ∫ 1𝜎𝑧√2π e−12(𝑧−𝜇𝑧𝜎𝑧 )2𝑧
−∞  (2.114) 

and in addition, if 𝑥𝑖 are continuous variables, the density function of 𝑧𝑛 has also a limit, lim𝑛→∞𝑓𝑧𝑛(𝑧) = 1𝜎𝑧√2π e−12(𝑧−𝜇𝑧𝜎𝑧 )2
 (2.115) 

 We observe in (2.114) and (2.115) that the limits of the functions 𝐹𝑧𝑛(𝑧) and 𝑓𝑧𝑛(𝑧) do 

not depend on the distribution functions of 𝑥𝑖, that is, the result is always the same. Thus, 

provided that the conditions for the applicability of the theorem hold, (a) we can know 

the macroscopic behaviour (the distribution function of the sum) without knowing details 

of the constituents, and (b) precisely the same distribution describes any variable that is 

a sum of a large number of components. Here lies the great importance of the normal 

 
* The term was most likely introduced by Pólya in 1920. A first version of the theorem was formulated and 
proved by Laplace in 1810 while at about the same time Gauss studied the normal distribution in 
characterizing measurement or model errors. Earlier, in 1733, de Moivre had introduced the normal 
distribution as an approximation of the binomial distribution (Fischer, 2010).  
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distribution in all sciences (mathematical, physical, social, economic, etc., as well as 

stochastics per se). Additionally, we recall (Digression 2.H and Table 2.4) that the normal 

distribution also emerges from the principle of maximum entropy: for constant 

(Lebesgue) background density and for domain (–∞,∞), it yields the maximum entropy 

among all distributions with specified (constrained) mean and standard deviation. 

 In practice, the convergence for 𝑛 →  can be regarded as an approximation if 𝑛 is 

sufficiently large. But how large should 𝑛 be so that the approximation be satisfactory? 

Generally, the literature suggests that a value 𝑛 = 30 is satisfactory. However, this varies 

depending on the (joint) distribution of the constituents 𝑥𝑖 . Figure 2.6 gives a graphical 

illustration of the convergence to the normal distribution of the sum of 𝑛 independent 

variables. Clearly, if the distribution of 𝑥𝑖  is symmetric (left panel, with uniform 

distribution of 𝑥𝑖), the convergence is rapid (even for 𝑛 = 3) but if it is asymmetric (right 

panel, with exponential distribution of 𝑥𝑖) a value higher that 32 (the highest 𝑛 shown in 

the plot) is needed for a satisfactory convergence. In case of dependent 𝑥𝑖  with positive 

correlation, the convergence is slower and a much larger 𝑛 is needed.  

 

Figure 2.6 Convergence of the sum of independent identically distributed stochastic variables to 
the normal distribution (thick line). The thin continuous lines represent the probability density of 
the constituent variables 𝑥𝑖, which have mean 0 and standard deviation 1. On the left panel the 

density is uniform on the interval (−√3,√3) with 𝑓(𝑥) = 1/(2√3) and on the right panel 
exponential, 𝑓(𝑥) = e−𝑥−1, 𝑥 ≥ −1 (the parameters are chosen so as to have mean 0 and standard 
deviation 1). The dotted lines represent the densities of the sums 𝑧𝑛 ≔ (𝑥1 +⋯+ 𝑥𝑛)/√𝑛 for the 

values of 𝑛 indicated in the legend. (The division of the sum by √𝑛 helps for a better presentation 
of the curves, as all 𝑧𝑛 have the same mean and variance, 0 and 1, respectively, and does not affect 
the essentials of the central limit theorem. Equations (2.11) and (2.108) were used to produce the 
graph.) 

 The conditions for the validity of the central limit theorem are general enough, so that 

they are met in many practical situations. Some sets of conditions (e.g. Papoulis, 1990, p. 

215) with particular interest are the following:  

(a) the variables 𝑥𝑖  are independent identically distributed with finite third moment;  
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(b) the variables 𝑥𝑖  are bounded from above and below with nonzero variance;  

(c) the variables 𝑥𝑖  are independent with finite third moment and the variance of 𝑧𝑛 

tends to infinity as 𝑛 tends to infinity.  

 The theorem has been extended for variables 𝑥𝑖  that are interdependent, but each one 

is effectively dependent on a finite number of other variables. Gnedenko and Kolmogorov 

(1949) proved an extended version of the theorem, according to which the sum of 𝑛 

stochastic variables with heavy tailed distributions with upper-tail index ξ > 1/2, 

therefore having infinite variance, will tend to the so-called Lévy alpha-stable 

distribution, as 𝑛 → ∞. If ξ < 1/2, the standard central limit theorem holds, i.e., the sum 

converges to the Gaussian distribution, which is a special case of the Lévy alpha-stable 

distribution. In the field of hydroclimatic processes, the standard theorem suffices 

because we can justifiably assume that those processes have finite variance: an infinite 

variance would presuppose infinite energy to materialize, which is absurd. 

 Most hydroclimatic processes (particularly rainfall and streamflow) have skewed 

distributions at fine time scales, and therefore the normal distribution is not a suitable 

model at these scales. However, the normal distribution describes with satisfactory 

accuracy variables that refer to longer time scales such as annual. Thus, the annual rainfall 

depth in an area with wet climate is the sum of many (e.g., 50-100) rainfall events during 

the year; this, however, is not valid for rainfall in dry areas. Likewise, the annual runoff 

volume passing through a river section can be regarded as the sum of 365 daily volumes. 

These are not independent, but the central limit theorem can be applicable again.  

 Nonetheless, it should be stressed that the convergence to the normal distribution 

concerns the body of the distribution. For example, what is depicted in Figure 2.6 is about 

the body of the distribution. What happens with the upper tail behaviour, i.e., the 

extremes? Apparently, once the theoretical conditions of validity are satisfied, the 

theoretical result should hold true. However, this may not be of any help in practice as the 

convergence in the tail is much slower. Figure 2.7 (left) shows that the convergence in the 

tail is indeed slow for the exponential distribution, much slower than that of the body of 

the same distribution shown in Figure 2.6 (right). The coefficient of skewness for the sum 

of 32 𝑥𝑖  is rather small (0.35) indicating a rather satisfactory approximation by the normal 

distribution. However, Figure 2.7 (left) shows that for 𝐹̅ = 0.001 the distribution of the 

sum of 32 𝑥𝑖  is by an order of magnitude larger than that of the normal distribution.  

 For heavy tailed distributions, there are differences of several orders of magnitude as 

shown for the Pareto distribution in Figure 2.7 (right). The upper-tail index of this Pareto 

distribution is 1/4, which means that the moments below the fourth order exist and 

therefore the necessary conditions for the central limit theorem are satisfied. Despite that, 

the approximation of the distribution upper tail is unsatisfactory. Actually, it can be easily understood that, as the moments for order ≥ 4 of 𝑥𝑖  are infinite, the same will hold for the 

sum of any finite number of 𝑥𝑖 , while the limiting normal distribution has all its moments 

finite. This conflict, along with the fact that the behaviour of extremes is closely connected 

to the high order moments of a distribution (see Chapter 6) suggests that we must be very 
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attentive in the application of the theorem in hydroclimatic processes, particularly 

because these processes seem to exhibit heavy tails and long-range dependence. 

 

Figure 2.7 Convergence of the sum of independent identically distributed stochastic variables to 
the normal distribution (thick line) with focus on the upper tail. The thin continuous lines 
represent the exceedance probability of the constituent variables 𝑥𝑖, which have mean 0 and 
standard deviation 1. On the left panel the distribution is exponential with density 𝑓(𝑥) =e−𝑥−1, 𝑥 > −1 as in the right panel of Figure 2.6) and on the right panel Pareto with upper-tail 

index 1/4 and exceedance probability 𝐹̅(𝑥) = (4/3 + 𝑥√2/3)−4, 𝑥 ≥ −1 √2⁄  (the parameters are 
chosen so that the mean is 0 and standard deviation 1). The dotted lines represent the exceedance 
probability of the sums 𝑧𝑛 ≔ (𝑥1 +⋯+ 𝑥𝑛)/√𝑛 for the values of 𝑛 indicated in the legend. Their 
curly shape in the right panel is due to the numerical (Monte Carlo) method used to construct 
them as analytical integration is impossible beyond 𝑛 = 2. (Equations (2.11) and (2.108) were 
used to produce the graph.) 

2.18 Limiting extreme value distributions 

By analogy with the central limit theorem referring to the sum or the average of many 

variables, limiting distributions may also arise, as 𝑛 → ∞, for the maximum of these 

variables, 𝑦𝑛 ≔ max(𝑥1, … , 𝑥𝑛), whose exact distribution function for independent and 

identically distributed 𝑥𝑛 is: 𝐹𝑦𝑛(𝑦) = (𝐹𝑥(𝑦))𝑛 (2.116) 

 The relevant theory was developed in the 20th century. Historically, it was Fréchet 

(1927) the first to identify one of the asymptotic distributions of maxima, which bears his 

name. Fisher and Tippett (1928) showed that there are only three possible limiting 

distributions for extremes, while von Mises (1936) identified sufficient conditions for 

convergence to the three limiting laws. Gnedenko (1943) set the solid foundations of the 

asymptotic theory of extremes providing the precise conditions for the weak convergence 

to the limiting laws. It is worth noting in this respect the celebrated book by Gumbel 

(1958), who was one of the pioneers promoting and applying the formal theory into 

engineering practice. The theory is concisely presented in a review paper by Davison and 
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Huser (2015). Assuming that 𝑥𝑖  are independent and identically distributed, there exist a 

real number ξ and sequences of real numbers 𝜆𝑛 > 0 and 𝘀𝑛 such that the rescaled 

maximum 𝑦𝑛∗ ≔ max(𝑥1, … , 𝑥𝑛) /𝜆𝑛 − 𝘀𝑛 has limiting distribution, as 𝑛 → ∞: 

𝐻(𝑦) ≔ 𝐹𝑦∞∗ (𝑦) = exp(−(1 + 𝜉 (𝑦𝜆 − 𝘀))−1/𝜉) , 𝜉𝑦 ≥ 𝜉𝜆 (𝘀 − 1𝜉) (2.117) 

Here λ > 0 is a scale parameter, ε is a dimensionless location parameter and ξ is a shape 

parameter, identical to the upper-tail index.  

 The parameter ξ has a unique value, which is precisely the same with the upper-tail 

index of the parent distribution, but the parameters λ and ε are not unique. They can be 

chosen as convenient (different choices will lead to appropriate modification of the 

sequences 𝜆𝑛 and 𝘀𝑛). A natural choice is ε = 0, λ = 1. A more customary option is to choose 

a large 𝑛 for which convergence has been achieved at a satisfactory degree, for that 𝑛 set 𝜆𝑛 = 1 and 𝘀𝑛 = 1 (so that 𝑦𝑛∗ ≡ 𝑦𝑛 = max(𝑥1, … , 𝑥𝑛) without any rescaling) and calculate 

λ and ε from equation (2.117). To this aim (and given that, for finite 𝑛, (2.117) is an 

approximation and not an exact relationship) we choose two points 𝑥1 and 𝑥2 and equate 𝐹(𝑥)𝑛 with 𝐻(𝑥) at these points. For mathematical convenience we can choose the two 

points so that −𝑥1/𝜆 + 𝘀 = 0,−𝑥2/𝜆 + 𝘀 = −1, or 𝑥1 = 𝜆𝘀, 𝑥2 = 𝜆𝘀 + 𝜆. Hence, 𝐹(𝜆𝘀)𝑛 =e−1, 𝐹(𝜆𝘀 + 𝜆)𝑛 = e−(1+𝜉)−1/𝜉 . Solving for λ and ε we find: 

𝜆 = 𝐹−1 (e− 1(1+𝜉)1/𝜉 𝑛) − 𝐹−1 (e− 1𝑛) , 𝘀 = 𝐹−1 (e− 1𝑛)𝜆  

 

(2.118) 

 

where for ξ → 0, (1 + 𝜉)−1/𝜉 → 1/e. This is usually made unconsciously, for example when 

we study annual maxima of daily values and fit 𝐻(𝑦) of equation (2.117) on the annual 

maxima directly, without even deriving it from 𝐹𝑥(𝑥). 
 Depending on the value of ξ, the limiting distribution in equation (2.117), known as 

the generalized extreme value (GEV) distribution, is a compact expression including three 

cases with different behaviours: 

• For ξ = 0, GEV takes the following form, known as the Gumbel distribution or 

extreme value type I (EV1) distribution:  𝐻(𝑦) = exp(−exp(−𝑦/𝜆 + 𝘀)) (2.119) 

This is a light-tailed distribution without an upper or lower bound. 

• For ξ > 0, the distribution is known as Fréchet or extreme value type II (EV2) and 

has a lower bound at 𝜆𝜓 − 𝜆/𝜉. This is a heavy-tailed distribution with upper-tail 

index ξ.  

• In case that ξ < 0 the distribution is known as the reverse Weibull or the extreme 

value type III (EV3) distribution. This has an upper bound for y at 𝜆𝜓 − 𝜆/𝜉.  

 The GEV has the property to be max-stable, meaning that maxima from this 

distribution, after linear transformation, have the same distribution. More formally, 
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Fréchet’s necessary condition for max-stability is this: For any 𝑛 ∈ ℕ and y ∈ ℝ, there exist 

real numbers 𝑎𝑛 > 0 and 𝑏𝑛 such that: (𝐻(𝑎𝑛𝑦 + 𝑏𝑛))𝑛 = 𝐻(𝑦) (2.120) 

In fact, GEV is the only distribution satisfying this condition.  

 A specific parent distribution 𝐹(𝑥) belongs to the so-called (max-)domain of 

attraction of one of the three limiting laws, in the sense that the distribution of rescaled 

maxima from this parent distribution is this particular limiting law. Formal mathematical conditions determining a parent distribution’s domain of attraction were formulated by 
von Mises (1936) and Gnedenko (1943). The practical result is that heavy-tailed 

distributions with upper-tail index ξ > 0 (e.g., Pareto, Pareto-Burr-Feller, Student and its 

extensions, generalized log-gamma and generalized beta prime) belong to the domain of 

attraction of EV2. Light-tailed distributions (e.g. exponential, gamma, Weibull, normal and 

their generalizations) as well as heavy-tailed distributions with upper-tail index ξ = 0 (e.g. 

lognormal) belong to the domain of attraction of EV1. In the domain of attraction of EV3 

belong distributions bounded from above (e.g. uniform). 

 Because of its upper bound, EV3 is not an appropriate model for hydroclimatic 

extremes, for nature has no upper limits (unless dictated by a conservation law). The 

values of ξ which we expect to see in hydroclimatic processes are in the range (0, 1/2) so 

that the variance be finite, as already discussed in section 2.17. The exact value of the 

upper-tail index is important to specify in engineering design. The major question in this 

regard is how the value of an extreme quantity y grows as the probability of exceedance 𝐻(𝑦) decreases tending to zero. To put it the reverse way, at which rate does y tend to 

infinity as the probability of exceedance tends to zero? The Gumbel distribution 

represents the mathematically proven lower limit to the rate of this growth. The 

alternative is the Fréchet law which represents a higher rate of growth. The two options 

may lead to substantial differences in design quantities for high return periods. As already 

discussed, the Fréchet law which has a positive upper-tail index is a more realistic option. 

 When we are interested about minima, we can follow the same procedure observing 

that 𝑧𝑛 ≔ min(𝑥1, … , 𝑥𝑛) = −max(−𝑥1, … , −𝑥𝑛). Consequently, 𝑃{𝑧𝑛 ≤ 𝑧} = 1 −𝑃{max(−𝑥1, … , −𝑥𝑛) ≤ −𝑧} and hence the limiting distribution is 

𝐺(𝑧) ≔ 𝐹𝑧∞∗ (𝑦) = 1 − exp (−(1 + 𝜉 (− 𝑧𝜆 − 𝘀))−1/𝜉) , 𝜉𝑧 ≤ 𝜉𝜆 (1𝜉 − 𝘀) (2.121) 

Again, we have three cases: (a) ξ = 0, corresponding to the Gumbel (EV1) distribution of 

minima, i.e.,  𝐺(𝑧) = 1 − exp(−exp(𝑧/𝜆 + 𝘀)) (2.122) 

(b) 𝜉 > 0, corresponding to the reverse Fréchet distribution, which has upper bound 𝜆(1/𝜉 − 𝘀) and a heavy lower tail, and (c), 𝜉 < 0, corresponding to the Weibull 

distribution, which has lower bound 𝜆(1/𝜉 − 𝘀) and a light upper tail.  

 While most of the above mathematical developments have assumed independent 

stochastic variables, the results can be approximately valid even in case of variables 
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dependent in time. Specifically, Leadbetter (1983) demonstrated that, under mild 

conditions, maxima of dependent series follow the same form of distributional limit laws 

as those of independent series. However, the dependence changes the location and scale 

parameters (Davison and Huser, 2015) in such a manner as if 𝐻(𝑦) was replaced by (𝐻(𝑦))𝜃, where 𝘃 ∈ (0,1] is the so-called extremal index. It can be seen that this 

replacement is equivalent with a change of the parameters λ and ε, while ξ remains the 

same. Also, the rate of convergence to the limit becomes slower in case of dependence. 

Phenomenologically, time dependence of a process causes clustering or grouping of 

extreme events. The unfortunate fact that dependence in time is quite often misinter-

preted as nonstationarity, may explain the lately growing body of publications detecting 

nonstationarity in extremes (cf. Koutsoyiannis and Montanari, 2015).  

 Here it should be stressed that, if compared to the central limit theorem, which is 

characterized by a fast convergence to the limit (except in the extremes, as seen in Figure 

2.7), the convergence to the max-stable distribution may be much slower at cases. The 

rate of convergence to the limit of distributions belonging to the domain of attraction of 

EV2 is generally satisfactory. However, for those belonging to the domain of attraction of 

EV1, such as the normal and lognormal distribution, the rate is desperately slow. The 

meaning of a slow convergence in real-world applications, where 𝑛 is finite and often 

small, is that the approximation of EV1 to the actual distribution of maxima is not 

satisfactory. Thus, it may be preferable to approximate the actual distribution of maxima 

of variables with distributions belonging to the domain of attraction of EV1 by the EV2 

distribution, as illustrated in Digression 2.L.  

Digression 2.L: How well do limiting distributions approximate the exact 

distributions? 

For independent identically distributed variables, the exact distribution of maxima is 𝐹(𝑥)𝑛 
(equation (2.116)). To approximate the exact distribution by the GEV we use equation (2.118). As 
an example, for the maxima from the standard normal distribution approximated by the EV1 we 
get: 

𝜆 = 𝐹N−1 (e− 1e𝑛) − 𝐹N−1 (e− 1𝑛) , 𝘀 = 𝐹N−1 (e− 1𝑛)𝜆  

As a second example, for the Pareto distribution, 𝐹(𝑥) = 1 − (1 + 𝑥)−1/𝜉 , approximated by the 
EV2 we get: 

𝜆 = (1 − e− 1𝑛(1+𝜉)1/𝜉)−𝜉 − (1 − e− 1𝑛)−𝜉 , 𝘀 = (1 − e− 1𝑛)−𝜉 − 1𝜆  

 We have applied this approximation for 𝑛 = 10, 100 and 1000 for the normal and the Pareto 
distributions which belong to the domain of attraction of EV1 and EV2, respectively. The results 
are shown graphically in Figure 2.8, along with the case 𝑛 = 1, i.e., the parent distribution per se 
for the sake of comparison. 
 The results are very good for the Pareto distribution and very bad for the normal distribution. 
Even for 𝑛 = 1000, the EV1 severely overestimates the actual probability of exceedance. One may 
think of using the EV3 instead of EV1 for the approximation of the normal distribution. However, 
this is not advisable because the EV3, despite giving a better approximation, entails an upper 
bound to extremes which distorts a fundamental characteristic of the modelled phenomenon. 
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Figure 2.8 Approximation of the true distribution of the maximum of 𝑛 independent identically distributed 
variables (continuous lines) by the limiting extreme value distribution (dashed lines). (left) The parent 
distribution is the standard normal, N(0,1), and the approximating distribution is the EV1. (right) The 
parent distribution is the Pareto, 𝐹(𝑥) = 1 − (1 + 𝑥)−1/𝜉 , with ξ = 0.25 and the approximating distribution 
is the EV2 with the same ξ. 

 Likewise, Figure 2.9 provides similar information for the lognormal distribution with mean 
and standard deviation of ln 𝑥 equal to 0 and 1, respectively (denoted LN(0,1)). Like the normal, 
it belongs to the domain of attraction of EV1. Here the approximation is even worse than in the 
normal case but now the EV1 underestimates the exact probability of exceedance. For that reason, 
we could use EV2 as a better approximation (without having the problem of artificially inducing 
an upper bound). As seen in the right panel of Figure 2.9 this latter approximation is quite 
satisfactory. 

 

Figure 2.9 Approximation of the true distribution of the maximum of 𝑛 independent variables with 
lognormal distribution LN(0,1) (continuous lines) by the limiting extreme value distribution (dashed lines), 
which is (left) EV1 and (right) EV2 with 𝜉 = 0.3/𝑛0.07, which was found after a numerical investigation and 
fitting a power function of 𝑛 by minimizing the fitting error. 

2.19 Relationship of parent and extreme value distribution  

Because of problems originating from the slow rate of convergence of the actual 

distribution to GEV (particularly EV1), it may be a good idea not to use the limiting 

distributions in practical applications but, instead, to model the tails of the parent 
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distribution or even the entire parent distribution. Yet the theory of max-stable 

distributions retains its usefulness to infer the tail behaviour of the parent distribution.  

 Specifically, the upper tail behaviour of the parent distribution is described by the 

conditional distribution function: 𝐹(𝑥|𝑥 > 𝑢) =  𝑃{𝑥 ≤ 𝑥|𝑥 > 𝑢} = 𝐹(𝑥) − 𝐹(𝑢)1 − 𝐹(𝑢)  (2.123) 

for a value of the threshold u that is sufficiently large. Now, assuming that the 

parameterization of 𝐻(𝑥) with regard to λ and ε has been made with reference to a specific 

large 𝑛, as described for the derivation of (2.118), we choose u so that the exceedance 

probability 1 – F(u) equals 1/𝑛. (This is a very common choice as will be discussed in 

Digression 2.M). Thus, 𝐹(𝑥|𝑥 > 𝑢) = 𝑛(𝐹(𝑥) − 1) + 1 or: 1 − 𝐹(𝑥|𝑥 > 𝑢) = 𝑛(1 − 𝐹(𝑥)) (2.124) 

On the other hand, we can write for 𝐹(𝑥) approaching 1, − ln𝐻(𝑥) ≈ − ln(𝐹(𝑥))𝑛 = −𝑛 ln 𝐹(𝑥) ≈ 𝑛(1 − 𝐹(𝑥)) (2.125) 

because ln 𝐹(𝑥) = ln(1 − (1 − 𝐹(𝑥)) = −(1 − 𝐹(𝑥)) − (1 − 𝐹(𝑥))2 −⋯ and for 𝐹(𝑥) 
approaching 1 we can keep the first term only. Hence, combining (2.124) and (2.125) we 

find: 

𝐹(𝑥|𝑥 > 𝜆𝘀) = 1 + ln𝐻(𝑥) = 1 − (1 + 𝜉 (𝑥𝜆 − 𝘀))−1/𝜉 , 𝑥 ≥ 𝜆𝘀 (2.126) 

where we equated u with 𝜆𝘀 for consistency (i.e. to make 𝐹(𝑢|𝑥 > 𝑢) = 0). This is the 

Pareto distribution for ξ > 0 while for ξ = 0 we get the exponential form: 𝐹(𝑥|𝑥 > 𝜆𝘀) = 1 + ln𝐻(𝑥) = 1 − exp (𝑥𝜆 − 𝘀) , 𝑥 ≥ 𝜆𝘀 (2.127) 

 Furthermore, for values of 𝑥 large enough to make 𝐻(𝑥) approach 1, we can use the 

same logic to get ln 𝐻(𝑥) ≈ 𝐻(𝑥) − 1 and hence  𝐹(𝑥|𝑥 > 𝜆𝘀) ≈ 𝐻(𝑥) (2.128) 

This approximation error does not exceed ~1% for 𝐻(𝑥) > 0.99 and ~5% for 𝐻(𝑥) > 0.9.  

 We can generalize the above analysis for different values of the threshold ξ. In this 

case the resulting functional form remains the same, with the same upper-tail index, but 

the location and scale parameters differ, i.e. (Davison and Huser, 2015): 

𝐹(𝑥|𝑥 > 𝑢) = 1 − (1 + 𝜉 ( 𝑥𝜆𝑢 − 𝘀𝑢))−
1𝜉

 (2.129) 

where 𝜆𝑢 ≔ 𝜆(1 + 𝜉(𝑢/𝜆 − 𝘀)), 𝘀𝑢 ≔ 𝑢/𝜆𝑢 (2.130) 
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It is readily confirmed that if we set 𝑢 = 𝜆𝘀 in (2.129) and (2.130) we recover (2.126). 

However, this equation is valid only for large values of 𝑢 (unless the unconditional 𝐹(𝑥) 
is Pareto, in which case it is valid for any 𝑢). 

 A final note that may be relevant in some analyses is this. If the value of 𝑛 in 𝑦𝑛 ≔max(𝑥1, … , 𝑥𝑛), is not constant but a stochastic variable with Poisson distribution with 

mean ν, while 𝑥𝑖  are independent, then the conditional distribution of 𝑦𝑛 on specified 𝑛 

remains 𝐹𝑦𝑛(𝑦|𝑛) = (𝐹𝑥(𝑦))𝑛 but for unspecified 𝑛 the unconditional distribution 

becomes (Todorovic and Zelenhasic, 1970): 𝐹𝑦(𝑦) = exp (−𝜈(1 − 𝐹(𝑦))) (2.131) 

This resembles (2.125) with the difference that it is now exact rather than approximate.  

 As already discussed above and in section 2.18, because of the problems of the 

limiting extreme value distributions, it is preferable to focus the studies of extremes on 

the parent distributions and primarily their upper tails. From the above theoretical 

discussion, we have reasons to expect a parent distribution upper tail of Pareto type, or 

at least exponential, but this should be verified each time based on observations. 

Nowadays there is abundance of hydrometeorological data on daily and subdaily scales 

and there is no need to extract annual or seasonal maxima. Instead, we should use the 

entire observational record or at least the values over some threshold. If the available 

observations are originally given in terms of time-block (e.g., annual) maxima, it may look 

pertinent to refer to extreme value distribution. However, again it is possible to use model 

the parent process, estimating its parameter from time-block maxima. The method of 

doing this, which is based on the concept of knowable moment to be introduced in Chapter 

6, will be studied in section 6.21. Advantages of studying the distribution of the parent 

variable rather than the distribution of maxima are discussed in Digression 2.M  

Digression 2.M: Block maxima vs. values over threshold vs. complete record 

Traditionally, hydrometeorological records are analysed in either of two ways. The most frequent 
is to choose the highest of all recorded values for a given time period or “block” (typically year) and form a statistical sample (commonly referred to as “block maxima”) with size equal to the 
number of blocks (typically years) of the record. The other is to form a sample of values over a 
threshold (here abbreviated as VOT but sometimes referred to as “peaks-over-threshold”—POT) 
with all recorded values over a certain threshold irrespective of the time they occurred. Usually, 
the threshold is chosen high enough, so that the sample size is again equal to the number of years 
of the record. This however is not necessary: it can well be set equal to zero, so that all recorded 
values are included in the sample (the complete sample). However, a high threshold simplifies the 
study and helps focus the attention on the distribution upper tail. In addition, this choice 
simplifies the mathematical expression (compare equations (2.126) and (2.129)), leading to 
identity of distributional parameters of the distributions of block-maxima and values over 
threshold. 
 Additionally, studying the complete series of observations has the advantage of respecting the motto “Save hydrological observations!” (Volpi et al., 2019). Indeed, extracting maxima over 
some period results in waste of information because other extreme observations should also be 
informative about extremes. Such information (e.g., the second-largest value of a period, which can be higher than another period’s largest value) is retained even if we use the values over 
threshold instead of the entire series of observations.  
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 Furthermore, the design quantities should naturally correspond to the parent distribution, 
rather than the artificially induced maxima over an arbitrarily defined time period. This favours 
the use of the parent distribution. As we have seen (equation (2.128) the two are almost equal for 
very large design values, but for lower ones there are differences. Thus, even if our analyses are 
based in time-block extremes (𝐻(𝑦)), the results should eventually be converted to the parent 
distribution (𝐹(𝑥)) before they are used for design. The above discourse provides the necessary 
mathematical support for such conversion. 
 The most important reason favouring the study of the complete record over that of block 
maxima and VOT is that only the former provides faithful information about time dependence of 
the underlying process. As we have already seen in Chapter 1, such dependence may be marked 
and possibly of long-range type. As we will see in Chapter 6, neglecting dependence results in 
underestimation of extremes. On the other hand, the procedure of extracting block maxima leads 
to severe distortion of the dependence structure (Iliopoulou and Koutsoyiannis, 2019), whereas 
the concept of taking values over threshold relies on a tacit assumption of time independence, 
which may be inappropriate, particularly for the streamflow process (Lombardo et al., 2019). 
 





 

Chapter 3. Stochastic processes and quantification of change  

3.1 Definitions 

A deterministic worldview is founded on a concept of sharp exactness. A deterministic 

mathematical description of a system uses common variables (e.g. 𝑥) which are 

represented as numbers. The change of the system state is represented as a trajectory 𝑥(𝑡), which is the sequence of a system’s states 𝑥 as time 𝑡 changes. Changes in time are 

studied using the concept of a dynamical system with certain system dynamics. The latter 

term denotes a transformation 𝑆𝑡 which maps its initial state 𝑥(0) in the trajectory of a 

dynamical system (at time 0) to its current state 𝑥(𝑡) (at time t), that is, 𝑥(𝑡) = 𝑆𝑡(𝑥(0)) 
(Lasota and Mackey 1994). 

 In an indeterministic worldview there is uncertainty or randomness, where the latter 

term simply means unpredictability or intrinsic uncertainty. In turn, to study the change 

according to this approach we use the notion of a stochastic process. This is defined to be 

an arbitrarily (usually infinitely) large family of stochastic variables 𝑥(𝑡) (Papoulis, 1991). 

To each one of them there corresponds an index t, which takes values from an index set T, 

most often referring to time. The time t can be either discrete (when T is the set of integers, ℤ) or continuous (when T is the set of real numbers, ℝ); thus, we have respectively a 

discrete-time or a continuous-time stochastic process. As natural time runs continuously, 

the faithful representation of a natural process needs a model formulated for continuous 

time to avoid the risk of making artificial constructs. Nonetheless, the discrete-time 

representation is certainly necessary in simulation. Typically, the discrete time 

representation 𝑥𝜏 is derived from the continuous time representation 𝑥(𝑡) as the 

temporal average:  

𝑥𝜏 ≔ 1𝐷 ∫ 𝑥(𝑢)d𝑢𝜏𝐷
(𝜏−1)𝐷  (3.1) 

where 𝜏 ∈ ℤ represents the continuous-time interval [(𝜏 − 1)𝐷, 𝜏𝐷] and D is the time step; 

notice that we use different notation in the continuous and discrete time representation, 

in the latter case denoting time as a subscript. Each of the stochastic variables 𝑥(𝑡) or 𝑥𝜏 
can be either discrete (e.g. the wet or dry state of a day) or continuous (e.g. the rainfall 

depth); thus, we have respectively a discrete-state or a continuous-state stochastic 

process.  

 The index set can also be a vector space, rather than the real line or the set of integers; 

this is the case for instance when we assign a stochastic variable (e.g. rainfall depth) to 

each geographical location (a two dimensional vector space) or to each location and time 

instance (a three-dimensional vector space). Stochastic processes with multidimensional 

index sets are also known as stochastic (or random) fields.  

 A realization 𝑥(𝑡) of a stochastic process 𝑥(𝑡), which is a common (numerical) 

function of the time t, is known as a sample function. Typically, a realization can be known 

(simulated) at countable time instances, i.e. in discrete time (not in continuous time, even 
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in a continuous-time process). Likewise, observation of a natural process is also made in 

discrete time. A sequence of simulated or observed values is called a time series. Clearly 

then, a time series is a finite sequence of numbers, whereas a stochastic process is a family 

of stochastic variables, infinitely many for discrete time processes and uncountably 

infinitely many for continuous time processes. A large body in literature does not make 

this distinction and confuses stochastic processes with time series (see Digression 3.E).  

3.2 Distribution function and moments 

The distribution function of the stochastic variable 𝑥(𝑡) i.e.,  𝐹(𝑥; 𝑡) ≔ 𝑃{𝑥(𝑡) ≤ 𝑥} (3.2) 

is called first-order distribution function of the process. Likewise, the second-order 

distribution function is: 𝐹(𝑥1, 𝑥2; 𝑡1, 𝑡2)  ≔ 𝑃{𝑥(𝑡1) ≤ 𝑥1, 𝑥(𝑡2) ≤ 𝑥2} (3.3) 

and the nth order distribution function is: 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑡1, 𝑡2, … , 𝑡𝑛)  ≔ 𝑃{𝑥(𝑡1) ≤ 𝑥1, 𝑥(𝑡2) ≤ 𝑥2, … , 𝑥(𝑡𝑛) ≤ 𝑥𝑛} (3.4) 

A stochastic process is completely determined if we know the nth order distribution 

function for any 𝑛. The nth order probability density function of the process is derived by 

taking the derivatives of the distribution function with respect to all 𝑥𝑖 .  
The moments are defined in the same manner as in sections 2.12 and 2.14. Of particular 

interest are the following:  

1. The process mean, i.e. the expected value of the variable 𝑥(𝑡): 
𝜇(𝑡) ≔ E[𝑥(𝑡)] = ∫ 𝑥𝑓(𝑥; 𝑡)d𝑥∞

−∞  (3.5) 

2. The process variance, i.e. the variance of the variable 𝑥(𝑡): 
𝛾0(𝑡) ≔ var[𝑥(𝑡)] = ∫(𝑥 − 𝜇(𝑡))2𝑓(𝑥; 𝑡)d𝑥∞

−∞  (3.6) 

3. The process autocovariance, i.e. the covariance of the stochastic variables 𝑥(𝑡) and 𝑥(𝑡 + ℎ): 𝑐(𝑡; ℎ) ≔ cov[𝑥(𝑡), 𝑥(𝑡 + ℎ)] = E [(𝑥(𝑡) − 𝜇(𝑡)) (𝑥(𝑡 + ℎ) − 𝜇(𝑡 + ℎ))] (3.7) where 𝑐(𝑡; 0) ≡ 𝛾0(𝑡). 
4. The process autocorrelation, i.e., the correlation coefficient of the stochastic 

variables 𝑥(𝑡) and 𝑥(𝑡 + ℎ)): 𝑟(𝑡; ℎ) ≔ corr[𝑥(𝑡), 𝑥(𝑡 + ℎ)] = 𝑐(𝑡; ℎ)√𝛾0(𝑡)𝛾0(𝑡 + ℎ) (3.8) 
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Additional characteristics will be given in section 3.5. 

3.3 Stationarity 

The term process has been introduced in the scientific vocabulary as synonymous to 

change, as evident in Kolmogorov’s (1931) pioneering paper, in which he introduced the 

term stochastic process. This paper starts stating “A physical process [is] a change of a 

certain physical system”.  

 It is very common in science to try to identify invariant properties within change 

(Koutsoyiannis 2011a). For example, in the absence of an external force, the position of a 

body in motion changes in time but the velocity is unchanged (Newton’s first law). If a 
constant force is present, then the velocity changes but the acceleration is constant (Newton’s second law). If the force changes, e.g. the gravitational force with changing 
distance in planetary motion, the acceleration is no longer constant, but other invariant properties emerge, e.g. the angular momentum (Newton’s law of gravitation; see also 
Koutsoyiannis 2011a). 

 Evidently, the notion of a stochastic process was invented to describe the irregular 

changes in natural systems more complex than the above, which are impossible to model 

deterministically or predict their future evolution in full detail and with precision. Here, 

the great scientific achievement is the invention of macroscopic descriptions instead of 

modelling the details. This is essentially done using stochastics. Here lies the essence and 

usefulness of the stationarity concept, which seeks invariant properties in complex 

systems (Koutsoyiannis, 2011a, 2014a; Koutsoyiannis and Montanari, 2015). Following 

Kolmogorov (1931, 1938) and Khintchine (1934), a process is stationary if its statistical 

properties are invariant to a shift of time origin, i.e. 𝑥(𝑡) and 𝑥(𝑡′) have the same 

(multivariate) distribution for any t and t΄. Furthermore, following Kolmogorov (1947), a 

process is called wide-sense stationary if its mean is constant and its autocovariance 

depends only on time differences, i.e.:  E[𝑥(𝑡)] = 𝜇 (= constant),       cov[𝑥(𝑡), 𝑥(𝑡 + ℎ)] = 𝑐(ℎ) (3.9) 

A strict-sense stationary process is also wide-sense stationary, but the inverse is not true. 

 A process that is not stationary is called nonstationary. In a nonstationary process 

one or more statistical properties depend on time, that is, they are deterministic functions 

of time. A typical case of a nonstationary process is a cumulative process whose mean is 

proportional to time. For instance, let us assume that the rainfall intensity at a 

geographical location and time of the year is modelled as a stationary process 𝑥(𝑡), with 

mean μ. Let us further denote 𝑋(𝑡) the rainfall depth collected in a large container (a 

cumulative raingauge) at time t and assume that at the time origin, t = 0, the container is 

empty, so that 𝑋(𝑡) = ∫ 𝑥(𝑠)d𝑠𝑡0 . It is easy then to understand that E[𝑋(𝑡)] =  𝜇𝑡. This is a 

deterministic (linear) function of time t and thus 𝑋(𝑡) is a nonstationary process.  

 We should stress that stationarity and nonstationarity are properties of a process, not 

of a sample function or time series. There is some confusion in the literature about this, 

as a lot of studies assume that a time series is stationary or not, or can reveal whether the 
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process is stationary or not. As a general rule, to characterize a process nonstationary, it 

suffices to show that a specific statistical property is a deterministic function of time (as 

in the above example of the raingauge), but this cannot be straightforwardly inferred 

merely from a time series. A time series formed from observations of a natural process 

cannot be stationary, nor nonstationary. 

 Stochastic processes describing periodic phenomena, such as those affected by the 

annual cycle of Earth, are nonstationary. For instance, the daily temperature at a mid-

latitude location could not be regarded as a stationary process. It could be modelled as a 

special kind of a nonstationary process with characteristics depending on time in a 

periodical manner (are periodic functions of time). Such processes are called 

cyclostationary processes.  

3.4 Ergodicity 

Stationarity is also related to another important stochastic concept, ergodicity.* Its 

importance derives from the fact that ergodicity is a prerequisite to make inference from 

data, that is, induction—the Aristotelian ἐπαγωγή (epagoge). This is a type of inference 

weaker than deduction—the Aristotelian ἀπόδειξις (apodeixis) —albeit very useful when 

deduction is not possible.  

 In dynamical systems, by definition (e.g. Mackey, 2003, p. 48), ergodicity is the 

property of a system whose all invariant sets under the dynamic transformation are trivial 

(have zero probability). In other words, in an ergodic transformation starting from any 

point, the trajectory of the system state will visit all other points, without being trapped 

to a certain subset. The ergodic theorem (Birkhoff, 1931; Khintchine, 1933; see also 

Mackey, 2003, p. 54), allows redefining ergodicity within the stochastics domain 

(Papoulis, 1991, p. 427; Koutsoyiannis 2010) in the following manner: A stochastic 

process 𝑥(𝑡) is ergodic if the time average of any (integrable) function 𝑔 (𝑥(𝑡)), as time 

tends to infinity, equals the true (ensemble) expectation, i.e.:  

lim𝑇→∞ 1𝑇∫𝑔 (𝑥(𝑡)) d𝑡 = E[𝑔(𝑥(𝑡))]𝑇
0 , lim𝑇→∞ 1𝑇∑𝑔(𝑥𝜏)𝛵

𝜏=0 = E[𝑔(𝑥(𝑡))] (3.10) 

for a process in continuous or in discrete time, respectively. 

 The right-hand side in the above equations represents the true average, also known 

as ensemble average, whereas the left-hand side represents the time average, for the 

limiting case of infinite time. The left-hand side in each of equations (3.10) is a stochastic 

variable (as a sum or integral of stochastic variables) and is not a function of the time t. 

Hence, the right-hand side should not be a function of the time t, i.e. the process should be 

stationary. Furthermore, the right-hand side is a number, not a stochastic variable. 

 
* The concept of ergodicity was first conceived by Boltzmann (1884/85) who coined the terms ergode and 
isodic, both of which are etymologized from Greek words but which ones exactly is uncertain. Most 
probably, ergodic comes from the Greek ἔργον (ergon = work) and ὁδός (hodos = pathway). According to 
another interpretation, the second noun is εἶδος (eidos = form, kind, nature), or the whole word is a 
transliteration of the Greek adjective ἐργώδης (ergodes = laborious, troublesome; see Mathieu 1988). 
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Equating a number with a stochastic variable implies that the stochastic variable has zero 

variance. This is precisely the condition that makes a process ergodic. And this allows the 

estimation (i.e. approximate calculation) of the true but unknown property E[𝑔(𝑥(𝑡))] 
from the time average of 𝑔(𝑥(𝑡)), that is, from the available data. Without ergodicity 

inference from data would not be possible. 

 A stochastic process for which it can be shown that the property (3.10) holds true for 

the particular case that 𝑔 (𝑥(𝑡)) = 𝑥(𝑡), whose expectation is the mean (E[𝑥(𝑡)] = 𝜇), is 

called mean-ergodic. The property could be extended for the multivariate functions, e.g. 𝑔(𝑥(𝑡), 𝑦(𝑡) ), and thus we can speak about covariance-ergodic processes. Further 

information, including conditions that should hold for ergodicity can be found in Papoulis 

(1991).  

 Now, if the system that is modelled in a stochastic framework has deterministic 

dynamics (meaning that a system input will give a single system response, as happens for 

example in most hydrological models), then a theorem applies (Mackey 2003, theorem 

4.5 p. 52), according to which a dynamical system with dynamics 𝑆𝑡(𝑥) has a stationary 

probability density if and only if it is ergodic. Therefore, a stationary system is also ergodic 

and vice versa, and a nonstationary system is also non-ergodic and vice versa. Here we 

note that even if a system has deterministic dynamics, again it is legitimate to use a 

stochastic description, replacing the study of the evolution of system states 𝑆𝑡(𝑥) with the 

evolution of probability densities of states 𝑓(𝑥; 𝑡). One reason to prefer the stochastic 

description over the pure deterministic description is that the former includes 

quantification of uncertainty, whereas the deterministic dynamics does not eliminate 

uncertainty (Koutsoyiannis 2010). Furthermore, we clarify that the deterministic 

description through the transformation 𝑆𝑡(𝑥) is fully compatible with a stochastic 

description that is stationary and ergodic, according to the theorem stated above: while 

the system state is changing in time t according to the transformation 𝑆𝑡(𝑥), its statistical 

properties (and the probability density 𝑓(𝑥; 𝑡)) can be constant in time (i.e. 𝑓(𝑥)).  

 If the system dynamics is stochastic (a single input could result in multiple outputs), 

then ergodicity and stationarity do not necessarily coincide. However, recalling that a 

stochastic process is a model and not part of the real world, we can always conveniently 

devise a stochastic process that is ergodic, provided that we have excluded 

nonstationarity. In conclusion, from a practical point of view ergodicity can generally be 

assumed when there is stationarity and the variance of the time averaged process tends 

to zero as the time of average tends to infinity, while this assumption if fully justified by 

the theory if the system dynamics is deterministic. Conversely, if nonstationarity is 

assumed, then ergodicity cannot hold, which forbids inference from data. This contradicts 

the basic premise in geosciences, including hydrology and climatology, where data are the 

only reliable information in building models and making inference and prediction. 

Digression 3.A: Misuses of stationarity and ergodicity 

Despite having a central role in stochastics, the concepts of stationarity and ergodicity have been 
widely misunderstood and broadly misused (Montanari and Koutsoyiannis, 2014; Koutsoyiannis 
and Montanari, 2015). In an attempt to find trends everywhere, according to the popular motto 
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 “stationarity is dead” (Milly et al. 2008), trend analysis of hydroclimatic processes is more 
fashionable today than ever before (Iliopoulou and Koutsoyiannis, 2020). The notion of a trend, 
as a fundamental constituent of time series, is very old, but it is fundamentally problematic 
(Koutsoyiannis, 2020a), despite its popularity. 
 Ironically, most of these studies use time series data to estimate statistical properties, as if 
the process were ergodic, while at the same time their cursory estimates falsify the ergodicity 
hypothesis. The correct tactic, even when dealing with provably nonstationary and nonergodic 
processes and our study is based on data, is to convert the process to a stationary and ergodic one 
before trying to make any inference from the data. 
 As an example, assuming that we deal with the cumulative rainfall process 𝑋(𝑡), used as an 
example of a nonstationary process in section 3.3, we convert the process into a stationary one in 
discrete time by 𝑥𝜏 ≔ 𝑋(𝜏𝐷) − 𝑋((𝜏 − 1)𝐷), where D is a time step, and perform the same 
transformation to the time series data. Then we can use the 𝑥𝜏 data to make inferences.  
 As a second example related to trends, let us examine a statement such as: “By analysing the 
time series 𝑥𝜏 (where τ denotes discrete time), we concluded that it is nonstationary, and we 
identified an increasing trend with slope b.” This is an incorrect statement and can be corrected in the following manner: “We analysed the time series 𝑥𝜏 based on the modelling assumption that 
the stochastic process 𝑥𝜏 –  𝑏𝜏 is stationary and ergodic, which enabled the estimation of the slope 
b.” The latter statement respects the fact that we always need stationarity and ergodicity to make 
inference from data. It also avoids using the vague term “trend”, which, despite being trendy, has 
no scientific definition. Finally, it reveals the fact that the entire setting is just a modelling 
assumption—not anything objective, related to physical reality. 

3.5 Second-order characteristics of stochastic processes 

Along with the definition of a stochastic process (section 3.1), we have already provided 

that of the autocovariance function, an important characteristic of the second-order 

distribution function of a stochastic process. However, there are other second-order 

characteristics that are useful to study, as they have certain properties that help 

understand and simulate stochastic processes. 

 Before defining them, starting from the process of interest 𝑥(𝑡) we will better explain 

the concepts of the cumulative process 𝑋(𝑡) and the discrete-time process 𝑥𝜏, which have 

already been introduced. As graphically shown in Figure 3.1, the cumulative process is 

defined as: 

𝑋(𝑡) ≔ ∫𝑥(𝑢)𝑑𝑢𝑡
0  (3.11) 

where obviously 𝑋(0) ≡ 0. If 𝑥(𝑡) aims to represent a natural process, then 𝑋(𝑡) should 

necessarily be nonstationary. However, by time averaging (dividing the cumulative 

process by time) and differencing, we may construct a stationary process over any time 

scale 𝐷, provided that 𝑥(𝑡) is stationary. With the help of the cumulative process, the 

discrete-time representation of the process (equation (3.1)) can be written as: 

𝑥𝜏(𝐷) ≔ 1𝐷 ∫ 𝑥(𝑢)d𝑢𝜏𝐷
(𝜏−1)𝐷 = 𝑋(𝜏𝐷) − 𝑋((𝜏 − 1)𝐷)𝐷  (3.12) 



SECOND-ORDER CHARACTERISTICS OF STOCHASTIC PROCESSES  91 

The argument (D) in 𝑥𝜏(𝐷) denotes the time step of discretization; in cases that we use a 

single discretization step and there is no ambiguity we will omit it, writing 𝑥𝜏. We can also 

define discrete-time processes on multiples of 𝐷, say 𝜅𝐷, where 𝜅 is an integer: 

𝑥𝜏(𝜅) ≔ 𝑥𝜏(𝜅𝐷) ≔ 1𝜅𝐷 ∫ 𝑥(𝑢)d𝑢𝜏𝜅𝐷
(𝜏−1)𝜅𝐷 = 𝑋(𝜏𝜅𝐷) − 𝑋((𝜏 − 1)𝜅𝐷)𝜅𝐷  (3.13) 

Obviously, the discrete-time process 𝑥𝜏(𝜅) is the time average (at scale 𝑘 = 𝜅𝐷), of the 

discrete-time process 𝑥𝜏 (at scale equal to the time step 𝐷): 

𝑥𝜏(𝜅) = 1𝜅 ∑ 𝑥𝑗𝜏𝜅
𝑗=(𝜏−1)𝜅+1  (3.14) 

 

Figure 3.1 Explanatory sketch for a stochastic process in continuous time and its representation 
in discrete time. Note that the graphs display a realization of the process (it is impossible to 
display the process per se) while the notation is for the process per se. 

 The variance of 𝑋(𝑡) at time t, i.e.: 𝛤(𝑡) ≔ var[𝑋(𝑡)] (3.15) 

is known as cumulative climacogram. The variance of the time averaged process 𝑋(𝑘)/𝑘 

at a time scale k, as a function of time scale k, is the continuous-time variant of the 

climacogram, already discussed in sections 1.3 and 2.16: 𝛾(𝑘) ≔ var [𝑋(𝑘)𝑘 ] = 𝛤(𝑘)𝑘2  (3.16) 

 The autocovariance function c(h) of the continuous-time process 𝑥(𝑡) for time lag h, 

already defined in equation (3.7), is related to the climacogram by (Koutsoyiannis 2016): 

(cumulative, nonstationary)

(instantaneous, 
continuous-time process)

t

(averaged at time scale D)
t0 D 2D … (τ – 1)D τD



92  CHAPTER 3 – STOCHASTIC PROCESSES AND QUANTIFICATION OF CHANGE 

 

𝑐(ℎ) ≔ cov[𝑥(𝑡), 𝑥(𝑡 +  ℎ)] = 12 d2𝛤(ℎ)dℎ2  (3.17) 

 If we deal with two processes 𝑥(𝑡) and 𝑦(𝑡) we can define the cross-covariance: 𝑐𝑥𝑦(ℎ) ≔ cov [𝑥(𝑡), 𝑦(𝑡 + ℎ)] (3.18) 

This is a continuous-time metric. If we wish to also involve the time scale k of the averaged 

process, we can define the cross-climacogram (Koutsoyiannis, 2019b):  𝛾𝑥𝑦(𝑘; 𝘂) ≔ 𝜎𝑥𝜎𝑦  var [𝑋(𝑘)𝑘𝜎𝑥 + 𝑌((𝘂 + 1)𝑘) − 𝑌(𝘂𝑘)𝑘𝜎𝑦 ] (3.19) 

where 𝑌(𝑘) ≔ ∫ 𝑦(𝑡)d𝑡𝑘0  and η is lag. 

 The structure function (also known as semivariogram or variogram), 𝜐(ℎ), is another 

second-order tool, defined as: 𝜐(ℎ) ≔ 12 var[𝑥(𝑡) − 𝑥(𝑡 + ℎ)] = 𝑐(0) − 𝑐(ℎ) (3.20) 

 The power spectrum (also known as spectral density), s(w), where w denotes 

frequency is defined as the Fourier transform of the autocovariance function, i.e.: 

𝑠(𝑤) ≔ 4∫ 𝑐(ℎ) cos(2π𝑤ℎ) dℎ∞
0  (3.21) 

 The power spectrum should necessarily be nonnegative at all w (𝑠(𝑤) ≥ 0), and this 

entails that the autocovariance 𝑐(ℎ) should be a positive definite function. Also, the 

climacogram 𝛾(𝑘) should be a positive definite function (Koutsoyiannis, 2017). 

 The power spectrum has some analogies with another stochastic tool, the so-called 

climacospectrum (Koutsoyiannis, 2017), which is directly given in terms of the 

climacogram. Specifically, it is proportional to the difference of the variances of the 

averaged process at time scales k and 2k:  𝜓(𝑘) ≔ 𝑘(𝛾(𝑘) − 𝛾(2𝑘))ln 2  (3.22) 

The climacospectrum is also written in an alternative manner in terms of frequency w = 

1/k: 𝜓̃(𝑤) ≔ 𝜓(1/𝑤) = 𝛾(1/𝑤) − 𝛾(2/𝑤)(ln 2)𝑤  (3.23) 

It is useful to note that the entire area under the power spectrum 𝑠(𝑤), as well as that 

under the curve 𝜓̃(𝑤), are precisely equal to each other and to the variance 𝛾0. 

 All definitions of second-order characteristics in continuous time are gathered 

together in Table 3.1. Once any one of these characteristics is known in the continuous-

time representation, we can calculate all others in continuous time as well as those in 

discrete time, as shown in Table 3.2.  
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Table 3.1 Summary of notation and second-order characteristics of a stationary stochastic 
process in continuous time. 

Name  Symbol and definition Remarks Eqn. no. 

Stochastic process of interest 𝑥(𝑡)  Assumed stationary  

Time, continuous t Dimensional   

Cumulative process 𝑋(𝑡) ≔ ∫ 𝑥(𝜉)d𝜉𝑡
0  Nonstationary (3.11) 

Variance, instantaneous  𝛾0 ≔ var[𝑥(𝑡)]  Constant (not a function of t) (3.6) 

Cumulative climacogram 𝛤(𝑡) ≔ var[𝑋(𝑡)]  A function of t; 𝛤(0) ≡ 0  (3.15) 

Climacogram 𝛾(𝑘) ≔ var [𝑋(𝑘)𝑘 ] = 𝛤(𝑘)𝑘2  
A function of time scale, 𝛾(0)  =  𝛾0 

(3.16) 

Time scale, continuous k Units of time  

Climacospectrum 𝜓(𝑘) ≔ 𝑘(𝛾(𝑘) − 𝛾(2𝑘))ln 2    

Autocovariance function 𝑐(ℎ) ≔ cov[𝑥(𝑡), 𝑥(𝑡 +  ℎ)] 𝑐(0)  =  𝛾0  (3.17) 

Time lag, continuous h Units of time  

Structure function 

(semivariogram, variogram) 
𝜐(ℎ) ≔ 12 var[𝑥(𝑡) − 𝑥(𝑡 + ℎ)]  𝜐(ℎ) = 𝛾0 − 𝑐(ℎ) (3.20) 

Power spectrum (spectral 

density) 
𝑠(𝑤) ≔ 4∫ 𝑐(ℎ) cos(2π𝑤ℎ) dℎ∞

0  ∫ 𝑠(𝑤)d𝑤∞
0 = 𝛾0 (3.21) 

Frequency, continuous 𝑤 =  1/𝑘 Units of inverse time  

Table 3.2 Summary of notation and second-order characteristics of a stationary stochastic 
process in discrete time. 

Name  Symbol and definition Remarks Eqn. no. 

Stochastic process, discrete 

time  
𝑥𝜏 ≔ 1𝐷 ∫ 𝑥(𝑢)d𝑢𝜏𝐷

(𝜏−1)𝐷 = 𝑋(𝜏𝐷) − 𝑋((𝜏 − 1)𝐷)𝐷  (3.12) 

Discretization time step D 
Length of time 

window of averaging 
 

Time, discrete  𝜏 ≔ 𝑡 𝐷⁄   Dimensionless  

Averaged stochastic 

process, discrete time 
𝑥𝜏(𝜅) = 1𝜅 ∑ 𝑥𝑗𝜏𝜅

𝑗=(𝜏−1)𝜅+1   (3.14) 

Time scale, discrete κ = k/D Dimensionless  (3.24) 

Climacogram 𝛾𝜅 = var[𝑥𝜏(𝜅) ] = 𝛾(𝜅𝐷) = 𝛤(𝜅𝐷)(𝜅𝐷)2  𝛾1 = var[𝑥𝜏  ] =  𝛾(𝐷)  (3.25) 

Climacospectrum 𝜓𝜅 = 𝜓(𝑘) = 𝜅(𝛾𝜅 − 𝛾2𝜅)ln 2    

Autocovariance function 𝑐𝜂 ≔ cov[𝑥𝜏, 𝑥𝜏+𝜂]  𝑐0 = 𝛾(𝐷) = 𝛾1   

Time lag, discrete η = h/D Dimensionless  (3.26) 

Structure function 𝜐𝜂 = 𝛾1 − 𝑐𝜂   (3.27) 

Power spectrum 𝑠d(𝜔) = 1𝐷 ∑ 𝑠 (𝜔 + 𝑗𝐷 ) sinc2(π(𝜔 + 𝑗))∞
𝑗=−∞   (3.28) 

Frequency, discrete 𝜔 = 𝑤𝐷 = 1 𝜅⁄  Dimensionless  (3.29) 

Note: In time-related quantities, Latin letters denote dimensional quantities and Greek letters 

dimensionless ones, as specified above.  
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 The reverse is not true, i.e., from a model formulated in discrete time we cannot 

precisely infer the characteristics of the continuous-time representation. It may be seen 

in Table 3.2 that the expressions of the discrete time characteristics may differ 

substantially from those in continuous time, and thus attention is needed to avoid 

confusion and misuse.  

 The rule that continuous- and discrete-time characteristics are different has 

exceptions: The climacogram and the climacospectrum are not affected by discretization 

(they admit the same expressions for both continuous and discrete time). They also have 

some additional advantages, such as simplicity, close relationship to entropy (see below), 

and more stable behaviour (Dimitriadis and Koutsoyiannis, 2015a; Koutsoyiannis, 2016; 

2017). These make them the preferable tool in stochastic modelling—even though they 

are less popular than other tools. All these tools are transformations of one another, as 

listed in Table 3.3. 

Table 3.3 Relationships between second-order characteristics of a stochastic process. 

Related 

characteristics 
Symbol and definition Inverse relationship 

Eqn. 

no. 𝛾(𝑘) ↔ 𝑐(ℎ)  𝛾(𝑘) = 2∫(1 − 𝜒)𝑐(𝜒𝑘)d𝜒 1
0  𝑐(ℎ) = 12 d2(ℎ2𝛾(ℎ))dℎ2  (3.30) 

𝑠(𝑤) ↔ 𝑐(ℎ)  𝑠(𝑤) ≔ 4∫ 𝑐(ℎ) cos(2π𝑤ℎ) dℎ∞
0  𝑐(ℎ) = ∫ 𝑠(𝑤) cos(2π𝑤ℎ) d𝑤∞

0  (3.31) 

𝛾(𝑘) ↔ 𝑠(𝑤)  𝛾(𝑘) = ∫ 𝑠(𝑤) sinc2(π𝑤𝑘) d𝑤∞
0  𝑠(𝑤) ≔ 2∫ d2(ℎ2𝛾(ℎ))dℎ2 cos(2π𝑤ℎ) dℎ∞

0  (3.32) 

𝜐(ℎ) ↔ 𝑐(ℎ)  𝜐(ℎ) = 𝛾0 − 𝑐(ℎ) 𝑐(ℎ) = 𝜐(∞) − 𝜐(ℎ) with 𝜐(∞) = 𝛾0  (3.33) 

𝜓(𝑘) ↔ 𝛾(𝑘)  𝜓(𝑘) ≔ 𝑘(𝛾(𝑘) − 𝛾(2𝑘))ln 2  

𝛾(𝑘) = ln 2∑𝜓(2𝑖𝑘)2𝑖𝑘∞
𝑖=0  

= 𝛾(0) − ln 2∑𝜓(2−𝑖𝑘)2−𝑖𝑘∞
𝑖=1  

(3.34) 

𝛾𝜅 ≡ 𝛾(𝜅𝐷) ↔𝑐𝜂   

𝛾𝜅 = 1𝜅 (𝑐0 + 2∑(1 − 𝘂𝜅) 𝑐𝜂𝜅−1
𝜂=1 ) = 𝛤(𝜅𝐷)(𝜅𝐷)2  

where 𝛤(0) = 0, 𝛤(𝐷) = 𝑐0𝐷2 and, 

recursively, 𝛤(𝜅𝐷) =  2𝛤((𝜅 − 1)𝐷) − 𝛤((𝜅 − 2)𝐷) + 2𝑐𝑗−1𝐷2  

𝑐𝜂 = 1𝐷2 (𝛤(|𝘂 + 1|𝐷) + 𝛤(|𝘂 − 1|𝐷)2− 𝛤(|𝘂|𝐷)) 

(3.35) 

𝑐𝜂 ↔ 𝑠d(𝜔)  𝑠d(𝜔) = 2𝑐0 + 4∑𝑐𝜂∞
𝜂=1 cos(2π𝘂𝜔) 𝑐𝜂 = ∫ 𝑠d(𝜔) cos(2π𝜔𝘂) d𝜔1 2⁄

0  (3.36) 

𝜐𝜂 ↔ 𝑐𝜂   𝜐𝜂 = 𝛾(𝐷) − 𝑐𝜂  𝑐𝜂 ≔ 𝛾(𝐷) − 𝜐𝜂  (3.37) 



SECOND-ORDER CHARACTERISTICS OF STOCHASTIC PROCESSES  95 

Digression 3.B: What is dependence in time? 

Dependence of a stochastic process in time (also known as intertemporal dependence or simply 
time dependence) is typically expressed by the autocovariance or the autocorrelation function. In 
turn, its typical (mis)interpretation is memory. This has been so common than in many texts the 
term memory has replaced the term dependence—even in the titles of several publications, papers 
and books. Perhaps the scientist who was most influential in establishing this interpretation was 
Mandelbrot (for example, Mandelbrot and Wallis, 1968, speak about short and long memory, both 
of which they contrast to independence), even though other scientists had used the term before 
(e.g. Krumbein, 1968). Clearly, in stochastics the term memory is metaphorical, while in other 
disciplines (neuropsychology, computer science) it is literal. In science there is no reason to use a 
metaphorical term when we have a literal term, particularly when the metaphorical term has 
another scientific meaning.  
 Perhaps the metaphorical term memory distracts, rather than helps, intuition and 
understanding of time dependence in a stochastic process. In particular, its variant long memory 
is totally inappropriate as it stimulates people to imagine a mechanism inducing long memory 
(e.g. hundreds of years) and of course it is difficult to conceptualize such a mechanism. A better 
interpretation is a mechanism producing change, rather that recalling information (as is the 
meaning of memory). And indeed, changes produce dependence—not the other way round. 
Furthermore, dependence and change need not be interpreted as nonstationarity as many think.  
 But before discussing how change produces time dependence in a process that is stationary, 
we will discuss how dependence manifests itself into a time series. In one word, this manifestation 
is through patterns. In pure randomness, without time dependence (like in a sequence of dice 
outcomes or in the sequence of digits of π) no patterns appear. To better illustrate such patterns, 
we examine several time series with a small length, 𝑛 = 16. For convenience we make these time 
series two-valued, with values –1 and 1 and with average of the 16 values equal to zero, which 
means that eight values will be –1 and eight 1. The estimates of the variance, the lag-one 
autocovariance and the lag-one autocorrelation coefficient will thus be, respectively: 

𝛾1 = 116∑𝑥𝜏216
𝜏=1 = 1, 𝑐̂1 = 116∑𝑥𝜏𝑥𝜏+116

𝜏=1 , 𝑟̂1 = 𝑐̂1𝛾1 = 𝑐̂1 

where we set 𝑥17 = 𝑥1 in order to have 16 terms in the sum for 𝑐̂1 and thus make possible values 
up to ±1 (noting, though, that this practice is not suggested to follow in analyses of time series). 
The formal meaning of the term estimate is clarified in section 4.3. 
 Some instances of such time series are shown in Figure 3.2. In the upper left panel, all eight 
ones are grouped together so that ∑ 𝑥𝜏𝑥𝜏+116𝜏=1 = 7 + 7 − 2 = 12 and 𝑟̂1 = 0.75. This is the highest 
possible value that a particular arrangement of 16 items, each being ±1, can give. Obviously, there 
are 16 possible arrangements that will give 𝑟̂1 = 0.75. If our time series had length of N, the 
highest 𝑟̂1 would be (𝑁 − 4)/𝑁 = 1 − 4/𝑁 and would approach the value +1 for large N. 
Consequently, a large autocorrelation is caused by grouping together of similar (in our example 
same) values, and this grouping has been termed persistence. If the grouping appears but is not that “perfect”, such as in the lower left panel, then again, the autocorrelation will be positive but 
lower (𝑟̂1 = 0.5 in this example).  
 In contrast, if the patterns appear to be of alternating, rather than grouping, type, then the autocorrelation coefficient is negative. Thus, in the “perfect” alternating shape of the upper middle 
panel of Figure 3.2 we have ∑ 𝑥𝜏𝑥𝜏+116𝜏=1 = −16 and 𝑟̂1 = −1. In the lower middle panel 
alternation is not perfect and 𝑟̂1 = −0.75. Finally, the upper right panel is free of patterns and 𝑟̂1 =0.  
 Now, the effect of change is illustrated in Figure 3.3, where we plot a time series generated 
from the normal distribution without time dependence. We now assume that the process is 
affected by a mechanism producing change, namely shifts up and down, at random points in time. 
As illustrated in Figure 3.3 and detailed in the figure caption, in this case patterns are produced 
and (positive) autocorrelation is induced.  
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Figure 3.2 Examples of arrangements of eight ones and eight minus ones in the form of time series with 
length 16, mean zero and unit variance, along with the resulting estimate of the lag-one autocorrelation 
coefficients r. In addition to the original time series (scale 1; continuous line), time-averaged time series are 
also shown at scales 2 (dashed lines) and 4 (dotted lines). In the bottom right panel, the frequency 
distribution of r for all 16!/(8!)2 = 12 870 possible cases (permutations) are shown. 

 

Figure 3.3 Illustration of the fact that change causes autocorrelation using a time series of length 20, 
generated from the normal distribution N(0,1) without time dependence; the estimates of the statistical 
characteristics from the time series, plotted as full points connected with continuous lines, are 𝜇̂ =−0.05, 𝛾0 = 0.92, 𝑟̂1 = 0.05. By shifting a time segment up (by +1, items 8-14) and another segment down 
(by –1, items 15-20) we obtain a new time series (empty points connected with dashed lines) in which the 
autocorrelation has become 𝑟̂1 = 0.59. 
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 Had such change been describable in deterministic terms, as a deterministic function of time, 
that is, had it been precisely predictable in terms of location of times where it occurs and in terms 
of magnitude of state shifts, we would speak about nonstationarity. But since, as we said, the 
points of change are random points in time, they resist a deterministic description and the entire 
process with the change producing mechanism is a stationary stochastic process with dependence. 
Unfortunately, this simple truth is not widely understood and therefore the inconsistent 
interpretations of change as nonstationarity abound in hydroclimatic literature. 

3.6 Asymptotic power laws and the log-log derivative 

It is quite common that nonnegative functions 𝑓(𝑡) defined in [0, ∞), are associated with 

asymptotic power laws as 𝑡 → 0 and ∞ (Koutsoyiannis, 2014b, 2017). Power laws are 

functions of the form 𝑓(𝑡)  ∝  𝑡𝑏  (3.38) 

A power law is visualized on a graph of 𝑓(𝑡) plotted against t with logarithmic axes, so 

that the plot forms a straight line with slope b. Formally, the slope b is expressed by the 

log-log derivative (LLD): 𝑓#(𝑡) ≔ d(ln 𝑓(𝑡))d (ln 𝑡) = 𝑡𝑓′(𝑡)𝑓(𝑡)  (3.39) 

We notice that 𝑓#(𝑡) is a dimensionless quantity, irrespective of the dimensions of 𝑓(𝑡). If 
the power law holds for the entire domain, then 𝑓#(𝑡) = 𝑏 = constant. In this case we 

speak about a simple scaling behaviour. Most often, however, 𝑓#(𝑡) is not constant. Of 

particular interest are the asymptotic values for 𝑡 → 0 and ∞, symbolically 𝑓#(0) and 𝑓#(∞), which define two asymptotic power laws. We note that, if 0 < 𝑓(0) < ∞, then 𝑓#(0) = 0, which means that 𝑓(0) has to be either 0 or ∞ in order for 𝑓#(0) ≠ 0. Basic 

properties of LLD are given in Table 3.4. 

Table 3.4 Basic properties of LLD (from Koutsoyiannis, 2017). 

Description Mathematical formula 

Multiplication and addition by constants (𝜆 𝑓(𝑡) + 𝜇)# = 𝑓#(𝑡) 
Sum of two functions (𝑓1(𝑡) + 𝑓2(𝑡))# = 𝑓1(𝑡)𝑓1#(𝑡) + 𝑓2(𝑡)𝑓2#(𝑡)𝑓1(𝑡) + 𝑓2(𝑡)  

Product of two functions (𝑓1(𝑡)𝑓2(𝑡))# = 𝑓1#(𝑡) + 𝑓2#(𝑡) 
Quotient of two functions (𝑓1(𝑡)/𝑓2(𝑡))# = 𝑓1#(𝑡) − 𝑓2#(𝑡) 
Raise to a power (𝑓(𝑡)𝜆)# = 𝜆𝑓#(𝑡) 
Function composition ((𝑓 ∘ 𝑔)(𝑡))#  = (𝑓(𝑔(𝑡))# = 𝑓#(𝑔(𝑡)) 𝑔#(𝑡) 

 In particular, the asymptotic properties of the second-order characteristics of a 

stochastic process for 𝑡 → 0, where now t denotes time, characterize the local behaviour 

of a process, while those for 𝑡 → ∞ characterize the global behaviour. We will discuss 

these properties in section 3.8, after introducing the related concept of entropy 

production in section 3.7. 
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3.7 Entropy production in stochastic processes 

In a stochastic process the change of uncertainty in time can be quantified by the entropy 

production, i.e. the time derivative of the entropy 𝛷[𝑋(𝑡)] of the cumulative process 𝑋(𝑡) 
(Koutsoyiannis, 2011b): 𝛷′[𝑋(𝑡)] ≔ d𝛷[𝑋(𝑡)]d𝑡  (3.40) 

A more convenient (and dimensionless) measure is the entropy production in logarithmic 

time (EPLT): 𝜑(𝑡) ≡ 𝜑[𝑋(𝑡)] ≔ 𝛷΄[𝑋(𝑡)]𝑡 ≡ d𝛷[𝑋(𝑡)]d(ln 𝑡)  (3.41) 

For a Gaussian process, the entropy depends on its variance 𝛤(𝑡) only (see Table 2.4) and 

is given as: 𝛷[𝑋(𝑡)] =  12 ln(2πe𝛽2𝛤(𝑡)) (3.42) 

where β is the background measure density, assumed to be constant (Lebesgue). The 

EPLT of a Gaussian process is thus easily shown to be: 𝜑(𝑡) = 𝛤′(𝑡)𝑡2𝛤(𝑡)  =  1 + 𝛾′(𝑡)𝑡2𝛾(𝑡) = 𝛤#(𝑡)2 = 1 + 𝛾#(𝑡)2  (3.43) 

That is, EPLT is visualized and estimated by the slope of a log-log plot of the climacogram. 

We note that if, because of using the cumulative process, the background measure was 

taken 𝛽𝑡 insteaf of β, the result would be practically the same (plus a constant 1). 

 When the past and the present are observed, instead of the unconditional variance 𝛾(𝑡) we should use a variance 𝛾C(𝑡) conditional on the known past and present. This can 

be expressed in terms of the differenced climacogram (Koutsoyiannis, 2017):  𝛾C(𝑘) = 𝘀(𝛾(𝑘) – 𝛾(2𝑘)), 𝘀 = 11 − 2𝛾#(∞) (3.44) 

We can subsequently define the conditional entropy production in logarithmic time 

(CEPLT) in a manner analogous to (3.43). By also considering the definition of the 

climacospectrum in (3.22) and (3.23), CEPLT can be written as: 𝜑C(𝑡) = 1 + 𝛾C#(𝑡)2 = 1 + 𝜓#(𝑡)2 = 1 − 𝜓̃#(1/𝑡)2  (3.45) 

Thus, for a Gaussian process the conditional entropy production is given in terms of log-

log slope of the process climacospectrum. We will use the same result as an 

approximation for non-Gaussian processes too, even though in a non-Gaussian process 

the entropy expression becomes more complicated than (3.42) with other terms 

additional to variance. 
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3.8 Asymptotic scaling of second-order properties 

EPLT and the CEPLT are related to LLDs of second-order tools such as climacogram, 

climacospectrum, power spectrum, etc. With a few exceptions, these slopes are nonzero 

asymptotically, hence entailing asymptotic scaling or asymptotic power laws with the 

LLDs being the scaling exponents. It is intuitive to expect that an emerging asymptotic 

scaling law would provide a good approximation of the true law for a range of scales.  

 If the scaling law was appropriate for the entire range of scales, then we would have 

a simple scaling law. Such simple scaling sounds attractive from a mathematical point of 

view, but it turns out to be impossible in physical processes (Koutsoyiannis, 2017; 

Koutsoyiannis et al., 2018; see also below). It is thus physically more realistic to expect 

two different types of asymptotic scaling laws, one in each of the ends of the continuum 

of scales. The respective scaling exponents are given in terms of two parameters, M (to 

give credit to Mandelbrot) and H (to give credit to Hurst) according to the following 

relationships: 

• The parameter M characterizes the local scaling or smoothness or fractal behaviour, 

when k → 0 or w → ∞: 𝑀 ≔ 𝜑C(0) − 1 = 𝛾C#(0)2 = 𝜐#(0)2 = 𝜓#(0) − 12 =  −𝑠#(∞) − 12  (3.46) 

• The parameter H characterizes the global scaling or persistence or Hurst- 

Kolmogorov behaviour, when k → ∞ or w → 0:  𝐻 ≔ 𝜑C(∞) = 1 + 𝛾C#(∞)2 = 1 + 𝛾#(∞)2 = 1 + 𝑐#(∞)2 = 𝜓#(∞) + 12  = −𝑠#(0) + 12  

(3.47) 

 These scaling behaviours have emerged from maximum entropy considerations, and 

this may provide the theoretical background in modelling complex natural processes by 

such scaling laws. Generally, scaling laws are a mathematical necessity and could be 

constructed for virtually any continuous function defined in [0, ∞). In other words, there 
is no magic in power laws, except that they are, logically and mathematically, a necessity 

(Koutsoyiannis, 2014b).  

3.9 Bounds of scaling 

Both parameters M and H take on values in the interval (0,1) (with the limiting cases 𝑀 =1 and 𝐻 = 0 being possible). This fact, combined with equations (3.46) and (3.47), defines 

limits of the possible scaling laws in natural processes. The limits are not quite well 

known, and several studies have reported values out of the limits (see Digression 3.C for 

an example about how to avoid such a mistaken result). 

 For the global behaviour, it has been shown (Koutsoyiannis et al., 2018) that a process 

with −𝑠#(0) > 1 is nonergodic. As already explained, inference from data is only possible 

when the process is ergodic and thus, claiming that −𝑠#(0) > 1 based on data is self-
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contradictory. Steep slopes (−𝑠#(𝑤) > 1) are mathematically and physically possible for 

medium and large w and indeed they are quite frequent in geophysical and other 

processes. Because of the equality of slopes of power spectrum and climacospectrum, the 

ergodicity limitation holds also for the slope of the climacospectrum, i.e., 𝜓#(∞) = −𝜓̃#(0) < 1. On the other hand, too steep negative asymptotic slopes of the 

climacospectrum are also impossible. Indeed (because of (52)), 𝜓#(𝑘) =  −𝜓̃#(1/𝑘) <−1 would entail 𝜑C(𝑘) < 0 and 𝛤C′(𝑘) < 0 (Koutsoyiannis, 2017). This means that the 

variance of the cumulative process would be a decreasing function of time, which is 

absurd. This holds both for the global case (k → ∞, in which the conditional variance 𝛤𝐶(∞) 
equals the unconditional 𝛤(∞)) and the local case (k → 0, for the conditional variance 𝛤C(0)).  

 For the local behaviour, there is another severe limitation imposed by physical 

reasoning. The case 𝜓#(0) = −𝑠#(∞) <  1 would entail infinite variance. Infinite variance 

would require infinite energy to emerge, which is physically inconsistent (see also section 

2.17). Therefore, the physical lower limit for 𝜓#(0) = −𝑠#(∞) is 1. A final—and quite 

severe—limitation is an upper bound of the local scaling exponent, which is 3 for 𝜓#(0) =−𝑠#(∞) (Koutsoyiannis, 2017). The problem if this limitation is violated is that the 

resulting autocovariance function is not positive definite or, equivalently, that the 

resulting power spectrum is not always (for any frequency w) positive but takes on 

negative values for some w. Likewise, the Fourier transform of the climacogram takes on 

negative values for some w. Proof is provided in Koutsoyiannis (2017). 

 The above limits define the “green square” of admissible values of 𝜑C, M and H in 

Figure 3.4, which is also depicted in terms of admissible values of slopes ψ# and s# (noting 

that s# can, by exception, take on values out of the square when 𝜑𝐶(0) = 2 or 𝜑𝐶(∞) = 0). 

The reasons why a process out of the square would be impossible or inconsistent, as 

discussed above, are also marked in the figure.  

 The centre of the square, with coordinates 𝜑𝐶(0) = 3/2, 𝜑𝐶(∞) = 1/2 represents a 

neutral process, whose typical representative is the Markov process (to be examined in 

section 3.11). Larger values of 𝜑𝐶(0) (where 𝑀 > 1/2) indicate a smooth process and 

smaller ones (where 𝑀 < 1/2) a rough process. Also, larger values of 𝜑𝐶(∞) (where 𝐻 >1/2) indicate a persistent process and smaller ones (where 𝐻 < 1/2) an antipersistent 

process.  

A useful observation in Figure 3.4 is that the entire “green square” lies below the 
equality line, which means that the same scaling exponent is not possible for both local 

and global behaviour, or else, it is impossible to have a physically realistic simple scaling 

process. There is one exception, the upper-left corner of the “green square”, which 
corresponds to the so-called “pink noise” or “1/f noise” and will be discussed further in 

Digression 3.G. 

 On the left of the “green square” in Figure 3.4 another square is formed, which 

represents processes that are mathematically feasible but physically unrealistic, because 

they entail infinite variance. In particular, the centre of this square represents the white 

noise, characterized by independence in time, which is discussed in section 3.10. One of 
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the diagonals of this square represents the Hurst-Kolmogorov process, discussed in 

section 3.12.  

 

Figure 3.4 Bounds of asymptotic values of CEPLT, 𝜑𝐶(0) and 𝜑𝐶(∞), and corresponding bounds 
of the log-log slopes of power spectrum and climacospectrum. The “green square” represents the 
admissible region; note that 𝑠# can, by exception, take on values out of the square when 𝜑C(0) =2 (𝑀 = 1) or 𝜑𝐶(∞) = 0 (𝐻 = 0). The reasons why a process out of the square would be 
impossible or inconsistent are also marked. The lines 𝜑C(0) = 3/2 (𝑀 = 1/2) and 𝜑𝐶(∞) =1 2⁄  (𝐻 = 1/2) define neutrality (which is represented by a Markov process) and support the 
classification of stochastic processes into the indicated four categories (smaller squares within the “green square”). (Source: Koutsoyiannis, 2017.) 

Digression 3.C: Misuses of stationarity and ergodicity (2) 

Continuing the examples on misuse of the concepts of stationarity and ergodicity in Digression 
3.A, we refer here to another example, whose standard formulation could be: “From the time 
series 𝑥𝜏, we calculated the power spectrum and found that its slope for low frequencies is steeper 
than –1, which means that the process is nonstationary.” We note that a large number of studies 
exploring several data sets have reported steep constant slopes of power spectrum, i.e. β < –1, 
which are thought to confirm the nonstationarity of the process. The fact is, however, that this 
entire line of thought is theoretically inconsistent and such reported numerical results are 
artefacts due to insufficient data or inadequate estimation algorithms. Once we make the power 
spectrum of a process as a function of frequency, we have tacitly assumed a stationary process. In 
a nonstationary process, both the autocovariance and the spectral density, i.e. the Fourier 
transform of the autocovariance, are functions of two variables, one being related to “absolute” 
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time (see e.g. Dechant and Lutz, 2015). Thus, there is no meaning in using a stationary 
representation (setting the power spectrum as a function of frequency only) and, at the same time, 
claiming nonstationarity. Furthermore, once we use the power spectrum of a process for 
inference, as we always do, we should be aware that inference from data is only possible when 
the process is ergodic. As shown in Koutsoyiannis et al. (2018), in an ergodic process, the 
asymptotic slope on the lower tail of the power spectrum cannot be steeper than –1. Thus, there 
is no meaning in reporting slopes in empirical power spectra < −1 and at the same time making 
any claim about the process properties (e.g. of nonstationarity) based on the power spectrum. 
Actually, such a steep slope, when emerging from processing of data, does not suggest that a 
process is non-ergodic; it rather signifies inconsistent estimation. Nonetheless, we should be 
aware, that steep slopes (< −1) are mathematically and physically possible for medium and large 
frequencies, as was already discussed.  
 Consequently, possible remedies for the above inconsistent statement could be the following: • We cursorily interpreted a slope steeper than –1 in the power spectrum as evidence of 

nonstationarity, while a simple explanation would be that the frequencies on which our data 
enable calculation of the power spectrum values are too high.  • We cursorily applied the concept of the power spectrum of a stationary stochastic process, 
forgetting that the empirical power spectrum of a stationary stochastic process is a 
(nonstationary) stochastic process per se (see section 4.10). The high variability of the latter 
(or the inconsistent numerical algorithm we used) resulted in a slope for low frequencies 
steeper than –1, which is absurd. Such a slope would suggest a non-ergodic process while our 
calculations were based on the hypothesis of a stationary and ergodic process.  • We cursorily applied the concept of the power spectrum of a stationary stochastic process 
using a time series which is realization of a nonstationary stochastic process, and we found 
an inconsistent result; therefore, we will repeat the calculations recognizing that the power 
spectrum of a nonstationary stochastic process is a function of two variables, frequency and “absolute” time. 

3.10 White noise: how natural and how white is it? 

We are all familiar with the notion of independent events at discrete time, such as coin, 

dice and roulette wheel experiments. If such an experiment is performed sequentially in 

time, we can model it as a stochastic process 𝑣𝜏′, 𝜏 = 1,2… with mean μ and variance 𝛾1. 

For convenience we subtract its mean, defining the process 𝑣𝜏 ≔ 𝑣𝜏′ − 𝜇 for which: E[𝑣𝜏] = 0, var[𝑣𝜏] = E[𝑣𝜏2] = 𝜎2, 𝑐𝜂 = cov[𝑣𝜏, 𝑣𝜏+𝜂] = {𝜎2, 𝘂 = 00, 𝘂 ≠ 0 (3.48) 

 It is easy to show that the time-averaged process: 

𝑣𝜏(𝜅) ≔ 1𝜅 ∑ 𝑣𝑖𝜏𝜅
𝑖=(𝜏−1)𝜅  (3.49) 

has the following properties: 

E[𝑣𝜏(𝜅)] = 0,    𝛾1(𝜅) = var[𝑣𝜏(𝜅)] = 𝜎2𝜅 ,    𝑐𝜂(𝜅) = cov[𝑣𝜏(𝜅), 𝑣𝜏+𝜂(𝜅) ] = {𝜎2𝜅 , 𝘂 = 00, 𝘂 ≠ 0 (3.50) 

 Is it legitimate to say that the discrete-time process 𝑣𝜏 originates from a continuous 

time process 𝑣(𝑡)? And if yes, what are the properties of the latter? The mathematical 

answer to the former question is positive. To materialize the continuous-time variant it 
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suffices to generalize the climacogram in (3.50) changing the time scale from an integer κ 

to a real number 𝑘 ≔ 𝜅𝐷:  𝛾(𝑘) = var[𝑣(𝑡)] = 𝜎2𝐷𝑘  (3.51) 

It is easily seen that if 𝑘 → 0, the process variance tends to infinity. Thus, to express the 

properties of the continuous-time process, we need to involve the Dirac delta function δ(𝑡), whose properties are: 

δ(𝑡) = {∞, 𝑡 = 00, 𝑡 ≠ 0 , ∫δ(𝑡)d𝑡𝑏
𝑎 = 1 (3.52) 

where [𝑎, 𝑏] is any interval that contains the 0. To connect the discrete-time process 𝑣𝜏 to 

the continuous-time process 𝑣(𝑡), we assume that the former is the time-average of the 

latter on the time interval of length D, as in equation (3.12). If we define 𝑣(𝑡) as a 

stationary stochastic process which has the following properties:  E[𝑣(𝑡)] = 0, cov[𝑣(𝑡), 𝑣(𝑡′)] = E[𝑣(𝑡)𝑣(𝑡′)] = 𝜎2𝐷 δ(𝑡 − 𝑡′) (3.53) 

then it results in a discrete-time process with the properties of equation (3.50). Indeed, 

the variance of 𝑣𝜏 will be: 

var[𝑣𝜏] = var[𝑣1] = E [(1𝐷∫ 𝑣(𝑡)d𝑡𝐷
0 )2] = 1𝐷2 E [∫ 𝑣(𝑡)d𝑢𝐷

0 ∫ 𝑣(𝑠)d𝑠𝐷
0 ]

= 1𝐷2∫∫E[𝑣(𝑡)𝑣(𝑠)]𝐷
0 d𝑡d𝑠𝐷

0 = 1𝐷2∫∫ 𝜎2𝐷δ(𝑡 − 𝑠)𝐷
0 d𝑡d𝑠𝐷

0= 𝜎2𝐷𝐷2 ∫ 1d𝑠𝐷
0 = 𝜎2 

(3.54) 

 The power spectrum of process 𝑣(𝑡) is found (from equation (3.21)) to be constant: 𝑠(𝑤) = 𝜎2𝐷  (3.55) 

Because all frequencies w are present in the power spectrum with equal density (𝜎2𝐷), 

the process 𝑣(𝑡) has been called white noise. This name has been given by analogy to white 

light, which is a mixture of all visible frequencies. We note though that this is a misnomer 

as the power spectrum of the white light is far different from flat. 

 While mathematically the white noise is a well-founded concept and useful for many 

theoretical analyses, it may not be physically realistic for several reasons, such as the 

following: 

• Its variance is infinite: var[𝑣(𝑡)] = E [(𝑣(𝑡))2] = 𝜎2𝐷 δ(0) = ∞. If this 

represented a natural process, this process would have infinity energy. 
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• Its autocorrelation for lags however small is zero. In a natural process, the 

autocorrelation should be close to 1 for lags close to zero. 

• Its spectral density is nonzero as frequency tends to infinity.  

These problems are remedied by applying some kind of filtering to the process 𝑣(𝑡). An 

example is to set an upper limit 𝑤c to the frequency, beyond which the spectral density 

becomes zero (a so-called low-pass or high-cut filter). The second-order characteristics of 

the thus obtained stochastic process 𝑣̃(𝑡) are: 𝛾̃0 = 𝜎2𝐷 𝑤c, 𝑐̃(ℎ) = 𝜎2𝐷 𝑤c sinc(2π𝑤cℎ), 𝑠̃(𝑤) = {𝜎2𝐷 , 𝑤 ≤ 𝑤c0, 𝑤 > 𝑤c (3.56) 

It may be readily seen that the above three inconsistencies have been remedied. On the 

other hand, the process 𝑣̃(𝑡) does not precisely yield the process 𝑣𝜏 in discrete time. 

However, if we choose 𝑤c ≫ 1/𝐷, we can obtain a good approximation. 

Digression 3.D: Random walk, Wiener process and Brownian motion 

Assuming that the discrete-time white noise process 𝑣𝜏 is two-valued, e.g. taking on the values +1 

and –1 with equal probabilities 𝑝 = 0.5 (so that E[𝑣𝜏] = 0), the cumulative process 𝑉𝜏 ≔ ∑ 𝑣𝑖𝜏𝑖=1 , 
which takes on values in the interval [−𝜏, 𝜏], is called a random walk. This is a nonstationary 
process with its variance being proportional (actually equal in this simple case) to the time 𝜏 that 
has passed from the beginning of the walk, i.e. var[𝑉𝜏] = 𝜏. Its mean is zero at all times. 
 If both the time t and the state 𝑣(𝑡) of the white noise are continuous, then the resulting 

cumulative process 𝑉(𝑡) ≔ ∫ 𝑣(𝑠)d𝑠𝑡0  is called the Wiener process. This is again a nonstationary 

process with mean zero and variance proportional to the time t, i.e. var[𝑉(𝑡)] = 𝜎2𝑡, where 𝜎2 
has been defined above.  
 The quantity 𝜎2/2 is known as the diffusion constant. The Wiener process is used to model 
diffusion phenomena and the Brownian motion under free conditions, i.e., when there are no 
bounds in the motion, nor a restoring force (e.g. gravity in atmospheric motion). However, in real 
world systems the motion is not free (these conditions do not hold true) and the Brownian motion 
is bound. In such systems the resulting process is not Wiener but a stationary process.  
 More information on these processes can be found in Papoulis (1991). 

3.11 The linear Markov process 

We will now discuss a more interesting case of filtering of the white noise by means of a 

stochastic version of a linear differential equation. To establish such an equation, we use 

a simple hydrological system, a linear reservoir with inflow 𝑣(𝑡) and outfow 𝑥(𝑡). The 

reservoir state is characterised by its storage 𝑆(𝑡) and the change in outflow (reservoir 

spill) is assumed (as an approximation) to be proportional to the change in storage, d𝑥 =d𝑆 𝛼⁄ , where α > 0 is a constant with units of time. The continuity equation is 𝑑𝑆 𝑑𝑡⁄ = 𝑣 −𝑥 and if we make the substitution d𝑆 = 𝛼d𝑥 we find that the system dynamics is the first-

order linear differential equation (for a nonlinear version see Digression 9.A): 𝛼 d𝑥(𝑡)𝑑𝑡 + 𝑥(𝑡) = 𝑣(𝑡) (3.57) 

 Now, let us assume that the inflow is a stochastic process and specifically a white 

noise process. For convenience we subtract its mean so that 𝑣(𝑡) has the characteristics 
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given in equation (3.53). The output 𝑥(𝑡) will be a stochastic process as well. Thus, we can 

write the stochastic version of equation (3.57) as:  𝛼 d𝑥(𝑡)𝑑𝑡 + 𝑥(𝑡) = 𝑣(𝑡) (3.58) 

As simple as may it seem, the transition from the deterministic version in equation (3.57) 

to the stochastic version in equation (3.58) involves mathematical troubles. In fact, the 

process 𝑥(𝑡) is hardly differentiable and the derivative d𝑥(𝑡) 𝑑𝑡⁄  does not generally exist. 

Thus, stochastic differential equations require their own rules of calculus. Here we use 

the following simple rule: We solve the differential equation as if it were deterministic 

with well-defined derivative. Naturally, the mathematical expression of the solution will 

not contain derivatives. In that expression we replace the deterministic functions with 

stochastic processes. Thus, the differentiability problem is bypassed.  

 In this manner, the linear differential equation (3.58) is easily solved to give: 

𝑥(𝑡) = 𝑥(0)e−𝑡/𝛼 + e−𝑡/𝛼𝛼 ∫𝑣(𝑢)e𝑢/𝛼d𝑢𝑡
0  (3.59) 

We observe in equation (3.59) that: 

1. The two additive terms on the right-hand side are independent as the outflow of 

the present, 𝑥(0), cannot depend on the future inflows 𝑣(𝑢), 0 < 𝑢 ≤ 𝑡. 
2. The outflow does depend on the outflow of the present, 𝑥(0), but not on other 𝑥(𝑡) 

of the past (𝑡 < 0).  

 A stochastic process that has the latter property is called a Markov process. More 

generally, a Markov process is one in which the future does not depend on the past once 

the present is known; symbolically: 𝑃{𝑥(𝑡) ≤ 𝑥|𝑥(𝑠) = 𝑥(𝑠), 𝑠 ≤ 0 < 𝑡} = 𝑃{𝑥(𝑡) ≤ 𝑐|𝑥(0) = 𝑥(0)} (3.60) 

 The particular Markov process 𝑥(𝑡) of equation (3.59) can be called the linear Markov 

process and it is also known as Ornstein–Uhlenbeck process, while the stochastic 

differential equation (3.58) is known as the Langevin equation (Papoulis, 1991). The mean 

of the process is: E[𝑥(𝑡)] = E[𝑥(0)]e−𝑡/𝛼  (3.61) 

Subtracting equation (3.61) from (3.59), squaring and taking expected values we get: 

var[𝑥(𝑡)] = var[𝑥(0)] e−2𝑡/𝛼 + 𝜎2𝐷𝛼2 e−2𝑡/𝛼∫e2𝑢/𝛼d𝑢𝑡
0= 𝜎2𝐷2𝛼 + (var[𝑥(0)] − 𝜎2𝐷2𝛼 )e−2𝑡/𝛼 

(3.62) 

From (3.61) and (3.62) we conclude that E[𝑥(𝑡)] and var[𝑥(𝑡)] tend fast (exponentially) 

to 0 and 𝜆2 ≔ 𝜎2𝐷 2𝛼⁄ , respectively, regardless of the values E[𝑥(0)] and var[𝑥(0)]. In 
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particular, if E[𝑥(0)] = 0 and var[𝑥(0)] = 𝛾0 = 𝜆2, then the process has constant mean 

(0) and variance (𝜆2) at all times.  

 It is easily seen that the following equation is a consequence of (3.59): 

𝑥(𝑡 + ℎ) = 𝑥(𝑡)e−ℎ/𝛼 + e−ℎ/𝛼𝛼 ∫ 𝑣(𝑢)e𝑢/𝛼d𝑢𝑡+ℎ
𝑡  (3.63) 

Multiplying this equation by 𝑥(𝑡) and taking expected values we get: 𝑐(𝑡, ℎ) = E[𝑥(𝑡 + ℎ)𝑥(𝑡)] = E[𝑥(𝑡)2]e−ℎ/𝛼 (3.64) 

and in the case (E[𝑥(0)] = 0, var[𝑥(0)] = 𝜆2) this becomes: 𝑐(ℎ) = 𝜆2e−ℎ/𝛼 (3.65) 

In other words, the autocovariance is a function of the lag h only and the process is wide-

sense stationary. The other second-order characteristics of the process in continuous and 

discrete time, derived through the generic equations contained in Table 3.3, are 

summarized in Table 3.5 and illustrated in Figure 3.5. 

 The celebrated linear Markov process is nothing more than filtered white noise 

through a linear differential equation. The filtering eliminates the problems related to the 

appearance of infinities discussed in section 3.10 and, thus, it is physically consistent. 

Furthermore, the simplicity of the equations of its second-order properties makes it 

attractive and easy to use. On the other hand, its Markovian property, i.e. the 

independence of the future from the past, once the present is known, may contradict our 

perception that history does always influence the future developments. We may thus 

regard it as too simplistic a model of natural reality. Furthermore, the fact that it 

minimizes entropy production for large times (t → ∞) (Koutsoyiannis, 2011b; see also 
Digression 3.G) may be another obstacle in accepting it as a good model to represent 

natural processes.  

Table 3.5 Second-order characteristics of the Markov process at continuous and discrete time. 

Property  Formula Eqn. no. 

Variance   

Continuous-time process 

(instantaneous) 
𝛾0 = 𝛾(0) = 𝑐(0) = 𝜆2  (3.66) 

Averaged process at scale k 

(climacogram) 
𝛾(𝑘) = 2𝜆2𝑘 𝛼⁄ (1 − 1 − e−𝑘 𝛼⁄𝑘 𝛼⁄ ) (3.67) 

Autocovariance function   

Continuous-time, lag h  𝑐(ℎ) = 𝜆2e−|ℎ|/𝛼 (3.65) 

Discrete time, lag 𝘂 = ℎ/𝐷  𝑐0 = 𝛾(𝐷), 𝑐𝜂 = 𝜆2(1 − e−𝐷 𝛼⁄ )2(𝐷 𝛼⁄ )2  e−(𝜂−1)𝐷 𝛼⁄ , 𝘂 ≥ 1 (3.68) 

Power spectrum   

Continuous time,  

frequency w  
𝑠(𝑤)  = 4𝛼𝜆21 + (2π𝛼𝑤)2 (3.69) 

Discrete time,  

frequency 𝜔 = 𝑤𝐷  
𝑠d(𝜔) = 4𝛼𝜆2 (1 − sinh(𝐷 𝛼⁄ )𝐷 𝛼⁄ 1 − cos(2π𝜔)cosh(𝐷 𝛼⁄ ) − cos(2π𝜔)) (3.70) 
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A discretized Markov process at time step D tends to be uncorrelated in time as D 

increases. Therefore, at large time scales the Markov model is indistinguishable from 

white noise: indeed, from equation (3.67) we conclude that for large k (or small α) the 

variance is inversely proportional to the time scale, as in the white noise. Thus, even 

though sometimes it is said that the Markov model reflects short-term persistence, it is 

better not to use the term persistence in this case. Certainly, it entails short-range 

dependence in time. However, its asymptotic properties (cf. equations (3.46) and (3.47)) 

are (Koutsoyiannis, 2017): 𝑀 = 12,   𝜑C(0) = 32,   𝛾#(0) =  𝑐#(0) =  0,   𝜓#(0) =  2,   𝑠#(∞) = −2 

𝐻 = 12,   𝜑C(∞) = 12,   𝛾#(∞) = −1,   𝑐#(∞) =  −∞,   𝜓#(∞) =  𝑠#(0) = 0 

(3.71) 

Thus, according to the classification of section 3.9, the process is neutral: neither 

antipersistent nor persistent and neither rough nor smooth.  

 

Figure 3.5 Second-order characteristics of a linear Markov process with parameters 𝜆 = 1, 𝛼 =20 and discretization time step 𝐷 = 1. The climacogram and climacospectrum are precisely the 
same for the continuous- and discrete-time representations. The autocovariance and the power 
spectrum have some differences between the two representations, which are invisible in the 
former case and visible in the latter.  

 While the linear differential equation, on which the introduction of the Markov model 

has been based, has some physical basis, the assumption that the inflow is white noise is 

physically problematic, as we clarified in section 3.10. This is another reason making the 

simple Markov model inappropriate for natural systems. This problem, even though 

rarely noticed, is also met in most of the cases of stochastic differential equations, which 

are deterministic equations perturbed by white noise.  

 Related to the Markov process in continuous time is the discrete-time process: 𝑥𝜏 = 𝑎𝑥𝜏−1 + 𝑣𝜏 + 𝑏𝑣𝜏−1 (3.72) 

commonly known as ARMA(1,1), which stands for autoregressive – moving-average 

process of orders (1,1). Here 𝑣𝜏 is discrete-time white noise with variance 𝜎𝑣2, and a and b 
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are parameters. It can be easily shown (homework) that its second-order characteristics 

are interrelated by: 𝑐0 = (1 + (𝑎 + 𝑏)21 − 𝑎2 )𝜎𝑣2, 𝑐1 = 𝑎𝑐0 + 𝑏𝜎𝑣2, 𝑐𝜂 = 𝑎𝜂−1𝑐1,   𝘂 ≥ 1  (3.73) 

By comparison with equation (3.68) we see that the ARMA(1,1) process is identical to the 

discrete-time representation of the Markov process if we choose: 

𝑎 = e−𝐷 𝛼⁄ , 𝑐0 = 𝛾1 = 2𝜆2𝐷 𝛼⁄ (1 − 1 − e−𝐷 𝛼⁄𝐷 𝛼⁄ ) , 𝑐1 = 𝜆2(1 − e−𝐷 𝛼⁄ )2(𝐷 𝛼⁄ )2  (3.74) 

Alternatively, if we know the first three terms of the autocovariance function in discrete 

time, then, without referring to the continuous time formulation, the parameter a can be 

found as the ratio 𝑎 = 𝑐2 𝑐1⁄  (3.75) 

The remaining parameters b and 𝜎𝑣2 can be found from the first two equations in (3.73) in 

terms of 𝑐0 ≡ 𝛾1 and 𝑐1 (a rather involved but explicit solution can also be found—
homework).  

 The special case in which: 𝑏 = 0 ⇔ 𝑐1 𝑐0⁄ = 𝑎 (3.76) 

is known as the AR(1) process, standing for autoregressive process of order 1. This is the 

limiting case as 𝐷 𝛼⁄ → 0. It can also appear in a discrete-time representation of the 

Markov process for finite time step D, if we use instantaneous quantities, rather than time 

averages—the so-called sampled process, defined in discrete time as: 𝑥𝜏 ≔ 𝑥(𝜏𝐷) (3.77) 

(compare this with (3.12)). The AR(1) process is thus: 𝑥𝜏 = 𝑎𝑥𝜏−1 + 𝑣𝜏 (3.78) 

and its second-order characteristics are: 𝑐0 = 𝜎𝑣21 − 𝑎2 , 𝑐𝜂 = 𝑎|𝜂|𝑐0, 𝛾(𝜅) = 𝜆𝜅 (1 − 𝑎)2  (1 − 𝑎2 − 2𝑎(1 − 𝑎𝜅)𝜅 ) (3.79) 

Additional information about discrete time processes of this type is given in Digression 

3.E. 

Digression 3.E: The Time Series School and its processes 

The AR(1) and ARMA(1,1) processes discussed in section 3.11 are representatives of bigger 
families of models developed within the Time Series School. It is worth mentioning one more 
process from these families, the AR(2) process, which is: 𝑥𝜏 = 𝑎1𝑥𝜏−1 + 𝑎2𝑥𝜏−2 + 𝑣𝜏  (3.80) 

It can be easily shown (homework) that its second-order characteristics are interrelated by: 𝑐0 = 𝑎1𝑐1 + 𝑎2𝑐2 + 𝜎𝑣2, 𝑐1 = 𝑎1𝑐0 + 𝑎2𝑐1, 𝑐𝜂 = 𝑎1𝑐𝜂−1 + 𝑎2𝑐𝜂−2,   𝘂 ≥ 1  (3.81) 
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Once the covariances 𝑐0, 𝑐1, 𝑐2 are known (estimated from data or derived theoretically) the three 
parameters 𝑎1, 𝑎2, 𝜎𝑣2 can be easily found as the system of equations is linear. These equations are 
called Yule – Walker equations as they were introduced by Yule (1927) and Walker (1931), both 
British statisticians who, starting from an analysis of sunspot numbers, studied autoregressive 
processes and in particular their periodogram and autocorrelation properties. 
 Obviously, higher order AR and ARMA models can be formulated, and actually are in common 
use, along with additional families such as ARIMA(p,d,q) (standing for autoregressive integrated 
moving average models) and ARFIMA(p,d,q) (with the additional ‘F’ standing for fractional). 
However, we will not refer to them, preferring to base our analyses on the Stochastic School, 
pioneered by A. Kolmogorov, which offers more solid grounds, both for foundation and 
application, than the Time Series School. As will be seen in Chapter 7, useful tasks such as 
application of stochastics in simulation can be undertaken in a generic and simple manner 
without any reference to the non-parsimonious models of the Time Series School. 
 We should note, however, that the Time Series School and its models are way more popular 
than the Stochastic School in many disciplines, including hydrology and climatology. It appears 
that the former was initiated by the American economist W.M. Persons. In studying the problem “When to buy or sell”, Persons (1919) introduced the study of time series, which he called 
statistical series, and asserted that they “result from the combination of four elements: secular trend, 

seasonal variation, cyclical fluctuation, and a residual factor.” He also proposed methods for “Eliminating secular trends” and “Eliminating seasonal variation”. Interestingly, the Ukrainian/ 
Russian/Soviet mathematical statistician and economist Slutsky (1927) demonstrated that what 
Persons (and other economists) regarded as cyclical component is only a statistical artefact with 
no essential meaning (see e.g. Kyun and Kim 2006; Barnett, 2006). Subsequently, the notion of a 
cyclical component was abandoned but the decomposition of a time series into the remaining 
three components, trends, seasonal variation and residuals is popular even today.  
 Perhaps the first definition of a time series was given by the American statistician Bailey 
(1929): 

 A time series is a series of observations taken at different times and recorded with the time at 

which they were taken. 

 The biggest progress in the Time Series School was made in Uppsala by the Norwegian-born 
(with career in Sweden) econometrician and statistician H.O.A. Wold and the New-Zealand-born 
mathematician and statistician P. Whittle, who in their doctoral theses provided the stochastic 
foundation of time series analysis. Wold (1938, 1948) proved that a stochastic process (even 
though he referred to it as a time series) can be decomposed into a regular process (i.e., a process 
linearly equivalent to a white noise process) and a predictable process (i.e., a process that can be 
expressed in terms of its past values). This has been known as Wold’s decomposition. Whittle 
(1951, 1952, 1953) laid the mathematical foundation of autoregressive and moving average 
models in univariate and multivariate setting. Later, in their influential book, Box and Jenkins 
(1970) named these models with the above acronyms and they became popular with these names 
and also with the name Box – Jenkins models (cf. Stigler’s law of eponymy, which states that no 
scientific discovery is named after its original discoverer; Stigler, 2002). 
 Despite the wider influence of the Time Series School over the Stochastic School, there are 
several problems with the former. First, the term time series is ambiguous, sometimes denoting a 
series of observations as in the original definition of Bailey (1929) (or, equivalently, a realization 
of a stochastic process), and other times denoting the stochastic process per se (as in the 
aforementioned use by Wold). As we have already emphasized, here the term time series is used 
with the first meaning, a series of numbers, while for a series of stochastic variables we use the 
term stochastic process. Second, with the exception of the simplest models of these families, such 
as the AR(1) and ARMA(1,1), time series models are too artificial because, being complicated 
discrete-time models, they do not necessarily correspond to a continuous time process, while 
natural processes typically evolve in continuous time. Furthermore, their identification, typically 
based on the estimation of the autocorrelation function from data, usually neglects estimation 
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bias and uncertainly, which in stochastic processes (as opposed to purely random processes) are 
often tremendous (Lombardo et al., 2014). 
 Indeed, from their onset (Whittle, 1952), time series models have been tightly associated 
with a large number of parameters and they usually become over-parameterized and thus not 
parsimonious. These parameters are estimated from data, which usually are too few to support a 
reliable estimation. The decomposition of a time series to components, trends, seasonal variation 
and residuals, is fundamentally problematic, despite being popular. Remarkably, a meaningful 
definition of a trend has never been given. Also, it may be hard to conceive how time per se could 
be regarded as an explanatory variable in a complex process and what the logical basis is in 
expressing the statistics of a physical process as a deterministic function of time. Accumulation of 
data series with long time spans (cf. Chapter 1) has shown that, what have been regarded as 
trends, are mostly parts of long-term fluctuations (and in accord to Slutsky’s work, they could also be regarded as statistical artefacts). Finally, “deseasonalization”—in Persons’s original 
terminology “Eliminating seasonal variation”—is a delusion; we can hardly remove seasonality in 
the multivariate distribution of a stochastic process; what we typically do is in the marginal 
distribution—and thus there is no elimination. 

3.12 The Hurst-Kolmogorov process 

The Hurst-Kolmogorov (HK) process has been already introduced in section 1.3 and its 

discrete-time version was given in equation (1.6). Its continuous-time version is quite 

similar: 𝛾(𝑘) = 𝜆2 (𝛼𝑘)2−2𝛨 (3.82) 

This equation can serve as the definition of the HK process. By setting 𝐻 = 1/2 we recover 

equation (3.51), which means that the HK process is a generalization of the white noise. 

Its other second-order characteristics are given in Table 3.6 and illustrated in Figure 3.6. 

Their LLDs are constant for all time lags and scales and all frequencies: 𝜑(𝑘) = 𝜑C(𝑘) = 𝐻,   𝛾#(𝑘) = 𝑐#(ℎ) = 2𝐻 − 2,   𝜓#(𝑘) = −𝑠#(𝑤) = 2𝐻 − 1 (3.83) 

including their asymptotic values at 0 and ∞. Accordingly, 𝑀 = 𝐻–1.  

 

Figure 3.6 Second-order characteristics of a Hurst-Kolmogorov process with parameters 𝜆 =1, 𝛼 = 20,𝐻 = 0.8 and discretization time step 𝐷 = 1. The climacogram and climacospectrum are 
precisely the same for the continuous- and discrete-time representations. The autocovariance and 
the power spectrum have some differences between the two representations, which are visible in 
both cases.  
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Table 3.6 Second-order characteristics of the Hurst-Kolmogorov process at continuous and 
discrete time. 

Property  Formula 
Eqn. 

no. 

Variance   

Continuous-time process 

(instantaneous) 
𝛾0 = 𝛾(0) = 𝑐(0) = +∞  (3.84) 

Averaged process at scale k 

(climacogram) 
𝛾(𝑘) = 𝜆2(𝛼/𝑘)2−2𝛨 (3.82) 

Autocovariance function   

Continuous-time, lag h  𝑐(ℎ) =
{  
  𝜆2𝐻(2𝐻 − 1) (𝛼ℎ)2−2𝛨 , 𝐻 > 1/2𝜆2 δ (ℎ𝛼) , 𝐻 = 1/2𝜆2𝐻(2𝐻 − 1) (𝛼ℎ)2−2𝛨 + δ′′ (ℎ𝛼) , 𝐻 < 1/2 (3.85) 

Discrete time, lag 𝘂 = ℎ/𝐷  
𝑐𝜂 = 𝜆2(𝛼 𝐷⁄ )2−2𝛨 (|𝑗 − 1|2𝐻 + |𝑗 + 1|2𝐻2 − |𝑗|2𝐻) 

(for 𝘂 > 2, 𝑐𝜂 ≈ 𝐻(2𝐻 − 1)𝑗2𝐻−2𝛾1, 𝛾1 = 𝜆2(𝛼 𝐷⁄ )2−2𝛨) (3.86) 

Power spectrum1   

Continuous time,  

frequency w  
𝑠(𝑤) = 2𝛼𝜆2 Γ(2𝛨 + 1)sin (π𝐻)(2π𝛼𝑤)2𝐻−1  (3.87) 

1 The power spectrum of the discrete-time (averaged) process exists (it is finite for w > 0) but it does not 
have a closed expression. However, for small frequencies (𝜔 = 𝑤𝐷 < 0.1), the continuous-time expression 
is a very good approximation for the discrete-time process, i.e. 𝑠d(𝜔) ≈ 𝑠(𝜔/𝐷). 
 The Gaussian version of the process is also known as fractional Gaussian noise (FGN) 

due to Mandelbrot and van Ness (1968), although these authors used a more complicated 

approach to define it. Here we do not use the term FGN as the adjective fractional is not 

quite informative (there cannot be a non-fractional process; note that the white noise, in 

which H = 0.5 is fractional too), the adjective Gaussian is too restrictive (we will implement 

non-Gaussian HK) and the noun noise is too negative and perhaps misleading when we try to describe Nature’s processes. As already mentioned, a variant of that mathematical 

process had been earlier proposed by Kolmogorov (1940), while Hurst (1951) pioneered 

the detection in geophysical time series of the behaviour described by this process; hence 

the name HK we use for this process.  

 Because this process has infinite instantaneous variance, the sampled process in 

discrete time is not meaningful (many characteristics take infinite values). However, the 

averaged process is well behaving with all of its characteristics (including its variance) 

finite, which makes it quite useful in applications, if we exclude the very small scales. 

 The HK process is almost equally simple and parsimonious with the Markov process; 

again, it contains only one parameter, H, in addition to those describing its marginal 

distribution. Notice that the process variance is controlled by the product 𝜆2 𝛼2–2𝐻, so that 

λ and α, are not in fact separate parameters. Despite that, we prefer the formulation shown 

in Table 3.6 with three nominal parameters for dimensional consistency: α and λ are scale 
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parameters with dimensions [𝑡] and [𝑥], respectively, while H, the Hurst coefficient, is 

dimensionless in the interval (0, 1).  

 For H = 1/2 the process reduces to pure white noise. For 1/2 < 𝐻 < 1 the process is 

persistent and for 0 < 𝐻 < 1 2⁄  antipersistent. Most of the expressions shown in Table 

3.6 hold in all three cases. However, the autocovariance 𝑐(ℎ) has different expressions in 

the three cases, as shown in Table 3.6. Specifically, for 𝐻 < 1 2⁄ , the autocovariance 𝑐(ℎ) is 

negative for any lag ℎ > 0, tending to –∞ as ℎ → 0. However, at ℎ =  0, 𝑐(0) = +∞, 

because this is the variance of the process which cannot be negative; thus, there is an 

infinite discontinuity at ℎ = 0. Consequently, the averaged process has positive variance 

and all covariances negative. Such a process is not physically realistic because real-world 

events at near times are always positively correlated, which means that for small h, 𝑐(ℎ) 
should be positive. Also, the infinite variance cannot appear in nature. Thus, the HK 

process can describe natural phenomena only for 1/2 < H < 1 and for time scales not too 

small. Furthermore, values 𝐻 > 1 that sometimes are being reported in the literature are 

mathematically invalid (Koutsoyiannis, 2014b, 2017; Koutsoyiannis et al. 2018; see also 

Figure 3.4) and are results of inconsistent algorithms. In terms of entropy production, the 

process maximizes it for large times (𝑡 → ∞) but minimizes it for small times (𝑡 → 0). 

Digression 3.F: Developments in stochastic modelling in hydrology before 

and after Hurst Hurst’s (1951) discovery of the natural behaviour named after him was triggered by a real-world 
problem of engineering hydrology, the design of reservoirs. This gave hydrology a central role in 
understanding this behaviour and subsequently in the dissemination process to other disciplines. 
It is a further mark of distinction that the large-scale “export” from hydrology to other fields has characterized Hurst’s research, as hydrology is most often an importer of stochastic methods from 
other fields (O’Connell et al., 2016). 
 The understanding that hydrological processes cannot be effectively modelled by deterministic techniques preceded Hurst’s research. Techniques that could be classified as 
applications of the Monte Carlo method had appeared in the hydrological literature much earlier than the “official start” of the Monte Carlo method in 1949 and of Hurst’s (1951) paper. Hazen 
(1914) made a pioneering study in which he introduced the reservoir storage-yield-reliability 
relationship, a concept that would remain unexploited in the western hydrological literature yet 
constituting the scientific basis of modern reservoir design (Klemeš, 1987). In that study he 
proposed an empirical simulation technique and formed a synthetic time series by combining historical flow records of different rivers ‘spliced’ sequentially together. Sudler (1927) extended 
the work of Hazen by resampling from a sequence of historical river flows using cards, which he 
shuffled to form new sequences of data. Obviously, this method heavily distorts the time 
dependence of river flows whose importance was not known at that time.  
 For it was Hurst (1951) who understood that importance along with the omnipresence in 
natural processes of a clustering behaviour of similar events in time, a behaviour that is now 
understood as (long-term) persistence, long-range dependence (LRD) or Hurst-Kolmogorov 
dynamics. In his attempt to compare natural and random events, Hurst performed physical 
experiments to generate random numbers. Specifically, he tossed 10 coins (sixpences) 
simultaneously and repeated this 1025 times (note that 10 binary digits are equivalent to about 
3 decimal digits). As he notes, his rate was 100 random numbers per 35 min (while that would be 
of the order of a microsecond in modern computer environments, even slow ones). He also used 
another method, shuffling and cutting a pack of 52 cards, in which he improved the rate to 100 
random numbers per 20 min.  
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 The behaviour discovered by Hurst is now known to many disciplines, most prominently in 
information sciences, biological and medical sciences, economics and finance, and geophysical 
sciences—excepting climate science where it is rather unknown. Even within the hydrological 
community it took decades before assimilating Hurst’s discovery of persistence (O’Connell et al. 
2016). Thus, the initial studies implementing primitive variants of stochastic simulation did not 
reproduce LRD. Barnes (1954), in designing a reservoir in Australia, used a table of random 
numbers from normal distribution to generate a 1000-year sequence of synthetic annual data. 
Thomas and Fiering (1962) generated flows correlated in time, but using only the lag-one 
autocorrelation, obviously neglecting LRD. Beard (1965) and Matalas (1967) generated 
concurrent flows at several sites. Chow (1969), and Chow and Kareliotis (1970) systematized the 
use of time series models (in particular—and using their terminology—moving average models, 
sum of harmonics models and autoregression models) and highlighted their value in the economic 
planning of water supply and irrigation projects. It is evident from the above pioneering studies, 
as well as of subsequent myriads of studies, that hydrologists have followed (and today still do) 
the Time Series School rather than the more rigorous Stochastic School. 

3.13 The Filtered Hurst-Kolmogorov process 

The HK process should not be regarded as a model of general validity, but one that it is 

valid for large scales—and we will indeed use it as more physically plausible than 

processes with exponential decrease of autocovariance (e.g. the Markov process). To this 

aim, we can appropriately filter HK to make it a physically consistent process for all scales. 

This is the same with what we did to the white noise to make it physically consistent by 

removing infinities.  

 Similar to the white noise process, if we filter an input 𝑣(𝑡) that is now an HK process, 

either by a moving average filter or by a linear differential equation system, then it is easy 

to see that the filtered output is a physically realistic process with finite variance γ(0), 

practically unaffected climacogram γ(k) at large scales, with 𝛾#(∞) = 2𝐻 − 2 (as in the 

original HK process) but highly modified climacogram at small scales, thus having a valid 

structure with 𝑀 = 𝜑C(0) − 1 = (𝜓#(0) − 1) 2⁄ = 𝐻. 

 However, to enrich the process we can make the parameter M independent of H, thus 

making it more flexible to model real world data. For the model application it is not 

necessary to specify the linear filter needed to convert the HK process into a filtered 

Hurst-Kolmogorov (FHK) process (in some cases this would be too involved). It suffices 

to specify a convenient expression of the climacogram. Below we provide three such 

expressions (from Koutsoyiannis, 2017). All expressions contain the dimensionless 

parameters M and H with the meaning and values discussed in section 3.8. 

1. The generalized Cauchy-type (FHK-C) climacogram:  𝛾(𝑘) = 𝜆2(1 + (𝑘 𝛼⁄ )2𝑀)𝐻−1𝑀  (3.88) 

2. The generalized Dagum-type (FHK-D) climacogram:  𝛾(𝑘) = 𝜆2 (1 − (1 + (𝑘 𝛼⁄ )2(𝐻−1)) 𝑀𝐻−1) (3.89) 

3. The composite Cauchy-Dagum-type (FHK-CD) climacogram, derived by summing 

an FHK-C with M = 1 and an FHK-D with H = 0: 
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 𝛾(𝑘) = 𝜆12(1 + (𝑘 𝛼1⁄ )2)𝐻−1 + 𝜆22(1 − (1 + (𝑘 𝛼2⁄ )−2)−𝛭) (3.90) 

4. A second form of FHK-CD (FHK-CD2), derived by summing an FHK-C with M = 1/2 

and an FHK-D with H = 1/2: 𝛾(𝑘) = 𝜆12(1 + 𝑘 𝛼1⁄ )2𝐻−2 + 𝜆22(1 − (1 + 𝛼2 𝑘⁄ )−2𝛭) (3.91) 

 

Figure 3.7 (upper) Climacograms and (lower) EPLT (φ(t)) and CEPLT (φC(t)) of the three 
indicated example processes for neutral smoothness (M = 0.5). At time scale D = 1 all three 

processes have the same variance γ(1) = 1 and the same autocovariance for lag 1, 𝑐1(1) = 0.5. Their 
parameters are: for the linear Markov process a = 0.8686, λ = 1.4176; for the HK process a = 
0.0013539, λ = 15.5032, H = 0.7925 (equivalently, a = λ = 1 but the former parameter set was 
preferred in order to be comparable to the FHK); for the FHK process a = 0.0013539, λ = 15.5093, 
M = 0.5, H = 0.7925. In the lower graph conditional and unconditional HK coincide (adapted from 
Koutsoyiannis, 2016).  

 FHK-CD in either of the variants (3.90) and (3.91), is most convenient, as the first 

additive term determines merely the persistence of the process and the second one the 

smoothness of the process. In addition, it is more flexible and richer than its constituents, 

as it contains two couples of scale parameters; however, if parsimony is sought, then it 

can take the same number of parameters as each of the constituents by setting 𝛼1 = 𝛼2 =
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𝛼 and 𝜆1 = 𝜆2 = 𝜆 (note that, for dimensional consistency, λ and α are minimal parameter 

requirements). 

 In the special case 𝑀 = 1 − 𝐻 both FHK-C and FHK-D result in the same expression:  𝛾(𝑘) = 𝜆21 + (𝑘 𝛼⁄ )2(1−𝐻) (3.92) 

For large 𝑘/𝑎 the FHK process tends to the HK one. This is illustrated in Figure 3.7, where, 

in addition, the linear Markov model (for the same value of the lag-one autocovariance) is 

plotted for comparison. We notice that, as time tends to zero, the Markov and the FHK 

models have the same entropy production while the HK model is associated with minimal 

entropy production. For intermediate times the Markov model gives higher entropy production than the other two models, but this is done at the “expense” of giving too low 
entropy production at large time scales, at which both the HK and the FHK give precisely 

the same high entropy production. 

Digression 3.G: Entropy production and time series patterns 

The different patterns in time series generated by different M and H (specifically for the Cauchy-
type climacogram) are illustrated in the plots of Figure 3.8, also in comparison with two other 
models, the white noise (panel (a)) and the linear Markov model (panel (b)). These two serve as 
useful benchmark models for comparisons: the former is free of patterns as it reflects pure 
randomness, and the latter is fully neutral (neither rough nor smooth as φC(0) = 3/2, and neither 
antipersistent nor persistent as φC(∞) = 1/2). 
 The time series plotted in Figure 3.8 were generated by the symmetric moving average (SMA) 
scheme which will be described in Chapter 7, with 1024 coefficients (weights) a. In all cases the 
discretization time scale is D = 1, the characteristic time scale 𝛼 = 10, and the characteristic 
variance scale λ is chosen so that for time scale D, γ(D) = 1. The mean is 0 in all cases and the 
marginal distribution is normal. The FHK is implemented using the Cauchy-type climacogram. 
Each of the panels shows the first fifty terms of time series produced by each of the model 
implementations at time scales k = 1 and 20. In addition, each panel contains a “stamp” of the 
specific model represented by the plot of CEPLT, φC(k). In this way the time series patterns can 
be connected to the entropy production of the generating mechanism. 
 In panel (c) the CEPLT is close to the absolute maximum both for small and large scales (H = 
M = 0.97 so as to obtain φC(0) = 1.97 ≈ 2 and φC(∞) = 0.97 ≈ 1); notable is the very smooth shape 
at scale 1 and the large departures from the mean (which is 0) at scale 20. On the contrary, in 
panel (d) the CEPLT is close to the absolute minimum for all scales (H = M = 0.05, so as to obtain 
φC(0) = 1.05 ≈ 1 and φC(∞) = 0.05 ≈ 0—for better visualization it was preferred not to use values 
of H and M < 0.05). Furthermore, in panel (e) the CEPLT is close to the absolute maximum for 
large scales (H = φC(∞) = 0.99 ≈ 1) and close to the absolute minimum for small scales (M = 0.01 
resulting in φC(0) = 1.01 ≈ 1). Finally, in panel (f) the conditions are opposite to those in (e) i.e., 
the CEPLT is equal to the absolute minimum for large scales (H = φC(∞) = 0.01 ≈ 0) and to the 
absolute maximum for small scales (M = 0.99 resulting in φC(0) = 1.99 ≈ 2). 
 The particular case of panel (e) is close to what is usually called “pink noise” or “1⁄f noise”, as the power spectrum has almost constant slope −1 for the entire frequency domain (which is 
the same in the climacospectrum). This means that using the FHK model we can theoretically represent and practically produce even “pink noise” in a consistent stationary setting without 
linking it to a nonstationary process (Keshner, 1982; Wornell, 1993), which involves several 
theoretical inconsistencies. Indeed, the small change of slope from 0.99 to 1.01 is not actually 
visible, especially considering the very rough shape of the empirical periodogram, which certainly 
cannot support differentiation between 0.99 and 1. The FHK model can be used also in other ways to produce “pink noise”, that is, by selecting a very large (small) parameter α so as to expel from 
our field of vision the asymptotic behaviour on large (small) scales. And we can imagine that in 
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several cases of empirical explorations using observations of natural processes, the observation 
resolution and length, compared to characteristic scale(s) of the process, are such as to hide the 
asymptotic behaviour of the process. We can use this as a trick to obtain virtually constant power spectrum slopes much steeper than −1. Specifically, we can use a large α that does not allow 
viewing the asymptotic behaviour at low frequencies or large scales and the slope (see example 
in Koutsoyiannis, 2017). But this should not mislead us to interpret the steep slopes as indicators 
of nonstationarity (see Digression 3.C). 

  

  

  

Figure 3.8 The first fifty terms at time scales k = 1 and 20 of time series produced by various models, along with “stamps” of the models (thick lines plotted with respect to the right vertical axes) represented by the 
CEPLT, φC(k). The different models are (a) white noise; (b) Markov; (c) FHK, with CEPLT close to the 
absolute maximum (H = M = 0.97); (d) FHK, with CEPLT close to the absolute minimum (H = M = 0.05; notice 
the slow convergence of φC(k) to the limiting values 0 and 1); (e) FHK, with CEPLT close to the absolute 
maximum for large scales (H = 0.99) and close to the absolute minimum for small scales (M = 0.01); (f) FHK 
with CEPLT close to the absolute minimum for large scales (H = 0.01) and to the absolute maximum (M = 
0.99) for small scales.  

3.14 Dependence and behaviour of extremes 

When we study extremes, we are usually satisfied by specifying the marginal distribution. 

As analysed in Chapter 2, this is generally sufficient for design purposes, where the design 

is based upon the concept of return period. In this respect, the dependence structure of 
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the process of interest may not affect the design procedure per se. However, the 

dependence in a stochastic process alters substantially the temporal distribution of 

extremes. In a process with dependence there are patterns, and specifically periods with 

clustered extremes and periods with absence or infrequent occurrence of extremes. We 

should thus adapt our perception of the behaviour of extremes to become consistent with 

this reality; without such adaptation our perception is typically guided by the “roulette-wheel” paradigm, in which there are no patterns.  

 There is an additional, more severe, consequence of the presence of dependence. 

Hydroclimatic studies necessarily rely on data to make inference. Data records are 

typically insufficient and actually become even more so in the presence of extremes. The 

latter problem also affects the specification of the marginal distribution. This is illustrated 

by a simulation experiment in Digression 3.H. Quantification of the consequences will be 

given in Chapter 4 and a way to take into account the dependence in specifying the 

marginal distribution from data will be discussed in Chapter 6. 

Digression 3.H: Relationship of persistence and distribution upper tail 

To illustrate whether or not (and how) the persistence (or long-range dependence or just change) 
affects the estimation of the marginal distribution of a discrete-time stationary process 𝑥𝜏 we 
perform a simulation experiment. We assume that the marginal distribution of 𝑥𝜏 is exponential: 𝑓𝑥(𝑥|𝜆) = 𝜆 e−𝜆𝑥. Further, we make two alternative assumptions:  

(a) that the parameter λ is constant, 𝜆 = 5, and  
(b) that λ is slowly varying with mean 𝜇𝜆 = 5 and standard gamma distribution, 𝑓𝜆(𝜆) =𝜆𝜁−1e−𝜆/𝛤(𝘁) with 𝘁 = 𝜇𝜆 = 5.  

 To simulate a slowly varying λ we initially generate a time series of a stochastic process 𝜆′ 
with same distribution as 𝜆 from the HK process with a high H = 0.95. Then we form a time series 
of 𝜆 with the rule 𝜆𝑖 = 𝜆𝑖′ with probability 1/100, otherwise 𝜆𝑖 = 𝜆𝑖−1. The latter rule assures that 
each value 𝜆𝑖 lasts for 100 time units on the average. The HK process used for 𝜆𝑖′  assures that there 
is change on all scales, not just at scale 100. Koutsoyiannis (2004a) has shown that the 
unconditional distribution of 𝑥 in this case is Pareto rather than exponential, i.e. 𝑓𝑥(𝑥) =𝘁 (1 + 𝑥)𝜁−1.  
 In either of the two alternatives, once λ is known at time step τ, we generate 𝑥𝜏 from the 
exponential distribution independently of previous and next 𝑥𝜏. In alternative (a), the resulting 
process will be white noise. However, in alternative (b), the change of the parameter induces 
dependence, while the process 𝑥𝜏 remains stationary (because the change is stochastic, resisting 
a deterministic description).  
 Figure 3.9 (upper row) depicts two time series 𝑥𝜏, each with length 10 000, generated with 
alternatives (a) (left panel) and (b) (right panel). Moving averages for a time scale of 500, also 
plotted in the two panels, indicate the absence of patterns (pure randomness, white noise) in 
alternative (a) and the long-range dependence (not nonstationarity) in alternative (b). 
 Now let us assume that this time series represents a hypothetical hydroclimatic process on 
annual scale. Let us further assume that a researcher has a record of fewer than 100 observations. 
Most probably all these refer to the same value of the parameter 𝜆𝑖. Consequently, the researcher 
would diagnose that:  • the process behaves like white noise—and indeed, the slope of the climacogram (Figure 3.9, 

lower right) for scales < 10 (one tenth of the sample size) is –1;  • the marginal distribution is exponential—because it indeed is exponential conditionally on a 
single value of λ.  
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 The two distributions for constant and varying λ (cases (a) and (b)) are shown in the bottom-
left panel of Figure 3.9, along with the distribution of λ in case (b), as empirically derived from the 
simulations. The adoption of the former underestimates the design quantities for large return 
periods. Furthermore, the bottom-right panel shows the dramatic differences in climacograms of 
the two cases. The climacogram in case (b) starts with a slope –1 for scales < 10, but for large 
scales this becomes –0.33, suggesting H = 0.84. The varying slope is consistent with the findings 
of Markonis and Koutsoyiannis (2016) for the rainfall process. Overall, this simulation experiment 
shows two things.  • Long series are needed to diagnose natural behaviours and in particular the multi-scale 

change in natural processes.  • The mechanisms producing change may also lead to thickening of the distribution upper tail 
and thus enhancing the occurrence probability or the intensity of extremes. 

 These effects are particularly important when we study maxima, neglecting the small values 
(below a high threshold), a practice that tends to hide the existence of long-range dependence 
even in long records (see Iliopoulou and Koutsoyiannis, 2019). 
 

 

Figure 3.9 Graphs for the hypothetical example studied in Digression 3.H: (upper left) for constant λ; 
(upper right) for varying λ; (lower left) plots of distribution functions; (lower right) plots of 
climacograms (see text for further explanation). 
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Chapter 4. Fundamental concepts of statistics and their adaptation to 

stochastic processes 

4.1 Introductory comments 

The first aim of this chapter is to serve as a synopsis (rather than a systematic and 

complete presentation) of fundamental statistical concepts. It is well known that the aim 

of statistics per se is to provide a methodology for drawing conclusions based on 

observations. The conclusions are only inferences based on induction, not deductive 

mathematical proofs (see Digression 4.A); however, if the associated probabilities 

approach 1, they become almost certainties.  

 The classical statistical theory is entirely based on the assumption that observations 

are from a sample, a concept (formally defined in section 4.2) whose very definition relies 

on independence of observations. However, when we deal with hydroclimatic processes 

there cannot be independence. Instead of samples we have time series and there is 

dependence in time. Even when we are interested on the spatial behaviour of processes, 

again we have to deal with dependence in space. Hence, the second aim of this chapter is 

to adapt and extend the classical statistical concepts and methodologies to make them 

applicable to a universe in which there is dependence.  

 Two major tasks in statistics are estimation and hypothesis testing. Statistical 

estimation can be distinguished in parameter estimation and prediction and can be 

performed either on a point basis (resulting in a single value, typically the expectation; cf. 

the Aristotelian mesotes), or on an interval basis (resulting in an interval in which the 

quantity sought lies, associated with a certain probability or confidence). The results of 

an estimation procedure are called estimates. Uses of statistical estimation in 

hydroclimatic applications include the estimation of parameters of marginal probability 

distributions or of the stochastic model describing the dependence in time, and of 

distributions quantiles. All these concepts are briefly discussed both at a theoretical level, 

to clarify the concepts and avoid misuses, and at a more practical level to illustrate the 

application of the concepts.  

 Statistical hypothesis testing is also an important tool that constitutes the basis of 

decision theory. In hydroclimatic studies, it is useful not only in decision making, but also 

in exploratory tasks, such as in detecting relationships among different processes. 

Hypothesis testing is typically performed by the classical framework known as statistical 

significance (related to a null hypothesis) or, alternatively, within a Bayesian framework. 

These topics have been mostly developed at the basis of (independent) samples and, 

therefore, are not covered in this text. On the other hand, we put emphasis on the concept 

of order statistics (section 4.12), which is much more important when dealing with 

extremes. 

Digression 4.A: Deduction and induction 

The theory of probability has provided solid scientific grounds for philosophical concepts such as 
indeterminism and causality. In typical scientific and technological applications, probability has 
provided the tools to quantify uncertainty, rationalize decisions under uncertainty, and make 
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predictions of future events under uncertainty, in lieu of unsuccessful deterministic predictions 
(see Koutsoyiannis, 2010).  
 Quite importantly, probability has also provided the basis for extending the typical 
mathematical logic, offering the mathematical foundation of induction. Thus, probability made it 
possible to incorporate into mathematics the entire Aristotelian logic, which in addition to 
deductive reasoning or deduction (the Aristotelian apodeixis) also includes induction (the 
Aristotelian epagoge).  
 In classical mathematical logic, determinism can be paralleled to the premise that all truth 
can be revealed by deductive reasoning. This type of reasoning consists of repeated application 
of strong syllogisms concerning the logical propositions A and B, such as: 

(Premise) 
(Evidence) 
(Conclusion) 

If A is true, then B is true;  
A is true;  
B is true. 

If A is true, then B is true;  
B is false;  
A is false. 

Deduction uses a set of axioms to prove propositions known as theorems, which, given the 
premises (based on axioms), are irrefutable, absolutely true statements. It is also irrefutable that 
deduction is the preferred route to truth; the question is, however, whether or not it has any 
limits.  
 David Hilbert’s famous aphorism (later inscribed in his tombstone at Göttingen) “Wir müssen 

wissen, wir werden wissen” (“We must know, we will know”), expressed his belief that there were 
no limits in deduction. According to this belief, more formally known as completeness, any 
mathematical statement could be proved or disproved by deduction from axioms. However, 
developments in mathematical logic, and particularly Gödel’s incompleteness theorem, challenged 
the omnipotence of deduction suggesting the usefulness and necessity of induction. 
 Induction uses weaker inference rules of the type: 

(Premise) 
(Evidence) 
(Conclusion) 

If A is true, then B is true;  
B is true;  
A becomes more plausible. 

If A is true, then B is true;  
A is false;  
B becomes less plausible. 

Induction does not offer a proof that a proposition is true or false and may lead to errors. However, 
it is very useful in decision making, when deduction is not possible, which is the case quite 
frequently in the real world and in everyday life (see Jaynes, 2003). 
 The important achievement of probability is that it quantifies (expresses in the form of a 
number between 0 and 1) the degree of plausibility of a certain proposition or statement. The 
formal probability framework uses both deduction, for proving theorems, and induction, for 
inference with incomplete information or data. For the latter we use the branch of stochastics 
called statistics. 

4.2 Samples versus time series 

Loosely speaking, statistics draws conclusions for a population, based on a sample. 

Although the content of population is not strictly defined in the statistical literature, the 

term describes any collection of objects whose measurable attributes are of interest. The 

population can refer to the real world and be finite (e.g., the inhabitants of Europe, the 

mean annual flows of year 2000 at the outlets of all river basins on Earth with size greater 

than 100 km2). It can also be an abstraction of a real-world entity referring to the possible 

(typically infinite) outcomes of a real or a hypothetical experiment (e.g., the population of 

all possible annual flows in a river cross-section). Here we deal with populations of the 

latter type and, because of this, it is not necessary to use the term population at all—and 

hence to define it. Rather, the notions of a stochastic variable and a stochastic process 

suffice. Therefore, we will not use terms like population mean to distinguish from the 
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sample mean. Instead, we will refer to the former concept with the terms like true mean, 

ensemble mean or simply mean, where the term ensemble suggests all possible outcomes 

of repeated experiments.  

 On the contrary, the term sample has a clear definition. Specifically, a sample of size 

(or length) 𝑛 of a stochastic variable 𝑥 , defined on a basic set Ω, with probability 

distribution function 𝐹(𝑥), is a sequence of 𝑛 independent identically distributed (IID) 

stochastic variables (𝑥1, 𝑥2, … , 𝑥𝑛) defined on the sample space 𝛺𝑛 = 𝛺 ×⋯× 𝛺, each 

having distribution 𝐹(𝑥) (adapted from Papoulis, 1990, p. 238). After observation of the 

variables 𝑥𝑖 , to each variable there corresponds one numerical value. Consequently, we 

will have a numerical sequence 𝑥1, 𝑥2, … , 𝑥𝑛, called the observed sample. It is clear from 

this definition that a sample is not a subset of the population, as some may think, but a 

concept related to the Cartesian product of the population.  

 The concept of a sample is, thus, related to sequences of two types: an abstract 

sequence of stochastic variables and the corresponding sequence of their numerical 

values. It has been a common practice to use the term sample indistinguishably for both 

sequences, omitting the term observed from the latter. However, the two concepts are 

fundamentally different and we should be attentive to distinguish each time in which of 

the two cases the term sample refers to.  

 The above definition (and in particular the IID specification) suggests that the 

construction of a sample of size 𝑛, or the sampling, is done by performing 𝑛 repetitions of 

an experiment. The repetitions should be independent to each other and be performed 

under virtually the same conditions. However, in dealing with natural phenomena (out of 

the laboratory) it is not possible to repeat the same experiment, and thus literally there 

cannot be sampling. Instead, what is actually done is measurement of the natural process 

at different times. As a consequence, it is not possible to ensure that independence and 

same conditions hold. Actually, in most cases we can be sure of the opposite. Then the use 

of classical statistics may become dangerous as the estimates and inferences may be 

completely wrong. 

 Still, however, we can do our job in a reliable manner if, instead of using classical 

statistics, we rely on stochastics. Actually, there is the following correspondence between 

classical statistical concepts the stochastic concepts: Classical statistics (independence) → Sample → Observed sample → 

Statistics within stochastics (dependence) 

Stochastic process (discrete or discretized) 

Time series 

Typically, the use of stochastics assuming dependence makes the mathematical 

derivations and calculations more complicated, while the resulting uncertainty is greater 

when there is dependence.  

4.3 Expectation and its estimation 

As we have stressed in Chapter 2, functions of stochastic variables, e.g. 𝑧 ≔ 𝑔(𝑥) are 

stochastic variables and expected values of stochastic variables are common variables; for 

example E[𝑥] and E[𝑔(𝑥)] are constants—neither functions of 𝑥 nor of 𝑥—i.e.: 
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E[𝑥] ≔ ∫ 𝑥𝑓(𝑥)d𝑥∞
−∞ ≕ 𝜇, E[𝑔(𝑥)] ≔ ∫ 𝑔(𝑥)𝑓(𝑥)d𝑥∞

−∞ ,  (4.1) 

where 𝑓(𝑥) is the probability density function. It should be stressed that these 

expectations are not time averages. Sometimes to make it clearer we call them true or 

ensemble means, variances, covariances, etc. For an ergodic process, true expectations 

are related to time averages through the following asymptotic relationship (section 3.4): 

𝐺̂(∞)  ≔ lim𝑇→∞ 1𝑇∫𝑔 (𝑥(𝑡)) 𝑑𝑡 = E[𝑔(𝑥(𝑡))]𝑇
0 ≕ 𝐺 (4.2) 

We notice that the left-hand side, 𝐺̂(∞)  , is a stochastic variable while the right-hand side, 

G, is a common variable; their equality implies that the variance of 𝐺̂(∞) is zero. 

 When dealing with data from a process 𝑥(𝑡) with a joint distribution function that is 

unknown, neither the left- nor the right-hand side of (4.2) can be known a priori. 

Assuming that we have a time series, at a time step D, with observations  𝑥𝜏 ≔ (1 𝐷⁄ ) ∫ 𝑥(𝑢)d𝑢𝜏𝐷(𝜏−1)𝐷 , 𝜏 = 1,… , 𝑛 (see equation (3.1)) we can approximate the left-

hand side by: 

𝐺̂ ≔ 1𝑛∑𝑔(𝑥𝜏)𝑛
𝜏=1  (4.3) 

The common variable 𝐺̂ is called an estimate of the true expectation G. Replacing in 

equation (4.3) the values 𝑥𝜏 with the stochastic variables 𝑥𝜏 we define: 

𝐺̂ ≔ 1𝑛∑𝑔(𝑥𝜏)𝑛
𝜏=1  (4.4) 

The stochastic variable 𝐺̂ is called an estimator of the true expectation G. In classical 

statistics 𝐺̂ is also called a statistic, where the latter term denotes a (scalar) function of 

the sample vector 𝒙 ≔ [𝑥1, 𝑥2, … , 𝑥𝑛]T.  
 While the above procedure to form an estimator 𝐺̂ of the true expectation G is useful 

in many cases, we should have in mind that many different estimators can be formulated 

for a certain parameter G. An estimator is typically biased (with some exceptions, the most 

notable being the estimator of the mean; see below), meaning that: E[𝐺̂ ] ≠ 𝐺 (4.5) 

 A formal definition of bias is:  𝑏 ≔ E[𝐺̂ ] − 𝐺 (4.6) 

An estimator is also characterized by its variance and its mean square error, i.e. 𝛾𝐺 ≔ var[𝐺̂ ], 𝑒𝐺 ≔ E[(𝐺̂ − 𝐺)2] = 𝛾𝐺 + 𝑏2 (4.7) 

An estimator is called: 
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• unbiased if 𝑏 = 0. 

• consistent if, with probability 1, 𝐺̂ − 𝐺 → 0 as 𝑛 → ∞; 

• best if 𝑒𝐺 is minimum. 

• most efficient if it is unbiased and best.  

 The main takeaway and central point of the above discussion is this. When dealing 

with quantification of uncertainty, for each parameter there are four different concepts, 

with slightly different names but very different meaning and content. These are often 

confounded in the literature and the same symbol and name are used for all, which causes 

confusion and may result in wrong conclusions. Table 4.1 clarifies the four different 

concepts using the variance as an example.  

Table 4.1 Different variants of the variance of a stationary process in discrete time, 𝒙𝝉, as an 
example for clarifying the four different concepts. 

Name Symbol and definition Type of variable Type of determination 

Variance 

(true) 
𝛾 ≔ ∫(𝑥 − 𝜇)2𝑓𝑥𝜏(𝑥)d𝑥∞

−∞  
Common variable 

(not depending on τ) 

Theoretical calculation 

from model (by 

integration) 

Variance 

estimate 

𝛾 ≔ 1𝑛∑(𝑥𝜏 − 𝜇̂)2𝑛
𝜏=1  

where: 𝜇̂ ≔ 1𝑛∑𝑥𝜏𝑛
𝜏=1  

Common variable 

Estimation from data—
but model is also 

necessary (e.g. to 

calculate the estimation 

bias and uncertainty) 

Variance 

estimator 

𝛾 ≔ 1𝑛∑(𝑥𝜏 − 𝜇̂)2𝑛
𝜏=1  

where: 𝜇̂ ≔ 1𝑛∑𝑥𝜏𝑛
𝜏=1  

Stochastic variable 
Theoretical calculation 

from model 

Variance 

estimator 

limit 

𝛾̂(∞) = lim𝑇→∞ 1𝑇∫(𝑥(𝑡) − 𝜇̂(∞))2𝑇
0 d𝑡 

where 𝜇̂(∞) ≔ lim𝑇→∞ 1𝑇∫𝑥(𝑡)𝑇
0 d𝑡 

Stochastic variable, 

which for an ergodic 

process has zero 

variance and 

becomes a common 

variable, equal to 𝛾 

Theoretical calculation 

from model 

 From Table 4.1 we may notice that the data can be used only with one of the variance 

variants, namely the variance estimate, while a theoretical model is necessary to 

determine any of them. Even for the variance estimate, a model is necessary to estimate 

the estimation bias and uncertainty (in classical statistics, that model is the IID 

assumption). And before specifying that model, it is fundamentally necessary to ensure 

that the assumptions of stationarity and ergodicity are valid for the process and the data 

we are dealing with. If they are valid, then the four concepts become three because the 

variance estimator limit becomes identical to the true variance. But if stationarity and 
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ergodicity do not hold, then one may again use the data, do the calculations and find a 

result. However, this result is meaningless and cannot be called the variance estimate. 

4.4 Moment estimators 

The estimator of the noncentral moment (moment about the origin) of order q, 𝜇𝑞′ , of a 

stochastic variable 𝑥, formed according to the method described in section /, is: 

𝜇̂𝑞′ ≔ 1𝑛∑𝑥𝑖𝑞𝑛
𝑖=1  (4.8) 

It can be proved (Kendall and Stewart, 1963, p. 229) that: E [𝜇̂𝑞′ ] =  𝜇𝑞′  (4.9) 

Consequently, the noncentral moment estimators are unbiased. If 𝑥𝑖 is a (IID) sample of 

size 𝑛 then the variance of the estimator is:  var [𝜇̂𝑞′ ] = 1𝑛 (𝜇2𝑞′ − 𝜇𝑞′2) (4.10) 

It can be observed that if the moments are finite, then the variance tends to zero as 𝑛 →∞; therefore, the estimator is consistent. However, if 𝑥𝑖 is a stochastic process (with time 

dependence) then (4.10) does not hold, even for q as low as 1. 

 The estimator of the central moment 𝜇𝑞 , is: 

𝜇̂𝑞 ≔ 1𝑛∑(𝑥𝜏 − 𝜇̂)𝑞𝑛
𝜏=1  (4.11) 

where 𝜇̂ ≡ 𝜇̂1′  is the estimator of the mean. This is a biased estimator for any 𝑞 > 1. Even 

for relatively low q (e.g. 2-4), the bias can be substantial, in the case that the process 

exhibits long-range dependence (see section 4.6 about the variance). In the case of (IID) 

samples and low q, the bias is much smaller and can be easily quantified (see e.g. 

Koutsoyiannis, 1997). For higher q the estimation of moments becomes almost 

impossible; this applies not only to the biased estimators of central moments, but also to 

the unbiased estimators of noncentral moments. The reasons are the high variance and 

the extraordinarily high skewness of the estimators, which means that their expectation 

can be different from the mode (the most probable value) by orders of magnitude. 

Because of that, classical moments have been called unknowable (see Digression 4.B) and 

their estimation from data is not recommended. In Chapter 6 we will study a new type of 

moments, the knowable moments (K-moments), which can be reliably estimated for high 

orders and are particularly useful in analyses of extremes.  

 In the framework developed and followed in this text, we avoid estimation of classical 

moments of order higher than 2. For this reason, in the following sections we will only 

study the estimators of classical moments of orders 1 and 2.  
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Digression 4.B: Are classical moments knowable? 

The estimators of the noncentral moments 𝜇̂𝑞′  (or even the central ones if μ is known a priori, 

which however is almost never the case) are in theory unbiased, but it is impractical to use them 
in estimation if q > 2 (cf. Lombardo et al. 2014).  
 It is well known that for large q and positive 𝑥𝑖 the following relationship holds as an 
approximation: 

(∑𝑥𝑖𝑞𝑛
𝑖=1 )1/𝑞 ≈ max1≤ 𝑖≤𝑛(𝑥𝑖) 

This is related to the well-known mathematical fact that the maximum norm is the limit of the q-
norm as q → ∞. This result can be generalized for 𝑥𝑖 that are not necessarily positive but satisfy 
the condition max1≤ 𝑖≤𝑛(𝑥𝑖) > |min1≤ 𝑖≤𝑛(𝑥𝑖)|. A numerical illustration of how fast the 
convergence of the left-hand side to the right-hand side of the above equation is provided in Table 
4.2. 

Table 4.2 Illustration of the fact that raising to a power and adding converges fast to the maximum value. 

Linear, q = 1 Pythagorean, q = 2 Cubic, q = 3 High order, q = 8 
3 + 4 = 7 32 + 42 = 52 33 + 43 = 4.53 38 + 𝟒8 ≈ 𝟒8 
3 + 4 +12 = 19 32 + 42 + 122 = 132 33 + 43 + 123 = 12.23 38 + 48 + 𝟏𝟐8 ≈ 𝟏𝟐8 
 
 Therefore, for relatively large q the estimate of 𝜇𝑞′  will be: 

𝜇̂𝑞′ = 1𝑛∑𝑥𝑖𝑞𝑛
𝑖=1 ≈ 1𝑛 ( max1≤ 𝑖≤𝑛(𝑥𝑖))𝑞 

(Note that for large q the term (1/𝑛) in the right-hand side can be omitted with a negligible error). 
Thus, for an unbounded variable 𝑥 and for large q, we can conclude that 𝜇̂𝑞′ , while theoretically is 

an unbiased estimator of 𝜇𝑞′ , in practice it is more an estimator of an extreme quantity than an 
estimator of 𝜇𝑞′ . (As we will see in section 4.12, the estimated quantity is the nth order statistic 
raised to power q). This happens because the convergence of 𝜇̂𝑞′  to 𝜇𝑞′  is very slow, while the 

convergence to the maximum value is fast. 
 This is further illustrated in Figure 4.1 for the eighth moment of a process specified in the 
figure caption. Even for 𝑛 as large as 64 000 the sample moment estimate continues to be smaller, 
by several orders of magnitude, than the theoretical value. However, the proximity of the moment 
estimate to the maximum value is evident even for 𝑛 as small as 10. The jagged shapes of the 
curves are a clear indication of the dominance of maxima in the moment estimation: the steps 
occur when a new higher maximum value enters the sample, while the gradual decreases before 
those are due to the increase of the sample size without a higher maximum value. The ensemble 
simulation results in the right panel show that the 99% prediction limits (see their definition in 
section 4.11) from 1000 simulations are unable to even envelop the true value. 
 As a result, unless 𝑞 is very small, 𝜇𝑞′  is not a knowable quantity: we cannot infer its value 
from a sample. This is the case even if 𝑛 is very large as in Figure 4.1. Also, the various 𝜇̂𝑞′  are not 

independent to each other as they only differ on the power to which the maximum value is raised. 
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Figure 4.1 Illustration of the slow convergence of the sample estimate of the eighth noncentral moment to 
its true value, which is depicted as a thick horizontal line and corresponds to a lognormal distribution 
LN(0,1) where the process is an exponentiated Hurst-Kolmogorov process with Hurst parameter H = 0.9. 
(left) The sample moments are estimated from a single simulation of that process with length 64 000, 
where parts of this time series with sample size 𝑛 from 10 to 64 000 are used for the estimation. Subsetting 
of the time series to sample size 𝑛 was done either from the beginning to the end (thicker lines) or from the 
end to the beginning (finer lines). Continuous lines in the two cases represent the eighth moment estimates, ∑ 𝑥𝑖8𝑛𝑖=1 /𝑛, and dashed lines represent maximum values, (max1≤ 𝑖≤𝑛(𝑥𝑖))8/𝑛. (right) Sampling distribution 

of the eighth moment estimator ∑ 𝑥𝑖8𝑛𝑖=1 /𝑛 estimated from 1000 simulated series of length 1000 each and 
visualized by the 99% prediction limits (percentiles), the median and the average, plotted as ratios to the 
true value. Theoretically, the ratio should be 1, but it is smaller by many orders of magnitude, and the 

convergence to 1 is very slow. The ratio to (max1≤ 𝑖≤𝑛(𝑥𝑖))8/𝑛, also plotted, is close to 1. (Source: 
Koutsoyiannis, 2019a.) 

4.5 Sample mean estimator and effective sample size 

According to equation (4.12), the estimator of the true mean 𝜇 = 𝜇1′  is: 

𝜇̂ ≔ 1𝑛∑𝑥𝑖𝑛
𝑖=1  (4.12) 

Another common notation of the mean estimator is 𝑥. The estimator is unbiased (E [𝜇̂] =E[𝑥] = 𝜇). Its numerical value 𝜇̂ ≔ (1 𝑛⁄ )∑ 𝑥𝑖𝑛𝑖=1 , else denoted as 𝑥, is called the observed 

mean or the average. If 𝑥𝑖  is a (IID) sample of size 𝑛 then the variance of the estimator is:  

var [𝜇̂] = var[𝑥]𝑛 = 𝛾1𝑛  (4.13) 

regardless of the distribution function of 𝑥. However, if 𝑥𝑖  is a stochastic process (with 

dependence) then combining (3.12) and (4.12) we conclude that: 𝜇̂ = 𝑥1(𝑛) = 𝑋(𝑛𝐷)𝑛𝐷  (4.14) 

where the superscript in parenthesis indicates that the discretization scale is 𝑛𝐷 (see 

equation (3.14)). Consequently:  var [𝜇̂] = var [𝑋(𝑛𝐷)𝑛𝐷 ] = 𝛾(𝑛𝐷) = 𝛾𝑛 (4.15) 
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 Both equations (4.13) and (4.15) suggest that the estimator is consistent (assuming 

ergodicity). However, equations (4.13) and (4.15) may result in quite different values of 

the variance. By means of these two equations we can define the notion of the ‘‘equivalent’’ (or ‘‘effective’’) sample size 𝑛′ in the classical statistics (IID) sense 

(Koutsoyiannis and Montanari, 2007). This is the sample size of a hypothetical IID sample 

of a variable 𝑥 with variance 𝛾1 whose variance of the mean equals 𝛾𝑛;  symbolically: 𝛾1𝑛′ = 𝛾𝑛 ⇔ 𝑛′ = 𝛾1𝛾𝑛 (4.16) 

As an example, in an HK process, in which 𝛾𝑛 = 𝜆2(𝛼 𝑛𝐷⁄ )2−2𝛨 (equation (3.82)), we will 

have: 𝑛′ = 𝑛2−2𝐻 (4.17) 

In white noise (𝐻 = 0.5), clearly 𝑛′ = 𝑛. However, if 𝐻 = 0.9 and 𝑛 = 1000 then 𝑛′ = 4 (a 

big difference from 1000!). Thus, a time series of 1000 terms of that HK process is 

equivalent to a (classical, IID) sample of only 4 terms. This example shows the dramatic 

increase of uncertainty in case of dependence. 

4.6 Climacogram estimator and its bias 

The typical variance estimator: 

𝜇̂2 ≡ 𝛾1 ≔ 1𝑛∑(𝑥𝜏 − 𝜇̂)2𝑛
𝜏=1  (4.18) 

is well known to be biased. It is also well known from elementary classical statistics books 

that the replacement of 𝑛 with 𝑛 − 1 in the denominator of the right-hand side makes the 

estimator unbiased. Thus, the classical variance estimator is: 

𝛾1∗ ≔ 1𝑛 − 1∑(𝑥𝜏 − 𝜇̂)2𝑛
𝜏=1 = 𝑛𝑛 − 1𝛾1 (4.19) 

This is also known as sample variance or unbiased variance estimator. However, the latter 

term is incorrect: In stochastic processes describing natural phenomena, this slight 

change does not make the estimator unbiased. Here we use the term typical when we 

divide the sum by 𝑛 (equation (4.18)) and classical when we divide by 𝑛 − 1 (equation 

(4.19)). We will use the same terminology for covariances below and we will explain the 

reasons that we prefer the typical over the classical. 

 In stochastic processes the bias can be determined analytically in terms of the 

climacogram as follows (see also Koutsoyiannis 2003, 2011a, 2016):  

E [𝛾1] = 1𝑛  E [∑((𝑥𝜏 − 𝜇) − (𝑥1(𝑛) − 𝜇))2𝑛
𝜏=1 ] 

= 1𝑛 E [∑(𝑥𝜏 − 𝜇)2𝑛
𝜏=1 ] − 2 1𝑛  E [(𝑥1(𝑛) − 𝜇)∑(𝑥𝜏 − 𝜇)𝑛

𝜏=1 ] + E [(𝑥1(𝑛) − 𝜇)2] (4.20) 
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 Since ∑ (𝑥𝜏 − 𝜇)𝑛𝜏=1 = 𝑛(𝑥1(𝑛) − 𝜇) we find after the algebraic manipulations: 

E [𝛾1] = 𝛾1 − 𝛾𝑛 = (1 − 𝛾𝑛𝛾1) 𝛾1 = (1 − 1𝑛′) 𝛾1 (4.21) 

and E [𝛾1∗] = 𝑛𝑛 − 1 (𝛾1 − 𝛾𝑛) = (1 − 𝛾𝑛 𝛾1⁄ )1 − 1/𝑛 𝛾1 = (1 − 1 𝑛′⁄ )1 − 1/𝑛 𝛾1 (4.22) 

Likewise, for the climacogram at scale 𝑘 = 𝜅𝐷, if the observation period is 𝐿 = 𝑛𝑘, the 

estimators become: 

𝛾𝜅  ≡ 𝛾(𝑘) ≔ 1𝑛∑(𝑥𝜏(𝜅) − 𝜇̂)2𝑛
𝜏=1 , 𝛾𝜅∗ ≡ 𝛾∗(𝑘) ≔ 𝑛𝑛 − 1𝛾(𝑘) (4.23) 

and their expectations are: E [𝛾(𝑘)] = 𝛾(𝑘) − 𝛾(𝐿) = (1 − 𝛾(𝐿)𝛾(𝑘)) 𝛾(𝑘), E [𝛾̂∗(𝑘)] = 1 − 𝛾(𝐿)/𝛾(𝑘)1 − 𝑘 𝐿⁄ 𝛾(𝑘) (4.24) 

The above equations show that there is no gain in using the classical estimator (dividing 

by 𝑛 − 1) of variance 𝛾1∗ (or 𝛾∗(𝑘)). The equations are simpler if we use the typical 

estimator 𝛾1 (or 𝛾(𝑘)) (dividing by 𝑛). As we will see below, the typical estimator is also 

preferable in fitting distributional parameters. Whatever estimator we use, there is 

estimation bias which should be taken into account in model fitting.  

4.7 Covariance and autocovariance estimators 

The typical and classical estimators of covariance: 

𝑐̂𝑥𝑦 ≔ 1𝑛∑(𝑥𝜏 − 𝜇̂)𝑛
𝜏=1 (𝑦𝜏 − 𝜇̂) , 𝑐̂𝑥𝑦∗ ≔ 1𝑛 − 1∑(𝑥𝜏 − 𝜇̂)𝑛

𝜏=1 (𝑦𝜏 − 𝜇̂) (4.25) 

respectively, are both biased if 𝑥𝜏 and 𝑦𝜏 are stochastic processes non identical to white 

noise. For example, if they are HK processes with common Hurst parameter H, then the 

expectation of 𝑐̂𝑥𝑦 is (Koutsoyiannis, 2003): E[𝑐̂𝑥𝑦] = (1 − 1𝑛2−2𝐻) 𝑐𝑥𝑦 = (1 − 1𝑛′) 𝑐𝑥𝑦 (4.26) 

 In the case of autocovariance estimation, it is common knowledge that there is 

downward bias (Wallis and O’Connell, 1972; Salas, 1993, p. 19.10). The typical estimator 

of the lag η autocovariance is: 

𝑐̂𝜂 ≔ 1𝑛∑ (𝑥𝜏 − 𝜇̂) (𝑥𝜏+𝜂 − 𝜇̂)𝑛−𝜂
𝜏=1  (4.27) 
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and it has been a common practice to prefer it over the classical estimator (with division 

by 𝑛 − 1 or 𝑛 − 𝘂), particularly when we use autocovariance to estimate the power 

spectrum. The expectation of 𝑐̂𝜂 is (see also Koutsoyiannis, 2003):  

E[𝑐̂𝜂] = 1𝑛  E [∑ ((𝑥𝜏 − 𝜇) − (𝑥1(𝑛) − 𝜇)) ((𝑥𝜏+𝜂 − 𝜇) − (𝑥1(𝑛) − 𝜇))𝑛−𝜂
𝜏=1 ]
= 1𝑛 E [∑(𝑥𝜏 − 𝜇)(𝑥𝜏+𝜂 − 𝜇)𝑛−𝜂

𝜏=1 ]
− 1𝑛  E [(𝑥1(𝑛) − 𝜇)∑ ((𝑥𝜏 − 𝜇) + (𝑥𝜏+𝜂 − 𝜇))𝑛−𝜂

𝜏=1 ] + E [(𝑥1(𝑛) − 𝜇)2] 
(4.28) 

Since ∑ (𝑥𝜏 − 𝜇)𝑛−𝜂𝜏=1 = (𝑛 − 𝘂) (𝑥1(𝑛−𝜂) − 𝜇), assuming that η is small in comparison with 𝑛 so that we can interchange 𝑛– 𝘂 and 𝑛, and also extend the corresponding sums, we 

obtain after the algebraic manipulations:  E[𝑐̂𝜂] ≈ 𝑐𝜂 − 𝛾𝑛 = (1 − 𝛾𝑛𝑐𝜂) 𝑐𝜂 = (1 − 𝛾𝑛𝑟𝜂𝛾1) 𝑐𝜂 = (1 − 1𝑟𝜂𝑛′) 𝑐𝜂 (4.29) 

For positive lag-η cross-correlation (0 < 𝑟𝜂 < 1), the relative bias (−1 𝑟𝜂𝑛′⁄ ) is higher 

than that of the climacogram 𝛾𝜂 (i.e. −1 𝑛′⁄ ). An exact equation has been derived in 

Dimitriadis and Koutsoyiannis (2015a; Table 2).  

 If we estimate the autocorrelation coefficient by: 𝑟̂ 𝜂 ≔ 𝑐̂𝜂𝛾1 (4.30) 

then this will be biased again. An approximately unbiased estimator would be: 𝑟̃ 𝜂 ≔ 𝑐̂𝜂 + 𝛾𝑛𝛾1 + 𝛾𝑛 = 𝑟̂𝜂𝛾1 + 𝛾𝑛𝛾1 + 𝛾𝑛 ≈ (1 − 1𝑛′) 𝑟̂ 𝜂 + 1𝑛′ (4.31) 

 It is stressed that the use of autocovariance and (even more so) of the autocorrelation 

estimates should be avoided in the identification and fitting phases of a stochastic model. 

Identification and fitting are better served by the climacogram (see Digression 4.C).  

Digression 4.C: The climacogram and the climacogram-based metrics 

compared to standard metrics 

The most popular procedure in time series modelling, is to construct the empirical 
autocorrelogram of the time series using equation (4.27) and assess which stochastic process 
(e.g., of AR or ARMA type) is suitable and how many autocorrelation terms should be preserved. 
It is rather easy to illustrate that this technique can completely distort the underlying process. 
Figure 4.2(a) depicts the autocorrelogram of a time series with length 100, which does not seem 
to have any relationship with the theoretical autocorrelation function of the model from which it 
was constructed. Namely, the model is the FHK with parameters as in the caption of Figure 3.7. 
Clearly, the empirical autocorrelation does not give any hint that the time series stems from a 
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process with persistence. With that autocorrelogram one would conclude that an AR(1) model 
with a lag-1 autocorrelation of about 0.4 would be appropriate. 
 The reasons for the failure of the autocorrelogram to capture the real behaviour of the 
process are two. First is the bias, as analysed in section 4.7. Second, from equation (3.30) it is seen 
that the autocorrelation is by nature the second derivative of the climacogram standardized by 
variance. Estimation of the second derivative from data is too uncertain and makes a very rough 
graph.  
 The alternative of using the periodogram (the estimate of the power spectrum, which is the 
Fourier transform of the autocovariance; see section 4.10) is even worse as it entails an even 
rougher shape and more uncertain estimation than in the autocovariance (see also section 4.10 
and Dimitriadis and Koutsoyiannis, 2015a). 
 It is, thus, much preferable to directly use the climacogram instead of the autocorrelogram 
for model identification. For our example time series, this is illustrated in Figure 4.2(b), which 
indicates that the long-term persistence is well captured by the empirical climacogram, and the 
parameter H is correctly estimated (H = 0.79, based on the method presented in Koutsoyiannis, 
2003, and Tyralis and Koutsoyiannis, 2011). Additional advantages of the climacogram are (a) its 
intactness on discretization, (b) its close relationship with entropy production and (c) its 
expandability to high-order moments.  

 

Figure 4.2 (left) Autocorrelogram and (right) climacogram of a time series of 100 terms generated from 
the FHK model with parameters as in the caption of Figure 3.7. (Source: Koutsoyiannis, 2016.) 

4.8 Parameter estimation of distribution functions – The method of 

moments  

Assuming a stochastic variable 𝑥 with known distribution function but with unknown 

parameters 𝜽 ≔ [𝘃1, 𝘃2,, 𝘃𝑚]T, we can denote the probability density function of 𝑥 as a 

function 𝑓(𝑥, 𝜽). Here, we will examine the problem of the estimation of these parameters 

based on a sample vector 𝒙 ≔ [𝑥1, 𝑥2,, 𝑥𝑛]T. In this section, we present one of the two 

most popular methods in statistics, namely the method of moments. The other popular 

method, the maximum likelihood method, we present in section 4.9. Several other general 

methods have been developed in statistics for parameter estimation, e.g. the maximum 

entropy method (e.g. Singh and Rajagopal, 1986) and the L-moments method (Hosking et 

al., 1985a,b; Hosking, 1990). Moreover, in practical applications, other types of methods 

like graphical, tabulated, empirical and semi-empirical, have been devised. As will be seen 

in later chapters, here we prefer a different approach based on K-moments, over all above 
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methods, particularly when we do not have information about the true model for the 

marginal distribution function. 

 The method of moments is based on equating the theoretical moments of 𝑥 with the 

corresponding sample estimates of noncentral moments. Thus, as m is the number of the 

unknown parameters of the distribution, we can write m equations of the form 𝜇𝑞′ = 𝜇̂𝑞′ , 𝑞 = 1, … ,𝑚 (4.32) 

where the theoretical moments 𝜇𝑞′  are functions of the unknown parameters given by: 

𝜇𝑞′ = ∫ 𝑥𝑞∞
−∞ 𝑓(𝑥, 𝜽)d𝑥 (4.33) 

Thus, the solution of the resulting system of the m equations gives the unknown 

parameters (𝘃1, 𝘃2,, 𝘃𝑚). In general, the system of equations may not be linear and may 

not have an analytical solution. In the latter case the system of equations will be solved 

numerically.  

 This method is easy to apply. However, for distributions involving more than two 

parameters, the problem of knowability of moments intervenes and makes the method 

unreliable. Furthermore, when dealing with extremes we must have in mind that they are 

closely linked to high-order moments and thus, relying on the lowest-order moments is 

not the best practice (see section 6.20).  

Digression 4.D: Illustration of the method of moments  

As an example of the implementation of the method of moments, we will determine the 
parameters of the normal distribution. The probability density function: 𝑓(𝑥, 𝜇, 𝜎) = 1√2π𝜎 exp (− (𝑥 − 𝜇)22𝜎2 ) 

has two parameters, μ and σ. Thus, we need two equations. Based on Table 2.3, these equations 
are: 𝜇 = 𝜇̂, 𝜎2 + 𝜇2 = 𝜇̂2 + 𝜇̂2 ⇒ 𝜎2 = 𝜇̂2 

where we have used the identity 𝜇2′ = 𝜇2 + 𝜇2. Consequently, the final estimates are 𝜇 = 1𝑛∑𝑥𝑖𝑛
𝑖=1 , 𝜎2 ≔ 1𝑛∑(𝑥𝜏 − 𝜇̂)2𝑛

𝜏=1  

 This estimation μ is unbiased but that of 𝜎2 (and σ) is biased even in IID statistics (notice in 
the latter equation that the result contains the typical, rather the classical estimate). 
 As we have seen in this example, the application of the method of moments is very simple 
and this extends to many distribution functions. 

4.9 Parameter estimation of distribution functions – The maximum 

likelihood method 

While the method of moments is an ad hoc method and has several weaknesses described 

in section 4.8, the method of maximum likelihood has a strong logical background. We will 
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initially present the method in a Bayesian framework and then we will see that it stands 

also out of that framework.  

 The problem that we have to resolve is to find the parameter vector θ from the known 

observations 𝒙 = 𝒙. Since the observations 𝒙 are known while the parameters θ are 

unknown, we can regard the latter as stochastic variables 𝜽. This allows us to assign 𝜽 a 

probability density function 𝑓𝜽(𝜽) and also express conditional densities by the Bayes 

theorem (equation (2.14)). This can be written in terms of densities as:  𝑓𝜽|𝒙(𝜽|𝒙) = 𝑓𝒙|𝜽(𝒙|𝜽)𝑓𝒙(𝒙)  𝑓𝜽(𝜽) (4.34) 

where we have replaced the events A and B with the vectors 𝒙 and θ, respectively. The 

terminology used in the Bayesian framework is: 

• Prior (before observation) probability density for 𝑓𝜽(𝜽) 
• Posterior (after observation) probability density for 𝑓𝜽|𝒙(𝜽|𝒙) 
• Likelihood for the conditional density 𝑓𝒙|𝜽(𝒙|𝜽); this is the hypothesized model (i.e. 

distribution for 𝒙) given the parameters θ. 

According to this terminology, we can write (4.34) in the following form: 

Posterior ∝ Likelihood × Prior (4.35) 

 Since we have to assign 𝜽 a single value 𝜽, the most rational choice for that value is 

the mode of its distribution conditional on 𝒙 = 𝒙, i.e., the value that maximizes the 

posterior 𝑓𝜽|𝒙(𝜽|𝒙). To find the mode we equate the derivative of the conditional density 

to 0, i.e.: d𝑓𝜽|𝒙(𝜽|𝒙)d𝜽 = 𝟎 ⇔ 1𝑓𝒙(𝒙) (d𝑓𝒙|𝜽(𝒙|𝜽)d𝜽  𝑓𝜽(𝜽) + 𝑓𝒙|𝜽(𝒙|𝜽) d𝑓𝜽(𝜽)d𝜽 ) = 𝟎 (4.36) 

Since we know nothing about the prior 𝑓𝜽(𝜽), we can choose a so-called noninformative 

prior, which does not change with 𝜽, i.e. d𝑓𝜽(𝜽) d𝜽⁄ = 0. In this case from (4.36) we 

obtain: d𝑓𝒙|𝜽(𝒙|𝜽)d𝜽 = 𝟎 (4.37) 

which demands that also the likelihood be at maximum. In other words, we find 𝜽, 

demanding that the density 𝑓𝒙|𝜽(𝒙|𝜽) have a value as high as possible at the point 𝒙 = 𝒙.  

 If the vector 𝒙 is part of a stochastic process, determination of 𝑓𝒙|𝜽(𝒙|𝜽) can be 

laborious. However, in IID statistics, 𝒙 is a sample vector with independent items and thus 

the joint probability density function is: 

𝑓𝒙|𝜽(𝒙|𝜽) =∏𝑓𝑥|𝜽(𝑥𝑖|𝜽)𝑛
𝑖=1  (4.38) 

Thus, we seek a solution of:  
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d∏ 𝑓𝑥|𝜽(𝑥𝑖|𝜽)𝑛𝑖=1 d𝜽 = 𝟎 (4.39) 

We can also convert the product to a sum by taking the logarithm of 𝑓𝒙|𝜽(𝒙|𝜽): 
𝐿(𝒙|𝜽) ≔ ln 𝑓𝑥|𝜽(𝒙|𝜽) =∑ln𝑓𝑥|𝜽(𝑥𝑖|𝜽)𝑛

𝑖=1  (4.40) 

The function L( ) is called the log-likelihood function. In this case, the condition of 

maximum is: d𝐿(𝒙|𝜽)d𝜽 =∑ 1𝑓𝑥|𝜽(𝑥𝑖|𝜽) d𝑓𝑥|𝜽(𝑥𝑖|𝜽)d𝜽𝑛
𝑖=1 = 𝟎 (4.41) 

Both (4.39) and (4.41) are vector equations equivalent to m scalar equations. Solving 

either of them we obtain the values of the m unknown parameters.  

Digression 4.E: Illustration of the maximum likelihood method  

We will determine the parameters of the normal distribution from a sample using the maximum 
likelihood method. The probability density function of the normal distribution is: 𝑓(𝑥|𝜇, 𝜎) = 1√2π𝜎 exp (− (𝑥 − 𝜇)22𝜎2 ) 

The likelihood function is: 𝑓(𝒙|𝜇, 𝜎) = 1(√2π𝜎)𝑛 exp (− 12𝜎2∑(𝑥𝑖 − 𝜇)2𝑛
𝑖=1 ) 

The log-likelihood function is:  𝐿(𝒙|𝜇, 𝜎) = −𝑛2 ln(2π) − 𝑛 ln𝜎 − 12𝜎2∑(𝑥𝑖 − 𝜇)2𝑛
𝑖=1  

Taking the derivatives with respect of the unknown parameters μ and σ and equating them to 0 
we find 𝜕𝐿𝜕𝜇 = 1𝜎2∑(𝑥𝑖 − 𝜇) = 0𝑛

𝑖=1 , 𝜕𝐿𝜕𝜎 = −𝑛𝜎 + 1𝜎3∑(𝑥𝑖 − 𝜇)2𝑛
𝑖=1 = 0 

and solving the system we obtain the final parameter estimates: 𝜇 = 1𝑛∑𝑥𝑖𝑛
𝑖=1 = 𝜇̂, 𝜎2 = 1𝑛 ∑(𝑥𝑖 − 𝜇)2𝑛

𝑖=1 = 𝜇̂2 

 The results are precisely identical with those of Digression 4.D, despite the fact that the two 
methods are fundamentally different. The application of the maximum likelihood method is more 
complex than that of the method of moments. The coincidence of results found here is not the rule 
for all distribution functions. On the contrary, in most cases the two methods yield different 
results.  
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4.10 The estimation of power spectrum and the periodogram  

We assume that a stochastic process 𝑥(𝑡) is observed on a time-average basis at 

equidistant times 𝜏𝐷, 𝜏 = 0, … , 𝑛 − 1, where D is a time step (a total observation time 𝐿 =𝑛𝐷). We have thus a time series with a finite number, 𝑛, of observations 𝑥𝜏 of the discrete-

time process 𝑥𝜏. If we study the process on the frequency domain, we have the following 

characteristic frequencies, dimensional (w) or dimensionless (𝜔 = 𝑤𝐷):  

Sampling frequency 𝑤𝐷 = 1 𝐷⁄ = 𝑛 𝐿⁄  𝜔𝐷 = 𝑤𝐷𝐷 = 1 

Nyquist frequency 𝑤N = 1 2𝐷⁄ = 𝑛 2𝐿⁄  𝜔N = 𝑤N𝐷 = 0.5 

Frequency resolution 𝑤1 = 1 𝐿⁄ = 𝑤𝐷/𝑛 𝜔1 = 𝑤1𝐷 = 𝐷 𝐿⁄ = 1/𝑛 

Half frequency resolution  𝑤2 = 1 2𝐿⁄ = 𝑤𝐷/2𝑛 𝜔2 = 𝑤2𝐷 = 𝐷 2𝐿⁄ = 1/2𝑛 

As we will see, the Nyquist frequency (𝜔N = 0.5) is the maximum frequency on which we 

can make estimates as beyond that the resulting spectrum estimates are repeated in a 

cyclic manner.  

 We are interested in estimators of the power spectrum of the discrete-time process 𝑥𝜏. A first estimator can be established by utilizing the relationship between the power 

spectrum and the autocovariance function (equation (3.36)). From 𝑛 observations we can 

estimate from equation (4.27) up to 𝑛 autocovariance terms, 𝑐̂0, 𝑐̂1, … , 𝑐̂𝑛−1 (noting that 

most of them will not be reliably estimated). Then, by truncating equation (3.36) to a finite 

number of terms we can formulate an estimator of the spectrum in the form: 

𝑠̂d(𝜔) = 2𝑐̂0 + 4∑ 𝑐̂𝜂𝑛−1
𝜂=1 cos(2π𝘂𝜔) + 2𝑐̂𝑛 cos(2π𝑛𝜔) (4.42) 

where we have put a last term for 𝑐̂𝑛 with a weight 2 (instead of 4), which, as we will see 

facilitates and accelerates calculations. If we have 𝑛 data values 𝑥𝜏, then 𝑐̂𝑛 ≡ 0, but the 

calculation should stand in cases where we use a fewer number of autocorrelations or in 

cases where we process true values rather than estimates (in the latter case, 𝑐𝑛 ≠ 0). 
While from first glance we can use this equation to estimate 𝑠̂d(𝜔) for any ω, the resulting 

values are not always consistent and therefore it is advisable to make estimates for a finite 

number of discrete frequencies 𝜔𝑗 = 𝑗𝜔0, where 𝜔0 is either 𝜔1 or 𝜔2 with j taking integer 

values as we will specify below.  

 The inversion of the formula to find the autocovariance estimates from the power 

spectrum estimates is possible through the equation:  

𝑐̂𝜂 = 𝜔0 (𝑠̂d(0) + (−1)𝑛𝑠̂d(0.5)2 + ∑ 𝑠̂d(𝜔𝑗) cos(2π𝘂𝜔𝑗)0<𝜔𝑗<0.5 ) (4.43) 

 The estimation of 𝑠̂d(𝜔) is streamlined and accelerated if we use the discrete Fourier 

transform (DFT) and particularly its variant named fast Fourier transform (FFT), for which 

the required software exists on all computational environments. For a sequence of 

numbers 𝑥𝜏, 𝜏 = 0,… ,𝑁 − 1, the DFT is defined as a sequence 𝑢𝑗 , 𝑗 = 0,… ,𝑁 − 1, where: 
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𝑢𝑗 = 1𝑁∑ 𝑥𝜏e−i2π𝜏𝑗/𝑁𝑁−1
𝜏=0 , 𝑗 = 0,… ,𝑁 − 1 (4.44) 

The sequence 𝑥𝜏 is recovered from the sequence 𝑢𝑗  by the inverse DFT, which is: 

𝑥𝜏 = ∑ 𝑢𝑗ei2π𝑗𝜏/𝑁𝑁−1
𝑗=0 , 𝜏 = 0,… ,𝑁 − 1 (4.45) 

The FFT is the DFT made by a fast computational algorithm; the fastest case is when 𝑛 is 

a power of 2. 

 To utilize DFT and FFT in determining 𝑠̂d(𝜔) we write equation (4.42) as: 

𝑠̂d(𝜔) = ∑2𝑐̂𝜂𝑛
𝜂=0 cos(2π𝘂𝜔) +∑2𝑐̂𝜂𝑛−1

𝜂=1 cos(2π𝘂𝜔) (4.46) 

Setting 𝑗 = 𝘂 for the first sum and 𝑗 = 2𝑛 − 𝘂 for the second sum we have: 

𝑠̂d(𝜔) =∑2𝑐̂𝑗𝑛
𝑗=0 cos(2π𝑗𝜔) + ∑ 2𝑐̂2𝑛−𝑗2𝑛−1

𝑗=𝑛+1 cos(2π(2𝑛 − 𝑗)𝜔) (4.47) 

If 𝜔 is an integer multiple of 𝜔2 = 1/𝑁 where 𝑁 ≔ 2𝑛, then 2𝑛𝜔 will be an integer and 

thus cos(2π(2𝑛 − 𝑗)𝜔) = cos(2π𝑗𝜔). By setting:  𝑢𝑗 = {2𝑐̂𝑗, 0 ≤ 𝑗 ≤ 𝑛2𝑐̂2𝑛−𝑗 , 𝑛 ≤ 𝑗 ≤ 𝑁 − 1 (4.48) 

we can simplify (4.47) to: 

𝑠̂d(𝜔) = ∑ 𝑢𝑗𝑁−1
𝑗=0 cos(2π𝑗𝜔) (4.49) 

Considering that the imaginary part of 𝑢𝑗  is zero, setting 𝜔𝜏 = 𝜏/𝑁, and comparing 

equations (4.45) and (4.49), we conclude that 𝑠̂d(𝜔𝜏) is the inverse DFT of 𝑢𝑗 . If we have 

taken care to choose 𝑛 a power of 2, 𝑁 will also be a power of 2 and thus we can use the 

inverse FFT to calculate estimates 𝑠̂d(𝜔𝜏) from estimates 𝑐̂𝜂 for frequencies 𝜔 ranging 

from 0 to 0.5 with a resolution 𝜔2 = 1/𝑁 = 1/2𝑛. The inverse of (4.49) is: 

𝑢𝑗 = 2𝑐̂𝑗 = 1𝑁∑ 𝑠̂d(𝜔𝜏)𝑁−1
𝜏=0 cos(2π𝑗𝜔𝜏) , 0 ≤ 𝑗 ≤ 𝑛 (4.50) 

 There is an alternative way to produce another estimator of the power spectrum 

using the DFT on the discrete-time process per se, rather than on its autocovariance. 

Specifically, the DFT of 𝑥𝜏 is:  
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𝑢𝑗 = 1𝑛∑𝑥𝜏e−i2π𝜏𝑗/𝑛𝑛−1
𝜏=0 , 𝑗 = 0,… , 𝑛 − 1 (4.51) 

Assuming that 𝑥𝜏, 𝜏 = 0,… , 𝑛 − 1, are real-valued stochastic variables, their 

transformation 𝑢𝑗 , 𝑗 = 0,… , 𝑛 − 1, will be complex valued stochastic variables, i.e. 𝑢𝑗 =𝑢𝑗R + i 𝑢𝑗I , where 𝑢𝑗R and 𝑢𝑗I  are real-valued. The inverse DFT of 𝑢𝑗  recovers the real-valued 𝑥𝜏. The sequence of the absolute values of 𝑢𝑗  multiplied by 2𝑛: 𝑆𝑗 ≔ 2𝑛|𝑢𝑗|2 = 2𝑛 ((𝑢𝑗R)2 + (𝑢𝑗I)2) (4.52) 

is real valued and, as a function of 𝜔𝑗 = 𝑗/𝑛, is known as the periodogram of 𝑥𝜏. It is 

another estimator of 𝑠d(𝜔) with a resolution 𝜔1 = 1/𝑛 (while in the estimator (4.49) this 

is 𝜔2 = 1/2𝑛). The two alternatives of estimating the power spectrum are schematically 

presented in Figure 4.3. 

 

Figure 4.3 Schematic of the different paths to estimate the power spectrum.  

 For real-valued 𝑥𝜏 the stochastic variables 𝑢𝑗  and 𝑆𝑗 have the following properties of 

symmetry: 𝑢0 = 𝑢0R = 𝜇̂, 𝑢0I = 0 𝑢𝑛−𝑗R = 𝑢𝑗R, 𝑢𝑛−𝑗I = −𝑢𝑗I , 𝑆𝑛−𝑗 = 𝑆𝑗, 1 ≤ 𝑗 ≤ 𝑛 − 1 
(4.53) 

In other words, the real component of 𝑢𝑗  and 𝑆𝑗 are symmetric with respect to 𝑛 2⁄ , while 

the imaginary component is antisymmetric. Consequently, if 𝑛 is even, then 𝑢𝑛/2I = 0. 

Because of the symmetries, starting with 𝑛 real numbers 𝑥𝜏 we end up with 𝑛/2 pairs of 

real numbers 𝑢𝑗R and 𝑢𝑗I , and 𝑛/2 real numbers 𝑆𝑗. The values of 𝑆𝑗 for frequencies 𝜔 =𝑗 𝑛⁄ ≤ 0.5 provide all extractable information while larger frequencies do not add 

anything of value. 
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 Other interesting properties of the periodogram and the related quantities are: 1𝑛∑𝑥𝜏2𝑛−1
𝜏=0 =∑|𝑢𝑗|2 𝑛−1

𝑗=0 , 𝛾1 = 1𝑛∑(𝑥𝜏 − 𝜇̂)2𝑛−1
𝜏=0 =∑|𝑢𝑗|2 𝑛−1

𝑗=1 = 1𝑛 ∑ 𝑆𝑗1≤𝑗≤𝑛/2 − 𝑆𝑛/22𝑛  (4.54) 

where if 𝑛 is odd, the last term 𝑆𝑛/2 is set to zero. The latter equation allows decomposing 

the variance estimate 𝛾1 into partial components |𝑢𝑗|2, each corresponding to a particular 

frequency, which ranges from 𝜔1 = 𝑤1𝐷 = 1/𝑛 to 𝜔N = 𝑤N𝐷 = 0.5. The frequency 0 

corresponds to the estimate of the mean and is not related to the variance. Any 

prominence (peak) in one or more |𝑢𝑗|2 over the other is very often regarded as evidence 

of a periodic behaviour of the process with a frequency 𝑗/𝑛 (period 𝑛 𝑗⁄ ). 

 However, claims of periodicities without a deterministic explanation are usually 

meaningless. As evident from the notation in the entire section, all related concepts, 

including the periodogram, are estimators, i.e. stochastic variables, which produce 

estimates. Considered as a sequence of stochastic variables, the periodogram 𝑆𝑗 is a 

nonstationary stochastic process indexed by 𝑗 = 1,… , ⌊𝑛/2⌋. The same happens with the 

estimator 𝑠̂d(𝜔𝑗), which is a nonstationary stochastic process indexed by 𝑗 = 1,… , 𝑛, as 

well as with the covariance estimator 𝑐̂𝜂. The produced shapes in graphs of estimates 

indicate high variability and roughness, and thus possible peaks are most probably 

random effects. Note that by increasing the number of observations, the variability and 

roughness do not necessarily decrease (cf. (4.52), where |𝑢𝑗|2 is multiplied by 2𝑛). 

 An illustration is given in Figure 4.4 for a time series generated from the discrete-time 

HK process, where several peaks appear, all of which are random effects. A simple 

technique to see that these are random effects is to split the time series into two halves, 

three thirds, etc. and inspect whether the peaks appear systematically in all cases 

(Koutsoyiannis and Georgakakos, 2006). Splitting the time series and taking the average 

of the different parts for the same frequency is a method of smoothing the periodogram 

(for details and other smoothing methods see Papoulis, 1991). The least square trend 

(power law) of the spectrum estimates from autocovariance is also shown in the log-log 

spectrum plot of Figure 4.4 (bottom-right). The slope is −1.24, an inconsistent value as 

theoretically the slope cannot be steeper than −1 (the slope of the theoretical curve, also 

shown in the figure, is 1 − 2𝐻 = −0.6 > −1). This inconsistency is not expected to be 

resolved by the aforementioned smoothing of the power spectrum. For these reasons, the 

use of the climacospectrum, instead of the power spectrum, is recommended for 

estimation of slopes (Koutsoyiannis, 2017). 

4.11 Interval estimation and confidence intervals 

An interval estimate of a parameter λ of a distribution function is an interval of the form (𝘃1, 𝘃2), where 𝘃1 and 𝘃2 are functions of the observed sample vector 𝒙, i.e., 𝘃1 = 𝑔1(𝒙) 
and 𝘃2 = 𝑔2(𝒙). If we replace the observed sample with the sample (or the part of a stochastic process), then the interval’s limits become stochastic variables, 𝘃1 = 𝑔1(𝒙) and 𝘃2 = 𝑔2(𝒙). The interval (𝘃1, 𝘃2) is an interval estimator of the parameter λ. 



138  CHAPTER 4 – FUNDAMENTAL CONCEPTS OF STATISTICS AND THEIR ADAPTATION TO STOCHASTIC PROCESSES 

 

 

Figure 4.4 (upper) A plot of a time series with 𝑛 = 512 terms generated from the Gaussian HK 
model with 𝐻 = 0.8, 𝜇 = 100, 𝛾1 = 400. (middle) The autocovariance and power spectrum of the 
generating stochastic process and their estimates. (lower) Same as middle but with logarithmic 
axes. The least square trend (power law) of the estimates from autocovariance, with slope =−1.24 is also plotted in the spectrum panel.  

 We say that the interval (𝘃1, 𝘃2) is a C-confidence interval of the parameter λ if: 𝑃{𝘃1 < 𝜆 < 𝘃2}  = 𝐶 (4.55) 

where C is a given constant (0 < 𝐶 < 1) called the confidence coefficient, and the limits 𝘃1, 𝘃2 are called C-confidence limits. Usually, we choose values of C near 1 (e.g. 0.9, 0.95, 

0.99, so that the probability in (4.55) become near certainty). In practice the term 
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confidence limits is often (loosely) used to describe the numerical values of the statistics 𝘃1, 𝘃2, whereas the same happens for the term confidence interval. 

 In order to provide a method for the calculation of a confidence interval, we will 

assume that the statistic 𝘃 = 𝑔(𝒙) is a point estimator of the parameter λ with distribution 

function 𝐹𝜃(𝘃). Based on this distribution function it is possible to calculate two positive 

numbers ξ1 and ξ2, so that the estimation error 𝘃 − 𝜆 lie in the interval (–ξ1, ξ2) with 

probability C, i.e.: 𝑃{𝜆 − 𝜉1 < 𝘃 < 𝜆 + 𝜉2} = 𝐶 (4.56) 

and at the same time the interval (–ξ1, ξ2) be as small as possible. If the distribution of 𝘃 is 

symmetric then the interval (–ξ1, ξ2) has minimum length for ξ1 = ξ2. For asymmetric 

distributions, it is difficult to calculate the minimum interval, thus we simplify the 

problem by splitting (4.56) into two equations, namely, 𝑃{𝘃 < 𝜆 − 𝜉1} = 𝑃{𝘃 >  𝜆 +𝜉2}  =  (1 − 𝐶)/ 2. Equation (4.56) can be written as: 𝑃{𝘃 − 𝜉2 < 𝜆 < 𝘃 + 𝜉1} = 𝐶 (4.57) 

Consequently, the confidence limits we are seeking are 𝘃1 = 𝘃 − 𝜉2 and 𝘃2 = 𝘃 − 𝜉1.  

 Although equations (4.56) and (4.57) are equivalent, their statistical interpretations 

differ. The former is a prediction, i.e., it gives the prediction interval* of the stochastic 

variable 𝘃. The latter is an interval parameter estimator, i.e., it gives the confidence limits 

of the unknown parameter λ, which is not a stochastic variable. 

 Classical statistical texts provide expressions for interval estimators of some common 

parameters, such as the mean and variance of the normal distribution of IID samples. 

However, in most real-world cases we deal with problems much more demanding than 

such idealized cases. The distributions may be non-normal, the parameter of interest may 

not be the mean or the variance, and instead of a sample we may have a stochastic process. 

Then analytical calculation of confidence limits becomes impossible. Naturally, the 

method of choice for such (that is, most) cases is the Monte Carlo simulation. General 

methodologies for tackling the problem have been proposed by Tyralis et al. (2013) and 

Tyralis and Koutsoyiannis (2014).  

4.12 Order statistics 

Let 𝑥 be a stochastic variable and 𝑥1, 𝑥2, … , 𝑥𝑛 be IID copies of it, forming a sample. We can 

arrange them in increasing order of magnitude such that 𝑥(𝑖:𝑛) be the ith smallest of the 𝑛, 

i.e.: 𝑥(1:𝑛) ≤ 𝑥(2:𝑛) ≤ ⋯ ≤ 𝑥(𝑛:𝑛) (4.58) 

The stochastic variable 𝑥(𝑖:𝑛) is termed the ith order statistic. It may seem puzzling that 

stochastic variables can be ordered, as they are not numbers (but see also Digression 2.B). 

 
* The terms confidence limits, confidence interval, confidence coefficient etc. are also used for this 
prediction form of the equation. 
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To clarify this, we observe that given the numbers 𝑥1, 𝑥2, … , 𝑥𝑛, we can define the ith 

smallest of them as a deterministic function, 𝑔(𝑥1, 𝑥2, … , 𝑥𝑛): 𝑥(𝑖:𝑛) ≔ 𝑔(𝑥1, 𝑥2, … , 𝑥𝑛) ≔ min1≤𝑗≤𝑛 (𝑥𝑗| ∑ I{𝑥𝑘≥𝑥𝑗}𝑛𝑘=1 ≥ 𝑖) (4.59) 

where I𝐴 is the indicator function (with value equal to 1 when condition 𝐴 is satisfied or 0 

otherwise). Now if we substitute the stochastic variables 𝑥1, 𝑥2, … , 𝑥𝑛 for the numbers 𝑥1, 𝑥2, … , 𝑥𝑛, we get 𝑥(𝑖:𝑛) = 𝑔(𝑥1, 𝑥2, … , 𝑥𝑛), which, as we have seen, is a stochastic 

variable. Additional (and more rigorous) insights on stochastic ordering and its 

application to order statistics are provided by Shaked and Shanthikumar (2007).  

The minimum and maximum order statistics are, respectively, 𝑥(1:𝑛) = min(𝑥1, 𝑥2, … , 𝑥𝑛) , 𝑥(𝑛) ≔ 𝑥(𝑛:𝑛) = max(𝑥1, 𝑥2, … , 𝑥𝑛)  (4.60) 

and represent special cases of the order statistics, the lowest and the highest.  

 For a continuous variable 𝑥, if 𝑓(𝑥) and 𝐹(𝑥) are respectively its density and its 

distribution function, then the density function of 𝑦 ≔ 𝑥(𝑖:𝑛) is (Papoulis 1990): 𝑓𝑦(𝑦) ≔ 𝑓(𝑖:𝑛)(𝑦) = (𝑛 − 𝑖 + 1) ( 𝑛𝑖 − 1) (𝐹(𝑦))𝑖−1(1 − 𝐹(𝑦))𝑛−𝑖𝑓(𝑦) (4.61) 

Now if we define the stochastic variable 𝑢 ≔ 𝐹 (𝑦) = 𝐹(𝑥(𝑖:𝑛)), then according to (2.11):  

𝑓𝑢(𝑢) ≔ 𝑓𝑦(𝐹−1(𝑢))𝑓(𝐹−1(𝑢)) = (𝑛 − 𝑖 + 1) ( 𝑛𝑖 − 1) 𝑢𝑖−1(1 − 𝑢)𝑛−𝑖 = 𝑢𝑖−1(1 − 𝑢)𝑛−𝑖B(𝑖, 𝑛 − 𝑖 + 1)  (4.62) 

This is the density of the Beta distribution function and hence: 𝐹(𝑖:𝑛)(𝑥) = 𝑃{𝑥(𝑖:𝑛) ≤ 𝑥} = 𝑃{𝑢 ≤ 𝐹(𝑥)} = B𝐹(𝑥)(𝑖, 𝑛 − 𝑖 + 1)B(𝑖, 𝑛 − 𝑖 + 1)  (4.63) 

For the special cases of the minimum and maximum we have, respectively, 𝐹(1:𝑛)(𝑥) = B𝐹(𝑥)(1, 𝑛)B(1, 𝑛) = 1 − (1 − 𝐹(𝑥))𝑛, 𝐹(𝑛:𝑛)(𝑥) = B𝐹(𝑥)(𝑛, 1)B(𝑛, 1) = (𝐹(𝑥))𝑛 (4.64) 

As we will see in Chapter 5 and Chapter 6, the order statistics are quite important for 

studying extremes.  

4.13 Samples vs. time series and forecast-oriented estimation  

As we have seen, in classical statistics, samples are by definition sets of IID stochastic 

variables. Classical statistical estimations make use of the entire vector of available 

observations. But what if instead of a sample we have a stochastic process with time 

dependence and instead of an observed sample we have a time series? Apparently, things 

can be quite different and generally we should avoid uncritical use of classical statistics. 

To illustrate the difference, we consider the following problem: How many past terms will 

we use to estimate an average that is representative of the future mean for a period of 

length κ? This is not necessarily the “global” average estimated by the entire time series 

of observations. 
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 The statistic sought is the “local” mean of the future period of length κ conditional on 

the present and past, i.e.: 𝜇𝜅 ≔ E [1𝜅 (𝑥1 +⋯+ 𝑥𝜅)|𝑥0, 𝑥−1, … ] (4.65) 

Let us assume that we have a large number 𝑛 of observations of the present and past but 

we choose to use 𝜈 ≤ 𝑛 of them for the estimation: 𝜇̂𝜈 ≔ 1𝜈 (𝑥0 + 𝑥−1 +⋯+ 𝑥−𝜈+1) (4.66) 

To answer the question, it suffices to find that ν which minimizes the mean square error 𝐴(𝜅, 𝜈) ≔ E [(𝜇̂𝜈 − 𝜇̂𝜅)2]. This error can be written as: 

𝐴(𝜅, 𝜈) = E [(1𝜅 (𝑥1 +⋯+ 𝑥𝜅) − 1𝜈 (𝑥0 + 𝑥−1 +⋯+ 𝑥−𝜈+1))2]= E [(− 𝑥1𝜈 − ⋯− 𝑥𝜈𝜈 + 𝑥𝜈+1𝜅 +⋯+ 𝑥𝜈+𝜅𝜅 )2] (4.67) 

As demonstrated in Appendix 4-I, this is expressed in terms of the climacogram as: 𝐴(𝜅, 𝜈) = (1𝜅 + 1𝜈) (𝜅 𝛾(𝜅) + 𝜈 𝛾(𝜈) − (𝜈 + 𝜅) 𝛾(𝜈 + 𝜅)) (4.68) 

 Now we will discuss a few examples. First is the Hurst-Kolmogorov process, for which 𝛾(𝜅) = 𝜆2(𝜅/𝛼)2𝛨−2. As explained in Appendix 4-I, the value of ν that minimizes A is:  𝜈 = 𝜅(max(0, 2.5𝐻 − 1.5))2.5  (4.69) 

If 𝐻 ≤ 0.6, this yields 𝜈 = ∞, which means that the future mean estimate is the average of 

the entire set of 𝑛 observations, the global mean. However, if 𝐻 > 0.6, then it can be 𝜈 < 𝑛 

and, hence, we should use a local mean with fewer terms than 𝑛 to estimate the future 

mean. As 𝐻 → 1, 𝜈 → 1, too. A graphical illustration of equation (4.69) is given in Figure 

4.5 (left).  

 We recall, though, that the Hurst-Kolmogorov process entails infinite instantaneous 

variance and thus it is not an ideal model for real-world processes. The second example 

is a filtered Hurst-Kolmogorov process in its simplest Cauchy form (FHK-C) with M = 1/2, 

i.e., 𝛾(𝜅) = 𝜆2(1 + 𝜅/𝛼)2𝛨−2. This has finite instantaneous variance, equal to 𝜆2. Studying 

this process and in particular considering the specific values 𝐴(𝜅, 1), 𝐴(𝜅, 2), as given by 

(4.68), and 𝐴(𝜅,∞) = 𝛾(𝜅), we will see that there are cases where:  𝐴(𝜅, 1) ≤ min(𝐴(𝜅, 2), 𝐴(𝜅,∞)) (4.70) 

In such cases the resulting optimal ν equals one, which means that only the present value 

should count for the future mean. A systematic numerical investigation on equation (4.70) 

suggested that 𝜈 = 1 is optimal when: 𝜅 ≤ 𝜅1 ≈ 2.3(𝛼 + 1)𝐻2 − 1  (4.71) 
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Combining the above results, we find that an approximate general solution for the above 

FHK-C model is: 𝜈 ≈ max (1, 𝜅 − 𝜅1(max(0,2.5𝐻 − 1.5))2.5) =max(1, 𝜅 − 2.3(𝛼 + 1)𝐻2 − 1(max(0,2.5𝐻 − 1.5))2.5) (4.72) 

Characteristic results are given graphically in Figure 4.5 (right). It can be seen that the 

result ν = 1 is not uncommon as it appears for many parameter combinations. More 

generally, finite values of ν of the order of κ or somewhat larger are common for κ ≤ 10 

(for example for H = 0.75 and α = 10, the optimal ν is 1 for κ = 10 and increases to ν = 20 

for κ = 15). The case H = 0.5 is virtually equivalent to a Markov process. As shown in Figure 

4.5 (right) for this case (particularly for α = 10), the plot is a vertical line at κ = κ1 and this 

means the optimal value is either ν = 1 (for κ ≤ κ1) or 𝜈 = 𝑛 (for κ > κ1). In order for this to 

happen, κ1 must be ≥ 1, which happens when α ≥ 2.5 (otherwise, 𝜈 = 𝑛 for any κ). 

 Note that here we considered the question: Which of the local past averages is most 

representative as an estimate of the future average? We did not consider weighted 

averages of past values, even though this could reduce estimation variance. Therefore, the 

case where the resulting optimal value is ν = 1 does not suggest that the process is a 

martingale*. This analysis aims to show the differences of global and local time averages 

and the fact that the latter may provide better prediction for the future in processes with 

dependence. A detailed study on the subject using real-world (rainfall) data has been 

made by Iliopoulou and Koutsoyiannis (2020). An illustration using weighted rather than 

standard averages is given in Digression 4.F. 

 

Figure 4.5 (left) Graphical illustration of equation (4.69) assuming a large length 𝑛 of the time 
series. (right) Characteristic curves of optimal ν vs κ for the indicated values of parameters H and 
α as found by numerical analysis (and approximated by equation (4.72)); continuous, dotted and 
dashed lines correspond to α = 0.1, 1 and 10, respectively (for the case H = 0.5 the curves for α = 
0.1 and 1 fall out of the graph and therefore only that for α = 10 is shown, which is a vertical 
straight line).  

 
* A martingale is a stochastic process in which E[𝑥1|𝑥0, 𝑥−1, … ] = 𝑥0. 
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Digression 4.F: Forecast-oriented estimation using weights 

If we use weights 𝑏𝑖 to estimate a weighted average of past values which will be representative of 
the future average, then equation (4.67) is replaced by: 

𝐴(𝒃, 𝜅, 𝜈) = E [(1𝜅 (𝑥1 +⋯+ 𝑥𝜅) − (𝑏1𝑥0 + 𝑏2𝑥−1 +⋯+ 𝑏𝜈𝑥−𝜈+1))2] (4.73) 

Assuming that 𝑏1 +⋯+ 𝑏𝜈 = 1, and setting 𝑦 ≔ (𝑥1 +⋯+ 𝑥𝜅)/𝜅, 𝑤𝑖 ≔ 𝑦 − 𝑥−𝑖+1, we can write: 𝐴(𝒃, 𝜅, 𝜈) = E [(𝑏1(𝑦 − 𝑥0) + ⋯+ 𝑏𝜈(𝑦 − 𝑥−𝜈+1))2] (4.74) 

or in vector form: 𝐴(𝒃, 𝜅, 𝜈) = E [(𝒃T𝒘)2] = E[𝒃T𝒘𝒘𝐓𝒃] = 𝒃T𝑪𝒃 (4.75) 

where 𝒃 ≔ [𝑏1, … , 𝑏𝜈]T, 𝒘 ≔ [𝑤1, … , 𝑤𝜈]T and 𝑪 ≔ E[𝒘𝒘𝐓]. The elements of C are: 𝐶𝑖𝑗 = E[𝑤𝑖𝑤𝑗] = E [(𝑦 − 𝑥−𝑖+1) (𝑦 − 𝑥−𝑗+1)]= E [𝑦2] − E [𝑥−𝑖+1𝑦] − E [𝑥−𝑗+1𝑦] + E[𝑥−𝑖+1𝑥−𝑗+1] (4.76) 

The first term of the sum (assuming zero mean, without loss of generality) is E [𝑦2] = 𝛾(𝜅) =𝛤(𝜅) 𝜅2⁄ . The last term is:  E[𝑥𝑖𝑥𝑗] = 𝑐[𝑖−𝑗| = 12 (𝛤(|𝑖 − 𝑗 + 1|) + 𝛤(|𝑖 − 𝑗 − 1|) − 2𝛤(|𝑖 − 𝑗|)) (4.77) 

To find the middle terms of the sum we observe that 𝑋𝜅−1 = 𝑋𝜅 − 𝑥𝜅 and hence: E[𝑋𝜅𝑥𝜅] = E[𝑋𝜅2] + E[𝑥𝜅2] − E[𝑋𝜅−12  ]2 = 𝛤(𝜅) − 𝛤(𝜅 − 1) + 𝛤(1)2  (4.78) 

while because of symmetry E[𝑋𝜅𝑥𝜅] = E[𝑋𝜅𝑥1]. Thus, E [𝑥𝑖𝑦] = 1𝜅 E[𝑥𝑖(𝑋𝜈+𝜅 − 𝑋𝜈)] = 1𝜅 E[𝑥1(𝑋𝜈+𝜅−𝑖+1 − 𝑋𝜈−𝑖+1)]= 12𝜅 (𝛤(𝜈 + 𝜅 − 𝑖 + 1) − 𝛤(𝜈 + 𝜅 − 𝑖) − 𝛤(𝜈 − 𝑖 + 1) + 𝛤(𝜈 − 𝑖)) (4.79) 

and E [𝑥−𝑖+1𝑦] = 12𝜅 (𝛤(𝜈 + 𝜅 + 𝑖) − 𝛤(𝜈 + 𝜅 + 𝑖 − 1) − 𝛤(𝜈 + 𝑖) + 𝛤(𝜈 + 𝑖 − 1)) (4.80) 

Once we have calculated the elements of the symmetric matrix C as above, what it remains is to: minimize 𝐴′(𝒃, 𝜅, 𝜈) ≔ 𝐴(𝒃, 𝜅, 𝜈) + 𝜆(𝟏Τ𝒃 − 1) = 𝒃T𝑪𝒃 + 𝜆(𝟏Τ𝒃 − 1) (4.81) 

The solution is given by: 𝜕𝐴′(𝒃, 𝜅, 𝜈)𝜕𝒃 = 2𝒃T𝑪 + 𝜆𝟏Τ = 𝟎, 𝜕𝐴′(𝒃, 𝜅, 𝜈)𝜕𝜆 = 𝟏Τ𝒃 − 1 = 0 (4.82) 

where 0 and 𝟏 are vectors with all elements equal to zero and one, respectively. This solution can 
be written in a concise form as:  𝒃′ = 𝑪′−1𝒅 (4.83) 

where: 
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𝒃′ ≔ [𝒃𝜆] , 𝒅 ≔ [𝟎1] , 𝑪′ ≔ [𝑪 𝟏𝟏T 0] (4.84) 

 Apparently, this case is more complicated than the one studied in section 5.6 and no 
analytical, exact or approximate, relationship can be formulated. However, it is interesting to see 
a numerical illustration, such as that depicted in Figure 4.6. 
 This figure allows to make the following observations:  

• When there is no persistence (H = 0.5) and almost no dependence (α = 0.1), the weights are 
almost equal, 𝑏𝑖 ≈ 1 100⁄ = 0.01. This is equivalent to choosing the global average of the past 
for inferring the future average. 

• When α is small (α = 0.1), i.e. the behaviour is close to the standard HK process, then the 
weights form a curve with almost constant slope, with higher H corresponding to steeper 
negative slope.  

• The weight of the first term (the present) is highest. 
• The weight of the last term (𝑥−99) is higher than the adjacent ones. The explanation is that it 

represents the unknown (and thus neglected) terms beyond 𝑥−99. 
• The sequences with a large time scale parameter α have a negative weight for τ = 1. This means that that the model takes into account the latest “trend”, in addition to the latest value.  
 To explain the last point, let us examine the case of the prediction based on the present value 𝑥0 and a single past value 𝑥−1. If we used the “global” mean for the prediction, we would have 𝑥1 =(𝑥0 + 𝑥−1)/2. If we used just the “trend”, then we would have 𝑥1 = 2𝑥0 − 𝑥−1. If we took the mean 
of the two, we would have 𝑥1 = 1.25𝑥0 − 0.25𝑥−1. In the last two cases the weight of the term 𝑥−1 
is negative.  

 

Figure 4.6 Illustration of the weights of the present and past values of time series of length ν = 100 for the 
prediction of future mean for length κ = 10 assuming an FHK-C process with M = 0.5 and the indicated values 
of parameters H and α. Note that for α = 10 (indicating high correlation at small lags) and τ = –1, the weights 
are negative and cannot be shown in the logarithmic plot.  
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Appendix 4-I: Proof of equations (4.68)–(4.69) 

From equation (4.67) we find, in terms of the cumulative process 𝑋𝑖: 𝐴(𝜅, 𝜈) = E [(1𝜅 (𝑋𝜈+𝜅 − 𝑋𝜈) − 1𝜈 𝑋𝜈)2] = E [(1𝜅 𝑋𝜈+𝜅 − (1𝜅 + 1𝜈)𝑋𝜈)2]= 1𝜅2 E[𝑋𝜈+𝜅2 ] + (1𝜅 + 1𝜈)2 E[𝑋𝜈2] − 2𝜅 (1𝜅 + 1𝜈)E[𝑋𝜈+𝜅𝑋𝜈] (4.85) 

On the other hand, we have: E[𝑋𝜅2 ] = E [(𝑋𝜈+𝜅 − 𝑋𝜈)2] = E [(1𝜅 𝑋𝜈+𝜅 − (1𝜅 + 1𝜈)𝑋𝜈)2] = E[𝑋𝜈+𝜅2 ] + E[𝑋𝜈2] − 2E[𝑋𝜈+𝜅𝑋𝜈] (4.86) 

Thus: 𝐴(𝜅, 𝜈) = 1𝜅2 E[𝑋𝜈+𝜅2 ] + (1𝜅 + 1𝜈)2 E[𝑋𝜈2] + 1𝜅 (1𝜅 + 1𝜈) (E[𝑋𝜅2 ] − E[𝑋𝜈+𝜅2 ] − E[𝑋𝜈2])= 1𝜅 (1𝜅 + 1𝜈)E[𝑋𝜅2 ] + 1𝜈 (1𝜅 + 1𝜈)E[𝑋𝜈2] − 1𝜅𝜈 E[𝑋𝜈+𝜅2 ] (4.87) 

Hence: 𝐴(𝜅, 𝜈) = (1𝜅 + 1𝜈)(𝛤(𝜅)𝜅 + 𝛤(𝜈)𝜈 − 𝛤(𝜈 + 𝜅)𝜈 + 𝜅 ) (4.88) 

which can be written in the form of (4.68). 

 For an HK process: 𝐴(𝜅, 𝜈)𝜆 𝑎2−2𝐻 = (1𝜅 + 1𝜈) (𝜅2𝐻−1 + 𝜈2𝐻−1 − (𝜈 + 𝜅)2𝐻−1) (4.89) 

Assuming that κ and H are specified, we minimize the quantity: 𝐴(𝜅, 𝜈)𝜅1−2𝐻𝜆 𝑎2−2𝐻 = (𝜈𝜅)−1 (𝜈𝜅 + 1) (1 + (𝜈𝜅)2𝐻−1 − (𝜈𝜅 + 1)2𝐻−1) (4.90) 

which is a function if 𝜈 𝜅⁄ . For approximation we assume that 𝜈 𝜅⁄  is a real number and we take 

the derivative with respect to it, which we equate to zero to find the value that minimizes A. This 

can be solved only numerically. By performing a systematic numerical investigation (finding 

optimal values of 𝜈 𝜅⁄  for different H) we are able to fit equation (4.69) on the results with a small 

error. 





 

Chapter 5. Return period 

5.1 Definitions and insights on return period 

We have already introduced the concept of the return period T in section 1.5, where we 

have seen that it is inversely proportional to the probability 𝑃1 that a dangerous event A 

would occur in a time unit D. Although this relationship (equation (1.7)) is almost obvious, 

here we will approach it again in a rigorous manner and examine several variants of it.  

 First, we define the concept. For a specific event A, which is a subset of a basic set Ω, 

we define the return period, T, as the mean time between consecutive occurrences of the 

event A. This is a standard term in engineering applications (in engineering hydrology in 

particular) but needs some clarification to avoid common misuses and frequent 

confusion.  

 We will initially consider the discrete time version and we will later see how we can 

reformulate it in continuous time. Let B be the complementary event of A (𝐵 ≔ 𝛺 − 𝐴). 
We denote: 𝑃1 ≔ 𝑃(𝐴), 𝑃11 ≔ 𝑃(𝐴0, 𝐴1) (5.1) 

 We examine sequences of events B, possibly in contact with events A, and in particular 

the following sequences and their corresponding probabilities: 𝑃𝐵(𝑛) ≔ 𝑃(𝐵1, 𝐵2, … 𝐵𝑛) 𝑃𝐵|(𝑛) ≔ 𝑃(𝐵1, 𝐵2, … 𝐵𝑛, 𝐴𝑛+1) 𝑃|𝐵(𝑛) ≔ 𝑃(𝐴1, 𝐵2, … 𝐵𝑛, 𝐵𝑛+1) 𝑃|𝐵|(𝑛) ≔ 𝑃(𝐴0, 𝐵1, 𝐵2, … 𝐵𝑛, 𝐴𝑛+1) 
(5.2) 

Since:  𝑃|𝐵(𝑛) = 𝑃(𝐴1, 𝐵2, … 𝐵𝑛, 𝐵𝑛+1) = 𝑃(𝐵2, 𝐵3, … , 𝐵𝑛+1) − 𝑃(𝐵1, 𝐵2, … , 𝐵𝑛+1) 𝑃𝐵|(𝑛) = 𝑃(𝐵1, 𝐵2, … 𝐵𝑛, 𝐴𝑛+1) =  𝑃(𝐵1, 𝐵2, … , 𝐵𝑛) − 𝑃(𝐵1, 𝐵2, … , 𝐵𝑛+1) (5.3) 

while, by virtue of stationarity, 𝑃(𝐵2, 𝐵3, … 𝐵𝑛+1) =  𝑃(𝐵1, 𝐵2, … , 𝐵𝑛), we conclude that:  𝑃|𝐵(𝑛) = 𝑃𝐵|(𝑛) (5.4) 

Special cases of the probabilities of the above event sequences are: 𝑃𝐵(0) = 1, 𝑃𝐵(1) = 1 − 𝑃1, 𝑃𝐵(2) = 1 − 2𝑃1 + 𝑃11 𝑃𝐵|(0) = 𝑃1, 𝑝𝐵|(1) = 𝑃1 − 𝑃11, 𝑝|𝐵|(0) = 𝑃11 
(5.5) 

It is easy to see that:  𝑃𝐵|(𝑛) = 𝑃𝐵(𝑛) − 𝑃𝐵(𝑛 + 1) 𝑃|𝐵|(𝑛) = 𝑃𝐵|(𝑛) − 𝑃𝐵|(𝑛 + 1) = 𝑃𝐵(𝑛) − 2𝑃𝐵(𝑛 + 1)+𝑃𝐵(𝑛 + 2) 

(5.6) 

Assuming that the event A has happened at time 0, if its next occurrence is at time 𝑛, we 

can easily derive that: 
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𝑃{𝑛 = 𝑛} = 𝑃(𝐵1, 𝐵2, … , 𝐵𝑛−1, 𝐴𝑛|𝐴0) = 𝑃(𝐴0, 𝐵1, 𝐵2, … , 𝐵𝑛−1, 𝐴𝑛)𝑃(𝐴0) = 𝑃|𝐵|(𝑛 − 1)𝑃1  (5.7) 

The expected value of 𝑛 is: 

E[𝑛] = ∑𝑛∞
𝑛=0 𝑃{𝑛 = 𝑛} = 1𝑃1∑𝑛∞

𝑛=0 𝑃|𝐵|(𝑛 − 1) (5.8) 

where using (5.6) we readily see that the sum is evaluated to 1, and thus: E[𝑛] = 𝑇𝐷 = 1𝑃1 (5.9) 

This is the standard relationship between return period and probability. The proof we 

have given has not assumed anything but stationarity, so it is quite generic. In particular, 

there is no assumption of independence or any particular type of dependence (see also 

Koutsoyiannis, 2008; Volpi et al. 2015). We stress that, according to the definition, the 

return period is the mean time between consecutive occurrences of the event A. We have 

assumed for the above proof that the event A has happened at time 0 (present time). 

 If we do not have any information about the present time, we can derive the mean 

time to the first occurrence of the event A unconditionally, denoted as 𝑇u ≔ 𝐷E[𝑛u], where 𝑛u is the number of time intervals of length D until the next occurrence of 𝐴. Its probability 

mass is:  𝑃{𝑛u = 𝑛} = 𝑃(𝐵1, 𝐵2, … , 𝐵𝑛−1, 𝐴𝑛) =  𝑃𝐵|(𝑛 − 1) = 𝑃𝐵(𝑛 − 1) − 𝑃𝐵(𝑛) (5.10) 

Thus, its expected value is: 

E[𝑛u] = ∑𝑛∞
𝑛=0 (𝑃𝐵(𝑛 − 1) − 𝑃𝐵(𝑛)) (5.11) 

and simplifies to: 

E[𝑛u] = 𝑇u𝐷 = ∑𝑃𝐵(𝑛)∞
𝑛=0  (5.12) 

In case of independence, 𝑃𝐵(𝑛) = 𝑃𝐵(1)𝑛 = (1 − 𝑃1)𝑛 and thus: E[𝑛u] = 𝑇u𝐷 = 1𝑃1 (5.13) 

or 𝑇u ≡ 𝑇. If the succession of events A and B is modelled as a Markov chain, from 

Koutsoyiannis (2006a, equation (2)) we find: 

𝑃𝐵(𝑛) = 𝑃𝐵(1) (𝑃𝐵(2)𝑃𝐵(1) )𝑛−1 (5.14) 

and hence: 
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 E[𝑛u] = 𝑇u𝐷 = (𝑃𝐵(1))3𝑃𝐵(2)(𝑃𝐵(1) − 𝑃𝐵(2)) = (1 − 𝑃1)3(𝑃1 − 𝑃11)(1 − 2𝑃1 + 𝑃11) (5.15) 

The difference from T/D, after algebraic manipulations, is: E[𝑛u] − E[𝑛] = (𝑃11 − 𝑃12)(1 − 3𝑃1 + 𝑃12 + 𝑃11)𝑃1(𝑃1 − 𝑃11)(1 − 2𝑃1 + 𝑃11)  (5.16) 

For 𝑃1 ≤ 0.5 (an obvious condition to characterize the event A as dangerous) and 𝑃12 ≤𝑃11 ≤ 𝑃1 (meaning positive dependence), it can be verified that 1 − 3𝑃1 + 𝑃12 + 𝑃11 > 0. 

Thus, E[𝑛u] ≥ E[𝑛] or 𝑇u ≥ 𝑇, which may seem counterintuitive For other types of 

dependence, assuming 𝐵 ≔ {𝑥 ≤ 𝑥}, so that 𝑃(𝐵) = 𝐹(𝑥) and 𝑃𝐵(𝑛) =𝑃{max(𝑥1, … , 𝑥𝑛) ≤ 𝑥 }, we can also evaluate 𝑃𝐵(𝑛) from the properties of the stochastic 

process 𝑥𝑖and then E[𝑛u] from equation (5.12). But this can be laborious.  

 Now let us make the calculations again on the condition that the latest occurrence of 

A has been observed at time –𝑚 in the past. In this case we have the conditional return 

period 𝑇𝑚 ≔ 𝐷E[𝑛|𝑚], which can be determined from the conditional probability:  𝑃{𝑛 = 𝑛|𝑚} = 𝑃(𝐵1, 𝐵2, … , 𝐵𝑛−1, 𝐴𝑛|𝐵0, 𝐵−1… ,𝐵−𝑚+1, 𝐴−𝑚 )= 𝑃(𝐴−𝑚, 𝐵−𝑚+1, …𝐵0, 𝐵1, … , 𝐵𝑛−1, 𝐴𝑛)𝑃(𝐴−𝑚, 𝐵−𝑚+1, …𝐵0) = 𝑃|𝐵|(𝑚 + 𝑛 − 1)𝑃𝐵|(𝑚)  
(5.17) 

The required expected value is: 

E[𝑛|𝑚] = ∑𝑛∞
𝑛=0 𝑃{𝑛 = 𝑛|𝑚} = 1𝑃𝐵|(𝑚)∑𝑛∞

𝑛=0 𝑃|𝐵|(𝑚 + 𝑛 − 1) (5.18) 

which by virtue of equation (5.6) is written as: 

E[𝑛|𝑚] = 1𝑃𝐵(𝑚) − 𝑃𝐵(𝑚 + 1)∑𝑛∞
𝑛=0 (𝑃𝐵(𝑚 + 𝑛 − 1) − 2𝑃𝐵(𝑚 + 𝑛)+𝑃𝐵(𝑚 + 𝑛 + 1)) 

and reduces to: E[𝑛|𝑚] = 𝑃𝐵(𝑚)𝑃𝐵(𝑚) − 𝑃𝐵(𝑚 + 1) (5.19) 

In case of independence, 𝑃𝐵(𝑚) = 𝑃𝐵(1)𝑚 = (1 − 𝑃1)𝑚 and hence: E[𝑛|𝑚] = 𝑇𝑚𝐷 = (1 − 𝑃1)𝑚(1 − 𝑃1)𝑚 − (1 − 𝑃1)𝑚+1 = 1𝑃1 (5.20) 

or 𝑇𝑚 ≡ 𝑇, which is expected because in an independent sequence of events conditioning 

on the past does not change anything. In the case of a Markov chain, using (5.14), for 𝑚 ≥1, we obtain:  E[𝑛|𝑚] = 𝑇𝑚𝐷 = 𝑃𝐵(1)𝑃𝐵(1) − 𝑃𝐵(2) = 1 − 𝑃1𝑃1 − 𝑃11 (5.21) 
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This is independent of m because, due to the Markov property, the past is irrelevant once 

the present is known. The difference from E[𝑛u], after algebraic manipulations, is: E[𝑛|𝑚] − E[𝑛u] = (1 − 𝑃1)(𝑃11 − 𝑃12)(𝑃1 − 𝑃11)(1 − 2𝑃1 + 𝑃11) (5.22) 

It can be verified that when 𝑃1 ≤ 0.5, 𝑃12 ≤ 𝑃11 ≤ 𝑃1(as above), the difference is positive. 

Thus, for 𝑚 > 0, E[𝑛|𝑚] ≥ E[𝑛u] ≥ E[𝑛] or 𝑇𝑚 ≥ 𝑇u ≥ 𝑇. For 𝑚 = 0, E[𝑛|0] = E[𝑛], as 

expected. However, for 𝑚 ≥ 1 the difference can be substantial, as seen in an illustration 

in Figure 5.1, and tends to infinity as 𝑃11 → 𝑃1. 

 Let us now take a further, quite important, step. We first assume that the basic time 

step D, which we used to define the dangerous event A, for example a mean river discharge 

of 1000 m3/s, is a day. Up to now, we have tacitly assumed that if the event A, occurs on 

two consecutive days, this constitutes two occurrences of A. But what if we radically 

reduce the time unit to, say, D = 1 min? The theory should also apply in this case. Should 

the occurrence of mean discharge of 1000 m3/s for two consecutive minutes be regarded 

as two occurrences of a dangerous event? And what about if our time step is D = 1 s or 1 μs? A reasonable answer would be that the continuation of a dangerous event for a 

number of consecutive steps should not be regarded an occurrence of a new event.  

 This requires some modified analysis. According to this consideration, in the 

sequence 𝐵1, 𝐵2, 𝐵3, 𝐴4, 𝐵5, 𝐵6, 𝐴7, 𝐴8, 𝐴9, 𝐵10 we have two occurrences of A (𝐴4 and 𝐴7-𝐴8-𝐴9) rather than four. Assuming a long period of length 𝐿 = 𝑙𝐷, in which we have 𝑛 

occurrences of A, we expect that 𝑛 = 𝑃1𝑙. A number of them will be continuations of the 

previous occurrences, namely, 𝑛1 = 𝑃11𝑙. Thus, we may write: 𝑇̌ = 𝐿𝑛 − 𝑛1 = 𝐷𝑃1 − 𝑃11 (5.23) 

 

Figure 5.1 Illustration of the different variants of return period for probability of a dangerous 
event A (left) 𝑃1 = 0.25 and (right) 𝑃1 = 0.01 as a function of the probability if two consecutive 
dangerous events 𝑃11. For 𝑇u and 𝑇𝑚 a Markov chain model is assumed. 
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 We can prove that this result is accurate using formal probability theory. To this aim 

in a sequence of events A and B we replace all but the first A with B, thus forming a 

sequence of modified events 𝐴̌ and 𝐵̌.For example the sequence given in the previous 

paragraph becomes 𝐵̌1, 𝐵̌2, 𝐵̌3, 𝐴̌4, 𝐵̌5, 𝐵̌6, 𝐴̌7, 𝐵̌8, 𝐵̌9, 𝐵̌10. Now if we define 𝑃̌1 ≔ 𝑃(𝐴̌), 𝑃̌11 ≔ 𝑃(𝐴̌0, 𝐴̌1), we readily find that their values are: 𝑃̌1 ≔ 𝑃(𝐴̌) = 𝑃1 − 𝑃11, 𝑃̌11 ≔ 𝑃(𝐴̌0, 𝐴̌1) = 0 (5.24) 

We can apply all previous results replacing 𝑃1 and 𝑃11 with 𝑃̌1 and 𝑃̌11 and find the 

respective quantities for the sequence of modified events 𝐴̌ and 𝐵̌. In particular we find 

that the return period is: E[𝑛̌] = 𝑇̌𝐷 = 1𝑃̌1 = 1𝑃1 − 𝑃11 (5.25) 

Comparing with the previous results we infer that for independent processes and Markov 

chains, 𝑇̌ ≥ 𝑇𝑚 ≥ 𝑇u ≥ 𝑇. In particular, the inequality 𝑇̌ ≥ 𝑇 is obviously valid for any 

process.  

 The sequence of modified events 𝐴̌ and 𝐵̌ cannot be independent because the 

occurrence of 𝐴̌𝑖  excludes the occurrence of 𝐴̌𝑖+1; this signifies negative dependence. 

However, this sequence can be a Markov chain but now, because of the negative 

dependence, the conditional and unconditional return periods will be smaller (𝑇̌𝑚 ≤ 𝑇̌). 

For example, it can be shown (homework) that for 𝑚 > 0, 𝑇̌𝑚 = 𝑇̌ − 𝐷. This allows us to 

conjecture that 𝑇̌ represents an upper bound of all variants of return period, conditional 

and unconditional. If the sequence of events A and B is a Markov chain, then that of 𝐴̌ and 𝐵̌ is not and therefore the conditional 𝑇̌𝑚 should depend on m. Its analytical 

determination can be laborious. Nonetheless, stochastic simulation can readily provide 

its behaviour. A couple of examples are depicted in Figure 5.2, where it can be seen that 𝑇̌0 = 𝑇̌, while 𝑇̌𝑚 tends to 𝑇𝑚 as m increases.  

 Extreme events that are of interest in geophysics (and, in particular, hydroclimatic 

processes) are usually of two types, highs (e.g. storms and floods) or lows (e.g. droughts). 

In the former case the dangerous event is the exceedance of a certain threshold value 𝑥, 

usually related to a failure of a system, operational or structural. In this case the 

dangerous and non-dangerous events are defined as 𝐴𝑖 ≔ {𝑥𝑖 > 𝑥}, 𝐵𝑖 ≔ {𝑥𝑖 ≤ 𝑥}, 
respectively, where 𝑥𝑖  is a stochastic process quantifying a natural process (e.g. river 

discharge).  

 It is interesting to observe that, by virtue of (5.3) (or (5.4)):  𝑃(𝐴1, 𝐵2) = 𝑃(𝐵1, 𝐴2) (5.26) 

and since 𝑃(𝐴1, 𝐵2) = 𝑃(𝐴1) − 𝑃(𝐴1, 𝐴2), 𝑃(𝐵1, 𝐴2) = 𝑃(𝐵1) − 𝑃(𝐵1, 𝐵2) (5.27) 

we obtain 𝑃(𝐴1) − 𝑃(𝐴1, 𝐴2) = 𝑃(𝐵1) − 𝑃(𝐵1, 𝐵2) (5.28) 
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Figure 5.2 Simulation results for conditional return periods 𝑇𝑚 and 𝑇̌𝑚 for two Markov chains 
with the indicated characteristics.  

 We can use the last property to express the return periods in terms of the distribution 

function of the process 𝑥𝑖 . In the case that extremes are maxima, we have 𝑃1 = 𝑃(𝐴𝑖) =𝑃{𝑥𝑖 > 𝑥} = 𝐹̅(𝑥) and 𝑃(𝐵𝑖) = 𝑃{𝑥𝑖 ≤ 𝑥} = 𝐹(𝑥). Likewise, 𝑃11 = 𝑃(𝐴1, 𝐴2) = 𝑃{𝑥1 >𝑥, 𝑥2 > 𝑥} = 𝐹𝑧̅(𝑥), where 𝑧 ≔ min(𝑥1, 𝑥2), and 𝑃(𝐵1, 𝐵2) = 𝑃{𝑥1 ≤ 𝑥, 𝑥2 ≤ 𝑥} = 𝐹𝑦(𝑥), 
where 𝑦 ≔ max(𝑥1, 𝑥2). Hence: 𝑇𝐷 = 1𝑃1 = 1𝐹̅(𝑥) = 11 − 𝐹(𝑥) , 𝑇̌𝐷 = 1𝑃1 − 𝑃11 = 1𝐹̅(𝑥) − 𝐹𝑧̅(𝑥) = 1𝐹(𝑥) − 𝐹𝑦(𝑥) (5.29) 

where we have taken advantage of the symmetry relationship (5.28). 

 In the case that extremes are minima, working as above but interchanging the 

definitions of 𝐴𝑖  and 𝐵𝑖 and denoting the return period as 𝑇 to distinguish it from 𝑇, we 

find: 𝑇𝐷 = 1𝑃1 = 1𝐹(𝑥) , 𝑇̌𝐷 = 1𝑃1 − 𝑃11 = 1𝐹(𝑥) − 𝐹𝑦(𝑥) (5.30) 

The identical expression of 𝑇̌ for maxima and minima is remarkable.  

 In the case of an independent process, 𝐹𝑦(𝑥) = (𝐹(𝑥))2 and thus:  𝑇̌𝐷 = 1𝐹(𝑥)(1 − 𝐹(𝑥)) = 1𝐹(𝑥)𝐹̅(𝑥) (5.31) 

both for maxima and minima. Furthermore, it can be readily seen that  𝑇̌𝐷 = 𝑇𝐷 + 𝑇𝐷 = 𝑇𝐷 𝑇𝐷 (5.32) 
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Interestingly, the first term equals both the sum and the product of the two other terms.  

5.2 Most useful variants of return period 

Recapitulating the results of section 5.1, we distinguish the two most important concepts 

that will be used further: the return period 𝑇 (for maxima) or 𝑇 (for minima), and the 

distinct return period 𝑇̌. Their properties, advantages and disadvantages are summarized 

in Table 5.1. 

Table 5.1 Properties of the two most important variants of return period. 

Property Return period 𝑇 or 𝑇 Distinct return period 𝑇̌ 

Definition 

Mean time between consecutive 

exceedances (for maxima) or non-

exceedances (for minima) of a 

threshold value 𝑥. 

Mean time between consecutive 

distinct exceedances or non-

exceedances of a threshold value 𝑥, 

(after an interruption by an opposite 

event). 

Equation to 

derive 

For maxima: 
𝑇𝐷 = 1𝐹̅(𝑥) = 11−𝐹(𝑥) 

For minima: 
𝑇𝐷 = 1𝐹(𝑥)  𝑇̌𝐷 = 1𝐹̅(𝑥) − 𝐹𝑧̅(𝑥) = 1𝐹(𝑥) − 𝐹𝑦(𝑥) 

Requirements to 

derive 
Marginal distribution, 𝐹(𝑥) Order-two distribution 𝐹(𝑥1, 𝑥2) or 

marginal distributions of 𝑥 and the 

maximum of two consecutive 𝑥. 

Relationship with 𝐹(𝑥) One-to-one correspondence with 𝐹(𝑥) but different for maxima and 

minima  

Symmetry with respect to maxima 

and minima; one-to-two 

correspondence with 𝐹(𝑥). 
Discrete vs. 

continuous time 
Can only work in discrete time. 

Better behaviour for multiscale 

description, offering extensibility to 

continuous time. 

Estimation from 

time series 

Easy (and potentially unbiased) 

estimation from time series.  
(Not yet explored) 

 In addition, we introduce the concept of the excess return period defined as the 

differences of return period from the time unit, i.e., the quantities: 𝑇 − 𝐷, 𝑇 − 𝐷 (5.33) 

These are particularly useful in probability plots (see Digression 5.A) as both range in (0,∞) (while both 𝑇 and 𝑇 take values >D). These quantities have the following properties 

of symmetry: 𝑇 − 𝐷𝐷 = 𝐹(𝑥)𝐹̅(𝑥) , 𝑇− 𝐷𝐷 = 𝐹̅(𝑥)𝐹(𝑥) , (𝑇 − 𝐷)(𝑇− 𝐷) = 𝐷2 (5.34) 

Digression 5.A: Visualizing probability through return periods 

It has been a common practice in geophysics and even more so in engineering applications to use 
the return period T, instead of the distribution function F, for probability plots. Representative 
examples are given in the left column of Figure 5.3 for several distribution functions. In both 
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panels the return period is on the horizontal axis, which is logarithmic. The distribution quantile 
is shown on the vertical axis on a linear axis (upper panel) or on a logarithmic axis (lower panel). 
The former option is good for light-tailed distributions such as normal and exponential. Heavy-
tailed distributions are better depicted on the double logarithmic plot, on which the slope on the 
right equals the upper-tail index. If we also wish to visualize the lower-tail index, we should 
replace the return period, T, with the excess return period, 𝑇 − 𝐷. In this case, as shown in the 
right column of Figure 5.3, the right part of the distribution is not affected, but the left is 
substantially changed, so that the slope on the left on the log-log plot (lower right panel) equals 
1/ζ, where ζ is the lower-tail index. The values of the asymptotic slopes, left and right, for the 
excess return period plots and for several common distributions are shown in Table 5.2. 

 

Figure 5.3 Variants of probability plots using (left column) the return period or (right column) the excess 
return period instead of the distribution function and plotting the quantiles on (upper row) a Cartesian 
axis or (lower row) a logarithmic axis. 

Table 5.2 Asymptotic slopes of the plots of distribution quantiles vs. excess return periods for several 
common distributions (for the definition of the distributions and their parameters see Table 2.5). 

Distribution Lower slope lim𝑇→𝐷 d𝑥d ln(𝑇 − 𝐷)   
Upper slope lim𝑇→∞ d𝑥d ln(𝑇 − 𝐷)  

Lower slope, log-log lim𝑇→𝐷 d ln 𝑥d ln(𝑇 − 𝐷)   
Upper slope, log-log lim𝑇→∞ d ln 𝑥d ln(𝑇 − 𝐷)  

Exponential 0 λ 1 0 
Normal 0 0 0 0 
Lognormal 0 ∞ 0 0 
Gamma 0 λ 1/ζ 0 
Weibull 0 ∞ 1/ζ 0 
Pareto 0 ∞ 1 ξ 
PBF 0 ∞ 1/ζ ξ 
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5.3  Reliability and probability of failure 

Amongst the probabilities of sequences of events that have been introduced and 

discussed, most important is the probability of zero dangerous events in a period of 𝑛 time 

steps, termed reliability: 𝑃𝐵(𝑛) ≔ 𝑃(𝐵1, 𝐵2, … 𝐵𝑛) = 𝑃{𝑥1 ≤ 𝑥,… , 𝑥𝑛 ≤ 𝑥} = 𝐹𝑥(𝑛)(𝑥) (5.35) 

where 𝑥(𝑛) ≔ max(𝑥1, … , 𝑥𝑛). Its complement from one, i.e. 𝑃F(𝑛) ≔ 1 − 𝑃𝐵(𝑛) = 1 − 𝐹𝑥(𝑛)(𝑥) (5.36) 

is called the probability of failure and is equally important. This is also known in the 

literature as risk (e.g. Chow et al., 1988) or risk of failure (Serinaldi, 2015). However, here 

we preferred the more accurate term probability of failure instead of risk, because the 

latter term has acquired a broader meaning, incorporating, in addition to probability, 

exposure and vulnerability (Kron et al. 2019; see also Chapter 11).  

 The probability of failure is a concept best suited for design studies and risk 

assessments. However, it is not easy to handle as it needs the derivation of the any-order 

distribution of a stochastic process or at least the marginal distributions of maxima of any 

order—and, as we have seen in Digression 2.L, the convergence of this distribution to the 

related asymptote is too slow. For that reason, the design and risk assessment studies, as 

well as the legislation related to management of extreme events (e.g. the European Flood 

Directive; European Commission, 2007) are more commonly based on the concept of 

return period whose evaluation only needs the marginal distribution (in the standard 

variant) or the second-order distribution at most (in the variant of the distinct return 

period). Common values adopted in engineering design (depending on the importance of 

the structure and the consequences in case of failure) are shown in Table 5.3. 

Table 5.3 Return periods (T) most commonly used in engineering design for high flows and 
corresponding exceedance probability (𝐹̅, equal to the probability of occurrence of a dangerous 
event 𝑃1), and non-exceedance probability (𝐹). The time unit is assumed D = 1 year.  

T (years) 𝐹̅ = 𝑃1  F   T (years) 𝐹̅ = 𝑃1 F  

2 0.50 0.50  500 0.002 0.998 

5 0.20 0.80  1000 0.001 0.999 

10 0.10 0.90  5 000 0.0002 0.9998 

20 0.05 0.95  10 000 0.00001 0.9999 

50 0.02 0.98  50 000 0.000002 0.99998 

100 0.01 0.99  100 000 0.000001 0.99999 

Note: If the dangerous event is a low one (e.g., low flow, low temperature), we must interchange the columns 

F and 𝐹̅ of the table. 

5.4 Relationship of probability of failure and return period 

It is easy to see that in case that the process of interest is independent in time, the 

following relationship holds true: 
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 1 − 𝑃F(𝑛) = 𝑃𝐵(𝑛) = (1 − 𝑃1)𝑛 (5.37) 

Thus, if we specify a length 𝑛 (e.g., 𝑛𝐷 is the design life span of a project) and the 

probability of failure 𝑃F(𝑛), then the design return period is 𝑇𝐷 = 1𝑃1 = 11 − (1 − 𝑃F(𝑛))1/𝑛 (5.38) 

This is a standard relationship used in hydrological design.  

 In a process with dependence in time we can modify this relationship by introducing 

the notion of equivalent length 𝑛′: 𝑇𝐷 = 1𝑃1 = 11 − (1 − 𝑃F(𝑛))1/𝑛′ (5.39) 

where obviously 𝑛′ = 𝑛 for the case of independence. Solved for the probability of failure, 

this yields: 

𝑃F(𝑛) = 1 − (1 − 𝑃1)𝑛′ = 1 − (1 − 𝐷𝑇)𝑛′  (5.40) 

 For a Markov chain we have  

𝑃𝐵(𝑛) = 𝑃𝐵(1) (𝑃𝐵(2)𝑃𝐵(1) )𝑛−1 = (𝑃𝐵(1))𝑛′  (5.41) 

so that  

𝑛′ = 1 + (1𝘁 − 1) (𝑛 − 1), 𝘁 ≔ ln(𝑃𝐵(1))ln(𝑃𝐵(2)) (5.42) 

If 𝘁 = 1/2, then we recover 𝑛′ = 𝑛, the case of independence.  

 Koutsoyiannis (2006a), based on maximum entropy considerations, introduced the 

quasi-Markov (but in essence non-Markov) structure in which: 

1 − 𝑃F(𝑛) = 𝑃𝐵(𝑛) = (1 − 𝑃1)(1+(𝜁−1/𝜃−1)(𝑛−1))𝜃 (5.43) 

In this case:  

𝑛′ = (1 + (𝘁−1/𝜃 − 1)(𝑛 − 1))𝜃 (5.44) 

This is a two-parameter relationship with each of the parameters 𝘁, 𝘃 ranging in (0,1). It 

can readily be seen that the Markov chain is a special case attained when 𝘃 = 1. Iliopoulou 

and Koutsoyiannis (2019), based on a systematic simulation study, have shown that it can 
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effectively describe an HK process 𝑥𝑖  for several marginal distributions 𝐹(𝑥) and 

thresholds 𝑥. 

 For processes with positive dependence we will have 𝑛′ < 𝑛 and the resulting return 

period will be smaller than in the case of independence (see Figure 5.4). Thus, if we design 

by specifying the probability of failure and we neglect the existing dependence of the 

process, our design will be on the safe side in terms of the resulting return period. 

 

Figure 5.4 Probability of failure as a function of the probability of occurrence of a dangerous event 
P1 or the return period 𝑇 for a period 𝑛𝐷 where 𝑛 = 100, and for different stochastic structures of 
the underlying process.  

Digression 5.B: Avoiding misuses of return period 

We have insisted in our discussion of the return period on the fact that it is a dimensional quantity 
with units of time. The notation should be consistent with this fact. It is very common to express 
the return period in years; it is also common to analyse annual time series, i.e. with D = 1 year. 
Sometimes dimensionality is forgotten, essentially identifying T with E[𝑛], or treating the return 
period as the reciprocal of the exceedance probability. However, this is not dimensionally 
consistent and not general enough (it does not cover the case of low flows). 
 Perhaps the word period in the term return period is not quite proper as it may mislead people 
to imply that there is some periodic behaviour in consecutive occurrences of events such as in 
exceedance or non-exceedances of threshold values in nature. In a stochastic process the time 
between consecutive occurrences of the event is a stochastic variable whose mean is the return 
period, T. For example, if the value 500 m3/s of the annual maximum discharge in a river has a 
return period of 50 years, this does not mean that this value would be exceeded periodically once 
every 50 years. Rather it means that the average time between consecutive exceedances will be 50 years. An alternative term that has been used to avoid “period” is recurrence interval. 
However, sometimes (e.g. in Chow et al., 1988) this term has been given the meaning of the 
stochastic variable 𝑛𝐷 and not its mean T. Also, the notion of the return period should not be 
thought of as a time period of the real world. For example, as seen in Table 5.3, engineers use 
return periods that in major constructions can be > 10 000 years. One should not compare such 
return periods with real durations, e.g. with the duration of the Holocene. 
 Nonetheless, the term return period by now has more than 100 years of history (Volpi et al., 
2015) and we have kept it also in this text, despite the above caveats.  
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Digression 5.C: Approximation for the extremes of the normal distribution 

The normal distribution is a key model with a wide spectrum of applications. Its usefulness stems 
on the one hand from theoretical reasons (central limit theory, principle of maximum entropy) 
and on the other hand from the simplicity of its handling, particularly when dealing with multiple 
dependent variables. Also, the fact that time averaging of a stochastic process with normal 
distribution preserves the normal distribution, makes the process easiest to handle in discrete 
time. However, its behaviour that is related to extremes is not easy to handle in terms of precise 
analytical equations. Therefore, here we derive several approximations, useful for application. 
 First, in Appendix 5-I we derive the following approximation for 𝐹N(𝑥), the standard normal 
distribution function, N(0,1): 

𝐹N(𝑥) ≈ {  
  1 − 12 exp(−23𝑥 (1 + 23𝑥)) , 𝑥 ≥ 012 exp(23 𝑥 (1 − 23𝑥)) , 𝑥 ≤ 0  (5.45) 

By inverting it, the quantile function is: 

𝑥 ≈ { 
 34 (√1 − 4 ln(2(1 − 𝐹)) − 1) , 𝐹 ≥ 1/2−34 (√1 − 4 ln(2𝐹) − 1) , 𝐹 ≤ 1/2 (5.46) 

As seen in Figure 5.5, the approximation is close to accurate. However, it is noted that the 
approximation is not consistent with the limiting behaviour on the distribution tails. A better 
approximation for the tails, in particular for |𝑥| ≥ 6, is given by a well-known approximation: 

𝐹N(𝑥) ≈ {  
  1 − 1√2π 𝑥 exp(−𝑥22 ) , 𝑥 ≥ 6
− 1√2π 𝑥 exp (−𝑥22 ) , 𝑥 ≤ −6  (5.47) 

This is consistent with the distribution tails, which means that: 

lim𝑥→∞( 𝐹̅N(𝑥)1√2π 𝑥 exp (−𝑥22 )) = 1  (5.48) 

 

Figure 5.5 Comparison of the approximation of the normal distribution by equation (5.45) with the exact 
normal distribution. 
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 Furthermore, in Appendix 5-II we find an approximation of the distribution function of the 
maximum of two correlated variables with standard normal distribution and correlation 
coefficient r. Denoting the maximum as 𝑦 ≔ max(𝑥1, 𝑥2), its distribution function is: 𝐹𝑦(𝑦) ≈ 𝐹N(𝑦) − 𝐹N(−|𝑦|) + exp(𝑚22 )𝐹N(−𝑠|𝑦| −𝑚)𝑠  (5.49) 

where  

𝑚 ≔ 2 √ 1 − 𝑟17 + 𝑟 , 𝑠 ≔ 13√17 + 𝑟1 + 𝑟  (5.50) 

Illustration of the achieved approximation is given in Figure 5.6. 

 

Figure 5.6 Comparison of the approximate and the exact distribution function of the maximum of two 
correlated variables with standard normal distribution and correlation coefficient r. The approximate 
distribution function is given by equation (5.49) and the exact is calculated by numerical integration of its 
density given in Appendix 5-II. The plots are of the ratios 𝐹𝑦(𝑦)/𝐹N(𝑦)2, where 𝐹N(𝑦)2 is the distribution 

function of the maximum of two uncorrelated variables.  

5.5 Return period and time scale 

The analyses in section 5.1 have been based on a specified discrete time step, D, while 

reliability and probability of failure are defined in terms of a second characteristic time, 

the project life span 𝐿 = 𝑛𝐷. The study of extremes, thus, involves two operations on an 

instantaneous stochastic process 𝑥(𝑡): taking the time average (for discretization on a 

time step D) and taking the maximum (over the period L). If we change the time step D 

the results may change and this signifies a problem as the choice of the time step is 

subjective, determined from the available time resolution of measurements or from 

modelling conventions. In order to make our analyses more objective we need proper 

transformations in descriptions among different time scales and also an analysis of the 

behaviour as time scale tends to zero. We note that the study of extremes in continuous 

time is a separate scientific field, the level crossing theory (e.g. Brill, 2017) but this may 

not be well suited for hydroclimatic extremes that are typically studied on time-averaged 

processes. 
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 Replacing the fixed time constant D in equation (5.29) with a varying time scale k, we 

obtain the following expression for the return period 𝑇(𝑘) and the distinct return period 𝑇̌(𝑘) at time scale k:  𝑇(𝑘) = 𝑘1 − 𝐹(𝑘)(𝑥) , 𝑇̌(𝑘) = 𝑘𝐹(𝑘)(𝑥) − 𝐹𝑦(𝑘)(𝑥) (5.51) 

where 𝐹(𝑘)(𝑥) ≔ 𝑃{𝑥1(𝑘) ≤ 𝑥}, 𝐹𝑦(𝑘)(𝑥) ≔ 𝑃 {𝑦(𝑘) ≤ 𝑥}, 𝑦(𝑘) ≔ max(𝑥1(𝑘), 𝑥2(𝑘)), and 𝑥𝜏(𝑘) is 

the time-averaged process at time scale k. Now if we assume that the instantaneous 

process 𝑥𝑡  has finite variance and is fully smooth (differentiable), it is reasonable to 

assume that a certain threshold 𝑥 that is representative of a dangerous event at a certain 

small time scale 𝑘0 will also be representative for any smaller time scale 𝑘 ≤ 𝑘0. As 𝑘 → 0, 

the distribution function 𝐹(𝑘)(𝑥) will tend to the one of the instantaneous process, 𝐹(𝑥). 
Thus, according to equation (5.51), the return period of the fixed threshold value 𝑥 will 

vary in proportion to the time scale k and will be precisely zero for the instantaneous 

process (𝑘 → 0), irrespective of the threshold value 𝑥. This looks paradoxical but it is a 

precise result, which suggests that the return period T is not a proper index to move 

across time scales and to study the instantaneous process. On the other hand, it may be 

possible to have a constant distinct return period 𝑇̌(𝑘) for a range of time scales, including 

the instantaneous one, if the relationship 𝐹𝑦(𝑘)(𝑥) = 𝐹(𝑘)(𝑥) − 𝑘𝐶 holds true for this range 

for constant C. 

 Before we continue on the latter issue, it is useful to further discuss the smoothness 

of a process. In section 3.8 we have introduced the smoothness (or roughness or 

fractality) parameter M, 0 ≤ 𝑀 ≤ 1 and we noted that the value 𝑀 = 1/2 signifies 

neutrality while lower values denote a rough process and higher values denote a smooth 

process with the value 𝑀 = 1 corresponding to full smoothness. In the latter case the 

process is (mean-square) differentiable, a property meaning that the first and second 

derivatives of the autocovariance function exist (Papoulis, 1991, p. 337, 606); in 

particular, the first derivative at zero should be 𝑐′(0) = 0 (because 𝑐(ℎ) is even).  

 We will provide some illustrations using the FHK-C process whose climacogram is 

given in (3.88). It can be verified that for M = 1 the climacogram and the autocovariance 

function are: 𝛾(𝑘) = 𝜆2(1 + (𝑘/𝛼)2)1−𝐻 ,    𝑐(ℎ) = 𝜆2 1 + (5𝐻 − 3)(ℎ/𝛼)2 + 𝐻(2𝐻 − 1)(ℎ/𝛼)4(1 + (ℎ/𝛼)2)3−𝐻  (5.52) 

Further, it can be verified that the first two derivatives exist and 𝑐′(0) = 0 and 𝑐′′(0) =−12𝜆2(1 − 𝐻). We note that for 𝑀 < 1 these derivatives do not exist at ℎ = 0. Figure 5.7 

depicts traces of the FHK-C process for three cases, the fully smooth, the neutral and a 

rough one. The meaning of the smoothness can better be realized by comparing the three 

traces. 
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Figure 5.7 Illustration of traces from the FHK-C process for the indicated values of M and for H = 
0.8, α = 10 and λ = 1; the same white noise sequence with normal distribution was used for all 
three cases and were transformed to FHK-C series by SMA filtering (see Chapter 7 for the details 
of the latter).  

 Having clarified the meaning of smoothness, we proceed to illustrate the 

relationships of the threshold 𝑥, the return period 𝑇(𝑘) and the distinct return period 𝑇̌(𝑘) 
as time scale k varies. For this illustration we use the normal distribution with zero mean, 

as it is the easiest to handle theoretically, given that it is preserved at any time scale of 

averaging. We approach the distribution of the maximum of two consecutive variables, 𝑦(𝑘) ≔ max(𝑥1(𝑘), 𝑥2(𝑘)), by the approximation given in Digression 5.C and, in particular, in 

equation (5.49). We note that 𝑇(𝑘) has lower mathematical limit corresponding to 𝐹(𝑘)(𝑥) =  1, which is 𝑇min(𝑘) = 𝑘 (5.53) 

However, under the condition 𝐹(𝑘)(𝑥) ≤ 1/2 to characterize the event A as dangerous, the 

lower limits of both 𝑇(𝑘)and 𝑇̌(𝑘) correspond to 𝐹(𝑘)(𝑥) = 1/2 and are: 𝑇min(𝑘) = 2𝑘, 𝑇̌min(𝑘) = 𝑘1/2 − 𝐹𝑦(𝑘)(𝑥1/2) (5.54) 

where 𝑥1/2 is the median.  

 We set forward the hypothesis that in the transformations among scales, what should 

remain constant is the distinct return period 𝑇̌(𝑘). Starting with a fully smooth process, 

for which, as explained, it is reasonable to fix the threshold value for small scales, we 

observe in the panels of the upper row in Figure 5.8 that our hypothesis works: a constant 𝑇̌(𝑘) indeed yields a constant threshold 𝑥.  
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Figure 5.8 Illustration of the variation of the threshold value 𝑥(𝑘) and the return period 𝑇(𝑘) vs. 
the time scale k for constant 𝑇̌(𝑘) = 100 (left column) and 𝑇̌(𝑘) = 1000 (right column) and for a 
fully smooth process (M = 1, upper row), a neutral process (M = 0.5, middle row) and a rough 
process (M = 0.1, lower row). In all cases the model is FHK-C with H = 0.8 and α = 1, and with 
standard normal distribution for the instantaneous process (λ = 1). Dotted lines represent the 
lowest feasible values of 𝑇(𝑘) and 𝑇̌(𝑘), when P1= 0.5 and 𝑥 = 0. 
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Figure 5.9 Illustration of the variation of the threshold value 𝑥(𝑘) and the return period 𝑇(𝑘) vs. 
the time scale k for constant 𝑇̌(𝑘) = 100 (left column) and 𝑇̌(𝑘) = 1000 (right column) and for a 
neutral FHK-C process with standard normal distribution for the instantaneous process (λ = 1), M 
= 0.5, H = 0.8 and α = 0.1 (close to pure randomness; upper row), α = 1 (middle row) and α = 10 
(high short-range dependence; lower row). Dotted lines represent the lowest feasible values of 𝑇(𝑘) and 𝑇̌(𝑘), when P1= 0.5 and 𝑥 = 0. 

0

1

2

3

4

5

6

7

8

1

10

100

1000

10000

0.0001 0.001 0.01 0.1 1 10 100

x

T, Ť

k

T

Ť
x

0

1

2

3

4

5

6

7

8

1

10

100

1000

10000

0.0001 0.001 0.01 0.1 1 10 100

x

T, Ť

k

T

Ť
x

0

1

2

3

4

5

6

7

8

1

10

100

1000

10000

0.0001 0.001 0.01 0.1 1 10 100

x

T, Ť

k

T

Ť
x

0

1

2

3

4

5

6

7

8

1

10

100

1000

10000

0.0001 0.001 0.01 0.1 1 10 100

x

T, Ť

k

T

Ť
x

0

1

2

3

4

5

6

7

8

1

10

100

1000

10000

0.0001 0.001 0.01 0.1 1 10 100

x

T, Ť

k

T

Ť
x

0

1

2

3

4

5

6

7

8

1

10

100

1000

10000

0.0001 0.001 0.01 0.1 1 10 100

x

T, Ť

k

T

Ť
x



164  CHAPTER 5 – RETURN PERIOD 

 

 However, if the process is not fully smooth, a constant 𝑥 for a changing scale is not a 

desideratum. Indeed, in a rough process, if we increase the time scale, the averaged 

process is less varying and thus the threshold value should be chosen smaller. Actually, 

this is the behaviour shown in the middle and lower row in Figure 5.8, and this confirms 

the reasonability of the hypothesis. Figure 5.9 shows the effect of the time scale parameter 

α in the variation with time scale k of the threshold 𝑥, the return period 𝑇(𝑘) and the 

distinct return period 𝑇̌(𝑘). Here the model parameters except α were kept constant and 

the process studied is neutral in terms of smoothness (M = 0.5). The behaviour looks 

similar as in Figure 5.8.  

 Both figures suggest that there is an “optimal” time scale for definition of return 
period, in which the difference of 𝑇(𝑘)and 𝑇̌(𝑘) is minimum. This optimal time scale is of 

the order of magnitude of (but not exactly equal to) the model parameter α. If we specify 

the design return period at this scale, then the choice between T or 𝑇̌ makes no substantial 

difference. But far from this scale, misspecification of the variant of return period that is 

used may have a dramatic effect. In particular, it is totally inappropriate to specify a design 

return period for a time scale much larger (say by an order of magnitude) than the optimal 

as in this case it will not represent anything related to the project safety but just the lower 

limit 𝑇 = 2𝑘. 

5.6 Sample estimation of return period 

In an observed sample of size 𝑛, the ith smallest value is an estimate of the nth order 

statistic, 𝑥(𝑖:𝑛). What is the estimate of the return period of this value?  

 This question is very important in studying extremes, and its answer is particularly 

useful for the highest values in the sample. From the analysis on order statistics (section 

4.12) we recall that the stochastic variable 𝑢 ≔ 𝐹(𝑥(𝑖:𝑛)) has beta distribution with 

parameters 𝑖 and 𝑛 − 𝑖 + 1. From well-known results for the Beta distribution, the 

expected value is: E[𝑢] = E[𝐹(𝑥(𝑖:𝑛))] = 𝑖𝑛 + 1 (5.55) 

It is remarkable that this does not depend of the distribution function F( ). Then an 

estimate of the return period 𝑇(𝑖:𝑛) ≔ 𝑇(𝑥(𝑖:𝑛)) could be: 𝑇(𝑖:𝑛)𝐷 = 11 − E[𝐹(𝑥(𝑖:𝑛))] = 𝑛 + 1𝑛 + 1 − 𝑖 (5.56) 

Hence, the return period estimate for the highest value, the maximum 𝑇(𝑛) ≔ 𝑇(𝑥(𝑛:𝑛)), is 

given as: 𝑇(𝑛)𝐷 = 𝑛 + 1 (5.57) 

 Equation (5.56) constitutes the most widely known and the popular way of assigning 

return periods to sample values. It is known as the Weibull plotting position (Weibull, 

1939). However, it is not the earliest, as Hazen (1914) had proposed a different formula, 
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which looks similar but as far as the maximum observation is concerned, the difference in 

the assigned return period is dramatic, at a ratio of 2:1. Several other formulae have been 

proposed in the 20th century, which are listed in Table 5.4, along with their basic 

characteristics. 

Table 5.4 Alternative formulae of plotting positions (in chronological order). 

Name 𝑇(𝑖:𝑛) 𝐷⁄  𝑇(𝑛) 𝐷⁄  Comments 

Hazen (1914) 
𝑛𝑛 + 0.5 − 𝑖 2𝑛 Empirical 

Weibull (1939) 
𝑛 + 1𝑛 + 1 − 𝑖 𝑛 + 1 

Distribution free, unbiased for 𝐹(𝑥(𝑖:𝑛))  
Blom (1958) 

𝑛 + 1/4𝑛 + 5/8 − 𝑖 (8 5⁄ )𝑛 + 2/5 
Approximately unbiased quantiles for 

normal distribution  

Tukey (1962) 
𝑛 + 1/3𝑛 + 2/3 − 𝑖 (3 2⁄ )𝑛 + 1/2 

Distribution free, preserving median 

of 𝐹(𝑥(𝑖:𝑛)) (see text) 

Gringorten (1963) 
𝑛 + 0.12𝑛 + 0.56 − 𝑖 1.786𝑛 + 0.21 

Approximately unbiased quantiles for 

EV1 distribution  

Cunnane (1978) 
𝑛 + 1/5𝑛 + 3/5 − 𝑖 (5 3⁄ )𝑛 + 1/3 

Compromise for approximately 

unbiased quantiles for many 

distributions 

 All these relationships are of the form: 𝑇(𝑖:𝑛)𝐷 = 𝑛 + 𝐵𝑛 − 𝑖 + 𝐴 (5.58) 

Also, all have a symmetry property. Namely, for the central element 𝑖 = 𝑚 + 1 of a sample 

with size 𝑛 = 2𝑚 + 1 they yield a return period T/D = 2. In that case, (5.58) yields 2 =(2𝑚 + 1 + 𝐵) (2𝑚 + 1 + 𝐴 −𝑚 − 1)⁄ , from which we find that the symmetry property 

requires: 𝐵 = 2𝐴 − 1 (5.59) 

All formulae of Table 5.4 satisfy it. Note that (5.58) is equivalent to 𝐹(𝑥(𝑖:𝑛)) = 𝑖 + 𝐵 − 𝐴𝑛 + 𝐵  (5.60) 

 Which of these different formulae should we follow? If we are interested in the small 

and intermediate items of the observed sample, all formulae give about the same results. 

But if we are interested in the largest values and particularly the maximum, then the 

differences are dramatic and the question is crucial. A first element of the answer is that 

we should avoid the Weibull formula. Certainly, it has some advantages, such as its 

extreme simplicity, its theoretical justification (which was provided after it was 

introduced) and the fact that it is distribution free. On the other hand, considering its 

theoretical justification, it does not make much sense to seek an unbiased estimate of 𝐹(𝑥(𝑖:𝑛)) while we aim to assign a return period to a certain value. Indeed, the Weibull 

formula provides an unbiased estimate of 𝐹(𝑥(𝑖:𝑛)), as well as of the exceedance 
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probability 1 − 𝐹(𝑥(𝑖:𝑛)), but the estimate of the return period 𝑇(𝑖:𝑛) given by equation 

(5.56) if far from unbiased, because of the nonlinearity of the latter equation. 

 The Tukey formula is also distribution free, and has the advantage that preserves the 

median of 𝐹(𝑥(𝑖:𝑛)) and any of its transformations, including 𝑇(𝑖:𝑛). The median of the beta 

distribution of the variable 𝑢 ≔ 𝐹(𝑥(𝑖:𝑛)) with parameters 𝑖 and 𝑛 − 𝑖 + 1 is I1/2−1 (𝑖, 𝑛 − 𝑖 +1), where I−1( ) is the inverse Beta regularized function. A common approximation of that 

median is (𝑖 − 1/3) (𝑛 − 1/3)⁄ , while for 𝑖 = 𝑛 the median is precisely 2−1/𝑛. Based on 

these, we can write: 

𝑇(𝑖:𝑛)𝐷 = 11 −median[𝐹(𝑥(𝑖:𝑛))] = { 
 ≈ 𝑛 + 1/3𝑛 − 𝑖 + 2/3 , 𝑖 < 𝑛21/𝑛21/𝑛 − 1 , 𝑖 = 𝑛 (5.61) 

Even using the upper of the two equations also for 𝑖 = 𝑛, the error is small, (3 2⁄ ) ln 2 − 1 ≈ 0.04 at most. We can adapt the constants in (5.61) according to (5.58)–
(5.59) to make it simpler with a negligible additional error. Namely, if we replace the 

constant 2/3 in the denominator with ln 2 = 0.693 and calculate the constant in the 

numerator by (5.59), the result is the following equation which is asymptotically exact for 𝑖 = 𝑛: 𝑇(𝑖:𝑛)𝐷 = 11 −median[𝐹(𝑥(𝑖:𝑛))] = 𝑛 + 2 ln 2 −1𝑛 − 𝑖 + ln 2 = 𝑛 + 0.386𝑛 − 𝑖 + 0.693 (5.62) 

 Next, we seek unbiased estimates for the return period raised to a power ξ, namely of 

the expectation of the stochastic variable: 

𝑣 = (𝑇(𝑖:𝑛) 𝐷⁄ )𝜉 − 1𝜉 = (1 − 𝐹(𝑥(𝑖:𝑛)))−𝜉 − 1𝜉  (5.63) 

The case 𝜉 = −1 corresponds to the unbiased estimation of 𝐹(𝑥(𝑖:𝑛)), which is already 

discussed. The case 𝜉 = 1 corresponds to the unbiased estimation of the return period. 

The case 𝜉 = 0 corresponds to the unbiased estimation of the logarithm of return period 

Thus, this general setting allows studying several cases at once for ξ varying in [−1,1].  
 As 𝑢 ≔ 𝐹(𝑥(𝑖:𝑛)) has Beta distribution with parameters 𝑖 and 𝑛 − 𝑖 + 1, the same 

distribution will have the variable 1 − (𝜉𝑣 + 1)−1 𝜉⁄ . Thus, from (4.63) it follows that: 

𝐹𝑣(𝑣) =  B1−(𝜉𝑣+1)−1 𝜉⁄ (𝑖, 𝑛 − 𝑖 + 1)B(𝑖, 𝑛 − 𝑖 + 1)   (5.64) 

After tedious algebraic manipulations, which are omitted, the expected value of 𝑣 is found 

to be: E[𝑣] = Γ(𝑛 + 1)Γ(𝑛 + 1 − 𝑖 − 𝜉)𝜉Γ(𝑛 + 1 − 𝜉)Γ(𝑛 + 1 − 𝑖) − 1𝜉  (5.65) 

Hence, for 𝑣 = E[𝑣], the estimate of the return period is  
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𝑇(𝑥(𝑖:𝑛))𝐷 = (Γ(𝑛 + 1)Γ(𝑛 + 1 − 𝑖 − 𝜉)Γ(𝑛 + 1 − 𝜉)Γ(𝑛 + 1 − 𝑖))1/𝜉 (5.66) 

 For integer ξ this can be simplified. Specifically, for 𝜉 = −1 it becomes: 𝑇(𝑥(𝑖:𝑛))𝐷 = 𝑛 + 1𝑛 + 1 − 𝑖 (5.67) 

For 𝜉 = 0 it is: 𝑇(𝑥(𝑖:𝑛))𝐷 = e𝐻𝑛e𝐻𝑛−𝑖  (5.68) 

where 𝐻𝑛 ≔ ∑ 1/𝑖𝑛𝑖=1  the nth harmonic number. Finally, for 𝜉 = 1, it becomes: 𝑇(𝑥(𝑖:𝑛))𝐷 = 𝑛𝑛 − 𝑖 (5.69) 

 Illustration of results for other values of ξ in the interval [−1,1] is provided in Figure 

5.10, where it is evident that assignment of return periods for the smallest half of the 

sample is indifferent to the choice of ξ, but as we approach the largest value, 𝑖 = 𝑛, the 

effect of ξ becomes dramatic. In particular, the option ξ = 1 (unbiased T) is unable to assign 

a return period to the largest value. Following this option practically means that we have 

to discard the largest value and assign a return period 𝑛𝐷 to the second largest. The 

reason is that equation (5.69) diverges for 𝑖 = 𝑛. The divergence does not make this 

option an appropriate choice, while for reasons explained above, the option ξ = –1 is also 

inappropriate.  

  

Figure 5.10 Illustration of the variation with the upper-tail index ξ of the return period assigned 
by equation (5.66) to the ith smallest value in a sample of size 𝑛 for the indicated values of i and 
for 𝑛 = 10, 100 and 1000 for the left, middle and right panel, respectively.  

 In Figure 5.10 we may also see that the option 𝜉 = 0, corresponding to an unbiased 

estimate of the logarithm of return period, is most promising and balanced and therefore 

we can proceed with this. Even though the equation (5.68) (for 𝜉 = 0) is easy to evaluate, 

we can also make an approximation in the form (5.58), which is more practical, and 
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accurate enough. To this aim, we proceed as follows. We consider the case 𝑖 = 𝑛 and from 

(5.58) we find 𝑇(𝑛)𝑛𝐷 ≕ 𝛬𝑛 = 1𝐴 + 𝐵𝐴𝑛 (5.70) 

where we have simplified the notation as 𝑇(𝑛) = 𝑇(𝑛:𝑛). Taking the limit as 𝑛 → ∞ we 

obtain: 𝛬∞ ≔ lim𝑛→∞ 1𝑛 (1 − 𝐹(𝑥(𝑛))) = 1𝐴   (5.71) 

In the other extreme case, 𝑛 = 1, setting 𝑥(1) = 𝜇 (the mean), we similarly find: 𝛬1 ≔ 11 − 𝐹(𝜇) = 1 + 𝐵𝐴   (5.72) 

The coefficients 𝛬∞ and 𝛬1 will be better explained in section 6.19. For now, it suffices to 

determine A and B by solving the system of the last two equations, i.e.,  𝐴 = 1𝛬∞ , 𝐵 = 𝛬1𝛬∞ − 1 (5.73) 

From (5.68), 𝛬1 = e = 2.718 and 𝛬∞ = eγ = 1.781, where γ = 0.5772 is the Euler 

constant. Thus, the approximation sought is:  𝑇(𝑥(𝑖:𝑛))𝐷 ≈ 𝑛 + e1−γ − 1𝑛 − 𝑖 + e−γ = 𝑛 + 0.526𝑛 − 𝑖 + 0.561 (5.74) 

As 𝑛 → ∞, while (5.74) is exact for 𝑇(𝑥(𝑛:𝑛)), it underestimates the return period of the 

second largest value, 𝑇(𝑥(𝑛−1:𝑛)), by a factor:  e1 + eγ − 1 = −0.023 (5.75) 

Nonetheless, as i gets smaller, the error in determining 𝑇(𝑥(𝑖:𝑛)) becomes zero.  

 We can also formulate a slightly better approximation, by distinguishing the equation 

for the maximum value from all others. That is:  𝑇(𝑥(𝑖:𝑛))𝐷 ≈ {eγ(𝑛 − 1) + e = 1.781𝑛 + 0.94, 𝑖 = 𝑛𝑛 − 1 + e1−γ𝑛 − 𝑖 − 1 + e1−γ 𝑖 < 𝑛 (5.76) 

where γ = 0.5772 is the Euler constant. This is asymptotically exact, as 𝑛 → ∞, for both 

the largest and the second largest sample values. Notice that neither the accurate equation 

(5.68) nor the approximations (5.74)–(5.76) are symmetric; namely for 𝑛 = 2𝑚 + 1 and 𝑖 = 𝑚 + 1 they result in return period slightly higher than 2D (as demanded by 

symmetry), which tends to 2D as 𝑛 → ∞. Consequently, the equation of symmetry (5.59) 

does not hold. 

 With the same methodology, appropriately modified, we can determine unbiased 

estimates for other quantities, for example distribution quantiles. In fact, no adaptation is 
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needed for the exponential and Pareto distribution as the variable 𝑣 in equation (5.63) 

also represents the quantiles of those distributions. For the normal distribution we have 𝛬∞ = eγ = 1.781 (same as above for ξ = 1) and 𝛬1 = 2 (due to symmetry). The resulting 

formula is contained in Table 5.5 (case V), along with a summary of all above results.  

 In the above analyses we have given emphasis on the highest values of the sample, 

which results in asymmetric relationships, not satisfying equation (5.59). If symmetry is 

desired, then we may choose to seek an unbiased estimate of the logarithm of the excess 

return period on either of its forms in equation (5.33), or, equivalently, of the quantity ± ln(𝐹/(1 − 𝐹)) (see equation (5.34)). From 𝑢 ≔ 𝐹(𝑥(𝑖:𝑛)), which has Beta distribution 

with parameters 𝑖 and 𝑛 − 𝑖 + 1, we find that E[− ln 𝑢] = 𝐻𝑛 − 𝐻𝑖−1, E[−ln(1 − 𝑢)] = 𝐻𝑛 − 𝐻𝑛−𝑖 (5.77) 

and hence E [−ln ( 𝑢1 − 𝑢)] = 𝐻𝑛−𝑖 − 𝐻𝑖−1 (5.78) 

Equating the estimate of 𝐹(𝑥(𝑖:𝑛))/ (1 − 𝐹(𝑥(𝑖:𝑛))) to its expected value we have  𝐹(𝑥(𝑖:𝑛))1 − 𝐹(𝑥(𝑖:𝑛)) = exp(𝐻𝑖−1 − 𝐻𝑛−𝑖) (5.79) 

and solving for 𝐹 and making the algebraic manipulations, 11 − 𝐹(𝑥(𝑖:𝑛)) = 𝑇(𝑥(𝑖:𝑛))𝐷 = 1 + e𝐻𝑖−1e𝐻𝑛−𝑖  (5.80) 

Using the approximation in the rightmost part of (5.74) for e𝐻𝑛 e𝐻𝑛−𝑖⁄ , we get 1 + e𝐻𝑖−1e𝐻𝑛−𝑖 = 1 + e𝐻𝑛e𝐻𝑛−𝑖  e𝑖−1e𝐻𝑛 ≈ 1 + 𝑛 + e1−γ − 1𝑛 − 𝑖 + e−γ  𝑖 − 1 + e−γ𝑛 + e1−γ − 1 = 1 + 𝑖 − 1 + e−γ𝑛 − 𝑖 + e−γ= 𝑛 − 1 + 2e−γ𝑛 − 𝑖 + e−γ  

(5.81) 

and finally 𝑇(𝑥(𝑖:𝑛))𝐷 = 𝑛 + 0.123𝑛 − 𝑖 + 0.561 (5.82) 

This result, also contained in Table 5.5 (case V), is identical to that of the normal 

distribution and is very close to that of the Gringorten formula.  

 As a final suggestion following from the above detailed analysis, equation (5.82)—
case V (or if theoretical rigour is sought, (5.80)—case III) is the most appropriate for 

practical use for any distribution function. However, if the emphasis is given on the large 

values, then equation (5.74)—case IV (or if theoretical rigour is sought, (5.68)—case II), 

are preferable. These represent unbiasedness in the estimation of the logarithm of 

(excess) return period, which is a balance between unbiasedness in distribution function 

and in (excess) return period. In the particular case of the normal and exponential 
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distribution, they also provide unbiased quantile estimation. Furthermore, as seen in 

Table 5.5, for all distributions of the domain of attraction of EV1, the return period of the 

largest value is 1.781 times 𝑛 (plus a constant), while in those of EV2 it is even higher.  

Table 5.5 Suggested formulae of sample estimation of return period (plotting position). 

No. 𝑇(𝑖:𝑛) 𝐷⁄  𝑇(𝑛) 𝐷⁄  Preserved quantity 

I 
𝑛 + 2 ln 2 −1𝑛 − 𝑖 + ln 2 = 𝑛 + 0.386𝑛 − 𝑖 + 0.693 

(𝑛 − 1)/ ln 2 + 2 = 1.443𝑛 + 0.56 

Median of 𝐹(𝑥(𝑖:𝑛)), 𝐹̅(𝑥(𝑖:𝑛)), 𝑇(𝑖:𝑛), of any distribution 

II 
e𝐻𝑛e𝐻𝑛−𝑖  e𝐻𝑛  

Logarithm of 𝑇(𝑖:𝑛) of any 

distribution; quantile 𝑥(𝑖:𝑛) of 

exponential distribution (Exact)  

III 1 + 𝑒𝐻𝑖−1𝑒𝐻𝑛−𝑖  e𝐻𝑛−1 + 1 

Logarithm of the excess return 

period, 𝑇(𝑖:𝑛) − 𝐷, of any 

distribution (Exact, symmetric)  

IV 
𝑛 + e1−γ − 1𝑛 − 𝑖 + e−γ = 𝑛 + 0.526𝑛 − 𝑖 + 0.561 

eγ(𝑛 − 1) + e= 1.781𝑛 + 0.94 

Approximation of II; also valid 

for the quantile 𝑥(𝑖:𝑛) of 

positively skewed distributions 

of the EV1 domain of attraction 

V 
𝑛 + 2e−γ − 1𝑛 − 𝑖 + e−γ = 𝑛 + 0.123𝑛 − 𝑖 + 0.561 

eγ(𝑛 − 1) + 2= 1.781𝑛 + 0.22 

Approximation of III 

(symmetric); also, quantile 𝑥(𝑖:𝑛) 
of normal distribution, valid for 

symmetrical distributions of the 

EV1 domain of attraction 

VI (Γ(𝑛 + 1)Γ(𝑛 + 1 − 𝑖 − 𝜉)Γ(𝑛 + 1 − 𝜉)Γ(𝑛 + 1 − 𝑖))1/𝜉 (𝑛B(𝑛, 1 − 𝜉))1/𝜉 

Power of 𝑇(𝑖:𝑛) to exponent ξ for 

any distribution; quantile 𝑥(𝑖:𝑛) 
of Pareto distribution (Exact)  

VII 

𝑛 + 𝛣𝑛 − 𝑖 + 𝛢 𝐴 = (Γ(1 − 𝜉))−1/𝜉  𝐵 = (Γ(2 − 𝜉))−1/𝜉 − 1 

(𝑛 + 𝐵)/𝐴, e.g., 𝜉 = 0.15:  2.035𝑛 + 0.92  𝜉 = 0.5: 3.142𝑛 + 0.86 

Approximation of VI; also valid 

for distribution quantiles of the 

EV2 domain of attraction with 

upper-tail index ξ. 

 Having this in mind and observing the traditional formulae of Table 5.4, we see that 

only the Hazen and Gringorten formulae satisfy this condition. Thus, if one wishes to use 

the traditional formulae, the Gringorten formula is preferable. We may also notice that 

the Hazen formula is not unjustified in light of the above analysis. Rather it appears 

equivalent to case VII of Table 5.5 which is for the Pareto distribution with ξ = 0.15. 

 The fact that cases IV and V, as unbiased estimators of the logarithms of return period 

and excess return period, respectively, are distribution free is perhaps its most significant 

advantage. Usually, in practice we need to assign return periods to sample values prior to 

choosing a model and, in this respect, these cases are advantageous choices. Once we 
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choose a model, we may reconsider the assignment of return periods using more accurate 

methods and formulae, which are based on K-moments that are discussed in Chapter 6 

and particularly section 6.19. The latter analyses also consider other effects, such as the 

possible existence of time dependence, which influences the estimation of return periods. 

Digression 5.D: Illustration of the range of sample estimates of return 

period  

A stochastic simulation always helps to develop better intuition of theoretical concepts and spot 
possible errors. Here we perform a simulation exercise generating m = 10 000 random samples, 
each consisting of 𝑛 = 10 values from the Pareto distribution with upper-tail index ξ = 0.5. We 
intentionally choose a small 𝑛 and a large ξ (note that for this ξ the variance of the variable 
diverges to infinity) for better illustration. For the chosen Pareto distribution of the parent 
stochastic variable 𝑥 we have: 𝐹(𝑥) = 1 − (1 + 𝜉𝑥)−1𝜉 , 𝑇(𝑥)𝐷 = 11 − 𝐹(𝑥) = (1 + 𝜉𝑥)1𝜉 

 The theoretical return period of the ith order statistic 𝑥(𝑖:𝑛) is determined from equation 

(4.63), i.e.,  𝑇(𝑥(𝑖:𝑛))𝐷 = B(𝑖, 𝑛 − 𝑖 + 1)B(𝑖, 𝑛 − 𝑖 + 1) − B𝐹(𝑥)(𝑖, 𝑛 − 𝑖 + 1) 
For the special cases of the minimum and maximum order statistic we have, respectively, 𝑇(𝑥(1:𝑛))𝐷 = (𝑇(𝑥)𝐷 )𝑛 , 1 − 𝐷𝑇(𝑥(𝑛:𝑛)) = (1 − 𝐷𝑇(𝑥))𝑛 

where in our case 𝑛 = 10. 
 The theoretical curves 𝑇(𝑥) for the parent variable and for the largest and second largest 
order statistics, 𝑥(10) ≡ 𝑥(10:10) and 𝑥(9:10) have been plotted in the left panel of Figure 5.11. An 

interesting observation is that the curve 𝑥(𝑛−1:𝑛) crosses that of 𝑥 but not that of 𝑥(𝑛:𝑛). Actually, 

this happens at all 𝑖 = 2,… , 𝑛 − 1 and for large 𝑛 the intersection point corresponds to:  𝑇(𝑥(𝑖:𝑛))𝐷 ≈ 𝑛 − 1𝑖 − 1  

 For each of the 10 000 samples the following quantities were evaluated  𝑥(10), 𝐹(𝑥(10)), 𝑇(𝑥(10)), ln 𝑇(𝑥(10)) 
and the same list for 𝑥(9:10) too. The empirical (sample) distributions of 𝑥, 𝑥(10) and 𝑥(9:10) are also 

plotted in the left panel of Figure 5.11 in the form of return period plots. They were estimated 
from equation (5.74) (option IV of Table 5.5). Generally, the empirical plots show good agreement 
with the theoretical ones, thus indicating the consistency of the proposed framework. 
 Next the averages and the medians from all m = 10 000 values of the above list of variables 
were calculated. For 𝑥(10) the averages and the medians are plotted in the right panel of Figure 

5.11, over the curve 𝑇(𝑥) of the parent variable. In all cases these empirical estimates fully agree 
(the points coincide) with the theoretical estimates, with one exception: The theoretical average 
of 𝑇(𝑥(10)) is ∞, while the sample estimate is necessarily a finite value, yet a very large one 
(>100D). Generally, the plot shows that the differences between the different options for 
assigning return period to the largest value (represented by the different points) can be 
substantial. The points corresponding to ln 𝑇(𝑥(10)) and 𝑥(10) look the more balanced choices, 

thus confirming what has already been discussed.  
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 We must note that the differences would be less dramatic if the sample size was greater or if 
the distribution had a smaller upper-tail index. 

 

Figure 5.11 Simulation results from m = 10 000 random samples, each consisting of 𝑛 = 10 values, from the 
Pareto distribution with upper-tail index ξ = 0.5: (left) Theoretical and empirical (sample) distributions of 
the indicated variables, where theoretical distributions were determined from equation (4.63) and 
empirical distributions from (5.74) (option IV of Table 5.5). (right) Simulated averages from the m = 10 000 
values of the indicated variables. The median, also plotted, is indifferent to the choice of the variable.  

 

Digression 5.E: A fun way to calculate π through the properties of maxima 

The curious reader may have noticed that the formula given in Table 5.5 (case VII) for the return 
period of the maximum value of the Pareto distribution with 𝜉 = 0.5 contains the value of π. More 
rigorously, the formula in this case is  𝑇(𝑛) 𝐷⁄ = π(𝑛 − 1) + 4 

For 𝑛 = 2 , 𝑇(2) 𝐷⁄  becomes equal to π + 4 (rather than 3, a value that would be assigned if we 

adopted the Weibull plotting position formula). Solving for π we find π = 𝑇(𝑛)/𝐷 − 4(𝑛 − 1)  

 This enables a Monte Carlo technique to calculate π. Interestingly, ideas that could be 
classified as implementation of the Monte Carlo method to calculate π are much older than the 
formal Monte Carlo method. Georges Louis LeClerc (Comte de Buffon, French naturalist, 
mathematician and cosmologist; 1707-1788), among other achievements (e.g. his work Histoire 

Naturelle, regarded to be a precursor of Charles Darwin work, and his assertions on the 
coevolution of climate and the biosphere) became famous for “Buffon’s needle,” a method using 
needle tosses onto a lined background to estimate π (where, if the line distance is equal to needle 
length, π is found as twice the inverse of probability that the needle crosses a line). LeClerc’s 
method became popular among scientists and his experiment was later repeated by many. 
However, his method and many other Monte Carlo algorithms to estimate π, including the one 
presented here, are good only for fun. Much faster and much more accurate deterministic 
algorithms exist to calculate π. Reitwiesner (1950) calculated by a deterministic algorithm, 
running on the ENIAC computer, the first 2035 decimal digits of π. Metropolis et al. (1950) examined their randomness, an exercise made thereafter many times showing that the digits of π 
have no apparent pattern and pass tests for statistical randomness. Dodge (1996) promoted an idea opposite to LeClerc’s: that the digits of π form a “Natural Random Number Generator”. Since January 2019, 31.4 trillion digits of π are known (found by the Chudnovsky algorithm); this 
information, equivalent to ~100 million books of 1000 pages each (note for comparison that the 
British Library has 25 million books), can serve as a basis for any simulation experiment. 
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However, the simple random generators discussed in section 2.6 are more economic and 
convenient. 
 After this historical note, we return to our method to estimate π from the maxima of the 
Pareto distribution. The equation above, allows formulating the following algorithm. 

1. We generate 𝑛 random numbers from the Pareto distribution with 𝜉 = 0.5 and take the 
maximum. 

2. We repeat this procedure m times and calculate the average of all m maxima. 
3. We find the return period of this average from the theoretical relationship of the Pareto 

distribution and calculate π from the above equation. 

 For step 1 we note that a random number from the Pareto distribution with 𝜉 = 0.5 is 
generated from 𝑥 = (𝑢−𝜉 − 1𝜉 ) = 2( 1√𝑢 − 1) 

where u is a random number from the uniform distribution. The maximum of 𝑛 random numbers 
is thus 𝑥(𝑛) = max(𝑥1, … , 𝑥𝑛) =2( 1√min(𝑢1, … . , 𝑢𝑛) − 1) 

 

Figure 5.12 Simulation results to estimate π from m = 100 000 random samples, each consisting of 𝑛 
random numbers from the Pareto distribution with upper-tail index ξ = 0.5. The curves depict the sampling 
distributions of π estimates for the indicated three values of 𝑛.  

For step 2, the average of m simulated 𝑥(𝑛), each denoted as 𝑥(𝑛)𝑖 , 𝑖 = 1,… ,𝑚, is 

𝑥̅(𝑛) = 2( 1𝑚∑ 1√min(𝑢1𝑖 , … . , 𝑢𝑛𝑖 )
𝑚
𝑖=1 − 1)  

For step 3, the return period of the average is 

𝑇(𝑛)𝑑 = (1 + 𝜉𝑥̅(𝑛))1𝜉 = (1 + 𝑥̅(𝑛)2 )2 = ( 1𝑚∑ 1√min(𝑢1𝑖 , … . , 𝑢𝑛𝑖 )
𝑚
𝑖=1 ) 
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and the simulated value of π is 

π = 1(𝑛 − 1)( 
 ( 1𝑚∑ 1√min(𝑢1𝑖 , … . , 𝑢𝑛𝑖 )

𝑚
𝑖=1 ) 

2 − 4) 
 

 

 Obviously, the larger the values of m and 𝑛, the better the estimate. Even for the minimum 
possible value, 𝑛 = 2, the result is not bad, as shown in Figure 5.12. The three curves for 𝑛 = 2, 3 
and 5 shown in the figure intersect at π = 3.14. 

Appendix 5-I: Approximation of the normal distribution for inferring the 

behaviour of its extremes  

The density of the standard normal distribution can be written as: 𝑓N(𝑥) = exp(− ln√2π − 𝑥2/2)  (5.83) 

By numerical investigation it is seen that an approximation of its distribution function is:  

𝐹N(𝑥) = 1 − ∫ 𝑓N(𝑦) d𝑦∞
𝑥 ≈ 1 − 𝑔(𝑥; 𝑐0, 𝑐1, 𝑐2) (5.84) 

where 𝑐0, 𝑐1, 𝑐2 are numerical constants and the function 𝑔(𝑥; 𝑎0, 𝑎1, 𝑎2), for any 𝑎0, 𝑎1, 𝑎2, is 

defined as: 𝑔(𝑥; 𝑎0, 𝑎1, 𝑎2) ≔ {exp(−(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2)) , 𝑥 ≥ 01 − 𝑔(−𝑥; 𝑎0, 𝑎1, 𝑎2), 𝑥 ≤ 0  (5.85) 

An interesting property is that the function 𝑔( ) is preserved under multiplication for 𝑥 > 0: 𝑔(𝑥; 𝑎0, 𝑎1, 𝑎2)𝑔(𝑐𝑥; 𝑏0, 𝑏1, 𝑏2) = 𝑔(𝑥; 𝑎0 + 𝑏0, 𝑎1 + 𝑐𝑏1 , 𝑎2 + 𝑐2𝑏2)  (5.86) 

Notice that the density function 𝑓N(𝑥) can itself be written as 𝑓N(𝑥) = 𝑔(𝑥; ln√2π , 0,1/2) (5.87) 

Now for 𝑥 = 0, 𝐹N(𝑥) = 1/2, so that 𝑔(0; 𝑐0, 𝑐1, 𝑐2) = 1/2 and in order for this to hold we must set exp(−𝑐0) = 1/2 or 𝑐0 = ln 2. The constants 𝑐1 and 𝑐2 can be determined by minimizing the fitting 

error. Several combinations can provide a good fitting; here we preferred the following 

combination, easy to remember: 𝑐0 = ln2 , 𝑐1 = 23 , 𝑐2 = (23)2 = 49 (5.88) 

This yields equation (5.45). 

 We now determine integrals of the function 𝑔( ), which are useful in other calculations. We 

consider a linear transformation of 𝑥, 𝑤 = 𝑠𝑥 +𝑚,𝑤 > 0. Using calculus of probability, we find: 

𝐹N(𝑠𝑥 + 𝑚) = 1 −∫ 𝑠 𝑓N(𝑠𝑤 +𝑚) d𝑤∞
𝑥  (5.89) 
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𝑠 𝑓N(𝑠𝑤 +𝑚) =  exp (ln 𝑠 − 12 ln(2π) − (𝑠𝑤 +𝑚)22 ) 
= exp(ln 𝑠 − 12 ln(2π) − 𝑚22 −𝑚𝑠𝑤 − 𝑠2𝑤22 )  (5.90) 

For appropriate 𝑎0, 𝑎1, 𝑎2 and c, namely those satisfying: 𝑠 = √2𝑎2, 𝑚 = 𝑎1/√2𝑎2, ln 𝑐 = ln√𝑎2π + 𝑎0 − 𝑎124𝑎2  (5.91) 

equation (5.90) can be written as 𝑠𝑓N(𝑠𝑤 +𝑚) = 𝑐 𝑔(𝑤; 𝑎0, 𝑎1, 𝑎2) = exp(ln 𝑐 − (𝑎0 + 𝑎1𝑤 + 𝑎2𝑤2))  (5.92) 

Combining the above equations, we have: 

𝐹N(𝑠𝑥 +𝑚) = 1 − 𝑐∫ 𝑔(𝑤; 𝑎0, 𝑎1, 𝑎2) d𝑤∞
𝑥  (5.93) 

and solving for the integral we find 

∫ 𝑔(𝑤; 𝑎0, 𝑎1, 𝑎2) d𝑤∞
𝑥 = 1 − 𝐹N(√2𝑎2 𝑥 + 𝑎1/√2𝑎2)√𝑎2/π exp(𝑎0 − 𝑎12/4𝑎2)   (5.94) 

which is exact and valid for 𝑥 > 0. If we approximate FN using g( ) as in (5.84), then after algebraic 

manipulations we find: 

∫ 𝑔(𝑤; 𝑎0, 𝑎1, 𝑎2) d𝑤∞
𝑥 ≈ 𝑔(𝑥; ln (2√𝑎2π ) + 𝑎0 + √2𝑎13√𝑎2 − 𝑎1236𝑎2 , 8𝑎19 + 2√2𝑎23 , 8𝑎29 )  (5.95) 

It can be verified that if (𝑎0, 𝑎1, 𝑎2) = (ln √2π , 0,1/2) as in (5.87), then the corresponding a 

coefficients in the right-hand side of (5.95) become (ln2, 2/3, 4/9) as in (5.88). 

Appendix 5-II: Approximation of the distribution of extremes of two 

correlated normal variables 

We assume that (𝑥1, 𝑥2) have standard normal distribution and are dependent with correlation 

coefficient r. We define: 𝑦 ≔ max(𝑥1, 𝑥2) , 𝑧 ≔ min(𝑥1, 𝑥2) (5.96) 

The exact probability densities are (Nadarajah and Katz, 2008): 

𝑓𝑦(𝑦) = 2𝑓N(𝑦)𝐹N(√1 − 𝑟1 + 𝑟  𝑦) , 𝑓𝑧(𝑧) = 2𝑓N(𝑧)𝐹N(−√1 − 𝑟1 + 𝑟  𝑧) = 2𝑓N(𝑧) − 𝑓𝑦(𝑧) (5.97) 

Using calculus of probability, we find: 

E [𝑦] = √1 − 𝑟π , E[𝑧] = −√1 − 𝑟π  (5.98) 
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However, there is no analytical solution for the exact distribution function (the integral of 𝑓𝑧(𝑧)) 

and we seek an approximation. For y > 0 the distribution function is: 

𝐹𝑦(𝑦) = 1 − ∫ 2𝑓N(𝑤)𝐹N(√1 − 𝑟1 + 𝑟  𝑤)∞
𝑦 d𝑤
= 1 − 2∫ 𝑓N(𝑤)∞

𝑦 d𝑤 + 2∫ 𝑓N(𝑤)(1 − 𝐹N(√1 − 𝑟1 + 𝑟  𝑤))∞
𝑦 d𝑤

= 2𝐹N(𝑦) − 1 + 2∫ 𝑓N(𝑤)(1 − 𝐹N(√1 − 𝑟1 + 𝑟  𝑤))∞
𝑦 d𝑤 

(5.99) 

Using the approximation (5.84)–(5.85) and the property (5.86), the last integral in (5.99) 

becomes: 

∫ 𝑓N(𝑤)(1 − 𝐹N (√1− 𝑟1 + 𝑟  𝑤))∞
𝑦 d𝑤

≈ ∫ 𝑔(𝑤; ln√2π , 0,1/2)𝑔(√1 − 𝑟1 + 𝑟𝑤; ln 2 , 23 , 49)∞
𝑦 d𝑤

= ∫ 𝑔(𝑤; ln √8π , 23 √1 − 𝑟1 + 𝑟 , 49 1 − 𝑟1 + 𝑟 + 12)∞
𝑦 d𝑤

= 1 − 𝐹N (13√17 + 𝑟1 + 𝑟  𝑦 + 2 √ 1 − 𝑟17 + 𝑟)23 √17 + 𝑟1 + 𝑟 exp (−2 1 − 𝑟17 + 𝑟)  

(5.100) 

Consequently, combining (5.99) and (5.100), we find 

𝐹𝑦(𝑦) = 2𝐹N(𝑦) − 1 + 1 − 𝐹N (13√17 + 𝑟1 + 𝑟  𝑦 + 2 √ 1 − 𝑟17 + 𝑟)13 √17 + 𝑟1 + 𝑟 exp (−2 1 − 𝑟17 + 𝑟)  (5.101) 

By setting 

𝑚 ≔ 2 √ 1 − 𝑟17 + 𝑟 , 𝑠 ≔ 13√17 + 𝑟1 + 𝑟  (5.102) 

equation (5.101) can be written as  𝐹𝑦(𝑦) = 2𝐹N(𝑦) − 1 + exp (𝑚22 )1 − 𝐹N(𝑠𝑦 + 𝑚)𝑠= 2𝐹N(𝑦) − 1 + exp (𝑚22 )𝐹N(−𝑠𝑦 −𝑚)𝑠  

(5.103) 

Note that 0 ≤ 𝑚 ≤ 1/√2, 𝑠 ≥ 1. 
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 Likewise, for y < 0: 

𝐹𝑦(𝑦) = ∫ 2𝑓N(𝑤)𝐹N(√1 − 𝑟1 + 𝑟  𝑤)𝑦
−∞ d𝑤 (5.104) 

The integral now is: 

∫𝑓N(𝑤)𝐹N(√1 − 𝑟1 + 𝑟  𝑤)𝑦
−∞ d𝑤 ≈ ∫𝑔(−𝑤; ln√2π , 0,1/2)𝑔(−√1− 𝑟1 + 𝑟𝑤; ln 2 , 23 , 49)𝑦

−∞ d𝑤 (5.105) 

and hence: 

∫𝑓N(𝑤)𝐹N(√1 − 𝑟1 + 𝑟  𝑤)𝑦
−∞ d𝑤 ≈ ∫𝑔(𝑤; ln √8π ,−23 √1 − 𝑟1 + 𝑟 , 49 1 − 𝑟1 + 𝑟 + 12)𝑦

−∞ d𝑤
= ∫ 𝑔(𝑤; ln√8π , 23 √1 − 𝑟1 + 𝑟 , 49 1 − 𝑟1 + 𝑟 + 12)∞
−𝑦 d𝑤

= 1 − 𝐹N (−13√17 + 𝑟1 + 𝑟  𝑦 + 2 √ 1 − 𝑟17 + 𝑟)23 √17 + 𝑟1 + 𝑟 exp (−2 1 − 𝑟17 + 𝑟) = 𝐹N (13√17 + 𝑟1 + 𝑟  𝑦 − 2 √ 1 − 𝑟17 + 𝑟)23 √17 + 𝑟1 + 𝑟 exp (−2 1 − 𝑟17 + 𝑟)= exp(𝑚22 )𝐹N(𝑠𝑦 − 𝑚)𝑠  

(5.106) 

Summarizing, the distribution function of 𝑦 ≔ max(𝑥1, 𝑥2) is: 

𝐹𝑦(𝑦) ≈ {  
  2𝐹N(𝑦) − 1 + exp(𝑚22 )𝐹N(−𝑠𝑦 −𝑚)𝑠 , 𝑦 ≥ 0
exp(𝑚22 )𝐹N(𝑠𝑦 − 𝑚)𝑠 , 𝑦 ≤ 0 (5.107) 

For r = 0, for which 𝑚 = 2 /√17, 𝑠 = √17/3, the result is: 

𝐹𝑦(𝑦) ≈ {  
  2𝐹N(𝑦) − 1 + √173 exp ( 217)𝐹N(−√17𝑦/3 − 2 /√17)𝑠 , 𝑦 ≥ 0√173 exp ( 217)𝐹N(√17𝑦/3 − 2 /√17)𝑠 , 𝑦 ≤ 0 (5.108) 

which is very close to (𝐹N(𝑦))2. 

 The difference 𝐹N(𝑦) − 𝐹𝑦(𝑦) is symmetric about y = 0, given by: 

𝐹N(𝑦) − 𝐹𝑦(𝑦) ≈ 𝐹N(−|𝑦|) − exp(𝑚22 )𝐹N(−𝑠|𝑦| −𝑚)𝑠  (5.109) 

and at y = 0 it takes its maximum value, which is: 𝐹N(0) − 𝐹𝑦(0) = 12 − exp(𝑚22 )𝐹N(−𝑚)𝑠  (5.110) 
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 For completeness, the distribution function of 𝑧 ≔ min(𝑥1, 𝑥2) is calculated in a similar 

manner and is found to be:  

𝐹𝑧(𝑧) = 2𝐹N(𝑧) − 𝐹𝑦(𝑧) ≈ {  
  1 − exp(𝑚22 )𝐹N(−𝑠𝑧 − 𝑚)𝑠 𝑦 ≥ 0
2𝐹N(𝑧) − exp(𝑚22 )𝐹N(𝑠𝑧 − 𝑚)𝑠 𝑦 ≤ 0 (5.111) 



 

Chapter 6. Knowable moments and their relationship to extremes 

6.1 From biases and unknowability to knowable moments 

In Chapter 4 we have explained (and illustrated in Digression 4.B) that classical moments 

beyond order 2 or 3 are unknowable and their estimation from data is not feasible. This 

has been stressed in the title of the article by Lombardo et al. (2014): “Just two moments”, 
while for the same reason in Koutsoyiannis (2019a) classical moments beyond that order 

have been termed unknowable (see Digression 4.B). In Chapter 6 we study a new type of 

moments, the knowable moments (K-moments), which can be reliably estimated for high 

orders and are useful in analyses of extremes. 

 K-moments were introduced by Koutsoyiannis (2019a) and further explored by 

Koutsoyiannis (2022, 2023). They have already been applied to research tasks 

(Dimitriadis et al., 2021; Glynis et al., 2021; Iliopoulou et al., 2022; Koutsoyiannis and 

Montanari, 2022a; Koutsoyiannis and Iliopoulou, 2022) and engineering studies 

(Iliopoulou and Koutsoyiannis, 2022; Koutsoyiannis et al., 2023a,b). From their 

introduction, the K-moment framework has been evolved including their definition and 

notation. The conventions we follow here are identical to those in Koutsoyiannis (2023). 

 K-moments are more general moment types than classical moments, probability-

weighted moments (PWM) and L-moments, and have some links with all of them, as well 

as with order statistics, as will be discussed below. However, K-moments have some 

unique characteristics, not met in other types of moments, that make their use 

advantageous in the stochastic theory and its application in real-world problems, 

especially when dealing with extremes. These characteristics are listed epigrammatically 

below and will be described in full detail in the following sections. 

1. They have a simple, clear, intuitive and rigorous definition as expectations of 

maxima or minima in a sample.  

2. Their statistical estimators are simple, intuitive, fast, unbiased and reliable, 

enabling the moment estimation for orders as high as the sample size. It is this 

characteristic that makes them knowable. When the datasets are large, e.g., with 

million or billion values, there are techniques to accelerate the calculations. 

3. Both the theoretical definition and the estimators of K-moments apply, with 

complete correspondence, to both continuous and discrete stochastic variables 

(this is similar as in classical moments, but not necessarily shared with other types 

of moments). 

4. Not only can the K-moments be reliably estimated from samples, but they can also 

provide information about what a classical moment estimator determines, which 

actually is not the true value of that classical moment. (This is the reason why 

classical moments are unknowable from samples, for orders beyond 3–4). 

5. The K-moment framework includes the ability to readily assign, in a simple 

manner, a value of the distribution function to each K-moment. 



180  CHAPTER 6 – KNOWABLE MOMENTS AND THEIR RELATIONSHIP TO EXTREMES 

 

6. K-moments provide a sound and flexible framework for model fitting, making 

optimal use of the entire dataset, rather than relying on a few moments (as in 

classical moments and L-moments) or assigning probabilities to single data values 

(as in order statistics). This enables utilization of the highest possible moment 

orders, which are particularly useful in modelling extreme highs or lows that are 

closely associated with high-order moments. The model fitting concept with K-

moments is a new strategy not shared with any other types of methods of moments 

and includes visualization of the goodness of fit. 

7. The K-moment estimators offer the ability to estimate the probability density 

function from a sample—a unique feature of the K-moment framework. 

8. K-moments offer the unique advantage of taking into account the estimation bias 

when the data are not an independent sample but a time series from a process with 

dependence, even of long range. 

9. The K-moment framework offers the possibility of modelling extremes using 

merely the parent distribution, without reference to asymptotic extreme value 

distributions. This is a more reliable choice as it has been known that the 

convergence to the asymptotic Extreme Value distributions can be extraordinarily 

slow (Digression 2.L), while the non-asymptotic distributions of extremes can be 

quite difficult to determine, particularly when there is time dependence. Yet there 

is a theoretical connection of the K-moment framework with the asymptotic 

Extreme Value theory, related to assigning values of the distribution function to K-

moments (point 5) at the distribution tails. 

10. Even when the available data are block maxima (e.g., annual maximum rainfall 

data), the K-moment framework can directly estimate the K-moments of the parent 

distribution, thus making possible the fitting of the parent distribution from block 

maxima and making unnecessary any reference to the extreme value distributions.  

 Apparently, except for the above listed differences of K-moments with other moment 

types, there are also conceptual similarities among all types. For example, all types enable 

easy characterization of the basic properties of a distribution via the so-called summary 

statistics, by using moment orders up to the fourth. We note though that, while the fourth 

order moment is the highest possible one could hope to determine using classical 

moments, there is no such limitation for the K-moments. Rather, the entire sequence of 

the latter provides a complete characterization of the sample. In other words, the K-

moments fully replace whatever information is contained in a sample, and the observed 

sample can be fully recovered from the sequence of K-moments. On the other hand, the 

above points are not meant to devalue the usefulness of the classical moments, 

particularly as a theoretical tool, rather than as a tool to analyse data. This usefulness 

springs from the close relationship of the classical moments with cumulants (see section 

2.8), which constitute the basis of genuine stochastic simulation that preserves high order 

moments (see section 7.4). 
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6.2 Rationale and definitions 

Let 𝑥 be a stochastic variable with distribution function 𝐹(𝑥) and complement 𝐹(𝑥), and 𝑥1, 𝑥2, … , 𝑥𝑝 be IID copies of it, forming a sample. We stress that the variables 𝑥1, 𝑥2, … , 𝑥𝑝 

are not meant in succession in time and in this respect do not form a stochastic process 

but are regarded as an ensemble of copies of 𝑥. In other words, the possible dependence 

in time in a stochastic process is not considered in this phase (but will be considered later 

starting from its impacts on estimation; see section 6.6). 

 It is recalled (section 4.12) that, if we arrange the variables in ascending order, the ith 

smallest, denoted as 𝑥(𝑖:𝑝), 𝑖 = 1,… , 𝑝 is termed the ith order statistic. The largest (pth) 

order statistic is: 𝑥(𝑝) ≔ 𝑥(𝑝:𝑝) = max(𝑥1, 𝑥2, … , 𝑥𝑝) (6.1) 

and the smallest (first) is 𝑥(1:𝑝) = min(𝑥1, 𝑥2, … , 𝑥𝑝) (6.2) 

 Now we define the K-moments in terms of expectations of these variables in the 

following manner. 

• The expectation of the largest of the p variables 𝑥(𝑝): 𝐾𝑝′  ≔ E[𝑥(𝑝)] = E[max(𝑥1, 𝑥2, … , 𝑥𝑝)] (6.3) 

is called the upper knowable moment (K-moment) of order p. 

• The expectation of the smallest of the p variables 𝑥(1:𝑝): 𝐾𝑝′  ≔ E[𝑥(1:𝑝)] = E[min(𝑥1, 𝑥2, … , 𝑥𝑝)] (6.4) 

is called the lower knowable moment (K-moment) of order p. 

 It is easy to see that the sequence of 𝐾𝑝′  for increasing p is non-decreasing and that of 𝐾𝑝′  is non-increasing. Furthermore, we generalize the definitions to transformations 𝑔(𝑥) 
of the stochastic variable of interest 𝑥. Thus, by setting 𝑔(𝑥) = 𝑥𝑞 , where q is an integer, 

we obtain the following additional definitions: 

• The expectation: 𝐾𝑝𝑞′  ≔ E[𝑥(𝑝)𝑞 ] = E[max(𝑥1𝑞 , 𝑥2𝑞 , … , 𝑥𝑝𝑞)] (6.5) 

is called the upper K-moment of orders p,q. 

• The expectation: 𝐾𝑝𝑞′ ≔ E[𝑥(1:𝑝)𝑞 ] = E[min(𝑥1𝑞 , 𝑥2𝑞 , … , 𝑥𝑝𝑞)] (6.6) 

is called the lower K-moment of orders p,q. 

 The above notation implies that we omit the subscript q when 𝑞 = 1. Likewise, we 

can define central K-moments by setting 𝑔(𝑥) = (𝑥 − 𝜇)𝑞: 
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• The expectations: 𝐾𝑝 ≔ E[𝑥(𝑝) − 𝜇] = 𝐾𝑝′ − 𝜇 (6.7) 𝐾𝑝 ≔ E[𝑥(1:𝑝) − 𝜇] = 𝐾𝑝′ − 𝜇 (6.8) 

are called, respectively, the upper and lower central K-moment of order p. The 

rightmost relationships are a direct consequence of the fact that max(𝑥1 − 𝜇, 𝑥2 −𝜇,… , 𝑥𝑝 − 𝜇) = max(𝑥1, 𝑥2, … , 𝑥𝑝) − 𝜇 (and likewise for the minimum). 

• The expectations: 𝐾𝑝𝑞 ≔ E[(𝑥(𝑝) − 𝜇)𝑞] = E[max((𝑥1 − 𝜇)𝑞 , (𝑥2 − 𝜇)𝑞 , … , (𝑥𝑝 − 𝜇)𝑞)] (6.9) 𝐾𝑝𝑞 ≔ E[(𝑥(1:𝑝) − 𝜇)𝑞] = E[min((𝑥1 − 𝜇)𝑞 , (𝑥2 − 𝜇)𝑞 , … , (𝑥𝑝 − 𝜇)𝑞)] (6.10) 

are called, respectively, the upper and lower central K-moment of orders p,q. 

 When there is risk of confusion, we call the K-moments of equations (6.3)–(6.6) 

noncentral, distinguishing them from the central ones.  

 As we will see below, K-moments can alternatively be written as expectations of 

products of 𝑥𝑞 (or (𝑥 − 𝜇)𝑞), the distribution function or its complement raised to the 

power 𝑝 − 1, and some adjustment factors, 𝐴(𝑥, 𝑝) or 𝐴(𝑥, 𝑝). Specifically, they are 

expressed as 𝐾𝑝𝑞′ = 𝑝E [𝐴(𝑥, 𝑝)𝐹(𝑥)𝑝−1𝑥𝑞] , 𝐾𝑝𝑞′ = 𝑝E [𝐴(𝑥, 𝑝)𝐹(𝑥)𝑝−1𝑥𝑞] 𝐾𝑝𝑞 = 𝑝E [𝐴(𝑥, 𝑝)𝐹(𝑥)𝑝−1(𝑥 − 𝜇)𝑞] , 𝐾𝑝𝑞 = 𝑝E [𝐴(𝑥, 𝑝)𝐹(𝑥)𝑝−1(𝑥 − 𝜇)𝑞] (6.11) 

where, in the most common cases, the adjustment factors 𝐴(𝑥, 𝑝) and 𝐴(𝑥, 𝑝) can be 

omitted as 𝐴(𝑥, 𝑝) = 𝐴(𝑥, 𝑝) = 1. However, in some of the cases, they can take different 

values, as will be specified below. 

 Equation (6.11) justifies the name moments. As will be seen, for 𝑝 = 1, 𝐴(𝑥, 1) = 1 in 

all cases. Therefore, by setting 𝑝 = 1, we recover the classical moments, i.e., 𝐾1𝑞′ = 𝐾1𝑞′ = E[𝑥𝑞]  ≕  𝜇𝑞′ , 𝐾1𝑞 = E[(𝑥 − 𝜇)𝑞] ≕ 𝜇𝑞 (6.12) 

However, whenever we have only an observed sample, and we do not know 𝐹(𝑥) from 

theoretical reasoning, the classical moments are unknowable, except if q is very low, as 

thoroughly discussed above. On the other hand, if we choose a low q, namely 𝑞 = 1,2, then 

we can estimate in a reliable manner a moment of total order 𝑝 + 𝑞 − 1, which can be 

made very high by choosing a high p. This enables knowing the high-order properties of 

a distribution from a sample, which justifies the name knowable moments. In the next 

section, we will see that the estimation of the K-moments can be easily made via order 

statistics. 
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 While the K-moment framework allows for studying transformations of 𝑥, the 

simplest case of the untransformed variable suffices for most statistical tasks. In this case, 

equation (6.11) is simplified to the following, corresponding to 𝑞 = 1: 𝐾𝑝′ = 𝑝E [𝐴(𝑥, 𝑝)𝐹(𝑥)𝑝−1𝑥] , 𝐾𝑝′ = 𝑝E [𝐴(𝑥, 𝑝)𝐹(𝑥)𝑝−1𝑥] 𝐾𝑝 = 𝐾𝑝′ − 𝜇, 𝐾𝑝 = 𝐾𝑝′  − 𝜇 

(6.13) 

6.3 K-moments of continuous stochastic variables for q = 1 

If 𝑥 is a continuous stochastic variable, then the maximum of p variables, i.e., the variable 𝑥(𝑝) = max(𝑥1, 𝑥2, … , 𝑥𝑝), will have distribution and density functions, respectively,  𝐹(𝑝)(𝑥) = (𝐹(𝑥))𝑝, 𝑓(𝑝)(𝑥) = 𝑝𝑓(𝑥)(𝐹(𝑥))𝑝−1 (6.14) 

where the former is the product of p instances of 𝐹(𝑥) (justified by the IID assumption) 

while the latter is the derivative of 𝐹(𝑝)(𝑥) with respect to 𝑥. It is then readily verified that 

the upper and lower K-moments of order 𝑝 ≥ 1, are, respectively, 𝐾𝑝′ = E[𝑥(𝑝)] = E[max(𝑥1, 𝑥2, … , 𝑥𝑝)] = 𝑝E [(𝐹(𝑥))𝑝−1 𝑥] (6.15) 

𝐾𝑝′ = E[𝑥(1:𝑝)] = E[min(𝑥1, 𝑥2, … , 𝑥𝑝)] = 𝑝E [(𝐹(𝑥))𝑝−1 𝑥] (6.16) 

Hence, for continuous variables, with reference to equation (6.13), the adjustment factors 

are 𝐴(𝑥, 𝑝) = 𝐴(𝑥, 𝑝) = 1.  

 If the distribution function 𝐹(𝑥) is known, then the calculation of 𝐾𝑝′  can be made by 

either of the following expressions, derived by common algebraic rules: 

𝐾𝑝′ = 𝑝 ∫(𝐹(𝑥))𝑝−1𝑥 𝑓(𝑥)∞
−∞ d𝑥 = 𝑝∫𝑥(𝐹)1

0 𝐹𝑝−1d𝐹 = ∫𝑥(𝐹1 𝑝⁄ )1
0 d𝐹 (6.17) 

where 𝑥(𝐹) is the inverse of function 𝐹(𝑥), known as the quantile function. When 

analytical calculation is infeasible, numerical calculation of theoretical K-moments 

involves no difficulty; thus, the existence of an analytical solution of theoretical moments 

of a certain distribution should not be regarded as an important criterion for choosing 

that distribution. The important issue for model fitting is whether the moments are 

knowable or not, in the sense of their estimation from a sample; their theoretical values 

are always knowable once the distribution parameters have been specified. A generic 

numerical framework that enables fast and good approximations of the theoretical K-

moment 𝐾𝑝′  for any order p and without requiring integration, is provided in section 6.19. 

6.4 K-moments of discrete stochastic variables for q = 1 

If 𝑥 is a discrete stochastic variable taking on the values 𝑥𝑗 , 𝑗 = 0,1, … , 𝐽, then the equations 

in section 6.3 do not hold and we need to calculate the K-moments differently. If the 
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probability mass function of 𝑥 is 𝑃𝑗 ≔ 𝑃{𝑥 = 𝑥𝑗} = 𝐹(𝑥𝑗) − 𝐹(𝑥𝑗−1), then 𝑃{𝑥(𝑝) ≤ 𝑥𝑖} =𝐹(𝑥𝑖)𝑝 and, hence, the probability mass function of 𝑥(𝑝) will be 𝑃𝑗(𝑝)  ≔ 𝑃{𝑥(𝑝) = 𝑥𝑗} = 𝑃{𝑥(𝑝) ≤ 𝑥𝑗} − 𝑃{𝑥(𝑝) < 𝑥𝑗} = 𝐹(𝑥𝑗)𝑝 − 𝐹(𝑥𝑗−1)𝑝 (6.18) 

where we use the convention 𝐹(𝑥−1) = 0. Consequently, the upper K-moment of order p 

is 

𝐾𝑝′ = E[𝑥(𝑝)] = ∑(𝐹(𝑥𝑗)𝑝 − 𝐹(𝑥𝑗−1)𝑝)𝐽
𝑗=0 𝑥𝑗  (6.19) 

By expanding and making algebraic manipulations, we find 

𝐾𝑝′ = 𝑥𝐽 −∑𝐹(𝑥𝑗)𝑝𝐽−1
𝑗=0 (𝑥𝑗+1 − 𝑥𝑗) (6.20) 

 In the most common case in which 𝑥𝑗 = 𝑗, 𝑗 = 0,… , 𝐽, where J is either finite or infinite 

with 𝐹(𝐽) = 1, the upper K-moment of order p, is: 

𝐾𝑝′ =∑(1 − 𝐹(𝑗)𝑝)𝐽−1
𝑗=0  (6.21) 

For infinite 𝐽 and for large 𝑗, 𝐹(𝑗) → 1. Thus, the expression in parenthesis in equation 

(6.21) tends to zero. Therefore, we can easily evaluate 𝐾𝑝′  numerically from this and, by 

choosing a large (but finite) upper limit 𝐽, the convergence is fast. 

 To find the lower K-moments, we note that the probability mass function of 𝑥(1:𝑝) will 

be 𝑃𝑗(𝑝)  ≔ 𝑃{𝑥(1:𝑝) = 𝑥𝑗} = 𝑃{𝑥(1:𝑝) ≥ 𝑥𝑗} − 𝑃{𝑥(1:𝑝) > 𝑥𝑗} = 𝐹(𝑥𝑗−1)𝑝 − 𝐹(𝑥𝑗)𝑝 (6.22) 

where we set 𝐹(𝑥−1) = 1. Consequently, the lower K-moment of order p is 

𝐾𝑝′ = E[𝑥(1:𝑝)] = ∑(𝐹(𝑥𝑗−1)𝑝 − 𝐹(𝑥𝑗)𝑝)𝐽
𝑗=0 𝑥𝑗  (6.23) 

By expanding and making algebraic manipulations, we find 

𝐾𝑝′ = 𝑥0 +∑𝐹(𝑥𝑗)𝑝𝐽−1
𝑗=0 (𝑥𝑗+1 − 𝑥𝑗) (6.24) 

and in the most common case in which 𝑥𝑗 = 𝑗, we find: 

𝐾𝑝′ =∑𝐹(𝑗)𝑝𝐽−1
𝑗=0  (6.25) 



K-MOMENTS OF DISCRETE STOCHASTIC VARIABLES FOR Q = 1  185 

Again, in the latter case, the convergence is fast and therefore we can easily evaluate 𝐾𝑝′  

numerically by choosing a large J; notice that for large 𝐽, 𝐹(𝐽) → 0, and the sum will not 

change if we choose an even larger 𝐽. 
Digression 6.A: Can we neglect the adjustment factors in the theoretical 

calculation of K-moments of discrete stochastic variables? 

The above relationships do not use the general formula (6.13). If we want to use it, we should 
evaluate 𝐴(𝑥𝑖 , 𝑝). From equation (6.19) we obtain 

𝐾𝑝′ = E[𝑥(𝑝)] = 𝑝∑𝐹(𝑥𝑗)𝑝−1 (𝐹(𝑥𝑗) − 𝐹(𝑥𝑗−1)𝑝/𝐹(𝑥𝑗)𝑝−1)𝑝 𝑃𝑗𝐽
𝑗=0 𝑃𝑗𝑥𝑗 (6.26) 

 Thus, by comparing this with equation (6.13), we find 

𝐴(𝑥𝑗 , 𝑝) = 𝐹(𝑥𝑗) − 𝐹(𝑥𝑗−1)𝑝/𝐹(𝑥𝑗)𝑝−1𝑝 𝑃𝑗 = 𝐹(𝑥𝑗)𝑝 (𝐹(𝑥𝑗) − 𝐹(𝑥𝑗−1)) (1 − (𝐹(𝑥𝑖−1)𝐹(𝑥𝑖)  )𝑝) (6.27) 

and finally 𝐴(𝑥𝑗, 𝑝) = 1 − (𝐹(𝑥𝑗−1) 𝐹(𝑥𝑗)⁄  )𝑝𝑝 (1 − 𝐹(𝑥𝑗−1)/𝐹(𝑥𝑗)) (6.28) 

For 𝐽 = ∞, as j increases, 𝐹(𝑥𝑗−1)/𝐹(𝑥𝑗) → 1, and it is easy to see that lim𝑗→∞𝐴(𝑥𝑗 , 𝑝) = 1 (6.29) 

thus, approaching the behaviour seen in continuous variables. On the other hand, for varying p, 

lim𝑝→0𝐴(𝑥𝑗, 𝑝) = −ln (𝐹(𝑥𝑗−1)/𝐹(𝑥𝑗))1 − 𝐹(𝑥𝑗−1)/𝐹(𝑥𝑗) , lim𝑝→1𝐴(𝑥𝑗, 𝑝) = 1, lim𝑝→∞𝐴(𝑥𝑗, 𝑝) = 0 (6.30) 

 If to approximate 𝐾𝑝′  one sets 𝐴(𝑥𝑗, 𝑝) = 1 for any 𝑗 and 𝑝, the error is prohibitively large. This 
is illustrated in Figure 6.1 for two of the most common discrete-variable distributions, Poisson 
and geometric.  

 

Figure 6.1 Comparison of exact upper K-moments and approximations thereof setting 𝐴(𝑥𝑗 , 𝑝) = 1, for the 
distribution (left) Poisson and (right) geometric, where in both cases the mean is 4. (Source: Koutsoyiannis, 
2023). 
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 The Poisson distribution has probability mass, distribution, and characteristic K-moments 
(those that have analytical expressions), respectively, 

𝑃𝑗 = 𝑒−𝜆 𝜆𝑗𝑗! , 𝐹(𝑥) = 𝑒−𝜆∑𝜆𝑗𝑗!⌊𝑥⌋
𝑗=0 , 𝛫1′ = 𝛫12 = 𝜆 (6.31) 

and the geometric distribution 𝑃𝑗 = 𝜆(1 − 𝜆)𝑗, 𝐹(𝑥) = 1 − (1 − 𝜆)⌊𝑥⌋+1,   𝛫1′ = 1 − 𝜆𝜆 , 𝛫2′ = (1 − 𝜆)(3 − 𝜆)𝜆(2 − 𝜆) , 𝛫2′ = (1 − 𝜆)2𝜆(2 − 𝜆) , 𝛫12 = 1 − 𝜆𝜆2  
(6.32) 

 In brief, the answer to the question in the title of this Digression is clearly negative. 

6.5 K-moments of continuous stochastic variables for q > 1 

As already mentioned, it is possible to generalize the K-moments for transformations of 

the original variable 𝑥. Koutsoyiannis (2023) has considered the transformation 𝑦  ≔𝑔(𝑥) = (𝑥 − 𝑐)𝑞 , where c is a real constant and 𝑞 ≥ 1 is an integer. This transformation 

allows recovering the classical moments, raw and central, as special cases of the K-

moments for 𝑝 = 1, 𝑞 > 1, which has some usefulness, as will be seen in section 6.11. 

 There are two distinct cases, depending on whether q is odd or even. The former case 

is easier because the transformation is a monotonic (increasing) function. The resulting 

equations for the two cases are, respectively (from Koutsoyiannis, 2023), 

𝐾𝑝𝑦′ = 𝑝 ∫ 𝐹(𝑥)𝑝−1(𝑥 − 𝑐)𝑞𝑓(𝑥) d𝑥, 𝑞 odd∞
−∞  (6.33) 

𝐾𝑝𝑦′ = 𝑝 ∫(𝐹(𝑐 + |𝑥 − 𝑐|) − 𝐹(𝑐 − |𝑥 − 𝑐|))𝑝−1(𝑥 − 𝑐)𝑞𝑓(𝑥) d𝑥∞
−∞ , 𝑞 even (6.34) 

 Setting 𝑐 = 0 and 𝑐 = 𝜇, we obtain the noncentral and central K-moments that are 

summarized in Table 6.1. By applying the equations of Table 6.1, we can calculate 

theoretically any required K-moment using elementary calculus rules. For example, for q 

odd or for nonnegative 𝑥 and q even, based on (6.37), we can determine the noncentral K-

moments from either of the following expressions, similar to those of equation (6.17): 

𝐾𝑝𝑞′ = 𝑝 ∫(𝐹(𝑥))𝑝−1𝑥𝑞 𝑓(𝑥)∞
−∞ d𝑥 = 𝑝∫𝑥(𝐹)𝑞1

0 𝐹𝑝−1d𝐹 = ∫(𝑥(𝐹1 𝑝⁄ ))𝑞1
0 d𝐹 (6.35) 

As another example, based on equation (6.43), we can calculate the central K-moments of 

a symmetric distribution for an even q from 

𝐾𝑝𝑞 = 2𝑝∫(2𝐹(𝑥) − 1)𝑝−1(𝑥 − 𝜇)𝑞𝑓(𝑥) d𝑥∞
𝜇  (6.36) 
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Again, when analytical calculation is infeasible, calculation of theoretical K-moments by 

numerical integration involves no difficulty. Digression 6.B discusses the possibility of 

simplifying the calculation by neglecting the adjustment factors (i.e. setting 𝐴(𝑥, 𝑝) =𝐴(𝑥, 𝑝) = 1). 

Table 6.1 Equations for the theoretical calculation of K-moments for order q > 1, and respective 
adjustment factors. 

Conditions K-moment, adjustment factor Eqn. no 

q odd 𝐾𝑝𝑞′ = 𝑝E [𝐹(𝑥)𝑝−1𝑥𝑞] , 𝐴(𝑥, 𝑝) = 1 (6.37) 

 𝐾𝑝𝑞′ = 𝑝E [𝐹(𝑥)𝑝−1𝑥𝑞] , 𝐴(𝑥, 𝑝) = 1 (6.38) 

 𝐾𝑝𝑞 = 𝑝E [𝐹(𝑥)𝑝−1(𝑥 − 𝜇)𝑞] , 𝐴(𝑥, 𝑝) = 1 (6.39) 

 𝐾𝑝𝑞 = 𝑝E [𝐹(𝑥)𝑝−1(𝑥 − 𝜇)𝑞] , 𝐴(𝑥, 𝑝) = 1 (6.40) 𝑞 even 𝐾𝑝𝑞′ = 𝑝E [(𝐹(|𝑥|) − 𝐹(−|𝑥|))𝑝−1 𝑥𝑞], 
𝐴(𝑥, 𝑝) = (𝐹(|𝑥|) − 𝐹(−|𝑥|)𝐹(𝑥) )𝑝−1 

(6.41) 

 𝐾𝑝𝑞 = 𝑝E [(𝐹(𝜇 + |𝑥 − 𝜇|) − 𝐹(𝜇 − |𝑥 − 𝜇|))𝑝−1 (𝑥 − 𝜇)𝑞],   
𝐴(𝑥, 𝑝) = (𝐹(𝜇 + |𝑥 − 𝜇|) − 𝐹(𝜇 − |𝑥 − 𝜇|)𝐹(𝑥) )𝑝−1 

(6.42) 

q even, 𝑥 nonnegative 
𝐾𝑝𝑞′ = 𝑝E [𝐹(𝑥)𝑝−1𝑥𝑞] , 𝐴(𝑥, 𝑝) = 1 (6.37) 

q even, symmetric 

distribution 
𝐾𝑝𝑞 = 𝑝E [|2𝐹(𝑥) − 1|𝑝−1(𝑥 − 𝜇)𝑞] ,   𝐴(𝑥, 𝑝) = |2 − 1 𝐹(𝑥)⁄ |𝑝−1 (6.43) 

Digression 6.B: Can we neglect the adjustment factors in the theoretical 

calculation of K-moments of continuous stochastic variables for q > 1? 

As seen in Table 6.1, in several cases the adjustment factors are precisely equal to 1, while in some 
other cases they differ from 1. Certainly, the calculations are simpler if we neglect the adjustment 
coefficients in all cases, but is the resulting error acceptable? We illustrate this question in Figure 
6.2 for the normal and exponential distributions, and for both noncentral and central upper K-
moments. The exact values are compared to approximations obtained by the simplification 𝐴(𝑥, 𝑝) = 1. In the case of noncentral upper K-moments of the exponential distribution, 𝐴(𝑥, 𝑝) =1 is exact, but this also gives good approximations in other cases, unless the distribution is 
symmetric (such as the normal distribution) and the moments central. 
 Hence, the answer to the question in the title of this Digression is affirmative, provided than 
the mean of the distribution is positive. However, in a symmetric distribution with zero mean the 
reply is clearly negative. 
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Figure 6.2 Comparison of exact upper K-moments of orders 𝑝, 2 and approximations thereof setting 𝐴(𝑥, 𝑝) = 1, for the distribution (upper) normal and (lower) exponential, where, in both cases, the mean 
and standard deviation are 1; (left) noncentral and (right) central upper K-moments. (Source: 
Koutsoyiannis, 2023). 

6.6 K-moment estimators 

It is not difficult to form an estimation of the upper K-moment 𝐾𝑝′  from a sample of size n 

arranged in ascending order, 𝑥(1:𝑛) ≤ 𝑥(2:𝑛) ≤ … ≤  𝑥(𝑛:𝑛). We chose 𝑝 ≤ 𝑛 of them at 

random and we wish to find the probability that a specific one, say 𝑥(𝑖:𝑛), is the maximum 

of all p. Apparently, if 𝑖 < 𝑝 then this probability is zero. If 𝑖 ≥ 𝑝, then the total number of 

combinations in which the 𝑥(𝑖:𝑛) is the maximum among the p variables equals the number 

of ways of choosing the 𝑝 − 1 remaining variables among the possible 𝑖 − 1 of them, i.e., (𝑖 − 1𝑝 − 1). The total number of ways to choose any p variables out of n is (𝑛𝑝). Thus, the 

sought probability, call it 𝑏𝑖𝑛𝑝, is 𝑏𝑖𝑛𝑝 = (𝑖 − 1𝑝 − 1) (𝑛𝑝)⁄  (6.44) 

From known results in combinatorics, this satisfies 
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∑(𝑖 − 1𝑝 − 1)𝑛
𝑖=𝑝 = (𝑛𝑝) (6.45) 

and hence 

∑𝑏𝑖𝑛𝑝𝑛
𝑖=𝑝 = 1 (6.46) 

as expected. 

 Given that the probability of 𝑥(𝑖:𝑛) being the maximum of the p out of n variables is 𝑏𝑖𝑛𝑝, the estimator of the expectation of the K-moment 𝐾𝑝′  will be 

𝐾̂𝑝′ =∑𝑏𝑖𝑛𝑝𝑛
𝑖=𝑝  𝑥(𝑖:𝑛) =∑( 𝑖−1𝑝−1)(𝑛𝑝)

𝑛
𝑖=𝑝  𝑥(𝑖:𝑛) (6.47) 

 To find the estimator of the lower K-moments, it suffices to reverse the order of the 

sample, i.e., to replace 𝑥(𝑖:𝑛) with 𝑥(𝑛−𝑖+1:𝑛). Hence, 

𝐾̂𝑝′ =∑𝑏𝑖𝑛𝑝 𝑥(𝑛−𝑖+1:𝑛)𝑛
𝑖=𝑝 = ∑ 𝑏𝑛−𝑖+1,𝑛,𝑝 𝑥(𝑖:𝑛)𝑛−𝑝+1

𝑖=1  (6.48) 

If we use all integer values of 𝑝 from 1 to 𝑛, from the ordered sample 𝑥(𝑖:𝑛) we can calculate 𝑛 upper moments 𝐾̂𝑝′  and 𝑛 lower moments 𝐾̂𝑝′ , a total of 2𝑛 quantities. However, the 

information contained in each of the sequences 𝐾̂𝑝′  and 𝐾̂𝑝′  is equivalent to each other (see 

section 6.9). 

 The above formulation is for integer moment order p. We can readily generalize for 

real p by replacing factorials with the Gamma function. After algebraic manipulations, we 

obtain the final expression: 

𝑏𝑖𝑛𝑝 = {0, 𝑖 < 𝑝𝑝 Γ(𝑛 − 𝑝 + 1)Γ(𝑛 + 1)  Γ(𝑖)Γ(𝑖 − 𝑝 + 1) , 𝑖 ≥ 𝑝 ≥ 0 (6.49) 

In the algorithmic evaluation of equation (6.49), it is suggested first to calculate the 

logarithms of the gamma functions and add them (or subtract, as appropriate), and then 

exponentiate the sum. 

 For 𝑝 = 1, equation (6.49), results in 𝑏𝑖𝑛1 = 1/𝑛 and thus we recover the estimate of 

the mean, 𝐾̂1′ = 𝐾̂1′ = 𝜇̂. For 𝑝 = 𝑛, equation (6.49) results in 𝑏𝑛𝑛𝑛 = 1 with all other 𝑏𝑖𝑛𝑛 = 0, and thus only the maximum (or the minimum) value of the sample is taken into 

account in the estimation. Other special cases of K-moment estimator coefficients 𝑏𝑖𝑛𝑝 are 

shown in Table 6.2. The fact that 𝑏𝑖𝑛𝑝 = 0 for 𝑖 < 𝑝 suggests that, as the moment order 

increases, progressively fewer data values determine the moment estimate, until it 

remains only one, the maximum, when 𝑝 = 𝑛, with 𝑏𝑛𝑛𝑛 = 1. Furthermore, if 𝑝 > 𝑛 then 
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 𝑏𝑖𝑛𝑝 = 0 for all 𝑖, 1 ≤ 𝑖 ≤ 𝑛, and therefore estimation becomes impossible. Thus, the 

method permits the estimation of moment orders as high as the sample size, n. 

Table 6.2 Special cases of K-moment estimator coefficients. 

Case 𝑏𝑖𝑛𝑝  Case 𝑏𝑖𝑛𝑝 𝑝 = 0 𝑏𝑖𝑛0 = 0  𝑝 = 𝑛 − 1 𝑏𝑛−1,𝑛,𝑛−1 = 1𝑛 , 𝑏𝑛,𝑛,𝑛−1 = 1 − 1𝑛 

𝑝 = 1 𝑏𝑖𝑛1 = 1𝑛  𝑝 = 𝑛 𝑏𝑛𝑛𝑛 = 1 

𝑝 = 2 𝑏𝑖𝑛2 = 2𝑛 𝑖 − 1𝑛 − 1  𝑖 = 𝑛 𝑏𝑛𝑛𝑝 = 𝑝𝑛 

𝑝 = 3 𝑏𝑖𝑛2 = 3𝑛 𝑖 − 1𝑛 − 1 𝑖 − 2𝑛 − 2  
𝑖 = 𝑝 𝑏𝑝𝑛𝑝 = 𝑝B(𝑝, 𝑛 − 𝑝 + 1) 

symmetry: 𝑏𝑝𝑛𝑝 = 𝑏𝑛−𝑝,𝑛,𝑛−𝑝; 

minimum at 𝑝 =  𝑛/2 𝑝 = 4 𝑏𝑖𝑛4 = 4𝑛 𝑖 − 1𝑛 − 1 𝑖 − 2𝑛 − 2 𝑖 − 3𝑛 − 3  

 Interestingly, for p = 2, the quantity (𝑛/2)𝑏𝑖𝑛2 can be regarded as an estimate of 𝐹(𝑥(𝑖:𝑛)), i.e.: 𝐹̂(𝑥(𝑖:𝑛)) = 𝑖 − 1𝑛 − 1 (6.50) 

which has the properties of symmetry: 𝐹̂(𝑥(𝑛+1−𝑖:𝑛)) = 1 − 𝐹̂(𝑥(𝑖:𝑛)), (2𝐹̂(𝑥(𝑛+1−𝑖:𝑛)) − 1) = −(2𝐹̂(𝑥(𝑖:𝑛)) − 1) (6.51) 

These correspond to those in equations (5.58)–(5.59) with 𝐴 = 0, 𝐵 = −1 and yield 𝐹̂(𝑥(1:𝑛)) = 0, 𝐹̂(𝑥(𝑛:𝑛)) = 1. 

 An important result is that the estimators (6.47)–(6.48) with 𝑏𝑖𝑛𝑝 determined from 

(6.49), are unbiased, i.e.: E[𝐾̂𝑝′ ] = 𝐾𝑝′  (6.52) 

The proof is given in Appendix 6-IV for continuous variables and Appendix 6-V for 

discrete variables. It should be stressed that the unbiased estimators are exactly the same 

for continuous and for discrete variables, despite the fact that the mathematical 

expressions of the K-moments in terms of the distribution functions are quite different, 

as shown in sections 6.3 and 6.4. We may also notice that, even in discrete variables, the 

K-moment estimators are not discrete variables but continuous ones. 

 By replacing 𝑥 with a transformation 𝑔(𝑥) we readily obtain an estimator of 

transformed K-moments, with unbiasedness being inherited, except if the transformation 

is multivariate (e.g., when it includes an estimator of an unknown mean) and nonlinear. 

What is more, the K-moment estimators, unlike the classical moment ones, are not 

affected by slow convergence bias. Rather, they provide reliable and fast converging 

estimates, as illustrated in Digression 6.C. 
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 When the stochastic variable of interest is of discrete type, the data should include 

ties. This can also be the case in continuous variables if the data are too many and are 

summarized in more manageable form. In this case, the calculations can be simplified and 

accelerated by applying a single coefficient to each value appearing in the sample. 

Assuming that a certain value 𝑥𝑙  appears 𝑗 times in the sample, namely from positions 𝑗1 

to 𝑗2 (𝑗2 > 𝑗1 ≥ 𝑝) in the ordered sample, i.e., 𝑥(𝑗1:𝑛) = ⋯ = 𝑥(𝑗2:𝑛) = 𝑥𝑙 , with 𝑗 = 𝑗2 − 𝑗1 +1, the value 𝑥𝑙  should be multiplied by the sum ∑ 𝑏𝑖𝑛𝑝𝑗2𝑖=𝑗1 . This sum is easy to calculate 

analytically, resulting in a concise expression: 

𝑏(𝑗1,𝑗2),𝑛,𝑝  ≔ ∑ 𝑏𝑖𝑛𝑝𝑗2
𝑖=𝑗1 = 𝑗2𝑝 𝑏𝑗2𝑛𝑝 − 𝑗1 − 𝑝𝑝 𝑏𝑗1𝑛𝑝 (6.53) 

It is easy to verify that for 𝑗2 = 𝑗1, the result is 𝑏(𝑗1,𝑗2),𝑛,𝑝 = 𝑏𝑗1𝑛𝑝 as it should. Moreover, if 𝑗2 = 𝑗1 − 1, which means that there is no appearance of a particular value (𝑗 = 0), then 

the result is 𝑏(𝑗1,𝑗2),𝑛,𝑝 = 0, as required. 

 A couple of simpler estimators are studied in Appendix 6-VI, but, in contrast with the 

estimator (6.47)–(6.49), these are not precisely unbiased. Their bias is small for low 

values of the order p and negligible for 𝑝 < 𝑛/10. However, we do not recommend the use 

of these alternatives. As the K-moment frameworks allows the reliable estimation for very 

high orders, the unbiased estimators (6.47)–(6.49) are always preferable. 

 Another, even simpler, estimation option, a quick-and-dirty estimator using just one 

data point per K-moment, will be discussed in Digression 6.L. 

Digression 6.C: Illustration of the good performance of the K-moment 

estimator 

A first illustration of the good performance of estimators (6.47)–(6.49) is provided in Figure 6.3. 
A sample of 10 000 values was generated from the generalized Pareto distribution with mean 𝜇 =1 and upper-tail index 𝜉 = 0.1 (the scale parameter is 𝜆 = 0.9). This distribution admits analytical 
expressions for both classical and K-moments (see Table 6.3). These expressions are evaluated 
for the above parameter values for order 𝑝 from 1 to 10 000, and the results are plotted in Figure 

6.3. For better legibility for the classical moments, the quantities 𝜇𝑝′ 1/𝑝 are plotted, which diverge 
to infinity for 𝑝 ≥ 1/𝜉 = 10. The classical moments were also estimated by the standard statistical 
estimators; naturally, these are not infinite for any p but rather, as 𝑝 approaches the maximum 

value p = 10 000, the quantity 𝜇̂𝑝′ 1/𝑝 tends to the maximum sample value, which happens to be 
15.4. As a result, the estimates start to depart for the theoretical values even for low p (>4) and 
the difference is infinite for 𝑝 ≥ 10. 
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Figure 6.3 Comparison of theoretical moments of the Pareto distribution with parameters 𝜉 = 0.1 and 𝜆 =0.9 with their estimates from a synthetic sample of 10 000 values, detailed (based on equations (6.47)–
(6.49)) and summary (based on equation (6.53)). For the classical moments, for better legibility, the 

quantities 𝜇𝑝′ 1/𝑝 are plotted. The upper and lower K-moments are 𝐾𝑝′  and 𝐾𝑝′ , respectively. (Source: 
Koutsoyiannis, 2023). 

 The upper and lower K-moments were estimated in two ways. In the detailed estimation, the 
entire synthetic sample of 10 000 values was used with equations (6.47)–(6.49). In the summary 
estimation, the 10 000 values were grouped into 110 classes, and for each class 𝑖 = 1,… ,110 with 𝑥 values ranging in [𝑎𝑖 , 𝑎𝑖+1) the 𝑥 values were replaced by the midpoint 𝑥𝑖 = (𝑎𝑖 + 𝑎𝑖+1)/2 and 
the estimation was made using equation (6.53). It can be observed in Figure 6.3 that (a) the 
summary estimates are almost indistinguishable from the detailed estimates and (b) both 
estimates are almost indistinguishable from the theoretical values. These observations support 
the reliability of the K-moment concept. Furthermore, they suggest that, when the sample size is 
large, a summary estimation is equally reliable and algorithmically much faster.1 Apparently, if 
the stochastic variable of interest is of discrete type, the estimation will always be made using 
equation (6.53). 
 Further illustration of the performance of the unbiased estimator of equations (6.47)–(6.49) 
is given in Figure 6.4 for two distributions, lognormal and Pareto. The results were computed by 
Monte Carlo simulation, namely from an ensemble of 100 simulations, each with 𝑛 = 2000. In 
addition to ensemble mean values, prediction limits have also been plotted in the figure. This 
simulation experiment also included the central K-moments, 𝐾𝑝2, estimated by the simplifying 
assumption 𝐴(𝑥, 𝑝) = 1, which could introduce an error. In addition, in this latter case there is no 
theoretical guarantee of unbiasedness (because the sample mean was used in the estimation). Yet 
in all cases the ensemble means are indistinguishable from the true (theoretical) values, even for 
the highest possible order, 𝑝 = 𝑛 (= 2000 in this example). 
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Figure 6.4 Illustration of the performance of the K-moment estimator of equations (6.47)–(6.49), applied 
to upper central K-moments, for the lognormal distribution (left column; LN(0,1)) and the Pareto 
distribution (right column; upper-tail index ξ = 0.15 scale parameter β = 1, lower bound zero) for q = 1 
(middle row) and q = 2 (bottom row). For comparison the performance of the estimators of classical 
moments are also shown (upper row; notice that in the Pareto distribution the true moments are ∞ for p 
> 1/0.15 = 6.87). The true moments were determined by numerical integration for the lognormal 
distribution and from the equations in Table 6.3 for the Pareto distribution. The estimates are averages of 
100 simulations each with 𝑛 = 2000 and are indistinguishable from the true (theoretical) values. The 95% 
prediction limits (PL) are also shown.  

__________ 
1 For the interested reader’s convenience, the calculations to produce Figure 6.3 as well as the figure per se 
are also provided in a spreadsheet that accompanies the paper by Koutsoyiannis (2023) as Supplementary 
Information (also available at https://www.itia.ntua.gr/2304/).  

1

10

100

1 10 100 1000

K
1

p
1

/p

Moment order, p

Theoretical

Simulated, average

Simulated, 95% PL

1

10

100

1 10 100 1000

K
p

1

Moment order, p

1

10

100

1 10 100 1000

K
p

2
1

/2

Moment order, p

1

10

100

1 10 100 1000

K
1

p
1

/p

Moment order, p

Theoretical

Simulated, average

Simulated, 95% PL

1

10

100

1 10 100 1000

K
p

1

Moment order, p

1

10

100

1 10 100 1000

K
p

2
1

/2

Moment order, p

https://www.itia.ntua.gr/2304/


194  CHAPTER 6 – KNOWABLE MOMENTS AND THEIR RELATIONSHIP TO EXTREMES 

 

6.7 Approximately unbiased estimators of central K-moments for q = 2 

For q = 1, the estimator of the central K-moments, based on 𝑏𝑖𝑝𝑛, i.e.: 

𝐾̂𝑝 =∑𝑏𝑖𝑛𝑝(𝑥(𝑖:𝑛) −𝑛
𝑖=p 𝜇̂) (6.54) 

is again unbiased. Here we try to find an approximately unbiased estimator for q = 2. We 

start from the estimator that is given by (6.47) but replacing 𝑥(𝑖:𝑛) with 𝑥(𝑖:𝑛) − 𝜇̂: 

𝐾̂𝑝2 =∑𝑏𝑖𝑛𝑝𝑛
𝑖=p (𝑥(𝑖) − 𝜇̂)2  (6.55) 

From classical statistics of the second-order moments (𝑝 = 1, 𝑞 = 2) it is known that: E[𝐾̂12] − 𝐾12𝐾12 = −1𝑛 (6.56) 

 It is not easy to derive theoretically a similar relationship for any 𝑝 ≥ 1. However, a 

systematic simulation study shows that a good approximation is provided by generalizing 

the latter equation, i.e.: E[𝐾̂𝑝2] − 𝐾𝑝2𝐾𝑝2 ≈ −1𝑛 (6.57) 

This results in: E[𝐾̂𝑝2] ≈ 𝑛 − 1𝑛 𝐾𝑝2 (6.58) 

and thus, an approximately unbiased estimator is obtained by multiplying 𝐾̂𝑝2 by 𝑛/(𝑛 −1). Obviously, the latter term becomes negligible if 𝑛 is large. However, for small 𝑛, the 

bias should be taken into account. Simulation results for sample size as small as 𝑛 = 10 are 

shown in Figure 6.5, which indicate the good performance of approximation (6.58). 

6.8 Specific cases of explicit expressions of K-moments 

Explicit analytical expressions of K-moments are useful in several tasks, albeit not 

necessary as explained in section 6.3. Table 6.3 contains analytical expressions for several 

distributions. As seen there, the exponential and Pareto distributions admit explicit 

expressions for the upper K-moments for any value of p and small values of q, and for the 

lower K-moments for any values of p and q. Note that the parameterization of the 

mathematical expressions of the distributions in Table 6.3 may differ from those in Table 

2.5 as here we have given emphasis on displaying the interrelationships amongst 

distributions (e.g., the derivation of the exponential distribution as the limit of the Pareto 

distribution for 𝜉 → 0). 
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Figure 6.5 Simulation results of estimated noncentral and central moments of a Pareto 
distribution from a sample with size 𝑛 = 10 for order q = 1 and 2. The Pareto distribution has 
upper-tail index 𝜉 = 0.25, scale parameter 𝜆 = 1, and lower bound zero. The true moments are 
calculated from the equations in Table 6.3. The estimated moments are average sample estimates 
from 10 000 simulations. The curve “Kp2 plus bias” corresponds to the right-hand side of equation 
(6.58). 

 Another distribution, which admits analytical expressions of lower K-moments, is the 

Dagum distribution and its special cases, the Extreme Value type I and II distributions. 

These are also contained in Table 6.3. Similar is the situation with the PBF and the Weibull 

distributions.  

 While the PBF and the Dagum distributions, as well as their special and limiting cases, 

are quite general and convenient in their use, other customary distributions such as 

normal, lognormal and gamma, are in common use for several hydrometeorological 

processes. These distributions do not admit analytical relationships of K-moments 

(except for low values of 𝑝 and 𝑞, as shown for the normal distribution in Table 6.3), but 

good approximations are discussed in section 6.19. 

6.9 Relationships between different K-moment families 

Different K-moment families are related to each other and by knowing the K-moment 

sequence of one family, for different 𝑝 and a specified 𝑞, we can in theory determine any 

other category. Most interesting and useful are the equivalence relationships of upper and 

lower noncentral moments:  

𝐾𝑝′ = −∑(−1)𝑖 (𝑝𝑖 )𝐾𝑖′𝑝
𝑖=1 , 𝐾𝑝′ = −∑(−1)𝑖 (𝑝𝑖 )𝐾𝑖′𝑝

𝑖=1  (6.59) 

These relationships suggest that the sequences 𝐾𝑝′  and −𝐾𝑝′  are binomial transforms of 

each other. The details of the binomial transform are contained in Appendix 6-I. The proof 

of equation (6.59) is given in Appendix 6-II, separately for continuous and discrete 

stochastic variables, with the final result being identical in the two cases.  
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Table 6.3 Analytical results for the K-moments of customary distributions. The distributions are 
defined on [0,∞) except for the EV2 and normal distributions, whose support is the entire real 
line. The scale parameters, 𝜆 and 𝜎, the upper-tail index, ξ, and the lower-tail index, ζ, are positive 
parameters. The location parameters, 𝑐 and 𝜇 for the EV2 and normal distributions, respectively, 
can take any real value. 

Distribution, distribution 

function 

complement, 𝐹̅(𝑥) K-moment expressions 
Eqn. 

no. 

Pareto1,  (1 + 𝜉 𝑥𝜆)−1𝜉  

𝐾𝑝′ = 𝜆𝜉 (𝑝B(𝑝, 1 − 𝜉) − 1), 𝐾1′ = 𝜆1 − 𝜉 , 𝐾2′ = 2𝜆1 − 𝜉 − 𝜆2 − 𝜉 

𝐾𝑝2′ = (𝜆𝜉)2 (𝑝(B(𝑝, 1 − 2𝜉) − 2B(𝑝, 1 − 𝜉)) + 1)  𝐾1𝑞′ = 𝐾1𝑞′ = 𝜇𝑞′ = 𝑞 (𝜆𝜉)𝑝𝑞 Β (𝑞, 1𝜉 − 𝑞) , 𝐾12′ = 2𝜆2(1 − 2𝜉)(1 − 𝜉) 𝐾𝑝′  = 𝜆𝑝 − 𝜉 , 𝐾𝑝𝑞′ = (𝜆𝜉)𝑞 𝑞 B (𝑞, 𝑝𝜉 − 𝑞) 

(6.60) 

Exponential1,   exp (−𝑥𝜆) 

𝐾𝑝′ = 𝜆 𝐻𝑝 , 𝐾1′ = 𝜆, 𝐾2′ = 3𝜆2 , 𝐾𝑝2 = ((𝐻𝑝)2 + 𝐻𝑝(2)) 𝜆2, 𝐾12′ = 2𝜆2 𝐾1𝑞′ = 𝐾1𝑞′ = 𝜇𝑞′ = 𝜆𝑞𝑞!, 𝐾𝑝′ = 𝜆𝑝 , 𝐾𝑝𝑞′ = 𝜆𝑞𝑞!𝑝𝑞  

(6.61) 

Dagum,  1 − (1 + 1𝘁𝜉 (𝜉 𝑥𝜆)−1𝜉)−𝜁𝜉  

𝐾𝑝′ = (𝜆/𝜉)𝑝(𝜉𝘁)1−𝜉  B((1 − 𝜉, 𝜉(1 + 𝑝𝘁)) 𝐾𝑝𝑞′ = (𝜆/𝜉)𝑞𝑝(𝜉𝘁)1−𝑞𝜉  B((1 − 𝑞𝜉, 𝜉(𝑞 + 𝑝𝘁)) 𝐾1𝑞′ = 𝐾1𝑞′ = 𝜇𝑞′ = (𝜆/𝜉)𝑞(𝜉𝘁)1−𝑞𝜉  B((1 − 𝑞𝜉, 𝜉(𝑞 + 𝘁)) (6.62) 

EV22, 1 − exp (−(𝜉 𝑥𝜆)−1𝜉) 

𝐾𝑝′ = (𝜆/𝜉)𝑝𝜉Γ(1 − 𝜉) 𝐾𝑝𝑞′ = (𝜆/𝜉)𝑞𝑝𝑞𝜉Γ(1 − 𝑞𝜉) 𝐾1𝑞′ = 𝐾1𝑞′ = 𝜇𝑞′ = (𝜆/𝜉)𝑞Γ(1 − 𝑞𝜉) (6.63) 

EV13, 1 − exp (−e−𝑥−𝑐𝜆 ) 

𝐾𝑝′ = 𝜆(ln 𝑝 + γ) + 𝑐, 𝐾1′ = 𝜆γ + 𝑐, 𝐾12 = π2𝜆26  𝐾𝑝2′ = 𝜆2 ((ln𝑝 + γ + 𝑐𝜆)2 + π26 ) 
(6.64) 

Pareto-Burr-Feller 

(PBF), (1 + 𝘁𝜉 (𝑥𝜆)𝜁)− 1𝜁𝜉  

𝐾𝑝′ = 𝜆 1(𝘁𝜉)1/𝜁 1𝘁 B (1𝘁 , 𝑝𝘁𝜉 − 1𝘁) , 𝐾𝑝𝑞′ = 𝜆𝑞 1(𝘁𝜉)𝑞/𝜁 𝑞𝘁 B (𝑞𝘁 , 𝑝𝘁𝜉 − 𝑞𝘁) 𝐾1𝑞′ = 𝐾1𝑞′ = 𝜆𝑞 1(𝘁𝜉)𝑞/𝜁 𝑞𝘁 B (𝑞𝘁 , 1𝘁𝜉 − 𝑞𝘁) 
(6.65) 

Weibull4, exp (− (𝑥𝜆)𝜁) 

𝐾𝑝′ = 𝜆𝑝−1/𝜁Γ (1 + 1𝘁) , 𝐾𝑝𝑞′ = 𝜆𝑞𝑝−𝑞/𝜁Γ (1 + 𝑞𝘁) ,𝐾1𝑞′ = 𝐾1𝑞′ = 𝜆𝑞Γ (1 + 𝑞𝘁) 
(6.66) 

Normal, 12 erfc (𝑥 − 𝜇√2𝜎 ) 

𝐾1′ = 𝜇, 𝐾2 = 𝜎√π , 𝐾3 = 3𝜎2√π , 𝐾4 = 6ArcTan[√2]𝜎π3 2⁄  𝐾1𝑞′ = 𝜇𝑞′ = 𝜇 𝜇𝑞−1′ + (𝑞 − 1)𝜎2𝜇𝑞−2′ ,   𝐾1𝑞 = 𝜇𝑞 = {0, 𝑞 odd𝜎𝑞(𝑞 − 1)‼, 𝑞 even 

(6.67) 

1 𝐾𝑝2′  of the exponential and the Pareto case can serve as a basis for the calculation of the 𝐾𝑝′  of the special 
case ζ = 1/2 of the Weibull and PBF distributions, respectively. 
2 The EV2 distribution is derived from the Dagum distribution for 𝘁 → ∞. 
3 The EV1 distribution is derived from the EV2 distribution by replacing 𝑥 with 𝑥 + 𝜆/𝜉, and letting 𝜉 → 0. 
4 The Weibull distribution is derived from the PBF distribution for 𝜉 → 0. 
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 This property is also inherited to the K-moment estimators, since they are unbiased; 

this means that equation (6.59) holds true if we replace the true K-moments with their 

estimates. It is also inherited to transformations of the original stochastic variable, and 

thus we can also write 𝐾𝑝𝑞′ = −∑(−1)𝑖 (𝑝𝑖 )𝑝
𝑖=1 𝐾𝑖𝑞′ , 𝐾𝑝𝑞′ = −∑(−1)𝑖 (𝑝𝑖 )𝑝

𝑖=1 𝐾𝑖𝑞′  (6.68) 

In other words, the sequences 𝐾𝑝𝑞′  and −𝐾𝑝𝑞′  are binomial transforms of each other.  

 As many customary distribution functions allow convenient theoretical calculation of 

the one of the families of K-moments, these relationships can be useful to determine other 

families that do not have an analytical expression. For example, the PBF distribution and 

its limiting case Weibull, have general analytical formulae for the lower K-moments but 

not for the upper ones. In such cases, we can evaluate those K-moments without an 

analytical expression, exploiting the fact that the sequences of upper and lower K-

moments are related through a binomial transform.  

 We should stress, however, that numerical evaluation of the binomial transform 

works well for p of the order of several tens, but not of hundreds or thousands. The reason 

is that the binomial transform of a sequence for order p is equivalent to differencing the 

sequence p times and it is well known that differencing many times causes numerical 

errors, which may lead to runaway if p is large. Therefore, for large p, analytical 

relationships or other types of numerical approximations are desirable. An example of 

another type of numerical approximation for a similar situation is given in section 6.15 

 The relationships among other moment types are discussed in Appendix 6-II. Some 

characteristic relationships or values for low values of q or p are summarized in Table 6.4. 

Table 6.4 Characteristic relationships or values of different model families. General equations for 
any p and q are given in Appendix 6-II. The relationship in the first line is a convention used for 
initialization of recursive relationships. 

p, q Characteristic relationships or values Eqn. no. 

p = 0 𝐾0𝑞′ = 𝐾0𝑞′ = 0 (6.69) 

q = 0 𝐾𝑝0′ = 𝐾𝑝0′ = 𝐾𝑝0 = 𝜇0 = 𝜇0′ = 1 (6.70) 

p = q = 1 𝜇1 = 𝐾1 = 0 , 𝜇1′ = 𝐾1′ = 𝐾1′ = 𝜇  (6.71) 

q = 1 𝐾𝑝 = 𝐾𝑝′  − 𝜇, 𝐾𝑝′ = 𝐾𝑝 + 𝜇 (6.72) 

q = 2 𝐾𝑝2 = 𝐾𝑝2′ − 2𝜇𝐾𝑝1′ + 𝜇2, 𝐾𝑝2′ = 𝐾𝑝2 + 2𝜇𝐾𝑝1 + 𝜇2 (6.73) 

p = 1 𝐾1𝑞 = 𝐾1𝑞 = 𝜇𝑞 , 𝐾1𝑞′ = 𝐾1𝑞′ = 𝜇𝑞′  (6.74) 

p = 2 𝐾2𝑞′ = 2𝐾1𝑞′ − 𝐾2𝑞′ , 𝐾2𝑞′ = 2𝐾1𝑞′ − 𝐾2𝑞′  (6.75) 
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6.10 K-moments of mixed distributions 

A mixed distribution with a discontinuity at the lower bound (typically 𝑥 = 0 with the 

discontinuity at the origin equal to 𝑃0 ≔ 𝑃{𝑥 = 0} = 1 − 𝑃1, where 𝑃1 ≔ 𝑃{𝑥 > 0}, is 

useful to examine, for two reasons. First, there are natural processes, such as rainfall and 

occasionally streamflow, in which the probability dry is nonzero (and thus 0 < 𝑃1 ≤ 1). 

Second, in several analyses we are interested about values of 𝑥 above a threshold 𝑥0 and 

in this case the distribution becomes discontinuous at 𝑥0.  

 Denoting the distribution function and the K-moments of the discontinuous and 

continuous distribution with and without a superscript ‘*’, respectively, we have: 

𝐹∗(𝑥) ≔ 𝑃{𝑥 > 𝑥}, 𝐹(𝑥) ≔ 𝑃{𝑥 > 𝑥|𝑥 > 0} = 𝑃{𝑥 > 𝑥}𝑃{𝑥 > 0} = 𝐹∗(𝑥)𝑃1  (6.76) 

and hence 𝐹∗(𝑥) = 𝑃1𝐹(𝑥) (6.77) 

It is then easy to see that the lower K-moments in the two cases are related by:  𝐾𝑝′∗ = 𝑃1𝑝𝐾𝑝′  (6.78) 

Hence, once a continuous distribution has analytical expression for the lower K-moments, 

we can readily find analytical expressions for the mixed case too. Based on the latter, we 

find in Appendix 6-III that the upper K-moments in the two cases are related though a 

Bernoulli transform, whose properties are given in Appendix 6-I. Namely, 𝐾𝑝′∗ is the 

Bernoulli transform of 𝐾𝑝′  with parameter 𝑃1: 

𝐾𝑝′∗ =∑(𝑝𝑙)𝐾𝑙′𝑃1𝑙(1 − 𝑃1)𝑝−𝑙𝑝
𝑙=1 = (1 − 𝑃1)𝑝∑(𝑝𝑙)𝐾𝑙′ ( 𝑃11 − 𝑃1)𝑙𝑝

𝑙=1  (6.79) 

 This enables determining the analytical determination of 𝐾𝑝′∗ for the  

Pareto and exponential distributions, where the resulting equations are contained in 

Appendix 6-III (Table 6.13). For other distributions the transformation should be applied 

numerically. Unlike the binomial transform, the Bernoulli transform does not entail 

numerical problems as it reflects summation of positive quantities rather than differences 

thereof. Yet a simple approximation is proposed, which can be useful in some cases: 

𝐾𝑝′∗ = { 
 𝑃1𝐾1′𝑝𝑏 𝑝 ≤ 2𝑃1𝐾𝑝′′ 𝑝 > 2𝑃1 , 𝑝′ = 𝑃1𝑝, 𝑏 = ln(𝐾2′ 𝐾1′⁄ 𝑃1)ln(2 𝑃1⁄ )  (6.80) 

The rationale of this approximation is given in Appendix 6-III. 

6.11 Relationship of knowable and classical moments 

While the classical moments are extremely useful as theoretical concepts, and their values 

can be derived rather easily, their estimation from samples is problematic if we go to 



RELATIONSHIP OF KNOWABLE AND CLASSICAL MOMENTS  199 

moment order higher than 3-4, as already discussed. On the contrary, K-moments can be 

estimated reliably even for a very high order p, provided that the order q remains low. 

The classical moments can be recovered as special cases of K-moments: 𝐾1𝑞′ ≡ 𝜇𝑞′ , 𝐾1𝑞 ≡ 𝜇𝑞 (6.81) 

 Coming now to moment estimates, K-moments estimates can also predict the value of 

the of the classical moments estimates. Next, we will derive this prediction for the 

noncentral classical moments in detail. We note that this prediction does not coincide 

with the true value of the classical moment. This may sound paradoxical as it is known 

that, for order q however large, 𝜇̂𝑞′  ,is an unbiased estimator of 𝜇𝑞′ . In practice, however, 

the convergence of 𝜇̂𝑞′  to 𝜇𝑞′  is very slow, while the K-moments can give us an indication 

of what we can anticipate for the value of 𝜇̂𝑞′ , which does not coincide with 𝜇𝑞′ . In this 

respect, by examining the moment estimators, we will establish relationships between K- 

and classical moments broader and more essential than (6.81).  

 For large q the classical moment estimator will give: 

𝜇̂𝑞′ = 1𝑛∑𝑥𝑖𝑞𝑛
𝑖=1 ≈ 1𝑛 𝑥(𝑛)𝑞  (6.82) 

This is related to the well-known mathematical fact that the maximum norm is the limit 

of the q-norm as q → ∞ as explained in Digression 4.B. Taking expected values in (6.82), 

we find: E[𝜇̂𝑞′ ] ≈ 1𝑛 E[𝑥(𝑛)𝑞 ] = 𝐾𝑛𝑞′𝑛  (6.83) 

and since E[𝜇̂𝑞′ ] = 𝜇𝑞′ , for large q: 𝐾𝑛𝑞′ = 𝑛𝜇𝑞′  (6.84) 

or, equivalently, for large q and for 𝑝 = 𝑛: 𝐾𝑝𝑞′ ≈ 𝑝𝜇𝑞′  (6.85) 

from which for p = 1, we recover (6.81), in this case holding precisely.  

 However, if 𝜇̂𝑞′  is estimated from a sample and q is large, we do not anticipate that 𝜇̂𝑞′  

would be close to the true classical moment 𝜇𝑞′ . Rather, because of (6.82), we can 

anticipate that: 

𝜇̂𝑞′  ≈ (𝑥(𝑛))𝑞𝑛 ≈ (𝐾𝑛1′ )𝑞𝑛  (6.86) 

 To establish a more general formula that will give us the anticipated value for our 

estimate 𝜇̂𝑞′ , applicable for small and large q, we observe that, because of (6.83), the ratio 𝑛 𝜇𝑞′  𝐾𝑛𝑞′⁄  is 1 for large q, and thus multiplying the rightmost part of (6.86) by it will not 

have any effect if q is large, while having the desired effect if q is small and particularly if 

q = 1. Thus, our formula becomes 
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 𝜇̂𝑞′ ≈ 𝐾𝑛1′𝑞𝐾𝑛𝑞′ 𝜇𝑞′  (6.87) 

Indeed, for q = 1 and for any 𝑛, our formula (6.87), yields 𝜇̂1′ = (𝐾𝑛1′ 𝐾𝑛1′⁄ ) 𝜇1′ = 𝜇1′ , while 

for large q we recover (6.86) as already explained. If the classical moment 𝜇𝑞′  is estimated 

as the average of m independent samples, each of size 𝑛, then the product 𝑚𝑛 should be 

substituted for 𝑛 in Equation (6.87). 

 It should be noted that Equation (6.87) was extracted for non-negative stochastic 

variables. However, it can also be applied to variables that can also take negative values, 

provided that the mean is positive. This case illustrated in Digression 6.D for the normal 

distribution with 𝜇 = 𝜎 = 1, which takes negative values with a probability of 16%. 

Digression 6.D: Example on the relationship of knowable and classical moments 

We illustrate the relationship of K- and classical moments using synthetic samples with size 𝑛 = 
100 from the exponential distribution with lower bound zero and scale parameter 1 and the 
normal distribution with a mean and standard deviation of 1. The former distribution has simple 
expressions of its K-moments for 𝑝 = 1,2, as seen in Table 6.3. For q > 2 the K-moment 𝐾𝑝𝑞′  does 
not have a closed analytical expression but its calculation can be easily made by numerical 
integration. For the normal distribution, the classical noncentral moments can be determined by 
a recursive relationship shown in Table 6.3, along with the K-moments for 𝑝 ≤ 4. However, for 𝑝 > 4, no analytical solution exists but numerical integration can readily give the K-moment 
values. 
 Figure 6.6 shows comparison of the theoretical (true) moments, of orders 1 to 100, of the two 
distributions with the empirical estimations from a single sample as well as from a set of 1000 
samples (by averaging 1000 estimates). For the exponential distribution, the single sample 
estimates deviate from (are lower than) the true moments for p ≥ 3 and the deviation becomes 
one order of magnitude as p approaches 𝑛 = 100. For the normal distribution, the deviations are 
somewhat smaller. We will refer to this deviation as slow convergence bias, because theoretically 
speaking there is no bias per se, according to the bias definition in section 4.3.  

  

Figure 6.6 Comparison of the estimates of classical noncentral moments from 1 and 1000 independent 
samples (a) to the true (theoretical) moments and (b) to the values determined by equation (6.87) (adapted 
theoretical) for (left) the exponential distribution with a mean of 1 and (right) the normal distribution with 
a mean and standard deviation of 1 (adapted from Koutsoyiannis, 2023). 
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 From a practical point of view, the moment estimates are not the same thing as the true 
moments, despite the theoretical guarantee that the estimates are unbiased. Even the average of 
1000 estimates from different synthetic samples deviates substantially from the true moments 
for order p > 10. On the other hand, equation (6.87) captures very well the behaviour of the 
estimates for both m = 1 and m = 1000. 
 In other words, the classical moment estimators do not practically estimate classical 
moments but hybrid quantities involving both classical and K-moments, as implied by equation 
(6.87). The question arises then, when high-order moments are of interest, whether it is useful to 
involve classical moment estimates in statistical calculations, now knowing, from equation (6.87), 
what they really represent, or it is better to use merely K-moments. To answer this question, we 
need to examine not the averages of estimates but the ranges in which they vary.  
 This information is provided by Figure 6.7 which depicts moments from 100 simulated 
samples with length 𝑛 = 2000 from lognormal distribution LN(0,1). K-moments, specifically 𝐾𝑝1′  

in the left panel and 𝐾𝑝2′  in the right panel, are compared to classical moments 𝜇𝑝′′ ≈ 𝐾1𝑝′′ . To 

facilitate visual comparison, the order 𝑝′ of the classical moments was determined so that the 
estimate 𝜇̂𝑝′′  coincide with that of 𝐾𝑝1′  and 𝐾𝑝2′  in the left and right panel, respectively. This entails 

a specific relationship between 𝑝′ and 𝑝, which was determined numerically and is shown in the 
figure caption.  
 A first observation in Figure 6.7 is that true and estimated K-moments coincide, while 
estimates of classical moments differ substantially from the true values. A second observation is 
that the 95% prediction limits, determined from the simulation, are much wider in the classical 
moments than in the K moments. The two prediction intervals approach each other only when p 

and p΄ approach 𝑛 = 2000 (note though that the actual moment order p for the classical moments 
when p΄ = 2000 is much less than 2000, close to 160). All in all, the plots show that there is no 
benefit in using high order classical moments as K-moments are much more reliably estimated. 
 The breadths of the prediction intervals are depicted in Figure 6.8 in terms of the ratios of 
upper to lower prediction limit. Even without considering the slow convergence bias, which, as 
illustrated in Figure 6.7, is very high for the classical moments, the broad prediction intervals 
disfavour again the use of the classical moments. We observe in Figure 6.8 that for the third 
classical moment, the prediction limits have a ratio of 1.77 (higher to lower, without considering 
the slow convergence bias). The same ratio appears in K-moments at a moment of order as high 
as 250 (for q = 1) or 100 (for q = 2). Therefore, instead of estimating the third classical moment, 
it is safer to estimate and use K-moments of much higher order and specifically up to 𝑝 = 𝑛/10 
for 𝐾𝑝1′  and up to 𝑝 = 𝑛/20 for 𝐾𝑝2′ .  

 

Figure 6.7. Comparison of K- and classical moment estimates for the lognormal distribution LN(0,1) from 
100 simulations, each with 𝑛 = 2000. Order q of K-moments is q = 1 for the left panel and q = 2 for the right 
panel. The order p΄ of the classical moments (see explanation in text) is determined from 𝑝΄ = 1 +220 ln (1 + (𝑝3 − 𝑞3)/(500(𝑞 + 1))). PL stands for prediction limits.  
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Figure 6.8 Ratios of upper to lower prediction limits, as a function of moment order p, for the simulation 
experiment of Figure 6.7. 

6.12 Relationship of K-moments with L-moments and probability weighted 

moments 

L-moments (Hosking et al.,1985a,b; Hosking, 1990) represent a very useful and popular 

moment category as, contrary to classical moments, have unbiased estimators for high 

orders. According to their definition, L-moments are linear combinations of order 

statistics. Naturally then, L-moments are connected by linear relationships with K-

moments for the specific case of q = 1. The relationships for the first four orders p are 

given in Koutsoyiannis (2019a) for continuous stochastic variables.  

 Notably, Klemeš (2000) has criticized L-moments for being an artificial construct in 

terms of the polynomials of the distribution function 𝐹 that are used to determine it, after 

multiplication with the variable and integration over 𝐹. In this respect, he found the 

weights that L-moments give to the different observations problematic. One may observe 

that K-moments are not affected by such problems, thanks to their clear and intuitive 

definition as expectations of extremes, and their simple and rational determination by 

equations such as (6.17) or (6.21) (for continuous and discrete variables, respectively), 

which do not involve polynomial expressions. 

 L-moments are also related to probability weighted moments (PWM), which had been 

introduced earlier than the former (Greenwood et al., 1979). Actually, the latter are more 

directly defined than the former and therefore are preferable—and in fact the estimation 

of L-moments is made from that of PWM. In particular, the definition of the PWM involves 

three different orders, p, s and q and is 𝛽𝑝,𝑠,𝑞 ≔ E[(𝐹(𝑥))𝑝 (1 − 𝐹(𝑥))𝑠 𝑥𝑞]. However, 

only the case q = 1 has been studied and the most common form, which is also used for 

estimation of L-moments, 𝛽𝑝 ≔ 𝛽𝑝,0,1 = E [(𝐹(𝑥))𝑝 𝑥]. For continuous variables, this is 

proportional to the upper noncentral K- moment for q = 1: 𝐾𝑝′ = 𝑝𝛽𝑝−1 (6.88) 
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The small difference (multiplication by p) makes the K-moments intuitive. First, it makes 

upper K-moments increasing functions of p, which is consistent to the behaviour of 

classical moments. Also, it links them directly to the expectation of extremes (in this case 

of the maximum). For discrete variables, K-moments differ substantially from PWMs and 

equation (6.88) does not hold as the expectation of the maximum variable, which is the 

definition of the upper K-moment, is no longer given as the expectation 𝑝E [(𝐹(𝑥))𝑝−1 𝑥]. 
Rather, it is given by equation (6.21) and, as discussed in Digression 6.A, the difference is 

large. 

6.13 Summary statistical characteristics based on K-moments 

Because the classical moments for large orders are unknowable (from a sample), it has 

been a customary practice to use those for orders q from 1 to 4 only. These indicate the 

location, variability, skewness and kurtosis of a distribution, often altogether called 

summary statistics. For 𝑞 = 3,4, the central classical moments are used after 

standardization by the variance raised to a proper power so that a dimensionless metric 

is obtained. 

 Using K-moments, as we have seen, we can estimate moments of very high orders, 

which are particularly useful for the study of extremes, as well as for simulation from non-

normal distributions (Koutsoyiannis and Dimitriadis, 2021, and section 7.4 below). Yet 

we can employ the K-moments of orders p from 1 to 4, to derive summary statistics, such 

as in the classical moments. To define the summary statistics based on K-moments, earlier 

studies have enrolled the notion of hypercentral K-moments (Koutsoyiannis, 2019a), or 

the notion of the discrete derivative of K-moments at zero (Koutsoyiannis, 2023). Here 

we use a much more intuitive and parsimonious approach based on the geometric 

relationships shown in Figure 6.9, which shows the ordering of the first four upper and 

lower K-moments. The resulting summary statistics are as follows. 

 

Figure 6.9 Explanatory sketch for the definition of summary statistics based on K-moments.  

1. As in classical statistics, the location characteristic is the mean, 𝜇 = 𝐾1′ = 𝐾1′ . 
2. For the dispersion characteristic, observing that the central upper and lower 

second K-moments contain precisely the same information, as 𝐾2′ − 𝐾1′ = 𝐾1′ − 𝐾2′ , 

we use 𝐾2′ − 𝐾1′ = 𝐾2 as the dispersion parameter. 

𝐾1′ = 𝐾1′ = 𝜇 𝐾2′ 𝐾3′ 𝐾4′𝐾2′𝐾3′𝐾4′

𝐾3′ −𝐾2′𝐾2′ −𝐾3′
𝐾4′ −𝐾3′𝐾3′ −𝐾4′

𝐾2′ −𝐾1′𝐾1′ −𝐾2′
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3. For the skewness characteristic, we observe that in a symmetric distribution, 𝐾3′ −𝐾2′ = 𝐾2′ − 𝐾3′  or (𝐾3′ − 𝐾2′) + (𝐾3′ − 𝐾2′ ) = 0. Therefore, we use the average 

of (𝐾3′ − 𝐾2′) and (𝐾3′ − 𝐾2′ ) as a skewness characteristic, which will have a 

positive value for a positively skewed distribution. Based on equations of section 

6.9, we can easily express it in terms of upper K-moment only and find ((𝐾3′ − 𝐾2′) + (𝐾3′ − 𝐾2′ )) /2 = 𝐾3′ − (3/2)𝐾2′ + (1/2)𝐾1′. 
4. For the kurtosis characteristic, we use the average of (𝐾4′ − 𝐾3′) and (𝐾3′ − 𝐾4′ ), i.e., ((𝐾4′ − 𝐾3′) + (𝐾3′ − 𝐾4′ )) /2 = 𝐾4′ − 2𝐾3′ + (3/2)𝐾2′ − (1/2)𝐾1′.  

 All quantities in points 1–4 above are specific cases of the general relationship: 

 KC𝑝 ≔ (𝐾𝑝′ − 𝐾𝑝−1′ ) − (−1)𝑝 (𝐾𝑝′ − 𝐾𝑝−1′ )2  (6.89) 

Indeed, for 𝑝 = 1 we get KC1 = (𝐾1′ + 𝐾1′ ) /2 = 𝐾1′, where we used the convention 𝐾0′ =𝐾0′ = 0 (see Table 6.4). For 𝑝 = 2, KC2 = ((𝐾2′ − 𝐾1′) − (𝐾2′ −𝐾1′ )) /2 = ((𝐾2′ − 𝐾1′) +(𝐾1′ − 𝐾2′ )) /2 and since 𝐾2′ − 𝐾1′ = 𝐾1 − 𝐾2, we get KC2 = 𝐾2′ − 𝐾1′. For 𝑝 = 3, KC3 =((𝐾3′ − 𝐾2′) + (𝐾3′ − 𝐾3′ )) /2, and so forth. In all relationships, except that in point 1, we 

can also replace the noncentral moment with central (𝐾𝑝′  with 𝐾𝑝, etc., also noting that 𝐾1 = 0). Furthermore, it is convenient to standardize the third- and fourth-order 

characteristics by 𝐾2. All these results about the summary statistics are shown in Table 

6.5. This also includes the classical summary statistics, which can also be derived from the 

K-moment framework by keeping 𝑝 = 1 and varying 𝑞 from 1 to 4. It is further noted that 

the summary statistics based on K-moments are related to those produced by L-moments, 

denoted as 𝜆𝑖, as it can be shown that 𝐾2 = 𝜆2, 𝐾3𝐾2 − 32 = 12 𝜆3𝜆2 , 𝐾4𝐾2 − 2𝐾3𝐾2 + 32 = 210 𝜆4𝜆2 + 310 (6.90) 

 Some examples of theoretical values for customary distributions (normal, 

exponential, Pareto) are listed in Table 6.6. In the Pareto case, if we use the K-moments 

for 𝑞 = 1, the maximum for the coefficients of both skewness and kurtosis is 1/2, and is 

attained for upper-tail index 𝜉 = 1, which is the maximum possible value for a distribution 

with finite mean. However, for the classical statistics (𝑝 = 1) the maximum is attained for 𝜉 = 1/3 and 𝜉 = 1/4 for the skewness and kurtosis, respectively, and it is infinite (also, it 

remains infinite also for higher values of 𝜉).  

As discussed in section 6.11, the sample estimates for 𝑞 = 1 are more reliable (closer 

to their theoretical values) than those for 𝑝 = 1 (the classical). For all these reasons, the 

former are preferable than the latter. However, if we are interested in extremes, the 

summary statistics are not quite informative and other indices, specifically the tail indices, 
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should be used instead. This is illustrated in Digression 6.E and Digression 6.F, from which 

an important conclusion can be drawn: The popular practice of using summary statistics 

(i.e., four moments, whether classical or alternative, e.g. L-moments), to choose a model 

for the marginal distribution and to estimate its parameters, is fundamentally defective.  

Table 6.5 Summary list of summary statistics. 

Characteristic Original expression 
Expression based 

on upper moments 

Final summary 

statistics1 based 

on K-moments 

Classical 

summary 

statistics 

Location 𝐾1′ = 𝐾1′ = 𝜇 𝐾1′ = 𝜇 𝐾1′ = 𝜇 𝐾1′ = 𝜇 

Dispersion 
(𝐾2′ − 𝐾1′) − (𝐾2′ − 𝐾1′ )2  𝐾2 𝐾2 𝐾12 = 𝜇2 

Skewness 
(𝐾3′ − 𝐾2′) + (𝐾3′ − 𝐾2′ )2  𝐾3 − 32𝐾2 

𝐾3𝐾2 − 32 
𝐾13𝛫123/2 = 𝜇3𝜇23/2 

Kurtosis 
(𝐾4′ − 𝐾3′) − (𝐾4′ − 𝐾3′ )2  𝐾4 − 2𝐾3 + 32𝛫2 

𝐾4𝛫2 − 2𝐾3𝛫2 + 32 
𝐾14𝐾122 = 𝜇4𝜇22 

1 After standardization for 𝑝 = 3,4.  

Table 6.6 Coefficients of skewness and kurtosis of the normal, exponential and Pareto 
distributions. For the Pareto distribution the minimum and maximum possible values are also 
shown, where the minimum corresponds to the minimum possible value 𝜉 = 0 and the maximum 
corresponds to 𝜉 = 1 for the case 𝑞 = 1, while for the case 𝑝 = 1 it corresponds to 𝜉 = 1/3 and 𝜉 = 1/4 for the maximum skewness and maximum kurtosis, respectively. 

Case Characteristic and  

mathematical expression  

Normal (𝜇, 𝜎) Exponential (𝜆) Pareto (𝜆, 𝜉) 𝐹(𝑥) = 12 erfc (𝑥 − 𝜇√2𝜎 ) 𝐹(𝑥) = 𝑒−𝑥/𝜆 𝐹(𝑥) = (1 + 𝜉 𝑥𝜆)−1/𝜉  

𝑞 = 1 Skewness,   𝐾3𝐾2 − 32 0 
16 = 0.167 

16 ≤ 1 + 𝜉2(3 − 𝜉) ≤ 12 

 Kurtosis,   𝐾4𝐾2 − 2𝐾3𝐾2 + 32 
6𝜋 arctan√2 − 32 = 0.324 

13 =  0.333 
13 ≤ 12 + 43 − 𝜉 − 64 − 𝜉 ≤ 12 

𝑝 = 1 Skewness,   𝐾13𝛫123/2 0 2 2 ≤ 2√1 − 2𝜉(1 + 𝜉)1 − 3𝜉 < ∞ 

 Kurtosis,   𝐾14𝐾122  3 9 9 ≤ 3(1 − 2𝜉)(3 + 𝜉 + 2𝜉2)(1 − 3𝜉)(1 − 4𝜉) < ∞ 

Digression 6.E: Are classical summary statistics informative for extremes? 

We try to answer the question in the title by the illustration depicted in Figure 6.10. Four 
distributions with different behaviours are chosen, exponential, truncated normal, lognormal and 
PBF, and their parameters are estimated so that all four have the same classical summary 
statistics, which are shown, along with the fitted parameters, in Table 6.7. To increase the number 
of parameters in the distributions, so as to enable preservation of four statistics, a lower bound 𝑐 
and a discontinuity of the distribution function (1 − 𝑃1) were considered. 
 Figure 6.10 shows that for K-moment order up to ≈ 1000, the K-moments do not differ among 
the four cases, and thus at first glance the four summary statistics appear to contain the required 
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information about extremes. However, if we assume that the process studied is on daily or hourly 
scale (where these scales are typical for storms and floods) and if we wish to deal with return 
periods of the order of a thousand years (as is the case for the design and management of 
important infrastructures), then we need to know the expected maximum of 365 000 values for 
the daily scale or 8 760 000 values for the hourly scale. In other words, we are interested in K-
moments of order of 106 to 107. In this case, as clearly shown in Figure 6.10 for the order of 106, 
different distributions result in quite different values, with a ratio of 1:3 if we compare the normal 
with the PBF distribution). Hence, more important than the summary statistics is whether the 
distribution has heavy or light upper tail (in our illustration the lognormal and the PBF have) and 
what the upper-tail index is.  

 

Figure 6.10 Comparison of upper central K-moments of the indicated four distributions fitted to have the 
same classical summary statistics. 

Table 6.7 Parameters of the distributions in the illustration of Figure 6.10, fitted so as to have classical 
summary statistics identical to those of a mixed exponential distribution with lower bound 0, scale 
parameter 1 and discontinuity at the origin equal to 1 − 𝑃1 = 0.75; the resulting classical summary 

statistics are 𝜇 = 0.25,  𝜇21/2 𝜇1⁄ = 0.661, 𝜇3 𝜇23/2⁄ = 4, 𝜇4 𝜇32⁄ = 24.4. In all distributions the domain 
considered is 𝑥 ≥ 𝑐. 

Distribution Exponential1 
Truncated 

normal2  
Lognormal  

Pareto-Burr-Feller 

(PBF) 

Distribution function 
complement, 𝐹̅(𝑥) 𝑃1 exp (−𝑥 − 𝑐𝜆 ) 𝑃1 erfc (𝑥 − 𝑐√2𝜆 ) 

𝑃12 erfc (ln((𝑥 − 𝑐) 𝜆⁄ )√2𝜍 ) 𝑃1 (1 + 𝘁𝜉 (𝑥 − 𝑐𝜆 )𝜁)− 1𝜁𝜉  

Lower bound, 𝑐 0 0.046 (0.061) 0.035 0.070 

Probability 𝑃{𝑥 > 𝑐} = 𝑃1 
0.250 0.136 (0.118) 0.127 0.075 

Scale parameter, 𝜆 1 1.877 (2.002) 1.466 2.135 

Upper tail index, 𝜉  [0]3 [0] [0] 0.2 

Lower-tail index, 𝘁 [1] [1]   [∞] 13 

Shape parameter, 𝜍   0.535  
1 With the chosen values of summary statistics, the gamma, Weibull, and Pareto distributions coincide with the 
exponential, as all these three contain the exponential as a special case.  
2 It is impossible to preserve all four statistics with the three parameter truncated normal distribution; therefore, two 
cases are examined and plotted in Figure 6.10, marked as 1 and 2, where in 1 the first three classical moments are 
preserved and in 2 the third is replaced by the fourth. 
3 In square brackets are the values of the indices, which do not appear as parameters in the distribution expressions. 
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Digression 6.F: Are K-moment-based summary statistics informative for 

extremes? 

In Digression 6.E we fitted the four distributions so as to have the same classical summary 
statistics. Here we investigate whether the situation is improved if we preserve the K-moment 
summary statistics (for 𝑞 = 1), instead of the classical. The parameter values are shown in Table 
6.8 and the results are shown in Figure 6.11. There is some improvement in terms of the proximity 
of the exponential and lognormal distributions, but all in all the range of 1:3 remains for moment 
order of 106. Hence, when we are interested in extremes, the information in summary statistics is 
limited, regardless of the chosen set of order statistics.  

 

Figure 6.11 Comparison of upper central K-moments of the indicated four distributions fitted to have the 
same K-moment-based summary statistics. 

Table 6.8 Parameters of the distributions in the illustration of Figure 6.11, fitted so as to have K-moment 
summary statistics identical to those of a mixed exponential distribution with lower bound 0, scale 
parameter 1 and discontinuity at the origin equal to 1 − 𝑃1 = 0.75; the resulting characteristics are μ = 
0.250,  𝐾2 𝐾1⁄ = 0.875, skewness 𝐾3 𝐾2⁄ − 3 2⁄ = 0.381 and kurtosis 𝐾4 𝐾2⁄ − 2𝐾3 𝐾2⁄ + 3/2 = 0.400. In all 
distributions the domain considered is 𝑥 ≥ 𝑐. 

Distribution Exponential1 
Truncated 

normal2  
Lognormal  

Pareto-Burr-Feller 

(PBF) 

Distribution 
function 
complement, 𝐹̅(𝑥) 𝑃1 exp (−𝑥 − 𝑐𝜆 ) 𝑃1 erfc (𝑥 − 𝑐√2𝜆 ) 

𝑃12 erfc (ln((𝑥 − 𝑐) 𝜆⁄ )√2𝜍 ) 𝑃1 (1 + 𝘁𝜉 (𝑥 − 𝑐𝜆 )𝜁)− 1𝜁𝜉  

Lower bound, 𝑐 0 0.001 0.000 0.002 

Probability 𝑃{𝑥 > 𝑐} = 𝑃1 
0.250 0.210 0.175 0.135 

Scale parameter, 𝜆 1 1.489 1.236 1.629 

Upper tail index, 𝜉  [0]3 [0] [0] 0.2 

Lower-tail index, 𝘁 [1] [1]   [∞] 13 

Shape parameter, 𝜍   0.535  
1 With the chosen values of summary statistics, the gamma, Weibull, and Pareto distributions coincide with the 
exponential, as all these three contain the exponential as a special case.  
2 While the three-parameter truncated normal distribution is impossible to precisely preserve four statistics, in this 
case it happens to approximately preserve all.  
3 In square brackets are the values of the indices, which do not appear as parameters in the distribution expressions. 
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6.14 The K-moments as the Mellin transform of the quantile function 

For continuous stochastic variables, from equation (6.17) we obtain 

𝐺(𝑝) = ∫𝑥(𝐹)1
0 𝐹𝑝−1d𝐹, 𝐺(𝑝)  ≔ 𝐾𝑝′𝑝  (6.91) 

As we have already discussed, the moment order p can be assumed to be a real number, 

rather than an integer. In this case, the thus defined function 𝐺(𝑝) is the finite Mellin 

transform (Oberhettinger, 1974) of the quantile function 𝑥(𝐹). Consequently, if we know 

the K-moments 𝐾𝑝′  for any 𝑝, and hence the function 𝐺(𝑝), by inverting the transform we 

can find the quantile function 𝑥(𝐹) and hence the distribution function 𝐹(𝑥). A similar 

result can be obtained for the lower K-moments 𝐾𝑝′ . This may be computationally 

cumbersome, but it is useful to know that the quantile function and the K-moments are 

related to each other by an invertible integral transform.  

6.15 The K-moment estimators as the binomial transform of order statistics 

Equation (6.44), which is valid for both continuous and discrete stochastic variables, 

defines a discrete linear transform of the order statistics to K-moment estimators. This 

transform is invertible, which means that if we know the complete sequence of K-moment 

estimates, we can recover the data. The inverse transform is: 

𝑥(𝑖:𝑛) = (𝑛𝑖 )∑(−1)𝑝−𝑖 𝑖𝑝 (𝑛 − 𝑖𝑝 − 𝑖) 𝐾̂𝑝′  𝑛
𝑝=𝑖  (6.92) 

The proof is given in Appendix 6-VII. Equation (6.92) can also be written as  𝑥(𝑖:𝑛)𝑖 (𝑛𝑖 ) =∑(−1)𝑝−𝑖  (𝑛 − 𝑖𝑝 − 𝑖) 𝑛
𝑝=𝑖

𝐾̂𝑝′𝑝 =∑(−1)𝑛−𝑖−𝑠  ( 𝑛 − 𝑖𝑛 − 𝑖 − 𝑠) 𝑛−𝑖
𝑠=0

𝐾̂𝑛−𝑠′𝑛 − 𝑠 (6.93) 

where we have set 𝑠 = 𝑛 − 𝑝. By reversing the sequences of 𝑥(𝑖:𝑛) and 𝐾̂𝑝′ , and changing 

variables according to the definitions: 𝑦𝑛−𝑖 ≔ 𝑥(𝑖:𝑛)𝑖 (𝑛𝑖 ) , 𝑌𝑠 ≔ 𝐾̂𝑛−𝑠′𝑛 − 𝑠 (6.94) 

and noticing that ( 𝑛 − 𝑖𝑛 − 𝑖 − 𝑠) = (𝑛 − 𝑖𝑠 ), we can write: 

𝑦𝑛−𝑖 =∑(−1)𝑛−𝑖−𝑠  (𝑛 − 𝑖𝑠 ) 𝑛−𝑖
𝑠=0 𝑌𝑠 (6.95) 

and setting 𝑟 = 𝑛 − 𝑖, 
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𝑦𝑟 =∑(−1)𝑟−𝑠  (𝑟𝑠) 𝑟
𝑠=0 𝑌𝑠 (6.96) 

This is a non-self-inverting variant of the binomial transform (see Appendix 6-I), whose 

inverse, sometimes called forward binomial transform, which corresponds to equation 

(6.44), is 

𝑌𝑠 =∑(𝑠𝑟) 𝑠
𝑟=0 𝑦𝑟 (6.97) 

 As already noted (section 6.9), the binomial transform that involves differencing, as 

that in equation (6.96), is problematic in its direct numerical implementation. In contrast, 

the inverse transform in equation (6.97) is free of this problem as it involves summation 

rather than differencing. For that reason, there is no difficulty in determining 𝐾̂𝑝′  from 𝑥𝑖:𝑛. 

In fact, equation (6.97) can serve as a basis for a fast algorithm to simultaneously 

determine all 𝐾̂𝑝′  from 𝑥(𝑖:𝑛), which is discussed in Digression 6.G. 

 Determining 𝑥(𝑖:𝑛) from 𝐾̂𝑝′  is not a problem that we expect to encounter in practice, 

yet it is of some theoretical interest. To tackle this problem, alternative algorithms, 

typically iterative, should be used. To illustrate that this determination is feasible, we give 

a simple example in Digression 6.H. 

Digression 6.G: Fast algorithm to find the complete sequence of K-moments 

Equations (6.47)–(6.49) are readily applicable and provide a fast numerical framework to 
estimate a K-moment of any order 𝑝. However, if we wish to transform the sequence of 𝑥(𝑖:𝑛) to 

that of 𝐾̂𝑝′  (or 𝐾̂𝑝′ ), i.e., to find the entire sequence of K-moments for all 𝑝 = 1,… , 𝑛, there is a faster 
option. This is based on the property of forward binomial transform in equation (6.97) to be 
determined by iterative summations. Specifically, if we define 𝑊𝑖0 = 𝑦𝑖 , 𝑊𝑖𝑗+1 = 𝑊𝑖𝑗 +𝑊𝑖+1𝑗 , 𝑖 = 0,… , 𝑛 − 1, 𝑗 = 0,… , 𝑛 − 1 (6.98) 

then equation (6.97) is simplified to 𝑌𝑠 = 𝑊0𝑠, 𝑠 = 0,… , 𝑛 − 1 (6.99) 

 To apply the idea even to large samples, it is necessary first to perform a logarithmic 
transformation on 𝑦𝑖 , thus avoiding numerical instabilities due to extraordinarily large values of 

the quantity (𝑛𝑖 ) in the denominator of the definition of 𝑦𝑛−𝑖  in equation (6.94). From equation 

(6.94) we get 𝑧𝑛−𝑖 ≔ ln𝑦𝑛−𝑖 = ln𝑥(𝑖:𝑛) − ln 𝑖 − lnΓ(𝑛 + 1) + lnΓ(𝑖 + 1) + lnΓ(𝑛 − 𝑖 + 1) ,𝑖 = 1,… , 𝑛 
(6.100) 

where lnΓ denotes the log-Gamma function. Likewise, by defining 𝑤𝑖𝑗 ≔ ln𝑊𝑖𝑗 , equation (6.98) 
becomes 𝑤𝑖0 = 𝑧𝑖 , 𝑤𝑖𝑗+1 = ln(exp𝑤𝑖𝑗 + exp𝑤𝑖+1𝑗 ) = 𝑤𝑖𝑗 + ln(1 + exp(𝑤𝑖+1𝑗 −𝑤𝑖𝑗)) (6.101) 

Hence, from equation (6.94) we obtain: 𝐾̂𝑛−𝑠′ = exp(𝑤0𝑠) (𝑛 − 𝑠) ⇔ 𝐾̂𝑝′ = 𝑝 exp(𝑤0𝑛−𝑝) (6.102) 
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The algorithm is quite fast, reliable and economic. It only needs two linear arrays to be stored, 

namely 𝑤𝑖 (which initially contains 𝑧𝑖  and progressively changes to 𝑤𝑖𝑗) and 𝐾̂𝑝′ . The above 
equations are formulated for the upper K-moments. By rearranging 𝑥𝑖 in descending order (i.e., 
substituting 𝑥(𝑛−𝑖+1:𝑛) for 𝑥(𝑖:𝑛) in equation (6.98)), the same algorithm will give the lower K-
moments. 
 

Digression 6.H: Illustration of determining order statistics from K-moments 

In our simple example we initially generate 𝑛 = 100 values 𝑥𝑖 from the standard normal 
distribution. From the sequence of ordered values 𝑥(𝑖:𝑛), we determine the values of upper and 

lower K-moments, 𝐾̂𝑝′  and 𝐾̂𝑝′ , using the unbiased estimators. Then we reconstruct the sequence 

of 𝑥(𝑖:𝑛) from the K-moments.For additional accuracy we use both sequences 𝐾̂𝑝′  and 𝐾̂𝑝′  to 
determine 𝑥(𝑖:𝑛). As the problem is linear, we use linear programming with the differences Δ𝑥(𝑖:𝑛) = 𝑥(𝑖:𝑛) − 𝑥(𝑖−1:𝑛), 𝑖 = 2,… , 𝑛, as control variables to be calculated. We notice that the 

maximum and minimum values are known from the outset, i.e., 𝑥(𝑛:𝑛) = 𝐾̂𝑛′  and 𝑥(1:𝑛) = 𝐾̂𝑛′  and, 

thus, ∑ Δ𝑥(𝑖:𝑛) + 𝐾̂𝑛′ − 𝐾̂𝑛′𝑛𝑖=2 = 0. Based on this, we formulate the linear programming problem as 
follows: MinimizeΔ𝑥(2:𝑛),…,Δ𝑥(𝑛:𝑛)    ∑Δ𝑥(𝑖:𝑛) + 𝐾̂𝑛′ − 𝐾̂𝑛′𝑛

𝑖=2Subject to Δ𝑥(𝑖:𝑛) ≥ 0, 𝑖 = 2,… , 𝑛∑Δ𝑥(𝑖:𝑛) + 𝐾̂𝑛′ − 𝐾̂𝑛′𝑛
𝑖=2 ≥ 0𝑥(𝑖:𝑛) = 𝑥(𝑖−1:𝑛) + Δ𝑥(𝑖:𝑛), 𝑖 = 2,… , 𝑛∑𝑏𝑖𝑛𝑝 𝑥(𝑖:𝑛)𝑛
𝑖=1 = 𝐾̂𝑝′ , 𝑖 = 2,… , 𝑛
∑𝑏𝑛−𝑖+1,𝑛,𝑝 𝑥(𝑖:𝑛)𝑛
𝑖=1 = 𝐾̂𝑝′ , 𝑖 = 2,… , 𝑛

 (6.103) 

Thus, here we have a linear minimization problem with 𝑛 − 1 unknowns, Δ𝑥(𝑖:𝑛), 𝑖 = 2,… , 𝑛, 
with 𝑛 inequality constraints (rows 2 and 3 in the above formulation) and 3(𝑛 − 1) equality 

constraints (rows 4 to 6 in the above formulation). The constraints in the last row, related to 𝐾̂𝑝′ , 

in theory are not necessary, as those related to 𝐾̂𝑝′  suffice to determine the values of 𝑥(𝑖:𝑛). 
However, their inclusion improves the numerical solution. The resulting order statistics, 
calculated from K-moments, are plotted in Figure 6.12 (left) vs. their true vales.  

As an additional information, Figure 6.12 (right) shows the K-moments re-determined from 
the calculated order statistics vs. the ones originally determined from the true order statistics. An 
interesting observation is that, in order statistics (Figure 6.12, left), the points are more densely 
distributed in the centre and are sparse at both ends. The opposite happens with the K-moment 
points (Figure 6.12, right), which are sparse in the centre and dense in the extremes. This suggests 
that K-moments are more appropriate than order statistics in studying extremes. Another useful 
observation is this graph is that the first four moments cover about halfway of the entire range 
defined by the 100 values. This explains why the method of moments, which uses a few of the 
lowest order moments, is often successful in distribution fitting. 
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Figure 6.12 (left) Values of the order statistics calculated from K-moments by linear programming, vs. 
their true values. (right) K-moments re-determined from the calculated order statistics vs. the ones 
originally determined from the true order statistics. 

6.16 K-moment-based correlation and the K-climacogram 

In section 2.16 we have introduced a new measure of correlation of two stochastic 

variables 𝑥1 and 𝑥2 which is based on the expectation of the square of the sum of the two 

variables after standardization. From the equations in section 2.16, the standard 

correlation coefficient is related to the latter statistic by: 𝑟 = 12E [(𝑥1 − 𝜇1𝜎1 + 𝑥2 − 𝜇2𝜎2  )2] − 1 (6.104) 

 Now we take a step further and use the maximum of the two standardized variables 

(instead of their average squared), defining the K-correlation coefficient as  

KR ≔ 1 − (E [max (𝑥1 − 𝐾1′[𝑥1]𝐾2[𝑥1] , 𝑥2 − 𝐾1′[𝑥2]𝐾2[𝑥2] )])2 (6.105) 

In the latter case, the squaring operation (which is external to taking the expectation) is 

not necessary and, thus, it would be more natural to define K-dependence as  KD ≔ 1 − E [max (𝑥1 − 𝐾1′[𝑥1]𝐾2[𝑥1] , 𝑥2 − 𝐾1′[𝑥2]𝐾2[𝑥2] )] (6.106) 

 If 𝑥1 and 𝑥2 are identically distributed, then 𝐾1′[𝑥1] = 𝐾1′[𝑥2] = 𝐾1′ and likewise for 𝐾2, 

and thus these indices simplify to  

KD = 1 − 1𝐾2 E[max(𝑥1 − 𝐾1′, 𝑥2 − 𝐾1′)] = 1 − 𝐾2D𝐾2 , KR = 1 − (𝐾2D𝐾2)2 (6.107) 

where the superscript ‘D’ stands for ‘dependence’. (In case of independence, 𝐾2D = 𝐾2 and KD = KR = 0). The same quantities are obtained if we substitute lower K-moments for 

upper ones:  
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KD = 1 − 𝐾2D𝐾2 , KR = 1 − (𝐾2D𝐾2)
2

 (6.108) 

 As shown in Appendix 6-VIII, if the distribution is normal, then for the standardized 

variables we obtain 𝐾2D = √1 − 𝑟π , 𝐾2 = √1π  (6.109) 

Hence, the K-correlation is precisely equal to the standard correlation:  𝐾2D𝐾2 = √1 − 𝑟, KD = 1 − √1 − 𝑟, KR = 𝑟  (6.110) 

 In nonnormal distributions, we may also use KR ≈ 𝑟 as a good approximation, 

provided that the correlation is positive. Regardless of the distribution, it can be seen that 

if 𝑥1 and 𝑥2 are independent and identically distributed (𝑟 = 0), then E[max(𝑥1 − 𝐾1′, 𝑥2 −𝐾1′)] = 𝐾2 and hence KD = KR = 0. If they are fully positively dependent, i.e., 𝑥1 = 𝑥2 (and 𝑟 = 1) then E[max(𝑥1 − 𝐾1′, 𝑥2 − 𝐾1′)] =  E[𝑥1 − 𝐾1′] = 0 and hence KD = KR = 1.  

For negatively correlated nonnormal variables these do not hold, and it is possible to 

obtain KR < −1 for strongly negatively correlated variables. Note that even the 

assumption of identically distributed variables is problematic for strongly negative 

correlation. This can be seen for the fully anticorrelated variables, 𝑥1 = −𝑥2, which can 

only have identical distribution if this is symmetric with zero mean. Hence, the 

approximation KR ≈ 𝑟 is not equally good and it is better to reevaluate it by replacing one 

of the two variables with its negative, and then change the sign of the resulting KD or KR. 

Symbolically, in this case we need to evaluate the expectation E[𝑦] of the variable 𝑦 ≔max((𝑥1 − 𝐾1′[𝑥1]) 𝐾2[𝑥1]⁄ , (−𝑥2 + 𝐾1′[𝑥2]) 𝐾2[𝑥2]⁄ ). The resulting quantities, corre-

sponding to KD and KR are:  KDN ≔ KA − 1, KRN ≔ KA2 − 1,  where: KA ≔ E [𝑦] = E [max (𝑥1 − 𝐾1′[𝑥1]𝐾2[𝑥1] , −𝑥2 + 𝐾1′[𝑥2]𝐾2[𝑥2] )] (6.111) 

Since max(𝑎, 𝑏) = (𝑎 + 𝑏 + |𝑎 − 𝑏|)/2, we can alternatively express and combine 

equations (6.105), (6.106) and (6.111) as follows: KD = ±1 ∓ 12E [|𝑥1 − 𝐾1′[𝑥1]𝐾2[𝑥1] ∓ 𝑥2 −𝐾1′[𝑥2]𝐾2[𝑥2] |] , 
KR = ±1 ∓ 14(E [|𝑥1 − 𝐾1′[𝑥1]𝐾2[𝑥1] ∓ 𝑥2 − 𝐾1′[𝑥2]𝐾2[𝑥2] |])2 

(6.112) 

where the upper and lower signs in ± and ∓ correspond to positive and negative 

correlations, respectively. 

Illustration of the K-correlations obtained by simulation from several distribution 

functions is provided in Figure 6.13 for linearly dependent variables and Figure 6.14 for 
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nonlinearly dependent variables. The empirical K-correlations were determined from 

equation (6.112). The two figures allow us to make the following observations. 

• For linearly dependent variables, the r and KR estimates are practically the same 

and equal to the theoretical values, irrespective of the distribution. 

• The same holds true for nonlinearly dependent variables, if the distribution 

function is symmetric, as well as if the correlation is positive, irrespective of the 

distribution. 

• For nonlinearly dependent variables with negative correlation and skewed 

distribution function, the empirical correlations depart from their theoretical 

values, with the KR being closer to them than r. 

In hydroclimatic practice, correlations are generally positive and thus we can use r and 

KR interchangeably. 

 

Figure 6.13 Simulation results of standard correlation (r) and K-correlation (KR) for a pair of 
stochastic variables linearly dependent, obtained by 10 000 generated pairs. The first variable in 
the pair has distribution, for the four panels seen clockwise: uniform, normal, lognormal with 
shape parameter 𝜍 = 1, and Pareto with upper-tail index 𝜉 = 0.25. The second variable is a 
weighed sum of the first one and an auxiliary variable with distribution identical to that of the 
first, where the weights are such that the correlation between the first and the second variable be a specified value (‘theoretical r’ in the graphs).  
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Figure 6.14 Simulation results of standard correlation (r) and K-correlation (KR) for a pair of 
stochastic variables nonlinearly dependent, obtained by 10 000 pairs generated by the method 
discussed in section 7.6, with identical marginal distribution, which for the four panels, seen 
clockwise, is: uniform, normal, lognormal with shape parameter 𝜍 = 1, and Pareto with upper-tail 
index 𝜉 = 0.25.  

Digression 6.I: A note on K-autocorrelation 

Once we have defined the K-correlation, it is straightforward to define K-autocorrelation, where 
the pair of variables is formed from two instances of a stochastic process, paired at a specified 
time lag, ℎ. The K-autocorrelation is similar to standard autocorrelation and in Gaussian processes 
is precisely identical. This is illustrated in Figure 6.15 by means of simulated series from the HK 
process with normal and lognormal distributions. In the normal case, empirical r and KR coincide, 
as expected and both lie below the theoretical autocorrelation functions, also plotted in Figure 
6.15, because of the bias in the autocorrelation function (see section 4.7 and Digression 4.C). In 
the lognormal case the KR points lie higher than the r ones, thus compensating the bias for small 
lags. 
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Figure 6.15 Empirical autocorrelation (r) and K-autocorrelation (KR) functions estimated from a simulated 
series with 10 000 values from an HK process with (left) normal and (right) lognormal distribution, also 
compared with the theoretical autocorrelation functions.  

6.17 Effect of time dependence on estimation of K-moments 

A K-moment is a characteristic of the marginal, first-order, distribution of the process and 

therefore is not affected by the dependence structure. However, the estimator is: time 

dependence induces bias to estimators of K-moments. Thus, the unbiasedness claimed in 

the previous sections ceases to hold in stochastic processes. We need to quantify and 

compensate the effect of dependence by adapting the moment order for which the 

estimation is made.  

 Specifically, the estimator of the noncentral K-moment for q = 1 in equation (6.47) 

(i.e., 𝐾̂𝑝′ = ∑ 𝑏𝑖𝑛𝑝𝑥(𝑖:𝑛)𝑛𝑖=1 ) does not actually correspond to the theoretical K-moment for 

the same p, but to that for a smaller 𝑝′ < 𝑝, i.e., for continuous variables, 𝐾𝑝′′ ≔ 𝑝′E [(𝐹(𝑥))𝑝′−1 𝑥] (6.113) 

Likewise, for central K-moments and for q = 2. We wish to find 𝑝′. 
 Noting that in 𝐾̂1′ ≡ 𝜇̂ there is no bias, we begin studying 𝐾2′ . By its definition, 𝐾2′ =E[𝑥(2)] = E[max(𝑥𝑖, 𝑥𝑗)], where (𝑥𝑖, 𝑥𝑗) are independent. In case of dependence the 

quantity: 𝐾2′D ≔ E[max(𝑥𝑖, 𝑥𝑗)] (6.114) 

will be different from 𝐾2′ . We may assume that in the case of a time series with 

dependence, rather than of a random sample, what we actually estimate is 𝐾2′D, rather 

than 𝐾2′ . In case of positive dependence, 𝐾2′D < 𝐾2′ .  
 In Appendix 6-VIII we determine that for a process with standard normal distribution 

the relative bias is: 𝛩D ≔ 𝐾2D𝐾2 − 1 = −KDB = √1 − 𝑟B − 1 (6.115) 
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where KDB and 𝑟B are average (bulk) coefficients of K-dependence and correlation, 

respectively. If r(η) is the process autocorrelation for lag η, then, as shown in Appendix 

6-VIII, 

𝛩D = 2 𝑛(𝑛 − 1)∑(𝑛 − 𝘂)𝑛−1
𝜂=1 (√1 − 𝑟(𝘂) − 1) (6.116) 

and if we make a second-order approximation of √1 − 𝑟(𝘂), we obtain: 

𝛩D ≈ − 1 𝑛(𝑛 − 1)(∑(𝑛 − 𝘂)(𝑟(𝘂) + (𝑟(𝘂)2 )2)𝑛−1
𝜂=1 ) (6.117) 

 Applying this equation (and also neglecting the second-order term) to a Markov 

process, in which 𝑟(𝘂) = 𝑟𝜂 , it is shown in Appendix 6-VIII that 𝛩Μ(𝑛, 𝑟) ≈ − 𝑟(1 − 𝑟)𝑛 (6.118) where the superscript ‘M’ stands for Markov. Equation (6.118) clearly shows that, unless 𝑛 is very low and r very high (e.g. > 0.90), 𝛩Μ(𝑛, 𝑟) ≈ 0 and thus we can neglect the effect 

of autocorrelation.  

 However, for an HK process, where 𝑟(𝘂) ≈ 𝐻(2𝐻 − 1)𝘂2𝐻−2, the bias is not negligible. 

As shown in Appendix 6-VIII, for a first-order approximation of √1 − 𝑟(𝘂), −𝛩HK(𝑛, 𝐻) = ( 12𝑛2−2𝐻 − 2𝐻(1 − 𝐻)𝑛 ) (6.119) 

and for second-order approximation, −𝛩HK(𝑛, 𝐻) = ( 12𝑛2−2𝐻 − 2𝐻(1 − 𝐻)𝑛 ) + ( 12𝑛8−8𝐻 − 2𝐻(1 − 𝐻)𝑛4 ) (6.120) 

Only when 𝐻 ≤ 1/2 (or even slightly higher than 1/2) is the bias negligible. Indeed, 

setting 𝐻 = 1/2 (a purely random process) in either of equations (6.119) and (6.120), we 

find that the bias is precisely zero. For 𝐻 ≫ 1/2, the bias is typically non-negligible and 

therefore it should be taken into account. A graphical depiction of adjustment coefficient 𝛩HK(𝑛, 𝐻) is provided in Figure 6.16. 

 The equations are almost precise for Gaussian processes, for which equation (6.120) 

is preferable, being more accurate. Notice that for 𝐻 → 1, (6.120) yields 𝛩HK(𝑛, 𝐻) = −1 

(−100% relative bias), as it should, while (6.119) yields 𝛩HK(𝑛, 𝐻) = −0.5. For non-

Gaussian, positively skewed, processes, for which the above results are not precise, 

simulation results have shown that the first-order approximation of equation (6.119) is 

preferable as (6.120) tends to overestimate the relative bias. Nonetheless, for 𝐻 ≤ 0.9, 

both approximations are practically indistinguishable as shown in Figure 6.16. 
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Figure 6.16 Adjustment coefficient 𝛩 (≡ 𝛩HK(𝑛, 𝐻)) of the upper central K-moment for q = 1 for 

a Hurst-Kolmogorov process with the indicated Hurst parameters. The results plotted are the first 
and second-order approximations, with the former plotted as dotted lines of the same colour as 
the latter, and been indistinguishable from the latter, except for the three highest values of H (0.99, 
0.95, 0.9), for which there are departures visible in the graph. 

 Now, we assume, based on simulation results shown in Appendix 6-VIII, that the same 

adjustment applies approximately to all orders p, i.e., 𝛩HK(𝑛, 𝐻) = 𝛫𝑝D𝐾𝑝 − 1 (6.121) 

Under this assumption we find in Appendix 6-VIII, the following approximation of the 

sought modified order 𝑝′: 𝑝′ ≈ 2𝛩 + (1 − 2𝛩)𝑝((1+𝛩)2), 𝐾𝑝′ = 𝐾𝑝D = (1 + 𝛩)𝐾𝑝 (6.122) 

where for notational simplification we have shortened 𝛩HK(𝑛, 𝐻) to 𝛩. 

 The same approximation for 𝑝′ will hold for both central and noncentral K-moments. 

Further, we may use the same coefficients and results for q = 2. Specifically, for the 

noncentral 𝐾𝑝2′  the framework could be kept unchanged. However, for the central 𝐾𝑝2, 

while we can keep 𝑝′ as derived above, we must have in mind that, in the presence of HK 

behaviour, 𝐾̂12 is a biased estimator of 𝐾12. Applying the results of section 4.6 (in 

particular, equation (4.24)) for the HK process we find that the bias is: E[𝐾̂12]𝐾12 − 1 = − 1𝑛2−2𝐻  (6.123) 

This is similar to (6.56) expect that 𝑛 is raised to the power 2 − 2𝐻 (for H = 1/2 we recover 

(6.56)); also, this bias is roughly 2Θ. Generalizing this for any p, as we did in section 6.7, 

and expressing it for the adapted order 𝑝′ we write: 
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 E[𝐾̂𝑝′2]𝐾𝑝′2 − 1 = − 1𝑛2−2𝐻  (6.124) 

Hence what we estimate in this case is the K-moment plus (negative) bias. 

  

Figure 6.17 Illustration of the performance of the adaptation of K-moment estimation for an HK 
process with Hurst parameter 0.9 and lognormal marginal distribution (LN(0,1); same as in Figure 
6.4, left): (left column) noncentral moments; (right column) central moments; (middle row) q 
= 1 (bottom row) q = 2. For comparison classical moments are also shown (upper row). The 
estimates are averages of 200 simulations each with 𝑛 = 2000 and are almost indistinguishable 
from the theoretical values. The first-order approximation of equation (6.119) was used for the 
adaptation. For 𝐾𝑝2 (lower right) the true K-moments are represented by the dashed curve while the curve marked “theoretical” corresponds to the true plus bias, where bias is determined from 
equation (6.124). The 95% prediction limits (PL) are also shown. 
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 While the derivation of these relationships in Appendix 6-VIII was based on the 

normal distribution, the final equation (6.286) can be used as an approximation 

regardless of the distribution. Figure 6.17 provides an empirical confirmation that the 

approximation is satisfactory. 

 The simulations depicted in Figure 6.17 are for the lognormal distribution with shape 

parameter 𝜍 = 1, which differs substantially from the normal, and a high Hurst parameter, 

H = 0.9. Interestingly, what would be assigned as K-moment for p =2000, without taking 

into account the effect of dependence, actually corresponds to the true K-moment of 𝑝′ ≈500—and as we will see in section 6.19 this has dramatic consequences in the assignment 

of return periods to events. Another important observation from comparing Figure 6.17 

with Figure 6.4 (left), which are for the same marginal distribution, is the dramatic 

broadening of the prediction intervals. This illustrates how dependence amplifies 

uncertainty. 

Digression 6.J: Does periodicity affect estimation of K-moments? 

Hydroclimatic processes are influenced by regular seasonal or diurnal changes, or else 
periodicities. Often, in their stochastic treatment we use cyclostationary models, whose statistical 
properties are deterministic periodic functions of time. In other cases, we are interested in the 
overall behaviour of a process. For example, when studying rainfall extremes, often we are 
interested only in the magnitude of the extremes, rather than in the season in which an extreme 
has occurred. In such cases we can model a natural process as a stationary stochastic process, 
treating the periodicity indirectly through a periodic autocovariance function (Koutsoyiannis, 
2017). 
 As an example, we assume a fully deterministic, strictly periodic process composed of a single 
harmonic with period a, described by: 𝑣(𝑡) =  cos(2π (𝑡 + 𝑏) 𝑎⁄ ) , 0 ≤  𝑏 ≤  𝑎 

where b is the phase. This is a deterministic process but, when it is superimposed to a stochastic 
process, the resulting process is also a stochastic process. Therefore, we need to know the 
stochastic properties of 𝑣(𝑡) as if it were a stochastic process. In particular, its autocorrelation 
function is (Koutsoyiannis, 2017): 𝑟𝑣(ℎ) = cos(2πℎ 𝑎⁄ ) 
This does not vanish off for large lags; particularly for lags h that are multiples of the period a 
keeps a constant value 1. Therefore, as autocorrelation is occasionally high, irrespective of lag, 
one may suspect that this behaviour may influence estimation. However, this is not the case 
because, in fact, the autocorrelation alternates between positive and negative values and the 
average is zero.  
 We will illustrate this by means of a simulation experiment. To make it more interesting we 
superimpose a harmonic component to a Markov process, and we will thus show that neither the 
Markovian behaviour nor the periodicity affect estimation. For the Markov process we use the 
simple AR(1) model in discrete time τ ≔ t/D : 𝑢𝜏 = 𝑟𝑢𝜏−1 +√1 − 𝑟2 𝑤𝜏 

where 𝑤𝜏 is standard Gaussian white noise. It is easily seen that 𝑢𝜏 is Gaussian: 𝑓𝑢(𝑢) = e−𝑢2/2√2π  

with autocorrelation for discrete lag η ≔ h/D: 
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 𝑟𝑢(𝘂) = 𝑟𝜂 

 The marginal distribution and density of the harmonic function are (cf. Markonis and 
Koutsoyiannis, 2013; Pappas et al., 2017, Supplementary Information, section S4): 𝐹𝑢(𝑣) = 1 − arccos(𝑣)π , 𝑓𝑣(𝑣) = 1π√1 − 𝑣2 , −1 ≤ 𝑣 ≤ 1 

and its variance is var[ 𝑣] = 1/2. Now we form the composite process 𝑧 ≔ √2 3⁄ (𝑢 + 𝑣) 
which has variance var[ 𝑧] = (2 3⁄ )(1 + 1/2) = 1 and autocorrelation (identical to 
autocovariance): 𝑟𝑧(𝘂) = (2 3⁄ )(𝑟𝜂 + cos(2π𝘂𝐷 𝑎⁄ )) 
The marginal density function of 𝑧, obtained from the convolution equation (2.108), is: 

𝑓𝑧(𝑧) = √ 34π3 ∫exp(−
12(√32𝑧 − 𝑢)2)√1 − 𝑢2 d𝑢1

−1  

This integral cannot be evaluated analytically, but as shown in Figure 6.18(a), its numerical 
evaluation suggests that it is close to the Gaussian density with some noticeable deviations at 
large values of the stochastic variable. If we make the transformation  𝑦 = 𝑧 |𝑧|0.05 

and determine its density using equation (2.11), then that density becomes almost 
indistinguishable from that of the normal distribution, specifically that of 𝑢. 
 This is depicted in Figure 6.18(a). Therefore, if we make the final transformation 𝑥 = e𝑦 

we will get a variable 𝑥 with lognormal marginal distribution LN(0,1), as that shown in Figure 6.4 
(left), but now with Markov dependence and periodicity, as described above by the 
autocorrelation 𝑟𝑧(𝘂). As shown in Figure 6.18(b), the autocorrelations for 𝑦 and 𝑥 do not differ 

substantially from that of 𝑧, 𝑟𝑧(𝘂).The latter are calculated by stochastic simulation to avoid other 
type of numerical integrations which are more tedious. A feeling about how the generated time 
series look like is obtained from the plot of Figure 6.18(c). 

Now we perform a simulation experiment for the K-moments as that presented in section 6.6 
and depicted in Figure 6.4 (left), which is also for the lognormal distribution LN(0,1). To estimate 
K-moments we use the unbiased estimator of equations (6.47)–(6.49) without any type of 
correction at all. Panels (d)–(f) in the figure show the classical and K-moments, theoretical and 
estimated. Comparing them with the respective plots of Figure 6.4 (left), we see that they are 
virtually identical. This confirms our claim that periodicity and Markov dependence do not affect 
K-moment estimates.  
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Figure 6.18 Illustration of theoretical and simulated results for the example of Digression 6.J, where the 
final process 𝑥 has lognormal marginal distribution LN(0,1), the lag-1 autocorrelation of the Markov 
process is r = 0.5 and the period of the periodic component is a = 20: (a) probability densities of variables 𝑢, 𝑣, 𝑧 and 𝑦; (b) autocorrelation of processes 𝑧, 𝑥 and 𝑦; (c) 100 terms of time series from processes 𝑥 and 𝑦; (d) classical moments; (e)–(f) K-moments for q = 1 and 2. Panels (d)–(f) are identical to those of Figure 

6.4 (left), which is for the same marginal distribution. The estimates are averages of 100 simulations each 
with 𝑛 = 2000 and in the case of K-moments are indistinguishable from the true (theoretical) values.  

6.18 Estimation by merging information from dependent records 

Assuming that we have several observation records, representing the same stochastic 

process, we can use them simultaneously to improve our estimations. If the records can 

be regarded as random samples that are independent of each other, we can merge them 

in a single sample and use the merged sample for estimation. Assuming that there are m 

samples, each with length 𝑛1, we will then form a merged sample of size 𝑛 = 𝑚 𝑛1 and we 

can apply the usual estimation procedures for that sample, while estimation uncertainty 
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will depend only on the total size 𝑛—and obviously will be smaller than that from a 

sample with size 𝑛1. 

 But what if the different records represent correlated processes? This is a frequent 

case we meet in practice; for example, if we study rainfall observed at several adjacent 

stations. Again, merging the records improves the estimation reducing uncertainty, but 

not as much as if there was a single random sample of size 𝑛.  

 We denote 𝑥𝑗𝑖 , 𝑗 = 1,… ,𝑚, 𝑖 = 1,…𝑛1, the stochastic variable representing the ith 

item of sample j and 𝜇̂𝑗 = (𝑥𝑗1 +⋯+ 𝑥𝑗𝑛1)/𝑛1 the average of the jth sample. We assume 

that the samples are cross-correlated with same correlation r ≥ 0, i.e., corr[𝑥𝑗𝑖 , 𝑥𝑗′𝑖] =𝑟, 𝑗 ≠ 𝑗′, while corr[𝑥𝑗𝑖 , 𝑥𝑗′𝑖′] = 0, 𝑖 ≠ 𝑖′. It is easy to show that, if 𝛾 ≔ var[𝑥𝑖𝑗], then the 

variance of 𝜇̂𝑗  is 𝛾 𝑛1⁄  and that of the overall average is: 

 𝛾(𝑛) ≔  var [𝜇̂1 +⋯+ 𝜇̂𝑚𝑚 ] = 𝛾𝑛 (1 + 𝑟(𝑚 − 1))  (6.125) 

In a sample of size 𝑛 the variance of the mean estimator is 𝛾 𝑛⁄ . If we introduce an 

equivalent sample size 𝑛′ so that the variance in (6.125) be 𝛾 𝑛′⁄ , then we readily find that  𝑛′ = 𝑛1 + 𝑟(𝑚 − 1)  (6.126) 

It can be noted that as m increases (tends to infinity) the equivalent sample size tends to 

an upper limit, which is 𝑛max′ = 𝑛1 𝑟⁄ . 

 In the above analysis, whose results have been well known for many decades (Yule, 

1945; Matalas and Langbein, 1962; Castellarin et al., 2005), the determination of the 

equivalent sample size has been based on the variance of the sample average. We can 

repeat the analysis for higher moments, although this is more complicated. Stedinger 

(1983) has shown (for the normal distribution) that if we use the variance of the sample 

variance as a basis, then an equivalent sample size 𝑛′′ is derived by a relationship 

analogous to (6.126): 𝑛′′ = 𝑛1 + 𝑟2(𝑚 − 1)  (6.127) 

Obviously, 𝑛′′ ≥ 𝑛′ and the upper limit as 𝑚 → ∞ becomes 𝑛max′′  = 𝑛1 𝑟⁄ 2 ≥ 𝑛max′ . This 

suggests that as the moment order increases, the information gain from merging records 

increases too. Mimiyianni (2010) has confirmed this property in a systematic simulation 

study. This is very encouraging if we study extremes, as extremes are related to high-

order moments. 

 The K-moments estimation is thus expected to improve substantially by merging 

records, particularly for high orders. The analysis we have made in section 6.17 could also 

be used in this case as by merging cross-correlated records we induce autocorrelation to 

the merged sample. However, the problem is more complicated now, as it depends on 

three parameters, 𝑟,𝑚 and 𝑛1. What is required is again to estimate an adapted moment 

order 𝑝′ for each estimated 𝐾𝑝𝑞′ . Stochastic simulation is obviously a generic method that 

can easily handle this problem. However, a quick technique for practical use is this: 
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• For 𝑝 ≤ 𝑛1 we set 𝑝′ = 𝑝.  

• For 𝑝 > 𝑛1 we use the HK framework of section 6.17 for H corresponding to r, i.e.: 𝐻 = 12 + ln(1 + 𝑟)2 ln 2  (6.128) 

Specifically, we apply (6.119) to find 𝛩HK(𝑛, 𝐻), and then modify (6.122) to 

estimate 𝑝′ as: 𝑝′ ≈ 2𝛩 + (1 − 2𝛩)(𝑝 − 𝑛1 + 1)((1+𝛩)2) + 𝑛1 − 1 (6.129) 

It can be readily verified that for 𝑝 = 𝑛1, 𝑝′ = 𝑝.  

 Figure 6.19 presents two examples with application of the above technique for m = 

100 subsamples of size 𝑛1 = 20 each and for a low and a high value of correlation 

coefficient. The simulated subsamples were constructed by the equations 𝑥𝑗𝑖 = exp 𝑦𝑗𝑖, 𝑦𝑗𝑖 = 𝑎𝑣𝑗0 + √1 − 𝑎2𝑣𝑗𝑖  where 𝑣𝑗𝑖 , 𝑗 = 0,… ,𝑚, 𝑖 = 1,… , 𝑛1 are independent stochastic 

variables with distribution N(0,1). The parameter a was chosen 0.5 and 0.8 for the low 

and high correlation, respectively, resulting in correlation coefficients for 𝑦, r = 0.25 and 

r = 0.64, respectively, which were used in calculations. (The correlations for 𝑥 are r = 0.16 

and r = 0.52, respectively.)  

  

Figure 6.19 Illustration of the performance of the adaptation of K-moment estimation for a 
merged sample composed of 𝑚 = 100 correlated sub-samples of size n1 = 20 each. Each sub-
sample is random with lognormal marginal distribution (LN(0,1); same as in Figure 6.4, left). The 
correlation of the logarithms of the variables (which have normal distribution) are r = 0.25 (left) 
and r = 0.64 (right). The K-moments shown are noncentral for q = 1. For comparison, estimates 
from one sample with size 𝑛1 = 20 are also shown. All estimates are averages of 100 simulations, 
while 95% prediction limits (PL) are also shown. In the left graph (r = 0.25) the adaptation turns 
out to be negligible and the adapted curves are indistinguishable from the non-adapted. 

 The figure shows clearly that sample merging enables estimation of K-moments of 

much higher order, of about 1000 or more, while a single sample allows estimation up to 
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order 20. The importance of estimating high order K-moments is obvious from the very 

definition of K-moments and will become clearer in section 6.19, where it will be seen that 

estimates of high-order K-moments are equivalent to quantile estimates of high return 

periods. In addition, the estimation uncertainty, quantified by the prediction intervals, is 

substantially reduced in the case of the merged sample, in comparison to that of an 

individual sub-sample. However, comparison with Figure 6.4 (left), which is for the same 

marginal distribution, shows that the uncertainty, is still higher than in a purely random 

sample of equal length. 

 A final question to discuss is how to deal in situations where the subsamples are not 

IID but time series from a process with HK behaviour. Again, stochastic simulation 

provides the means for proper adaptation of the estimates. A quick-and-dirty solution is 

to use the HK framework of section 6.17 for the entire range of moment orders and for a “bulk” Hurst parameter. In this case the variance of 𝜇̂𝑗  is 𝛾 𝑛12−2𝐻⁄  and equation (6.125), 

which gives the variance of the overall average, is modified to 𝛾(𝑛) = 𝛾𝑛12−2𝐻𝑚(1 + 𝑟(𝑚 − 1))  (6.130) 

The bulk Hurst parameter could be specified according to the following equation, which 

fits an HK climacogram to the time scales 1 and 𝑛: 𝐻b = 1 + ln( 𝛾(𝑛)/𝛾)2 ln 𝑛   (6.131) 

This results in 

𝐻b = (1 − ln𝑚ln 𝑛)𝐻 + ln ((1 + 𝑟(𝑚 − 1))) + ln𝑚2 ln 𝑛   (6.132) 

 Illustration of this technique is provided in Figure 6.20 for 100 time series of size 20 

each. Each of them was constructed with the same method as in the examples of Figure 

6.19 except that the variables 𝑣𝑗𝑖 for each j follow the HK process with H = 0.8, while they 

are independent for different j. The parameter α was chosen 0.8, resulting in correlation 

coefficients for 𝑦, r = 0.64. The resulting 𝐻b is 0.892 and the overall performance of the 

method, compared to accurate simulation results is satisfactory (even though with 

slightly higher H = 0.91, not shown in the figure, the results would perfectly correspond 

to the simulation results). Figure 6.20 shows that, even in this case, merging of time series 

enables estimation of K-moments of much higher order, of 𝑝′ ≈ 650, while a single time 

series allows estimation only up to order 𝑝′ = 16. However, the estimation uncertainty, 

quantified by the prediction intervals, is not reduced substantially in the case of the 

merged time series. 
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Figure 6.20 Illustration of the performance of the adaptation of K-moment estimation for a 
merged time series composed of 𝑚 = 100 correlated time series of size 𝑛1 = 20 each, generated 
from the exponentiated HK process for H = 0.8, having lognormal marginal distribution (LN(0,1)). 
The correlation of the logarithms of the variables of the different time series (which have normal 
distribution) is r = 0.64. The K-moments shown are noncentral for q = 1. For comparison estimates 
from one time series with size 𝑛1 = 20 are also shown. All estimates are averages of 100 
simulations, while 95% prediction limits (PL) are also shown.  

6.19 Return periods of K-moment values and Λ-coefficients 

As we have seen in section 5.6, order statistics have an important advantage over other 

statistics, as to each of them we can assign a value of the distribution function and hence 

of return period. This turns out to be the case also with K-moments as they are closely 

related to order statistics. Intuitively we can expect that the return period corresponding 

to the noncentral K-moment of order 𝑝, i.e. the value 𝑥 = 𝐾𝑝′ , will correspond to a return 

period of about 2pD (where D is the time step or, more generally, a time period reference 

for the specification of return period). Τhis is precise for a symmetric distribution and for 

p = 1, as 𝐾1′ is the mean value which has return period 2D and, as we will see below, it 

cannot be much lower than 2pD for any p and for any distribution. 

 Generally, we can express the return period by the relationship: 𝑇(𝐾𝑝′)𝐷 = 𝛬𝑝𝑝 (6.133) 

where 𝛬𝑝 is a coefficient, already introduced in section 5.6, which generally depends on 

the distribution function and the order p. As we will see, the range of variation of 𝛬𝑝 is not 

wide. As a first rough approximation, the rule of thumb: 𝛬𝑝 = 2, 𝑇(𝐾𝑝′)𝐷 = 2𝑝 (6.134) 

helps intuition. However, the precise definition of 𝛬𝑝, which will be called the upper Λ-
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𝛬𝑝 ≔ 1𝑝 (1 − 𝐹(𝐾𝑝′)) (6.135) 

 Likewise, for the lower K-moments for any distribution we introduce the lower Λ-

coefficient of order p as: 𝛬𝑝 ≔ 1𝑝 𝐹 (𝐾𝑝′ ) (6.136) 

For given p and distribution function 𝐹(𝑥), 𝐾𝑝′  and 𝐾𝑝′  are analytically or numerically 

determined from its definition. Then the Λ-coefficients are determined also from their 

definitions. Conversely, if we know the distribution function 𝐹(𝑥) and the precise or 

approximate values of 𝛬𝑝′  or 𝛬𝑝′ , we can readily determine, precisely or approximately, 

respectively, the values of 𝐾𝑝′  or 𝐾𝑝′  without resorting to analytical or numerical 

integration. 

 It is not too difficult to approximate 𝛬𝑝′  and 𝛬𝑝′ . The small variation of 𝛬𝑝 with p makes 

possible a good approximation if we first accurately determine the specific values 𝛬1 and 𝛬∞. The value 𝛬1 is very easy to determine, as it refers to the return period of the mean: 𝛬1 = 11 − 𝐹(𝜇) = 𝑇(𝜇)𝐷  (6.137) 

Furthermore, in a number of customary distributions, specifically those belonging to the 

domain of attraction of the Extreme Value Type I distribution, 𝛬∞ has a constant value, 

independent of the distribution. As shown in Appendix 6-IX (see also section 5.6) this is: 𝛬∞ = eγ = 1.781 (6.138) 

where γ is the Euler constant. The asymptotic values 𝛬∞ for all possible cases of upper 

and lower bounds and tail indices are shown in Table 6.9.  

Table 6.9 Asymptotic values of Λ-coefficients for all possible cases of tail behaviour, listed in Table 
2.6. 

Characteristic Definition of Tail Index1 
Asymptotic Λ:  𝛬∞, 𝛬∞ 

𝛬∞, 𝛬∞ limits for 𝘁, 𝘁′, 𝜉, 𝜉′ = 

0 1/2 1 ∞ 

Upper bounded by 𝑐U, tail index 𝘁′  lim𝑥→𝑐U(𝑐U − 𝑥)−𝜁′𝐹(𝑥) = 𝑙1  𝛬∞ = Γ(1 + 1 𝘁′⁄ )−𝜁′  0 
1√2 1 eγ 

Upper unbounded, 

tail index 𝜉 
lim𝑥→∞𝑥1 𝜉⁄  𝐹(𝑥) = 𝑙2  𝛬∞ = Γ(1 − 𝜉)1 𝜉⁄   eγ π ∞ – 

Lower bounded by 𝑐L, tail index 𝘁 
lim𝑥→𝑐L(𝑥 − 𝑐L)−𝜁𝐹(𝑥) = 𝑙3  𝛬∞ = Γ(1 + 1 𝘁⁄ )−𝜁  0 

1√2 1 eγ 

Lower unbounded, 

tail index 𝜉′  lim𝑥→−∞(−𝑥)1 𝜉′⁄ 𝐹(𝑥) = 𝑙4  𝛬∞ = Γ(1 − 𝜉′)1 𝜉′⁄   eγ π ∞ – 

1 𝑙𝑖 , 𝑖 = 1,… ,4 are constants < ∞. 
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 For the approximation of the upper Λ-coefficient 𝛬𝑝 we can use the following simple 

relationship, which is satisfactory for several distributions: 𝛬𝑝 ≈ 𝛬∞ + (𝛬1 − 𝛬∞)𝑝  (6.139) 

This yields a linear relationship between the return period T and p: 𝑇(𝐾𝑝′)𝐷 = 𝑝𝛬𝑝 ≈ 𝛬∞𝑝 + (𝛬1 − 𝛬∞) (6.140) 

 However, in some distributions like the lognormal and Weibull, the decay of 𝛬𝑝 with 

increasing p is very slow. Furthermore, in some cases 𝛬𝑝 is not always a decreasing 

function of p, as implied by equation (6.139). To account for such cases, we may enrich 

(6.139) adding two more parameters β and B, according to the expression: 

𝛬𝑝 ≈ 𝛬∞ + 𝛢𝑝 − 𝐵 ln (𝛽′ (1 + 𝛽(𝑝 + 1)𝛽 − 1)), 
𝐴 = 𝛬1 − 𝛬∞ + 𝐵 ln(𝛽′ (1 + 𝛽2𝛽 − 1)) , 𝛽′ ≔ {1, 𝛽 ≥ 011 − 𝛽 , 𝛽 ≤ 0 

(6.141) 

where the expression for A ensures exact recovering of 𝛬1. Most interesting are the cases:  

(a) 𝛽 = 0, in which: 𝛬𝑝 ≈ 𝛬∞ + 𝛢𝑝 − 𝐵 ln (1 + 1ln(𝑝 + 1)) , 𝐴 = 𝛬1 − 𝛬∞ + 𝐵 ln (1 + 1ln 2) (6.142) 

(b) 𝛽 = 1, in which:  𝛬𝑝 ≈ 𝛬∞ + 𝛢𝑝 − 𝐵 ln (1 + 1𝑝) , 𝐴 = 𝛬1 − 𝛬∞ + 𝐵 ln 2 (6.143) 

(c) 𝛽 = −1, in which:  𝛬𝑝 ≈ 𝛬∞ + 𝛢𝑝 − 𝐵 ln (1 + 12𝑝) , 𝐴 = 𝛬1 − 𝛬∞ + 𝐵 ln(3/2) (6.144) 

The rationale and details of this approximation are given in Appendix 6-X. The resulting 

return period is 𝑇(𝐾𝑝′)𝐷 = 𝑝𝛬𝑝 ≈ 𝑝𝛬∞ + 𝐴 − 𝐵𝑝 ln (𝛽′ (1 + 𝛽(𝑝 + 1)𝛽 − 1)) (6.145) 

 We refer to the approximations (6.134), (6.140) and (6.145) as the rule-of-thump, 

linear and nonlinear approximations, respectively. 

 Table 6.10 gathers the equations for a number of customary distributions giving all 

quantities that support the approximation of the entire series of 𝛬𝑝. Furthermore, Figure 

6.21 illustrates the very satisfactory approximation achieved by the above method for all 

distributions studied. A prominent characteristic of the lognormal distribution is the very 
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slow decay of the Λ-coefficient. If compared to the Pareto distribution (also shown in the 

figure for 𝜉 = 0.25), the lognormal distribution has the limit 𝛬∞ = 1.781 against 2.255 of 

the Pareto case. However, even for moment order as high as 100 000, the former 

distribution retains a Λ value much higher than the latter.  

 

Figure 6.21 Illustration of the approximation of Λ-coefficients achieved by equation (6.141) for 
the indicated distribution functions.  

 It is interesting that, according to equations (6.139) and (6.141), only two to four 

numbers, namely the coefficients 𝛬1 and 𝛬∞, and occasionally β and B, can approximate 

the complete series of 𝛬𝑝, practically for any distribution function. In turn, as the Λ-

coefficients are independent of the scale and location parameters of a distribution (see 

below), by adding the latter (in the form of 𝜇 = 𝛫1′ and any of 𝛫2, 𝛫12 or their noncentral 

variants) to the three Λ-coefficients we obtain an efficient parameterization of any 

distribution function.  

 Coming to the lower Λ-coefficients, these again vary only slightly with p. For 𝑝 = 1 it 

is readily seen that 𝛬1 = 1 𝐹(𝜇)⁄ = 𝛬1 (𝛬1 − 1)⁄  (6.146) 

The limiting value 𝛬∞ depends only on the lower-tail index ζ of the distribution: 𝛬∞ = Γ(1 + 1 𝘁⁄ )−𝜁 (6.147) 

and its own limits (Table 6.9) in the most characteristic cases are lim𝜁→0𝛬∞ = 0, lim𝜁→∞𝛬∞ = e𝛾 (6.148) 

For the normal distribution, which is symmetric, 𝛬∞ = 𝛬∞ = e𝛾, while for the exponential 

distribution 𝛬∞ = 1. More detailed information about the asymptotic values 𝛬∞ and 𝛬∞ 

for all possible cases of upper and lower bounds and tail indices are shown in Table 6.9. 

1
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Table 6.10 Characteristic parameters for accurate approximations of Λ-coefficients for several 
customary distributions.  

Distribution1, distribution 

function complement, 𝐹(𝑥) 𝛬1 𝛬∞ 𝛽 𝐵 

Normal,  12 erfc (𝑥 − 𝜇√2𝜎 ) 
2 eγ 0 0.73 

Exponential2, e−𝑥/𝜆 e eγ 1 
2𝛬1 − 3𝛬∞2(1 − ln 2) = 0.152 

Gamma3,  Γ𝑥/𝜆(𝘁)Γ(𝘁)  
Γ(𝘁)Γ𝜁(𝘁) eγ 0 −0.3 ln(𝛬1 − 1.93) − 0.05 

Weibull4, exp (− (𝑥𝜆)𝜁) e(Γ(1+1𝜁))𝜁  eγ 

0.02𝘁− 0.003 

1.16 + 1.2(𝛬∞ − 𝛬1) 
Lognormal, 12 erfc (ln(𝑥 𝜆⁄ )√2𝜍 ) 

2erfc(𝜍/23/2) eγ − 0.18ln 𝜍 + 1 0.73 − 2𝜍 − 0.4𝜍3 

Pareto5,  (1 + 𝜉 (𝑥𝜆))−1𝜉  
(1 − 𝜉)−1𝜉  Γ(1 − 𝜉)1𝜉  1 

2𝛬1 + (𝜉 − 3)𝛬∞2(1 − ln 2)  

PBF, (1 + 𝘁𝜉 (𝑥𝜆)𝜁)− 1𝜉𝜁  ( 1 + (
B( 1𝘁𝜉 − 1𝘁 , 1𝘁)𝘁 )𝜁) 

1𝜁𝜉
 Γ(1 − 𝜉)1𝜉  

𝘁𝜉 + 0.02𝘁  −0.14𝜉 −0.003 

1.16 + 1.2(𝛬∞ − 𝛬1) 
Dagum6,  1 − (1 + 1𝘁 (𝑥𝜆)−1𝜉)−𝜉𝜁  

11 − ((𝜉𝘁Β(1 − 𝜉, 𝜉(𝘁 + 1)))−1𝜉 + 1)−𝜉𝜁  Γ(1 − 𝜉)1𝜉  1 
2𝘁𝛬1 − (2𝜉𝘁 + 𝜉 − 1)𝛬∞ − 𝜉𝘁 − 12𝜉𝘁(1 − ln2)  

EV27, 1 − exp (−𝜉 (𝑥𝜆)−1𝜉) 

11 − exp(−(Γ(1 − 𝜉))−1𝜉) Γ(1 − 𝜉)1𝜉  1 
2(𝛬1 − 𝛬∞) − 12(1 − ln 2)  

EV18, 1 − exp (−e−𝑥𝜆) 1 (1 − exp(−e−𝛾))⁄  eγ 1 
2(𝛬1 − 𝛬∞) − 12(1 − ln 2)  

1 For all distributions the domain is 𝑥 ≥ 0, except for the normal and EV1, in which 𝑥 ∊ ℝ. Linear transformations of 𝑥 
that change the lower bound have no effect on any of the characteristics given in the table.  
2 The exponential distribution can also be approximated as a special case of the Gamma or the Weibull distribution for 𝘁 = 1, and even by the simple approximation of equation (6.139), but the specific approximation with 𝛽 = 1 is better. 

Furthermore, it admits an exact equation, based on the relationships of Table 6.3, which is 𝛬𝑝 = e𝐻𝑝 𝑝⁄ . 
3 The linear approximation (equation (6.139)) is also good for the gamma distribution but only for 𝘁 < 1.  
4 The Weibull distribution is a special case of the PBF distribution for 𝜉 = 0.  
5 The Pareto distribution can also be approximated as a special case of the PBF distribution for 𝘁 = 1, and even by the 

linear approximation (equation (6.139)). However, the specific approximation given here with 𝛽 = 1 is better. 

Furthermore, it admits an exact equation, based on the relationships of Table 6.3, which is 𝛬𝑝 =((𝑝 + 1 − 𝜉) Β(1 − 𝜉, 𝑝 + 1))1 𝜉⁄ 𝑝⁄ .  
6 The Dagum distribution also admits an exact equation, based on the relationships of Table 6.3, which is 𝛬𝑝 =1 (1 − ((1 + 𝑝𝘁𝜉 Β(1 − 𝜉, 𝜉(1 + 𝑝𝘁)))−1 𝜉⁄ )−𝜁𝜉)⁄ 𝑝.  

7 The EV2 distribution and all its expressions can be derived from the Dagum distribution for 𝘁 → ∞; its exact equation, 

based on the relationships of Table 6.3, is 𝛬𝑝 = 1 (1 − exp (−(Γ(1 − 𝜉))−1𝜉/𝑝))⁄ 𝑝.  
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8 The EV1 distribution and all its expressions can be derived from the EV2 distribution by substituting 𝑥/𝜆 ← 𝑥/𝜆 +1/𝜉 and letting 𝜉 → 0; its exact equation, based on Table 6.3, is 𝛬𝑝 = 1 (1 − exp(−e−𝛾/𝑝))⁄ 𝑝.  

 Like in the case of Λ-coefficients for noncentral moments, here again we give three 

different approximations. Proceeding from the least to most accurate, these are:  

1. The rule-of-thumb approximation (zero-parameter): 𝛬𝑝 = {1, positively skewed distributions 2, negatively skewed or symmetric distributions (6.149) 

2. The linear approximation (two-parameter): 

𝛬𝑝 ≈ 𝛬∞ + 𝛬1 − 𝛬∞𝑝 , 𝑇 (𝐾𝑝′ )𝐷 ≈ 𝛬∞𝑝 + (𝛬1 − 𝛬∞) (6.150) 

3. The nonlinear approximation (four-parameter, with the parameters 𝛽 and 𝐵 

additional to 𝛬1 and 𝛬∞). Assuming 𝛽 ≥ 0 we have: 

𝛬𝑝 ≈ 𝛬∞ + 𝛢𝑝 + 𝐵 ln(1 + 𝛽(𝑝 + 1)𝛽 − 1),   𝛢 = 𝛬1 − 𝛬∞ − 𝐵 ln (1 + 𝛽2𝛽 − 1) (6.151) 

The most interesting cases are:  

(a) 𝛽 = 0, in which: 

𝛬𝑝 ≈ 𝛬∞ + 𝛢𝑝 + 𝐵 ln (1 + 1ln(𝑝 + 1)),   𝛢 = 𝛬1 − 𝛬∞ − 𝐵 ln (1 + 1ln 2) (6.152) 

(b) 𝛽 = 1, in which:  𝛬𝑝 ≈ 𝛬∞ + 𝛢𝑝 + 𝐵 ln (1 + 1𝑝) , 𝛢 = 𝛬1 − 𝛬∞ − 𝐵 ln 2 (6.153) 

 Table 6.11 gathers the equations for a number of customary distributions giving all 

quantities that support the approximation of the entire series of the lower Λ-coefficients 𝛬𝑝.  

 We stress that the expressions of both Table 6.10 and Table 6.11 refer to continuous 

distributions. In the case of mixed distributions with a discontinuity 𝑃0 = 1 − 𝑃1 we 

should have in mind that the 𝛬∞ retains its value as in the continuous case, while 𝛬∞ = 0. 

In practical applications, it is advisable to work with the continuous part of the 

distribution and treat the discontinuity separately. 

 Recapitulating the above discourse, the Λ-coefficients have the following important 

properties: 

• They vary in a narrow range (close to 2 for upper K-moments or close to 1 for lower 

K-moments of positively skewed distributions) and this facilitates the 

determination of the complete series by only a couple of them (namely, 𝛬1 and 𝛬∞) 

and, if higher accuracy is required, by the additional parameters β and B (and 

likewise for the lower K-moments). 
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• They are well approximated by generic functions, irrespective of the particular 

distribution function. 

• Their definition in terms of return period renders them suitable to study extremes. 

• Also, their definition, in connection to their generic approximators, supports the 

indirect but quick determination of theoretical (true) values of K-moments of any 

order in absence of analytical relationships.  

Table 6.11 Characteristic parameters for accurate approximations of lower Λ-coefficients for 
several customary distributions.  

Distribution1, 

distribution function 

complement, 𝐹(𝑥) 𝛬1 𝛬∞ 𝛽 𝐵 

Normal, 12 erfc (𝑥 − 𝜇√2𝜎 ) 
2 eγ 0 −0.73 

Exponential2, e−𝑥/𝜆 
ee − 1 1 1 

2𝛬1 − 32(1 − ln 2) = 0.267 

Gamma3,  Γ𝑥/𝜆(𝘁)Γ(𝘁)  
Γ(𝘁)Γ(𝘁) − Γ𝜁(𝘁) Γ(1 + 1 𝘁⁄ )−𝜁  0 −2.27 + 2 ln(2.2 − 𝛬1) + 2𝛬1 

Weibull, exp (−(𝑥𝜆)𝜁) 
e(Γ(1+1𝜁))𝜁e(Γ(1+1𝜁))𝜁 − 1 Γ(1 + 1 𝘁⁄ )−𝜁  1 

2𝛬1 − 2𝛬∞ − 12(1 − ln 2)  

Lognormal, 12 erfc (ln(𝑥 𝜆⁄ )√2𝜍 ) 

22 − erfc(𝜍/23/2) eγ 0 −0.73 − 2.4𝜍 + 0.7𝜍3/2 

Pareto4,  (1 + 𝜉 (𝑥𝜆))−1𝜉  

11 − (1 − 𝜉)1𝜉  1 1 
2𝛬1 + 𝜉 − 32(1 − ln 2)  

PBF5, (1 + 𝘁𝜉 (𝑥𝜆)𝜁)− 1𝜉𝜁  

1
1 − ( 1 + (

B ( 1𝘁𝜉 − 1𝘁 , 1𝘁)𝘁 )𝜁) 
− 1𝜁𝜉  

 Γ(1 + 1 𝘁⁄ )−𝜁  
1 

2𝛬1 + 𝛬∞(𝘁𝜉 + 𝜉 − 2) − 𝘁𝜉 − 12(1 − ln 2)  

1 For all distributions it is assumed that 𝑥 ≥ 0, except for the normal, in which 𝑥 ∊ ℝ. The exponential, Weibull, 
Pareto and PBF distributions admit exact equations, based on the relationships of Table 6.3. 
2 The equations for the exponential distribution are identical to those of Weibull for 𝘁 = 1 and can also be 

approximated as a special case of the Gamma distribution for 𝘁 = 1, and even by the linear approximation 

(equation (6.150)), but the specific approximation with 𝛽 = 1 is better. Furthermore, its exact expression, based 

on the relationships of Table 6.3, is 𝛬𝑝 = 1 (1 − 𝑒−1 𝑝⁄ )𝑝⁄ . 
3 The linear approximation (equation (6.150)) is also good for the gamma distribution but only for 𝘁 < 1.  
4 The Pareto distribution can also be derived as a special case of the PBF distribution for 𝘁 = 1. Furthermore, its 

exact equation, based on the relationships of Table 6.3, is 𝛬𝑝 = 1 (1 − (1 − 𝜉 𝑝⁄ )1 𝜉⁄ )𝑝⁄ . 

5 The approximation given for PBF setting 𝛽 = 1 is good for 𝘁𝜉 ≤ 1 and needs further study for 𝘁𝜉 > 1 (𝛽 > 1).  
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 The last point suggests that we could follow a similar approach for the calculation of 

K-moments for higher q. Specifically, we can generalize (6.135) and define Λ-coefficients 

of orders (p, q) as:  𝛬𝑝𝑞′ ≔ 1𝑝 (1 − 𝐹(𝐾𝑝𝑞′1/𝑞)) (6.154) 

and similarly for lower K-moments. 

Digression 6.K: The behaviour of the normal distribution 

Here we will find approximations of the K-moments and the Λ-coefficients of the normal 
distribution. Using the approximation of the normal distribution by (5.45) and its quantile 
function by (5.46), we find in Appendix 6-XI that: 

𝐾𝑝′ = 𝐵𝑝 +∑(𝑝𝑘)𝑝
𝑘=1 (−1)𝑘𝐵𝑘, 𝛬𝑝 ≈ 2𝑝 exp(−23𝐾𝑝′ (1 + 23𝐾𝑝′)) (6.155) 

where 

𝐵𝑝 ≔ 𝑝(∫ 𝑥(𝐹)1/2
0 𝐹𝑝−1 d𝐹) ≈ −3√πe𝑝/4 erfc(√𝑝/2) 2𝑝+2√𝑝  (6.156) 

These approximations, depicted in Figure 6.22 in comparison to the exact values, are rather 
satisfactory. However, evaluation of (6.155) beyond p > 100 is problematic because of the 
numerical instability of the binomial transform contained in it.  
 A better approximation can be obtained in a simpler manner from equation (6.142) with 
coefficients from Table 6.10. This yields:  

𝛬𝑝 ≈ 1.781 + 0.871𝑝 − 0.73 ln (1 + 1ln(𝑝 + 1)) (6.157) 

As seen in Figure 6.22 for p up to 100 and in Figure 6.21 for much higher p, this latter 
approximation is very accurate and thus preferable over that of equation (6.155).  

 

Figure 6.22 Comparison of approximate and exact values of K-moments and Λ-coefficients for the normal 
distribution. Approximations 1 and 2 are calculated by equations (6.155) and (6.157), respectively, and the 
exact values are calculated by numerical integration.  
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Digression 6.L: Do return periods assigned by order statistics and 

K-moments differ?  

Both frameworks of order statistics and K-moments provide means to assign empirical return 
periods from an observed sample. In order statistics we use the equation: 𝑇(𝑖:𝑛)𝐷 = 𝑛 + 𝐵𝑛 − 𝑖 + 𝐴 (5.58) 

for specified A and B, while for the K-moment of order p we use equation: 

𝐺(𝑝) ≔ 𝑇(𝐾𝑝′)𝐷 = 𝑝𝛬𝑝  (6.135) 

where specific forms of 𝛬𝑝 and hence of the function 𝐺(𝑝) have been extensively discussed in 
section 6.19. Here we use the linear approximation: 𝐺(𝑝) = 𝛬∞𝑝 + (𝛬1 − 𝛬∞) (6.158) 

 The two approaches for assigning return periods are comparable at certain return periods, 
namely those corresponding to integer i between 1 and 𝑛 in equation (5.58), for which the return 
period 𝑇(𝑖:𝑛) is defined. Given 𝑇(𝑖:𝑛) there is a specific p such as 𝑇(𝐾𝑝′) = 𝑇(𝑖:𝑛) = 𝑇. This is given as 𝑝 = 𝐺−1(𝑇(𝑖:𝑛)/𝐷). 
 Thus, to each of the 𝑛 values 𝑇(𝑖:𝑛) in a sample we can assign values 𝑥 in two different ways: 

1. 𝑥(𝑖:𝑛), i.e., the ith smallest of the 𝑛 observations; 

2. 𝑥(𝑖,𝑛)K ≔ 𝐾𝑝′ , where 𝑝 = 𝐺−1(𝑇(𝑖:𝑛)/𝐷) and 𝐾𝑝′  is estimated from the entire sample by 

equations (6.47)–(6.49). 

 These two values should be close to each other in general. We can make them precisely equal 
if we use the approximation (6.158) for the latter along with the approximation of A and B of the 
former corresponding to unbiased quantile (equation (5.73)). Equating the two we have:  

𝛬∞𝑝 + (𝛬1 − 𝛬∞) = 𝑛 + 𝛬1 𝛬∞⁄ − 1𝑛 − 𝑖 + 1 𝛬∞⁄  (6.159) 

and hence: 𝑝 = 1 + 𝑖 − 1 − (𝛬1 − 1)(𝑛 − 𝑖)𝛬∞(𝑛 − 𝑖) + 1  ⇔  𝑖 = 𝑛 − 𝑛 − 𝑝𝛬1 + 𝛬∞(𝑝 − 1) (6.160) 

Note that for 𝑝 =  1, 𝑖 = 𝑛 − (𝑛 − 1) 𝛬1⁄  (e.g. 𝑖 ≈ 𝑛/2 if 𝛬1 = 2) and for 𝑝 = 𝑛, 𝑖 = 𝑛. 
 This cannot work for 𝑝 <  1 or for 𝑖 < 𝑛 − (𝑛 − 1) 𝛬1⁄ . For small 𝑖 we can continue with lower 

moments of order 𝑝 ≥ 1, assuming return period of nonexceedance of 𝐾𝑝′  equal to 𝑇/𝐷 = 𝛬∞𝑝 +(𝛬1 − 𝛬∞), with 𝑇/𝐷 = 1/(1 − 𝐷/𝑇). Thus: 11 − 1/(𝛬∞𝑝 + (𝛬1 − 𝛬∞)) = 𝑛 + 𝛬1 𝛬∞⁄ − 1𝑛 − 𝑖 + 1 𝛬∞⁄  (6.161) 

and taking also (6.146) into account and setting 𝛬∞ = 𝛬∞ (1 + 𝛿) (𝛬1 − 1)⁄  (for some δ which, as 
we will see, turns out to be very small) we find: 
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𝑝 = 1 + (𝛬1 − 1)(𝑛 − 𝑖) − 𝑖 + 1(1 + 𝛿)(𝛬∞(𝑖 − 1) + 𝛬1 − 1) , 𝑖 = 1 + (𝛬1 − 1)(𝑛 − 1 − (1 + 𝛿)(𝑝 − 1))𝛬1 + 𝛬∞(1 + 𝛿)(𝑝 − 1)  (6.162) 

For a symmetric distribution, 𝛬1 = 2 and 𝛬∞ = 𝛬∞ and thus 𝛿 = 0. For the skewed distributions 
contained in Table 6.11, by comparing with Table 6.10 and investigating numerically, it can be 
verified that 𝛿 is small, of the order of 2% - 5%. Thus, neglecting 𝛿 we find: 𝑝 = 1 + (𝛬1 − 1)(𝑛 − 𝑖) − 𝑖 + 1𝛬∞(𝑖 − 1) + 𝛬1 − 1 , 𝑖 = 1 + (𝑛 − 𝑝)(𝛬1 − 1)𝛬1 + 𝛬∞(𝑝 − 1) (6.163) 

 Based on the above results, for a given moment order p a quick-and-dirty estimate of the 
noncentral moment 𝐾𝑝′  is the value 𝑥(𝑖:𝑛), the ith smallest value of the sample, with i determined 

from equation (6.160). Likewise, if 𝑖 is determined from equation (6.163) for a given 𝑝, then the 

value 𝑥(𝑖:𝑛) is a quick-and-dirty estimate of the lower K-moment 𝐾𝑝′ . In essence, the quick-and-

dirty K-moments approach is equivalent to the order statistics one. 
 For numerical illustration we use the Pareto distribution with upper-tail index ξ = 0.15 and 
other parameters as shown in the caption of Figure 6.23. In this case 𝑇(𝑖:𝑛) will be determined 

from the unbiased estimator of the quantile of the Pareto distribution (corresponding to unbiased 
quantile, case VII of Table 5.5) with ξ = 0.15: 𝑇(𝑖:𝑛)𝐷 = 𝑛 + 0.452𝑛 − 𝑖 + 0.491 

For the noncentral K-moment of order (𝑝, 1) and for p ≥ 1 we use linear approximation  𝐺(𝑝) = 𝛬∞𝑝 + (𝛬1 − 𝛬∞) = 2.035𝑝 + 0.92 

Thus, 𝑝 = 𝑇/𝐷 − 0.922.035 = 0.491 𝑇/𝐷 − 0.452 

This is precisely the result we get from the quantile-unbiased estimator of the order statistics if 
we set 𝑛 = 𝑖 = 𝑝. For return periods 𝑇/𝐷 < 𝛬1 = 2.95 the resulting p is smaller than 1. In 
principle, it is feasible to use 𝑝 < 1 as the definition of K-moments has already been extended for 
non-integer order p. However, the linear approximation is not accurate for 𝑝 < 1.  
 Therefore, we use the lower K-moment of order (𝑝, 1); for 𝑝 ≥ 1 we apply the linear 
approximation: 𝐺(𝑝) = 𝛬∞𝑝 + (𝛬1 − 𝛬∞) = 𝑝 + 0.512 

Thus, 𝑝 = 𝑇/𝐷 − 0.512 = 1/(1 −  𝐷/𝑇)  − 0.512 

Note that for 𝑝 = 𝑛, 1/(1 −  𝐷/𝑇) = 𝑝 + 0.512 ] or, after the algebraic manipulations 𝑇 𝐷⁄ =(𝑛 + 0.512) (𝑛 − 0.488)⁄ . This is slightly different from (𝑛 + 0.452) (𝑛 − 0.509)⁄ , as given by the 
order statistics approach. For 𝑛 = 100, the former formula gives 𝑇 𝐷⁄ = 1.0100 and the latter 
1.00966, a difference of 0.04 %. This slight difference is due to the fact that δ is not exactly zero 

(namely, 𝛿 = (𝛬∞/𝛬∞) (𝛬1 − 1) − 1 = (2.035/1) × 0.512 − 1 = 0.042).  
 Alternatively, as the Pareto distribution yields an exact solution (see Table 6.3), we could use 
that instead of the approximations. Namely, this is: 𝐺(𝑝) = (𝑝 B(𝑝, 1 − 𝜉))1/𝜉 

and is valid for all p, integer or not, including for 𝑝 < 1. 
 Simulation results for our example are shown in Figure 6.23. On the average, the order-
statistics and the K-moment approaches give equivalent results and equally good, both in terms 
of averages and uncertainty limits (prediction limits). However, if we focus on a single realization, 
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such as the one also shown in Figure 6.23, the K-moments approach yields a smooth arrangement 
of empirical points, while that of the order-statistics approach indicates a greater variability and 
a rougher arrangement. The reason is that in the K-moments approach each K-moment value is a 
weighted average of several points, while in the order statistics only one value is used each time. 
As regards the order-statistics approach, we note that there would be a substantial difference in 
the largest value if we adopted the Weibull plotting position formula, which, as explained in 
section 5.6, we have deemed inappropriate. 
 The above illustration helps us to formulate a few focus points of more general validity: 

1. The largest value in an observed sample of size 𝑛 does not have a return period of about 𝑛 
time units as commonly assumed. Rather, it is the order p of the maximum K-moment that is 
equal to 𝑛. Thus, the return period of the maximum observation is about 𝛬∞𝑛, usually 1.8 𝑛 
to 2𝑛. 

2. In both approaches, the order-statistics and K-moments, the results are virtually (or even 
exactly) the same in terms of expected values and uncertainty. 

3. While with order statistics we can empirically assign return periods only to the observations, 
thus designating only 𝑛 specific values of return period, with K-moments there is no such 
restriction. Rather, we can empirically assign a return period to any quantile value between 
the smallest and the largest observation.  

4. Because of the more accurate formulae for K-moments discussed in section 6.19, in 
comparison to those of order statistics discussed in section 5.6, the return periods empirically 
assigned by the K-moments approach are typically more accurate or at the very least 
equivalent to those of order statistics. 

5. In addition, while with order statistics only one observation is used for each assignment of 
return period, in the K-moments approach each K-moment value is a weighted average of 
several observations, thus contributing to the accuracy of estimation. 

For all these reasons the K-moments approach is deemed preferable. We note though that 
computationally it is more demanding. 

 

Figure 6.23 Simulation results of empirical return periods assigned to Pareto quantiles (for upper-tail 
index ξ = 0.15, scale parameter λ = 1 and lower bound zero). Averages and prediction limits (PL) were 
calculated from 200 simulations each with 𝑛 = 100. The curves of averages for both the order statistics and 
the K-moment approaches are indistinguishable from the theoretical curves. The return periods 𝑇(𝑖:𝑛) were 
assigned by (left) the generic option of unbiased ln 𝑇 and (right) the unbiased quantile option. The 
correspondence between the K-moment of order p and the return period T is also shown through the upper 
horizontal axis. The plots of a single realization are also shown (but for part of the empirical points to avoid 
an overcrowded graph). 
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6.20 Fitting a distribution function with emphasis on extremes 

As we have discussed in section 2.19, using the entire data set to model extremes is 

preferable than using block (e.g. annual) maxima. Usually, the values above a specified 

threshold are chosen, while the remaining values are discarded in modelling. However, if 

we use the K-moments there is no need to set a threshold. All values can be used, but as 

we have seen in section 6.6, in a sample of size 𝑛 the estimation of the K-moment of order 

p relies only on the 𝑛 − 𝑝 + 1 largest values, thus rendering thresholding unnecessary.  

 In Chapter 4 we have discussed two different approaches for fitting distribution 

functions to data. The method of maximum likelihood is well reasoned and is based on an 

optimization logic. In contrast, the method of moments is based on solving equations and 

is not quite rigorously argued. Assuming that we fit a two-parameter model (say, a two-

parameter gamma distribution), the method of moments uses the first two classical 

(noncentral) moments and determines the two parameters by equating the sample 

moments to the theoretical moments of the distributions. One could raise two major 

questions on the logic of this method: 

• Why use the first and second moments and not, say, the second and third? One may 

easily justify the standard choice of using the lowest possible order of moments by 

the fact that higher moments are less accurately estimated. On the other hand, one 

may counter that, when we are interested in extremes, these are better reflected in 

higher-order moments. It is well known that a model can hardly be a perfect 

representation of reality. Thus, we cannot expect that a good model fitting on the 

first and second moment would be equally suitable for distribution tails, i.e. the 

behaviour on extremes.  

• Why use two moments and not more? The standard answer, that two equations 

suffice to find two unknowns, may be adequate from a theoretical mathematical 

point of view but it is not from an empirical and engineering one. (As the saying 

goes, to draw a straight line a mathematician needs two points, but an engineer 

needs three). Certainly, an optimization framework (as in maximizing likelihood or 

in minimizing a fitting error) is much preferable and superior to an equation solving 

method. 

Additionally to these remarks, we reiterate the conclusion in section 6.13 that the popular 

practice of using a few (e.g. one to four) moments, whether classical or alternative (e.g. L-

moments), to choose a model for the marginal distribution and to estimate its parameters, 

is fundamentally defective when dealing with extremes. 

 Having introduced the concept of K-moments we have already seen several 

advantages, which are particularly strong for an extreme-oriented modelling. The 

following three properties are highlighted: 

• They are knowable with unbiased estimators (from samples) for high orders, up to 

the sample size 𝑛, while the estimation uncertainty is by orders of magnitude lower 

than in the classical moments (section 6.6 and Digression 6.D).  
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• The estimators can explicitly (albeit approximately) take into account any existing 

dependence structure (section 6.17). 

• The K-moment values can directly be assigned return periods, through Λ-

coefficients, similar to what happens with order statistics, but with some 

advantages over the latter (section 6.19). 

 With the above points in mind, we can now formulate our distribution fitting 

approach, which may (or may not) be extreme-oriented. In all points listed below the K-

moments for several orders 𝑝 are used, while the order q is assumed to be 1. As an 

exception, point 3 could be based on the variance (𝑞 = 2, 𝜇2 = 𝐾12), even though again 𝐾2 

(𝑞 = 1) could be used instead. 

1. We use all 𝑛 data. 

2. From the data we estimate all K-moments, from orders 1 to 𝑛. Alternatively, we 

could choose a subset of them, e.g. 100 values of p arranged in a geometric 

progression from 1 to 𝑛. Specifically, we could choose a number 𝑚+ 1 of moment 

orders, i.e., 𝑝𝑖 = 𝑛𝑖/𝑚, 𝑖 = 0,… ,𝑚, with 𝑝0 = 1, 𝑝𝑚 = 𝑛. The rationale for this is that 

when dealing with samples of size 𝑛 of the order of several thousands, the number 

m could be chosen much smaller, e.g., of the order of 100, to speed up calculations 

without compromising accuracy. The orders 𝑝𝑖 need not be natural numbers.  

3. We make a climacogram of the data and assess if there is long range dependence. 

In the case there is, we adapt the moment orders using equation (6.122). 

4. We assume a model for the marginal distribution function with some parameters 

represented as a vector 𝝀, and we establish the theoretical relationship between 

parameters of the specified distribution and the mean 𝜇 = 𝐾1′ (such as those in 

Table 6.3), followed by a relationship of 𝝀 with 𝛬1 (equation (6.137)), which we 

evaluate for a first-guess parameter vector 𝝀. Alternatively, but not preferably, we 

can estimate 𝛬1 from the sample mean (by counting the data values that are higher 

than the mean and determining the nonexceedance probability of the mean). 

5. As the vector 𝝀 contains the upper-tail index ξ, we establish its relationship with 𝛬∞, which we evaluate it for a first-guess 𝝀. 

6. Given 𝛬1 and 𝛬∞, for each 𝑝𝑖 (or adapted 𝑝𝑖′) we estimate the empirical distribution 

function value 𝐹̂(𝐾𝑝𝑖′ ) from equation (6.140). 

7. Given the parameter values in vector 𝝀, for each K-moment 𝐾𝑝𝑖′ , we estimate the 

theoretical distribution function 𝐹(𝐾̂𝑝𝑖′ ) from the expression of the distribution 

function 𝐹(𝑥) setting 𝑥 = 𝐾̂𝑝𝑖′ . 

8. We form an expression for the total fitting error (see below), which is a function 𝛦(𝝀) of the parameters 𝝀, and we evaluate it for a first-guess parameter set. 

9. We repeat the calculations of steps 4–8 for different sets of parameter vectors 𝝀 

until the fitting error becomes minimal, replacing the first-guess parameter set 

with thar of the last iteration. The iterations are executed by a solver (available in 

every software environment for numerical analysis) using as objective function (to 

be minimized) the error 𝛦(𝝀). 
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 A convenient form of the error function is 

𝛦(𝝀) ≔∑𝑤𝑖 (ln (𝐹̂(𝐾𝑝𝑖′ ) 𝐹̂(𝐾𝑝𝑖′ )) − ln (𝐹(𝐾̂𝑝𝑖′ ) 𝐹(𝐾̂𝑝𝑖′ )))𝑚
𝑖=0

2
 (6.164) 

where 𝑤𝑖 denotes a weighting coefficient. The rationale of choosing the logarithmic 

deviations of the ratio 𝐹(𝑥)  𝐹(𝑥)⁄ , instead of 𝐹(𝑥), is that this better represents the 

distribution tails. This can also be written in terms of excess return periods (cf. equation 

(5.34)) as: 

𝛦(𝝀) ≔∑𝑤𝑖 (ln (𝑇̂(𝐾𝑝𝑖′ ) − 𝐷𝑇(𝐾̂𝑝𝑖′ ) − 𝐷))𝑚
𝑖=0

2
 (6.165) 

A default value of the weight is 𝑤𝑖 = 1. Two alternatives are: 

𝑤𝑖 = {1 𝑙 ≤ 𝐾𝑝𝑖′ < 𝑢0 otherwise  , 𝑤𝑖 = (𝑇̂(𝐾𝑝𝑖′ )𝐷 − 1)𝑏 (6.166) 

where the former case focuses the fitting on a particular range of the variable, that 

between the chosen lower and upper bounds 𝑙 and 𝑢, respectively, while the latter gives 

more emphasis on fitting to high values of the distribution function by choosing a constant 𝑏 > 0 (e.g., 𝑏 = 0.5).  

 The procedure is typically very fast, almost instant, as the only steps with 

computational burden, namely steps 2 and 3, are executed only once. Remarkably, the 

above procedure does not need evaluation of the theoretical K-moments per se (except 

for the mean 𝜇 = 𝐾1′). While this evaluation would be feasible for any distribution, it might 

be cumbersome as it might involve numerical integration. Notice in equation (6.165) that 

the quantity 𝑇̂(𝐾𝑝𝑖′ ) is estimated from equation (6.140) as a function of 𝑝𝑖 while 𝐾̂𝑝𝑖′  (and 

hence 𝑇(𝐾̂𝑝𝑖′ )) is estimated from the data using equations (6.47) and (6.49). This makes 

the procedure as simple as possible. In addition, it readily provides a visual comparison, 

in term of a probability plot. 

 The above steps are based on the upper K-moments, 𝐾𝑝′ , and are oriented toward a 

fitting that is good for the body of the distribution and the upper tail. If we are interested 

in extreme lows, we can substitute the lower K-moments 𝐾𝑝′  for the upper ones, and 

appropriately adapt the algorithmic steps. If we are equally interested in both tails, then 

we can use both upper and lower tails. Generally, the procedure is flexible, and 

modifications are possible. For instance, if higher accuracy is needed, we can use the 

nonlinear approximation of Λ-coefficients (or their precise expressions, if available, e.g. in 

the exponential and Pareto distributions) or even calculate the K-moments per se (cf. 

sections 6.3–6.5 and 6.8), without involving the Λ-coefficients.  

 A possible criticism on involving high order K-moments (up to order 𝑛) is that this 

gives higher weight to the highest observations, which are more uncertain than the low 

ones. This criticism would be valid if the true distribution function was known to be the 

one chosen as a model for the real-world process studied. But this is hardly the case. Let 
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us assume that in the time series of flow observations we have three very high values and 

that we have chosen a certain model, e.g. a lognormal distribution. How can we be sure 

that the model is correct? If we are not sure (which actually is always the case), and if we 

are to design a certain engineering construction, would we prefer a fitting of the chosen 

model that is consistent with theoretical considerations, e.g. based on the maximum 

likelihood method, even if this yields a departure for the three high values? Or would we 

feel safer if our fitting represents well the three high values? 

 The framework is illustrated in Digression 6.M for rainfall extremes in Bologna. 

Digression 6.M: Extreme-oriented estimation of rainfall in Bologna 

The record of daily rainfall in Bologna has already been discussed in section 1.3 and Digression 
2.J. The period of observation is 𝑇obs = 206 years and it includes 𝑛 = 19 426 nonzero rainfall 
depths (all other daily rainfall values are zero). Therefore, the time reference of defining the 
distribution function (conditional on 𝑥 > 0) and return period is: 𝐷 =  𝑇obs/𝑛 = 206 years/19426 = 0.01060 years = (1/94.3) years 

(which means 94.3 rain days per year). As already discussed in Digression 2.J, the average daily 
rainfall during rain days is 7.2 mm and the maximum 155.7 mm.  
 Here we will see several options for fitting a marginal distribution to nonzero daily rainfall, 
we will study the differences among them, and we will trace a nearly optimal option. Firstly, for 
the sake of illustration we intentionally choose the simplest and blatantly unsuitable model, the 
one-parameter exponential distribution: 𝐹(𝑥) = 1 − e−𝑥/𝜆 

In this case, one moment suffices to estimate the single (scale) parameter λ —but which moment 
to choose? The standard option is to choose the first moment, the mean, so that λ = μ = 7.2 mm. 
This would be the same as choosing classical moments, L-moments, etc. The maximum likelihood 
method would also result in the same estimate of λ.  
 What if we chose a moment higher than 1 for the estimation? The exponential distribution is 
quite convenient and yields simple analytical relationships for all types of moments. Thus, the 
theoretical K- and classical moments are:  𝐾𝑝 = (𝐻𝑝 − 1)𝜆, 𝐾𝑝2 = ((𝐻𝑝 − 1 − 1)2 + 𝐻𝑝 − 1(2) ) 𝜆2, 𝐾1𝑝 = 𝜇𝑝 = (! 𝑝)𝜆𝑝 

where 𝐻𝑝 is the pth harmonic number, 𝐻𝑝(2) is the pth harmonic number of order 2 and ! 𝑝 is the 

subfactorial of p. If we estimate the sample moment 𝐾̂𝑝, 𝐾̂𝑝2 or 𝜇̂𝑝 and equate it to the respective 
theoretical quantity as above, we obtain another estimate of λ. The resulting estimates are plotted 
in Figure 6.24 (left) vs. moment order p, whilst some of the resulting fitted distributions are 
plotted in Figure 6.24 (right) in comparison to the empirical distribution. 
 It is evident in Figure 6.24 that the moment order p affects the fitting dramatically. 
Specifically, the scale parameter λ increases with increasing p and q. If we wish to model maxima, 
it is better to fit based on the thousandth K-moment than on the first! This clearly shows that, as 
far as extremes are concerned, high-order K-moments are preferable to low-order K-moments. 
 In a next step, we fit and compare both the exponential and the Pareto distribution in two 
cases: for the entire data set (size: 19426 for 206 years) and for values over threshold (VOT), 
where the threshold (47 mm) was chosen so that the sample contain 206 values (size equal to the 
number of years). Specifically, the two distribution functions are, respectively, 𝐹(𝑥) = 1 − e−(𝑥 𝜆⁄ −𝜀), 𝐹(𝑥) = 1 − (1 + 𝜉 (𝑥 𝜆 − 𝘀)⁄ )−1 𝜉⁄  

Comparisons of empirical and theoretical distributions are depicted in Figure 6.25. The 
exponential distribution was fitted with one parameter (setting ε = 0) for all data and with two 
parameters for the VOT case. The Pareto distribution was fitted with two parameters (setting ε = 
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0) for all data and three for the VOT case. Obviously, physical consistency demands that ε = 0 but 
violation of this condition can improve the fitting. 
 

 

Figure 6.24 (left) Estimate of the scale parameter λ of the exponential distribution from the pth moment, 
fitted on the Bologna rainfall record; the circle corresponds to the standard estimate by any of the methods 
of classical moments, L-moments, K-moments and maximum likelihood. (right) Resulting fitted 
distribution, as a graph of 𝑥 vs. T, for the indicated values of p; the empirical distribution is calculated by 
formula IV of Table 5.5. 

 For the Pareto case, the methods of moments and L-moments were used, with the lowest 
orders (1, 2 or 3, depending on the number of parameters of the theoretical distribution). Figure 
6.25 shows that there is not a clear winner between the moments and L-moments methods. When 
the entire data set is used, the fitting is quite unsatisfactory for the distribution upper tail 
(extremes). Yet the classical moments fitting shows better performance than the L-moments. If 
we use the VOT sample and the three-parameter Pareto, classical moments and L-moments give 
fittings very close to each other (with slight advantage of the latter on both small and high values). 
Among the two options, all data and VOT option, the latter gives a better fitting on the maxima—
but at the expense of an additional parameter and a physically inconsistent nonzero minimum.  

 

Figure 6.25 Fitting (in terms of plot of quantile 𝑥 vs. return period T) of the exponential (left) and Pareto 
(right) distribution on the Bologna daily rainfall record by the indicated methods; the empirical 
distribution is calculated by formula IV of Table 5.5. 

 Let us now examine two questions: Can we improve the first option, so that the lower bound 
be zero for physical consistency? Can we use the entire data set and fit on the distribution upper 
tail? The answer to both questions is positive and in fact the first question has already been 
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discussed in Digression 2.J. Here we will study them exclusively using the K-moments, both for 
assigning empirical return periods and for distribution fitting. We assume Pareto distribution 
with zero lower bound: 𝐹(𝑥) = 1 − (1 + 𝜉 𝑥 𝜆⁄ )−1𝜉 , 𝑇(𝑥)𝐷 = (1 + 𝜉 𝑥 𝜆⁄ )1𝜉 , 𝑥 = 𝜆 (𝑇 𝐷⁄ )𝜉 − 1𝜉  

The estimated K-moments have return period: 𝑇̂(𝐾𝑝′)𝐷 = 𝑝𝛬𝑝 = (𝑝 Β(𝑝, 1 − 𝜉))1𝜉  

(With negligible error, we could also use the approximation 𝑇̂(𝐾𝑝′) 𝐷 = 𝛬∞(𝑝 − 1) + 𝛬1⁄ .) We 
estimate the parameters ξ and λ by minimizing the mean square error of the logarithms of the 
empirical 𝑇̂(𝐾𝑝′) from the theoretical 𝑇(𝐾̂𝑝′) (cf. equation (6.165); minimizing the error of 𝐾̂𝑝′  with 
respect to 𝐾𝑝′ , without reference to T, is another possibility.) We calculate the error for a range of 
T from 2 years to the maximum value that the sample size allows. The fitted parameters are shown 
in Table 6.12. The fitted distribution function is depicted in Figure 6.26, which shows a perfect 
agreement of theoretical and empirical curves for T > 1 year (the two curves are 
indistinguishable). For comparison, empirical curves for the order statistics are also plotted but 
these have not been used at any step of the fitting procedure. 
 The model shown in Figure 6.26 (right) is quite satisfactory, almost perfect, as far as the 
distribution upper tail is concerned. The proximity of empirical and theoretical curves is 
remarkable, as is the physical consistency and parsimony of the model, which contains only a 
scale parameter and an upper-tail index.  
 By changing the parameter values, we can obtain a better fit on the entire set of values but at 
the cost of worsening that on large return periods (this has been already done in Figure 2.5). 
Alternatively, by adding one parameter to the theoretical distribution function, we can obtain a 
model applicable for the entire range of rainfall depth, without compromising the performance 
on large return periods. Namely, we use the Pareto-Burr-Fuller (PBF) distribution, again with zero 
lower bound: 𝐹(𝑥) = 1 − (1 + 𝘁𝜉(𝑥 𝜆⁄ )𝜁  )− 1𝜁𝜉 , 𝑇𝐷 = (1 + 𝘁𝜉 (𝑥𝜆)𝜁  ) 1𝜁𝜉 , 𝑥 = 𝜆 ((𝑇 𝐷⁄ )𝜁𝜉 − 1𝘁𝜉 )1𝜁  

 

Figure 6.26 Probability plot (in terms of quantile 𝑥 vs. return period T) showing the fitting of the Pareto 
distribution on the Bologna daily rainfall record by the indicated methods, (left) assuming independence 
and (right) accounting for long-range dependence; the curves of theoretical and empirical K-moments are 
indistinguishable for T > 1 year. The empirical distribution from order statistics (calculated by formula IV 
of Table 5.5 and not considering dependence so that it is the same in both panels) is also plotted for 
comparison. 
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Figure 6.27 Same as Figure 6.26, but for the Pareto-Burr-Feller distribution fitted for the entire range of 
return period, (left) assuming independence and (right) accounting for long-range dependence; note that 
empirical return periods based on order statistics do not consider dependence and thus they are the same 
in both panels. 

 Now for the fitting we use the same estimation procedure as above but calculate the error on 
the entire range of values. However, we give less importance to the low quantiles by weighting 
the square error at each point with the quantile itself. In this case we have two different fitting 
variants. In the first we do not apply any constraint in parameters and in the second we keep the 
upper-tail index ξ as estimated for the Pareto distribution (ξ =0.098, in order not to distort the 
good fitting on the upper tail). The parameters are shown in Table 6.12. A perfect fit of the model 
and the empirical curve for the entire range of return periods is seen in Figure 6.27 (referring to 
the first variant). 
 Referring to the numerical results in Table 6.12, we can provide a final comparison focusing 
on the question, which is the design value (distribution quantile) for return period T = 1000 years. 

• If we followed the dominant approach of using Gumbel (EV1) distribution on annual maxima, 
which is equivalent to using exponential tail for the parent distribution, then the design value 
would be 152.4 mm. Note that this is lower than the record observation, which is 155.7 mm. 

• If we changed the distribution from exponential to Pareto, thus being more consistent to 
recent findings (see also discussion and references in Digression 2.J and in Digression 8.G), 
the design value would be 173.7 mm, a 15% increase. 

• By assuming Pareto tail and also accounting for dependence, the design value becomes 218.3 
mm, a 43% increase in comparison to the initial estimate of 152.4 mm.  

• Additional changes can arise if we use a model with more parameters, such as the PBF 
distribution; however, it is not clear if these changes would increase or decrease the design 
value, as the direction depends on additional assumptions. As the additional parameters 
result in higher uncertainty, it may be preferable to use the more parsimonious Pareto model.  

 Note that the increases due to methodological improvements of a consistent stationary 
stochastic framework, are much larger than those usually published in modern literature 
identifying increases attributed to global warming (see Koutsoyiannis, 2020b). The finding here 
may lead to the following suggestions for fine scale rainfall extremes: 

• Assume stationarity. 
• Use Pareto tail. 
• Take dependence into account.  
• Fit based on K-moments of high order. 

 A more detailed model and its fitting to the Bologna rainfall process, considering the entire 
range of time scales, rather than the single daily scale, is discussed in Digression 8.F. 
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Table 6.12 Comparison of model parameters and resulting quantile values for characteristic return periods 
for the different models fitted.  
 
Distribution Fitting 

assumptions1 
Upper-

tail index,  
ξ 

Scale 
parameter,  

λ (mm) 

Location 
parameter, 

ε 

Lower-
tail 

index, ζ 

T (years) 

100 1000 10000 

Exponential I-VOT 0 15.27 3.07 1 117.2 152.4 187.6 

Pareto I-HT 0.098 8.30 0 1 122.9 175.5 241.3 

PBF I-A 0.042 6.12 0 0.786 124.1 173.7 230.7 

PBF I-A 0.098 7.07 0 0.928 124.0 179.9 250.5 

Pareto D-HT 0.120 8.85 0 1 147.7 218.3 311.4 

PBF D-A 0.058 6.49 0 0.775 148.7 213.5 290.8 
PBF D-A 0.120 6.98 0 0.891 151.6 229.7 333.9 

1 I: independence; D: dependence; A: all data; VOT: values above threshold; HT: high return period, T ≥ 1 
year. 

6.21 Genuine distribution function fitting from block-maximum data 

As repeatedly discussed, using the entire data set to model extremes is preferable than 

using block (e.g. annual) maxima. Put it differently, we seek to model the original process 

rather than an artificial process created by taking maxima over blocks. Can we get rid of 

block maxima methods and only use methods that refer to the parent, original process? 

At first glance the answer to this question seems negative, as many available data sets 

have been compiled on the basis of block maxima. For example, there are many available 

time series of annual maximum rainfall, at daily or hourly time scale, while the complete 

series of daily or hourly rainfall are not available. Thus, we may pose a second question: 

Is it possible to estimate statistics of the original process using data of block maxima?  

 The reply to this question is affirmative. The K-moment framework makes possible 

the complete abandoning of block maxima methods and Extreme Value distributions, also 

utilizing block maxima when the complete series is not available. As stated in the 

beginning of this chapter, abandoning the use of Extreme Value distributions is 

advantageous, as it has been known that the convergence to the asymptotic Extreme 

Value distributions can be extraordinarily slow, while the non-asymptotic distributions 

of extremes can be quite difficult to determine, particularly when there is time 

dependence.  

 Let us start with the case of a time series from a process 𝑥𝜏 at discrete time 𝜏 without 

dependence, which can be emulated as a sample. We consider blocks of length 𝑏 of that 

process and we define the process of block maxima as 𝑦𝑖 ≔ max(𝑥(𝑖−1)𝑏+1, 𝑥(𝑖−1)𝑏+2, … , 𝑥𝑖𝑏) (6.167) 

Let 𝐾𝑦𝑝′  be the upper K-moments of the process 𝑦𝑖 and 𝐾𝑝′  those of the process 𝑥𝜏. We 

consider upper K-moment of 𝑥𝑖 for order 𝑝1 ≔ 𝑝𝑏, where 𝑝 is any natural number. 

 From the definition of the upper K-moment (equation (6.3)) we have 𝐾𝑝1′  = E[max(𝑥1, 𝑥2, … , 𝑥𝑝𝑏)], 𝑝1 ≔ 𝑝𝑏 (6.168) 

which can be expanded as 
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 𝐾𝑝1′ = E [max ((𝑥1, 𝑥2, … , 𝑥𝑏), (𝑥𝑏+1, … , 𝑥2𝑏),… , (𝑥(𝑝−1)𝑏+1, … , 𝑥𝑝𝑏))]= E [max (max(𝑥1, … , 𝑥𝑏),max(𝑥𝑏+1, … , 𝑥2𝑏),… ,max(𝑥(𝑝−1)𝑏+1, … , 𝑥𝑝𝑏))] (6.169) 

or 𝐾𝑝1′ = E [max (𝑦1, 𝑦2, … , 𝑦𝑝)] (6.170) 

and finally 𝐾𝑝1′ = 𝐾𝑦𝑝′  (6.171) 

 In brief, the pth upper K-moment of the process of block maxima equals the upper K-

moment of the original process for order 𝑝𝑏. We thus estimate K-moments of the original 

process from data of block maxima. With these estimations we can fit a model to the 

process 𝑥𝜏 directly (see section 6.20). 

 If the process has short-term dependence, then the above result holds true, as it has 

been shown (section 6.17) that no adaptation is needed. If it has long term dependence, 

the same Hurst parameter is valid for both processes 𝑥𝜏 and 𝑦𝑖. In this case, using equation 

(6.122) which modifies the order 𝑝 to an adapted order 𝑝′, we adapt equation (6.171) to 

the following: 𝐾𝑝1′′  = 𝐾𝑦𝑝′′ ,   𝑝′ ≈ 2𝛩 + (1 − 2𝛩)𝑝((1+𝛩)2) ≕ 𝑔(𝑝),   𝑏′ ≔ 𝑔(𝑛𝑏)𝑔(𝑛) ,   𝑝1′ ≔  𝑝′𝑏′ (6.172) 

where 𝑛 is the number of observations of block maxima and 𝑏′ is the adapted block size. 

Notice that for a time series with independence, 𝛩 = 0, 𝑝′ = 𝑝, 𝑔(𝑝) = 𝑝, and thus 𝑏′ =𝑛𝑏/𝑛 = 𝑏. If 𝛩 < 0, then 𝑏′ < 𝑏. The maximum value in the observed sample of 𝑛 block 

observations, which is equal to the maximum order K-moment, is also the maximum of 𝑛𝑏 

time steps of the original observations and thus, if considered as a K-moment of the 

process 𝑥𝜏, it should have adapted order 𝑝′𝑏′ = 𝑔(𝑛𝑏). If considered as a K-moment of the 

process 𝑦𝜏, it should have adapted order 𝑝′ = 𝑔(𝑛). This is indeed assured by the 

definition of 𝑏′ ≔ 𝑔(𝑛𝑏) 𝑔(𝑛)⁄ , which confirms the consistency of equation (6.172). 

 Verification of equation (6.172) is shown in Figure 6.28 based on stochastic 

simulation whose details are given in the figure caption. Further verification is given in 

Figure 6.29 using real-world data, namely the daily precipitation in Bologna, from which 

annual maxima are extracted and the K-moments thereof are compared to the ones of the 

detailed daily process using both equations (6.171) and (6.172). The long-term 

persistence in Bologna precipitation is strong (𝐻 = 0.9) and thus the adapted moment 

orders differ substantially from the initial ones. The resulting correspondence of the 

moments from block maxima and from the complete daily series is impressively good if 

we consider dependence (equation (6.172)). But even without considering it (equation 

(6.171)) the deviations are negligible, except in the lowest orders). 
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Figure 6.28 Stochastic simulation results for the correspondence of K-moments estimated from 
block maxima by equation (6.172) with the K-moments of the original process. The results are for 
an HK process with the indicated Hurst parameter 𝐻 and lognormal distribution with shape 
parameter 𝜍 = 1. The lines correspond to the original process whose K-moments were estimated 
as the averages of an ensemble of 100 simulations with length 𝑛𝑏 = 100. The points correspond 
to the process of block maxima, estimated from the same simulations, after grouping the time 
series of 100 items into 10 blocks of length 10 each and taking the maxima of the blocks. The 
adapted moment order refers to the original process (𝑥𝜏). The case 𝐻 = 0.5 (upper left) refers to 
a process with independence, for which equation (6.171) applies.  

6.22 Estimation of distribution quantiles 

As we have seen in section 6.19, given a K-moment estimate, upper 𝐾̂𝑝′  or lower 𝐾̂𝑝′ , for a 

given order moment 𝑝, we can assign a return period 𝑇 or nonexceedance probability 𝐹 

based on the order 𝑝 alone. Conversely, for a given nonexceedance probability 𝐹, we can 

calculate the quantile 𝑥 as the K-moment estimate 𝐾̂𝑝′ , if 𝐹 ≥ 𝐹(𝜇), or 𝐾̂𝑝′ , otherwise, for 

an order 𝑝 specified as follows:  

𝑥 = {  
  𝐾̂𝑝′ , 𝑝 ≈ 1𝛬∞(1 − 𝐹) + 1 − 𝛬1𝛬∞ , 𝐹 ≥ 𝐹(𝜇)
𝐾̂𝑝′ , 𝑝 ≈ 1𝛬∞𝐹 + 1 − 𝛬1𝛬∞ , 𝐹 ≤ 𝐹(𝜇) (6.173) 

This estimate is more reliable than that based on a single 𝑥(𝑖:𝑛) because it is derived from 

many data points (except when 𝑖 = 𝑛, where the two approaches are precisely identical). 

For that reason, it has been the method of choice in a demanding hydrological 
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methodology which converts deterministic models to stochastic (named Bluecat, 

Koutsoyiannis and Montanari, 2022a). The prerequisites are the prior estimation of 𝛬1 

(easy task, see point 5 in section 6.20), 𝛬∞ and 𝛬∞ (requires knowing the tail indices ξ and 

ζ; see also Koutsoyiannis, 2022). 

  

Figure 6.29 Verification, using the daily precipitation data of Bologna, of the correspondence of 
K-moments estimated from block maxima (206 annual maxima) by equation (6.172) with the K-
moments of the original process: (let column) Cartesian axes; (right column) logarithmic axes; 
(upper row) original moment orders, neglecting dependence and using equation (6.171); (lower 
row) adapted moment orders, after considering long-term dependence (𝐻 = 0.9) and using 
equation (6.172).  

6.23 Estimation of probability density function 

When assigning values of the distribution function 𝐹(𝑥) to the K-moments, the 

arrangement of point estimates thereof produces a smooth curve, which allows a direct 

estimate of the probability density. This is a strong advantage of the K-moment 

representation, which makes it is the only method that can provide a detailed 

representation of the density function, replacing the rougher representation offered by 

the popular concept of the histogram (Koutsoyiannis, 2022).  
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Figure 6.30 Illustration of the probability density estimate using the K-moment framework with 
a Pareto distribution with mean 𝜇 = 1 and upper-tail index 𝜉 = 0.1, plotted on (left column) 
Cartesian and (right column) logarithmic axes. (upper row) Simulation results from a single data 
series of 𝑛 = 100 values generated from the Pareto distribution. The points marked as “estimate” 
are calculated by equation (6.174) and their abscissae are the midpoints of the intervals (𝐾̂𝑝′ , 𝐾̂𝑝+1′ ) and (𝐾̂𝑝+1′ , 𝐾̂𝑝′ ). For comparison, the histogram of 10 bins, calculated by the standard 

method for the range [0, 10] (width 𝑤 = 2) is also shown. (lower row) Simulation results from 
100 data series of 𝑛 = 100 values each, processed to calculate the median of the estimates and 
produce their uncertainty band in terms of prediction limits, where the original results (whose 
abscissae differ in the different series) are interpolated at the points that are plotted in the graphs.  

 Specifically, given the 2𝑛 − 1 sample estimates of K-moments 𝐾̂𝑝′  and 𝐾̂𝑝′ , namely the 

ordered values 𝐾̂𝑛′ ≤ 𝐾̂𝑛−1′ ≤ ⋯ ≤ 𝐾̂1′ ≡ 𝐾̂1′ ≤ 𝐾̂2′ ≤ ⋯𝐾̂𝑛−1′ ≤ 𝐾̂𝑛′ , and the estimates of 

the distribution function 𝐹̂(𝐾𝑝′) and 𝐹̂ (𝐾𝑝′ ) from equations (6.140) and (6.150), it is then 

straightforward to approximate the density function 𝑓(𝑥) = d𝐹(𝑥)/d𝑥 by the discrete 

derivative: 
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𝑓(𝑥) =
{   
   𝐹̂(𝐾𝑝+1′ ) − 𝐹̂(𝐾𝑝′)𝐾̂𝑝+1′ − 𝐾̂𝑝′ , 𝐾̂𝑝′ ≤ 𝑥 < 𝐾̂𝑝+1′
𝐹̂ (𝐾𝑝′ ) − 𝐹̂ (𝐾𝑝+1′ )𝐾̂𝑝′ − 𝐾̂𝑝+1′ , 𝐾̂𝑝+1′ ≤ 𝑥 < 𝐾̂𝑝′  (6.174) 

This will result in 2𝑛 − 2 different values of the density 𝑓(𝑥), while it is possible to expand 

the number of estimation points by using non-integer orders p (Koutsoyiannis, 2022). The 

method is illustrated in Figure 6.30 for the Pareto distribution, by means of Monte Carlo 

simulation for a single realization with 100 items (upper row), as well as for 100 

realizations of samples of 100 items each (lower row). The estimated probability density 

harmonizes with the true shape of the probability density, and the uncertainty, depicted 

in terms of prediction limits, is low in the body of the distribution, but, naturally, increases 

in the upper and lower tails. 

Appendix 6-I: The binomial identity and the binomial and Bernoulli 

transforms  

The binomial identity is: 

(𝑥 + 𝑦)𝑝 =∑(𝑝𝑖)𝑝
𝑖=0 𝑥𝑖𝑦𝑝−𝑖 = 𝑦𝑝∑(𝑝𝑖)𝑝

𝑖=0 (𝑥𝑦)𝑖 (6.175) 

where p is a nonnegative integer and 𝑥 and y are any numbers (𝑦 ≠ 0). The identity can be 

expanded for any real (or even complex) p. Assuming |𝑥| < |𝑦| (to guarantee convergence), the 

identity takes the form: 

(𝑥 + 𝑦)𝑝 =∑(𝑝𝑖)∞
𝑖=0 𝑥𝑖𝑦𝑝−𝑖 = 𝑦𝑝∑(𝑝𝑖)∞

𝑖=0 (𝑥𝑦)𝑖 (6.176) 

and since for integer p and for 𝑖 > 𝑝 the binomial coefficient (𝑝𝑖 ) is zero, (6.175) is readily 

recovered from (6.176).  

 In our stochastic context, it is interesting to study the case where 𝑥 represents a stochastic 

variable and y a number. We thus get the following characteristic cases: 

• 𝑥 → 𝑥, 𝑦 =  1 

(𝑥 + 1)𝑝 =∑(𝑝𝑖)∞
𝑖=0 𝑥𝑖 (6.177) 

• 𝑥 → −𝑥, 𝑦 = 1 

(1 − 𝑥)𝑝 =∑(𝑝𝑖)𝑝
𝑖=0 (−1)𝑖𝑥𝑖 (6.178) 

• 𝑥 → 𝑃𝑥, 𝑦 = 1 − 𝑃, typically for 0 < 𝑃 < 1: 
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(𝑃𝑥 + 1 − 𝑃)𝑝 =∑(𝑝𝑖)𝑝
𝑖=0 𝑃𝑖(1 − 𝑃)𝑝−𝑖𝑥𝑖 (6.179) 

 If we take expected values on (6.178), and denote 𝑎𝑖 ≔ E[𝑥𝑖], 𝑏𝑖 ≔ E[(1 − 𝑥)𝑖] we can write: 

𝑏𝑝 =∑(𝑝𝑖)𝑝
𝑖=0 (−1)𝑖𝑎𝑖 (6.180) 

This latter equation defines the binomial transform, which is self-inverting (involutory), i.e.: 

𝑎𝑝 =∑(𝑝𝑖)𝑝
𝑖=0 (−1)𝑖𝑏𝑖 (6.181) 

Using the symbol ℬ for the binomial transform we can write: 𝑏𝑝 = (ℬ𝑎)𝑝⇔𝑎𝑝 = (ℬ𝑏)𝑝 (6.182) 

 There is another variant of the binomial transform: 

𝑏𝑝 =∑(𝑝𝑖)𝑝
𝑖=0 (−1)𝑝−𝑖𝑎𝑖 (6.183) 

This is not self-inverting and the inverse transform, also known as forward binomial transform, is  

𝑎𝑝 =∑(𝑝𝑖)𝑝
𝑖=0 𝑏𝑖 (6.184) 

 If we take expected values in (6.179), and denote 𝑐𝑖 ≔ E[(𝑃𝑥 + 1 − 𝑃)𝑖] we can write: 

𝑐𝑝 =∑(𝑝𝑖)𝑝
𝑖=0 𝑃𝑖(1 − 𝑃)𝑝−𝑖𝑎𝑖 (6.185) 

This latter equation defines the Bernoulli transform with parameter P. If we denote it with the 

symbol ℬ𝑃 we can write: 𝑐𝑝 = (ℬ𝑃𝑎)𝑝 (6.186) 

The relationship between the Bernoulli and binomial transforms is found as follows: 

𝑐𝑝 = (1 − 𝑃)𝑝∑(𝑝𝑖)𝑝
𝑖=0 ( 𝑃1 − 𝑃)𝑖 𝑎𝑖 = (1 − 𝑃)𝑝(ℬ𝑎′)𝑝, 𝑎𝑝′ ≔ ( −𝑃1 − 𝑃)𝑖 𝑎𝑝 (6.187) 

Consequently: 𝑐𝑝 = (ℬ𝑃𝑎)𝑝 = (1 − 𝑃)𝑝(ℬ𝑎′)𝑝 (6.188) 

which can be written as 𝑐𝑝′ = (ℬ𝑎′)𝑝, 𝑐𝑝′ ≔ 1(1 − 𝑃)𝑝 𝑐𝑝 (6.189) 

and by inverting the binomial transform 
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𝑎𝑝′ = (ℬ𝑐′)𝑝 ⇔ 𝑎𝑝 = (1𝑝 − 1)𝑝 (ℬ𝑐′)𝑝 = ((ℬ𝑃)−1𝑐)𝑝 (6.190) 

where (ℬ𝑃)−1 is the inverse Bernoulli transform. 

 By setting 𝑃 = 1/2, so that 𝑎𝑝′ ≔ (−1)𝑝𝑎𝑝, 𝑐𝑝′ ≔ 2−𝑝𝑐𝑝we find:` (ℬ𝑃𝑎)𝑝 = 2−𝑝(ℬ𝑎′)𝑝 (6.191) 

which shows that the binomial transform can be viewed as a special case of the Bernoulli 

transform. 

 Extending the result in equation (6.178), we multiply both sides by any function 𝑔(𝑥):  
𝑔(𝑥)(1 − 𝑥)𝑝 = 𝑔(𝑥)∑(𝑝𝑖)𝑝

𝑖=0 (−1)𝑖𝑥𝑖 (6.192) 

and take expected values to find: 

𝑏𝑝 =∑(𝑝𝑖)𝑝
𝑖=0 (−1)𝑖𝑎𝑖 = (ℬ𝑎)𝑝 (6.193) 

where now: 𝑎𝑝 ≔ E[𝑔(𝑥)𝑥𝑝], 𝑏𝑝 ≔ E[𝑔(𝑥)(1 − 𝑥)𝑝] (6.194) 

Appendix 6-II: Relationships between different moment types 

To find the relationship between the classical central and noncentral moments we apply the 

binomial identity: 

𝜇𝑝 = E[(𝑥 − 𝜇)𝑝] = E [∑(𝑝𝑖 )𝑝
𝑖=0 𝑥𝑖(−𝜇)𝑝−𝑖] =∑(𝑝𝑖)𝑝

𝑖=0 E[𝑥𝑖](−𝜇)𝑝−𝑖 (6.195) 

which yields: 

𝜇𝑝 =∑(𝑝𝑖)𝑝
𝑖=0 (−𝜇)𝑝−𝑖𝜇𝑖′ (6.196) 

In a similar manner we find the inverse relationship: 

𝜇𝑝′ =∑(𝑝𝑖)𝑝
𝑖=0 𝜇𝑝−𝑖𝜇𝑖 (6.197) 

 Likewise, given the definitions of noncentral K-moments, 𝐾𝑝𝑞′  ≔ E[𝑥(𝑝)𝑞 ], and central ones, 𝐾𝑝𝑞 ≔ E[(𝑥(𝑝) − 𝜇)𝑞] (section 6.2), we readily find 

𝐾𝑝𝑞 =∑(𝑞𝑖 )𝑞
𝑖=0 (−𝜇)𝑞−𝑖𝐾𝑝𝑖′   (6.198) 

which can be inverted to give 
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𝐾𝑝𝑞′ =∑(𝑞𝑖 )𝑞
𝑖=0 𝜇𝑞−𝑖𝐾𝑝𝑖  (6.199) 

The above relationships are initialized with 𝐾𝑝0′ = 𝐾𝑝0′ = 𝐾𝑝0 = 𝜇0 = 𝜇0′ = 1, 𝜇1′ = 𝐾1′ = 𝐾1′ =𝜇 and 𝜇1 = 𝐾1 = 0. For q = 1 we get: 𝐾𝑝 = 𝐾𝑝′  − 𝜇, 𝐾𝑝′ = 𝐾𝑝 + 𝜇 (6.200) 

and for q = 2: 𝐾𝑝2 = 𝐾𝑝2′ − 2𝜇𝐾𝑝1′ + 𝜇2, 𝐾𝑝2′ = 𝐾𝑝2 + 2𝜇𝐾𝑝1 + 𝜇2 (6.201) 

 To find the relationship of (noncentral) upper to lower K-moments, we distinguish the cases 

of continuous and discrete stochastic variables. For the former case, using (6.16) and the binomial 

identity, we write:  

𝐾𝑝′ = 𝑝E [𝑥 (1 − 𝐹(𝑥))𝑝−1] = 𝐾𝑝′ = 𝑝E [𝑥∑(𝑝 − 1𝑖 )𝑝−1
𝑖=0 (−1)𝑖𝐹(𝑥)𝑖]

= 𝑝∑(𝑝 − 1𝑖 )𝑝−1
𝑖=0 (−1)𝑖 E [𝑥𝐹(𝑥)𝑖] (6.202) 

By virtue of (6.15), E [𝑥𝐹(𝑥)𝑖] = 𝐾𝑖+1′ /(𝑖 + 1). Hence: 

𝐾𝑝′ = 𝑝∑(𝑝 − 1𝑖 )𝑝−1
𝑖=0 (−1)𝑖 𝐾𝑖+1′𝑖 + 1 (6.203) 

Setting 𝑗 = 𝑖 + 1 we get: 

𝐾𝑝′ = 𝑝∑(𝑝 − 1𝑗 − 1)𝑝
𝑗=1 (−1)𝑗+1𝐾𝑗′𝑗 = −∑𝑝𝑗 (𝑝 − 1𝑗 − 1)𝑝

𝑗=1 (−1)𝑗𝐾𝑗′ (6.204) 

and finally, after algebraic manipulations, 

𝐾𝑝′ =∑(𝑝𝑗)𝑝
𝑗=1 (−1)𝑗(−𝐾𝑗′) (6.205) 

 For discrete stochastic variables, from (6.25) we have 

𝐾𝑝′ =∑𝐹(𝑗)𝑝∞
𝑗=0 =∑(1 − 𝐹(𝑗))𝑝 ∞

𝑗=0  (6.206) 

Using the binomial identity, we can write 

𝐾𝑝′ =∑(1 − 𝐹(𝑗))𝑝∞
𝑗=0 =∑∑(𝑝𝑖) (−1)𝑖𝑝

𝑖=0 𝐹(𝑗)𝑖 ∞
𝑗=0 =∑∑(𝑝𝑖) (−1)𝑖𝑝

𝑖=0 ((𝐹(𝑗)𝑖 − 1) + 1) ∞
𝑗=0 =

=∑∑(𝑝𝑖) (−1)𝑖𝑝
𝑖=0 (𝐹(𝑗)𝑖 − 1) ∞

𝑗=0 +∑∑(𝑝𝑖) (−1)𝑖𝑝
𝑖=0  ∞

𝑗=0  

(6.207) 
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The second sum in the last term equals zero (∑ (𝑝𝑖 ) (−1)𝑖𝑝𝑖=0 = 0). On the other hand, from (6.21), ∑ (𝐹(𝑗)𝑖 − 1) ∞𝑗=0 = −𝐾𝑖′. Hence, 

𝐾𝑝′ =∑(𝑝𝑖 ) (−1)𝑖𝑝
𝑖=0 (−𝐾𝑖′) (6.208) 

where we can omit the term 𝐾0′  as it is identical to zero and change the lower limit in the sum to 𝑖 = 1, thus obtaining the same result as in (6.205). These prove equation (6.59) for both 

continuous and discrete stochastic variables. 

Appendix 6-III: Relationships between K-moments of continuous and mixed 

distributions 

The lower K-moments 𝐾𝑝′∗ of a distribution function with a discontinuity 1 − 𝑃1 at the origin are 

related to those of the distribution without a discontinuity by: 

𝐾𝑝′∗ = 𝑃1𝑝𝐾𝑝′ = −∑(−1)𝑙 (𝑝𝑙 ) (1 − 𝑃1)𝑙  𝐾𝑙′𝑝
𝑙=0  (6.209) 

On the other hand, the noncentral K-moment of order p is:  

𝐾𝑝′∗ = −∑(−1)𝑖 (𝑝𝑖 )𝑝
𝑖=1 𝐾𝑖′∗ = −∑(−1)𝑖 (𝑝𝑖 )𝑝

𝑖=1 𝑃1𝑖𝐾𝑖′ =∑(−1)𝑖 (𝑝𝑖 )𝑝
𝑖=1 𝑃1𝑖∑(−1)𝑙 (𝑖𝑙)𝑖

𝑙=1 𝐾𝑙′
=∑(−1)𝑙𝑝
𝑙=1 𝐾𝑙′∑(−1)𝑖 (𝑝𝑖 )𝑝

𝑖=𝑙 (𝑖𝑙) 𝑃1𝑖  (6.210) 

Using the identity: (𝑝𝑛) (𝑛𝑙 ) = (𝑝𝑙 ) (𝑝 − 𝑙𝑛 − 𝑙) (6.211) 

we find: 

𝐾𝑝′∗ =∑(−1)𝑙𝑝
𝑙=1 𝐾𝑙′∑(−1)𝑖 (𝑝𝑙 )𝑝

𝑖=𝑙 (𝑝 − 𝑙𝑖 − 𝑙 ) 𝑃1𝑖 =∑(−1)𝑙𝑝
𝑙=1 (𝑝𝑙 ) 𝐾𝑙′∑(−1)𝑖𝑝

𝑖=𝑙 (𝑝 − 𝑙𝑖 − 𝑙 )𝑃1𝑖 =
=∑(−1)𝑙𝑝
𝑙=1 (𝑝𝑙 )𝐾𝑙′∑(−1)𝑖+𝑙𝑝−𝑙

𝑖=0 (𝑝 − 𝑙𝑖 ) 𝑃1𝑖+𝑙
=∑(−1)𝑙𝑝
𝑙=1 (−1)𝑙 (𝑝𝑙 )𝐾𝑙′𝑃1𝑙∑(−1)𝑖𝑝−𝑙

𝑖=0 (𝑝 − 𝑙𝑖 ) 𝑃1𝑖  
(6.212) 

and finally: 

𝐾𝑝′∗ =∑(𝑝𝑙)𝐾𝑙′𝑃1𝑙(1 − 𝑃1)𝑝−𝑙𝑝
𝑙=1  (6.213) 

which proves equation (6.78). Application of this result to the Pareto and exponential 

distributions, results in the expressions in Table 6.13. 
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Table 6.13 Analytical results for the lower K-moments of the Pareto and exponential distributions, defined 

on [0,∞) with a discontinuity at zero, 𝑃0 ≔ 𝑃{𝑥 = 0} = 1 − 𝑃1 (0 < 𝑃1 ≤ 1). λ is a scale parameter and ξ is 

the upper-tail index, both positive. 

Distribution, distribution 

function complement, and 

lower K-moments 

Upper K-moment expressions Eqn. no. 

Pareto, 𝐹̅(𝑥) = 𝑃1 (1 + 𝜉 𝑥𝜆)−1𝜉  𝐾𝑝𝑞′ = 𝜆𝑞𝑃1𝑝 𝑞𝜉𝑞 B (𝑝𝜉 − 𝑞, 𝑞) 

𝐾𝑝′ = 𝜆𝜉 (𝑝𝑃1𝜉B𝑃1(1 − 𝜉, 𝑝) − 1 + (1 − 𝑃1)𝑝), 𝐾1′ = 𝜆𝑃11 − 𝜉 

𝐾𝑝2′ = (𝜆𝜉)2 (𝑝𝑃1𝜉(𝑃1𝜉 B𝑃1(1 − 2𝜉, 𝑝) − 2B𝑃1(1 − 𝜉, 𝑝)) − (1 − 𝑃1)𝑝 + 1) 𝐾12′ = 2𝜆2𝑃1(1 − 2𝜉)(1 − 𝜉) 
(6.214) 

Exponential1,  𝐹̅(𝑥) = 𝑃1 exp (−𝑥𝜆) 𝐾𝑝𝑞′ = 𝜆𝑞𝑃1𝑝𝑞!𝑝𝑞  

𝐾𝑝′ = 𝜆 𝑝 𝑃1  3𝐹2 (1,1,1 − 𝑝; 2,2; 𝑃1) 𝐾𝑝𝑞′ = 𝜆 (𝑝 − 𝑞 + 1) 𝑃1 ( 3𝐹2 (1,1, 𝑞 − 𝑝; 2,2; 𝑃1)− (𝑞 − 1) 4𝐹3 (1,1, 𝑞 − 𝑝; 2,2; 𝑃1)) 𝐾1′ = 𝜆 𝑃1, 𝐾2′ = 𝜆𝑃1(2 − 𝑃1/2), 𝐾12′ = 2𝜆2𝑃1 

(6.215) 

1  𝑎𝐹𝑏 is the generalized hypergeometric function.  

 Regarding the approximation of equation (6.80), we define 𝑝𝑐  so that it correspond to 𝑝′ = 2. 

Thus, 𝐾𝑝𝑐′∗ = 𝐾2′ . Approximating 𝐾𝑝′∗ for 𝑝 ≤ 𝑝𝑐  with a power function as in the upper case of (6.80), 

we determine b as the logarithmic slope: 𝑏 = ln(𝐾2′/𝑃1𝐾1′)ln 𝑝𝑐 = ln(𝐾2′/𝐾1′) − ln𝑃1ln 𝑝𝑐 = 𝑐 ln 2 − ln𝑃1ln 𝑝𝑐 = ln(2𝑐/𝑃1)ln 𝑝𝑐  (6.216) 

where 𝑐 ≔ ln(𝐾2′ 𝐾1′⁄ ) ln 2⁄ . On the other hand, if we assume that 𝑝′ = 𝑃1𝑝, then at 𝑝′ = 2, 2 = 𝑃1𝑝𝑐  

or 𝑝𝑐 = 2/𝑃1. Performing the algebraic operations, we find (6.80). 

Appendix 6-IV: Proof of K-moment estimator unbiasedness for continuous 

stochastic variables 

The density function 𝑓(𝑖:𝑛)(𝑥) of the ith order statistic, 𝑥(𝑖:𝑛) is (Papoulis 1990): 𝑓(𝑖:𝑛)(𝑥) = (𝑛 − 𝑖 + 1) ( 𝑛𝑖 − 1) (𝐹(𝑥))𝑖−1(1 − 𝐹(𝑥))𝑛−𝑖𝑓(𝑥) (6.217) 

and therefore: 

E[𝑥(𝑖:𝑛)] = ∫ 𝑥∞−∞ 𝑓(𝑖:𝑛)(𝑥)(𝑥)d𝑥 = (𝑛 − 𝑖 + 1) ( 𝑛𝑖 − 1) ∫ 𝑥∞−∞ (𝐹(𝑥))𝑖−1(1 − 𝐹(𝑥))𝑛−𝑖𝑓(𝑥)d𝑥
= (𝑛 − 𝑖 + 1) ( 𝑛𝑖 − 1)∫𝑥(𝐹)1

0 𝐹𝑖−1(1 − 𝐹)𝑛−𝑖d𝐹 

(6.218) 

 The noncentral K-moment estimator is: 

𝐾̂𝑝′ =∑( 𝑖−1𝑝−1)(𝑛𝑝)  𝑥(𝑖:𝑛)
𝑛
𝑖=1  (6.219) 

and its expectation is: 
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E[𝐾̂𝑝′ ] =∑( 𝑖−1𝑝−1)(𝑛𝑝) E[𝑥(𝑖:𝑛)]
𝑛
𝑖=𝑝 = ∑( 𝑖−1𝑝−1)(𝑛𝑝) ( 𝑛𝑖 − 1) (𝑛 − 𝑖 + 1) ∫(𝑥(𝐹)𝐹𝑝−1)1

0 𝐹𝑖−𝑝(1 − 𝐹)𝑛−𝑖d𝐹 𝑛
𝑖=𝑝  

(6.220) 

The term before the integral is simplified to 

(𝑛 − 𝑖 + 1) ( 𝑛𝑖 − 1) ( 𝑖−1𝑝−1)(𝑛𝑝) = 𝑝(𝑛 − 𝑝)!(𝑛 − 𝑖)! (𝑖 − 𝑝)! = 𝑝 (𝑛 − 𝑝𝑖 − 𝑝) (6.221) 

and hence 

E[𝐾̂𝑝′ ] = ∫(𝑥(𝐹)𝐹𝑝−1)1
0 ∑𝑝(𝑛 − 𝑝𝑖 − 𝑝)𝑛

𝑖=𝑝 𝐹𝑖−𝑝(1 − 𝐹)𝑛−𝑖d𝐹 (6.222) 

On the other hand, the sum is simplified to  

𝑝∑(𝑛 − 𝑝𝑖 − 𝑝)𝑛
𝑖=𝑝 𝐹𝑖−𝑝(1 − 𝐹)𝑛−𝑖 = 𝑝∑ (𝑛 − 𝑝𝑗 )𝑛−𝑝

𝑗=0 𝐹𝑗(1 − 𝐹)𝑛−𝑝−𝑗 = 𝑝(𝐹 + (1 − 𝐹))𝑛−𝑝 = 𝑝 (6.223) 

 Consequently, 

E[𝐾̂𝑝′ ] = 𝑝∫𝑥(𝐹)𝐹𝑝−11
0 d𝐹 (6.224) 

Comparing with equation (6.17), we conclude that E[𝐾̂𝑝′ ] = 𝑝𝐾𝑝′  (6.225) 

which proves the equation unbiasedness. 

Appendix 6-V: Proof of K-moment estimator unbiasedness for discrete 

stochastic variables 

The proof given in Appendix 6-IV for continuous variable does not hold for discrete ones. In this 

case the order statistics are also discrete stochastic variables, yet the K-moment estimators 

remain continuous ones.  

 The distribution function 𝐹(𝑖:𝑛)(𝑥) of the ith order statistic, 𝑥(𝑖:𝑛) equals the probability that 

at least 𝑖 observations are smaller than or equal to 𝑥. If 𝑙 is the number observations that are 

smaller than or equal to 𝑥, the probability that 𝑙 = 𝑙 is given by the binomial distribution: 𝑃{𝑙 = 𝑙} = (𝑛𝑙 )𝐹(𝑥)𝑙(1 − 𝐹(𝑥))𝑛−𝑙 (6.226) 

Hence, 𝐹(𝑖:𝑛)(𝑥) can be calculated as: 

𝐹(𝑖:𝑛)(𝑥) ≔ 𝑃{𝑥(𝑖:𝑛) ≤ 𝑥} =∑𝑃{𝑙 = 𝑙}𝑛
𝑙=𝑖 =∑(𝑛𝑙 )𝐹(𝑥)𝑙𝑛

𝑙=𝑖 (1 − 𝐹(𝑥))𝑛−𝑙 (6.227) 

The probability mass function of 𝑥(𝑖:𝑛) will thus be 
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𝑃𝑗(𝑖:𝑛) ≔ 𝑃(𝑖:𝑛)(𝑗) = 𝑃{𝑥(𝑖:𝑛) = 𝑗} = 𝑃{𝑥(𝑖:𝑛) ≤ 𝑗} − 𝑃{𝑥(𝑖:𝑛) ≤ 𝑗 − 1}= 𝐹(𝑖:𝑛)(𝑗) − 𝐹(𝑖:𝑛)(𝑗 − 1) (6.228) 

Hence, 

𝑃𝑗(𝑖:𝑛) =∑(𝑛𝑙 )𝐹𝑗𝑙𝑛
𝑙=𝑖 (1 − 𝐹𝑗)𝑛−𝑙 −∑(𝑛𝑙 )𝐹𝑗−1𝑙𝑛

𝑙=𝑖 (1 − 𝐹𝑗−1)𝑛−𝑙
=∑(𝑛𝑙 )𝑛

𝑙=𝑖 (𝐹𝑗𝑙(1 − 𝐹𝑗𝑙)𝑛−𝑙 − 𝐹𝑗−1𝑙 (1 − 𝐹𝑗−1𝑙 )𝑛−𝑙) 

(6.229) 

and consequently, E[𝑥(𝑖:𝑛)] =∑𝑗∞
𝑗=0 𝑃𝑗(𝑖:𝑛) =∑𝑗∞

𝑗=0 ∑(𝑛𝑙 )𝑛
𝑙=𝑖 (𝐹𝑗𝑙(1 − 𝐹𝑗𝑙)𝑛−𝑙 − 𝐹𝑗−1𝑙 (1 − 𝐹𝑗−1𝑙 )𝑛−𝑙) (6.230) 

 The noncentral K-moment estimator is: 

𝐾̂𝑝′ =∑( 𝑖−1𝑝−1)(𝑛𝑝)
𝑛
𝑖=𝑝  𝑥(𝑖:𝑛) (6.231) 

and its expectation is: 

E[𝐾̂𝑝′ ] =∑( 𝑖−1𝑝−1)(𝑛𝑝) E[𝑥(𝑖:𝑛)] 
𝑛
𝑖=𝑝 =∑∑𝑗∞

𝑗=0
( 𝑖−1𝑝−1)(𝑛𝑝) 𝑃𝑗(𝑖:𝑛) 

𝑛
𝑖=𝑝=∑( 𝑖−1𝑝−1)(𝑛𝑝)  ∑𝑗∞

𝑗=0 ∑(𝑛𝑙)𝑛
𝑙=𝑖 (𝐹𝑗𝑙(1 − 𝐹𝑗)𝑛−𝑙 − 𝐹𝑗−1𝑙 (1 − 𝐹𝑗−1)𝑛−𝑙)𝑛

𝑖=𝑝  

(6.232) 

or 

E[𝐾̂𝑝′ ] =∑ ∑∑𝑗( 𝑖−1𝑝−1)(𝑛𝑝) (𝑛𝑙 )
𝑛
𝑙=𝑖 (𝐹𝑗𝑙(1 − 𝐹𝑗)𝑛−𝑙 − 𝐹𝑗−1𝑙 (1 − 𝐹𝑗−1)𝑛−𝑙)∞

𝑗=0
𝑛
𝑖=𝑝  (6.233) 

By reordering the sums, we can write 

E[𝐾̂𝑝′ ] =∑ ∑∑𝑗( 𝑖−1𝑝−1)(𝑛𝑝) (𝑛𝑙 )
𝑛
𝑖=𝑝 (𝐹𝑗𝑙(1 − 𝐹𝑗)𝑛−𝑙 − 𝐹𝑗−1𝑙 (1 − 𝐹𝑗−1)𝑛−𝑙)𝑛

𝑙=𝑖
∞
𝑗=0  (6.234) 

Now we introduce: 

𝐺(𝑗, 𝑝, 𝑛) ≔∑∑( 𝑖−1𝑝−1)(𝑛𝑝) (𝑛𝑙 )
𝑛
𝑖=𝑝 𝐹𝑗𝑙(1 − 𝐹𝑗)𝑛−𝑙𝑛

𝑙=𝑖  (6.235) 

by means of which we can write 

E[𝐾̂𝑝′ ] =∑𝑗(𝐺(𝑗, 𝑝, 𝑛) − 𝐺(𝑗 − 1, 𝑝, 𝑛))∞
𝑗=0  (6.236) 

 The quantity 𝐺(𝑗, 𝑝, 𝑛) can be calculated as follows: 
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𝐺(𝑗, 𝑝, 𝑛) =∑∑( 𝑖−1𝑝−1)(𝑛𝑝) (𝑛𝑙 )
𝑛
𝑖=𝑝 𝐹𝑗𝑙(1 − 𝐹𝑗)𝑛−𝑙𝑛

𝑙=𝑖 =∑∑( 𝑖−1𝑝−1)(𝑛𝑝) (𝑛𝑙 )
𝑙
𝑖=𝑝 𝐹𝑗𝑙(1 − 𝐹𝑗)𝑛−𝑙𝑛

𝑙=𝑝  (6.237) 

Rearranging the sums we have 

𝐺(𝑗, 𝑝, 𝑛) =∑(𝑛𝑙 )(𝑛𝑝) 𝐹𝑗𝑙(1 − 𝐹𝑗)𝑛−𝑙∑(𝑖 − 1𝑝 − 1)𝑙
𝑖=𝑝

𝑛
𝑙=𝑝  (6.238) 

where the rightmost sum is simplified to  

∑(𝑖 − 1𝑝 − 1)𝑙
𝑖=𝑝 = (𝑙𝑝) (6.239) 

Thus 

𝐺(𝑗, 𝑝, 𝑛) =∑(𝑛𝑙) ( 𝑙𝑝)(𝑛𝑝) 𝐹𝑗𝑙(1 − 𝐹𝑗)𝑛−𝑙𝑛
𝑙=𝑝  (6.240) 

where the three terms of binomial coefficients are simplified to  (𝑛𝑙) ( 𝑙𝑝)(𝑛𝑝) = (𝑛 − 𝑝𝑛 − 𝑙) (6.241) 

and hence  

𝐺(𝑗, 𝑝, 𝑛) =∑(𝑛 − 𝑝𝑛 − 𝑙)𝐹𝑗𝑙(1 − 𝐹𝑗)𝑛−𝑙𝑛
𝑙=𝑝 = ∑ ( 𝑛 − 𝑝𝑛 − 𝑝 −𝑚)𝐹𝑗𝑚+𝑝(1 − 𝐹𝑗)𝑛−𝑚−𝑝𝑛−𝑝

𝑚=0  (6.242) 

where we set 𝑚 = 𝑙 − 𝑝. Using the binomial identity (Appendix 6-I) we find  

𝐺(𝑗, 𝑝, 𝑛) = 𝐹𝑗𝑝 ∑ ( 𝑛 − 𝑝𝑛 − 𝑝 −𝑚)𝐹𝑗𝑚(1 − 𝐹𝑗)𝑛−𝑚−𝑝𝑛−𝑝
𝑚=0 = 𝑗𝐹𝑗𝑝 (𝐹𝑗 + 1 − 𝐹𝑗) = 𝑗𝐹𝑗𝑝 (6.243) 

and thus 

E[𝐾̂𝑝′ ] =∑𝑗(𝐹𝑗𝑝 − 𝐹𝑗−1𝑝 )∞
𝑗=0  (6.244) 

Comparing with equation (6.19) we obtain equation (6.52), which proves that the estimator is 

unbiased. 

Appendix 6-VI: Simplified estimators for independent samples  

As can be readily verified from equations (6.47)–(6.49), an unbiased estimator of (𝐹(𝑥(𝑖:𝑛)))𝑝−1 

is not precisely the (p – 1) power of 𝐹̂(𝑥(𝑖:𝑛)). However, we can find simplified, albeit somewhat 

biased, estimators with this property. We generalize the estimator 𝐹̂(𝑥(𝑖:𝑛)) of (6.50) in the 

following form: 
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𝐹̂(𝑥(𝑖:𝑛)) = 𝑖 − 𝑎𝑛 − 𝑏 (6.245) 

where a and b can be constants, related to those of equations (5.58)–(5.60), i.e., 𝑎 = 𝐴 − 𝐵, 𝑏 =−𝐵. However, here we will generalize them as functions of 𝑛.  

 We form the estimator of 𝐾𝑝′  in one of the following two forms,  

𝐾̂𝑝′ = 𝑝𝑛∑(𝑖 − 𝑎𝑛 − 𝑏)𝑝−1 𝑥(𝑖:𝑛)𝑛
𝑖=1  (6.246) 

𝐾̂𝑝′ = 𝑝𝑛∑(𝑖 − 𝑎𝑛 − 𝑏)𝑝−1 𝑥(𝑖:𝑛)𝑛
𝑖=𝑝  (6.247) 

where the difference is in the lower limit of the sum; the second form assumes that the weight of 𝑥(𝑖:𝑛) for 𝑖 < 𝑝 is zero, as in the unbiased estimator (6.49).  

 It can be easily seen that the condition 𝑎 ≥ 𝑏 (6.248) 

ensures that 𝐹̂(𝑥(𝑖:𝑛)) will take values from 0 to 1, irrespective of the values 𝑥(𝑖). Furthermore, the 

condition 2𝑎 − 𝑏 − 1 = 0 (6.249) 

gives the estimator the symmetric properties in (6.51).  

 It is well known (see section 5.6) that the values  𝑎 = 0, 𝑏 = −1 (6.250) 

make a precisely unbiased estimator of 𝐹(𝑥(𝑖:𝑛)). However, here our aim is to find unbiased 

estimators of K-moments. As discussed in section 6.6, the values 𝑎 = 𝑏 = 1 (6.251) 

(see equation (6.50)) satisfy equations (6.46) and (6.51), and indeed have been used by 

Koutsoyiannis (2019a) for any order p, noting though that they result in some bias. Another 

common choice, proposed by Hosking et al. (1985a, b) for a similar case (see also Stedinger et al., 

1993), is: 𝑎 = 0.35, 𝑏 = 0 (6.252) 

which notably does not have the symmetric property (6.51).  

 Here, we suggest for the first form, the estimator (6.246), the parameters:  

𝑎 = 1 + 𝑛 − √𝑛2 − 12 , 𝑏 = 𝑛 − √𝑛2 − 1 (6.253) 

with which the estimate in (6.245) becomes 

𝐹̂(𝑥(𝑖:𝑛)) = 2𝑖 − 1 − 𝑛 + √𝑛2 − 12√𝑛2 − 1  (6.254) 

 By construction, this has the property of symmetry of equation (6.51) and for p ≤ 4 Precisely 

satisfies the necessary condition for unbiasedness of equation (6.46), which here takes the form: 
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 𝑝𝑛∑(𝐹̂(𝑥(𝑖:𝑛)))𝑝−1𝑛
𝑖=1 = 1 (6.255) 

More specifically, the estimator (6.254) precisely fulfils this condition for p ≤ 4, i.e. the difference: 

𝛩(𝑛, 𝑝) ≔ 𝑝𝑛∑(2𝑖 − 1 − 𝑛 + √𝑛2 − 12√𝑛2 − 1 )𝑝−1𝑛
𝑖=1 − 1 (6.256) 

is precisely zero. For higher p it is close, but not precisely equal, to zero. Specifically, it is smaller 

than 0.05%, for moment order as high as 𝑝 = 𝑛/10. Beyond 𝑛/10 and up to 𝑛/2, it reaches 1%. It 

is not difficult to evaluate 𝛩(𝑛, 𝑝) from equation (6.256) and then divide the K-moment estimate 

by 𝛩(𝑛, 𝑝) + 1 to counter the deviation. Furthermore, a very accurate numerical approximation of 𝛩(𝑛, 𝑝) is: 

𝛩(𝑛, 𝑝) = {0, 𝑝 ≤ 4≈  − 124 (𝑝 − 3.5𝑛 )2 , 4 < 𝑝 ≤ 𝑛2 (6.257) 

Here we stress that (6.256) represents a necessary but not sufficient condition for unbiasedness. 

For that reason, the estimator (6.254) is not recommended.  

 For the second form, the estimator (6.247), after a systematic numerical investigation, the 

following parameter values have been found to be optimal: 𝑎 = 12 + 14(𝑛 − 4) , 𝑏 = 12(𝑛 − 4) (6.258) 

With these parameters, the estimate in (6.247) becomes: 𝐹̂(𝑥(𝑖:𝑛)) = 4𝑖(𝑛 − 4) − 2𝑛 + 74𝑛(𝑛 − 4) − 2  (6.259) 

Again, this has the property of symmetry of equation (6.51) but it does not precisely satisfy the 

necessary condition for unbiasedness of equation (6.46) for p > 1. However, the error is very 

small—generally smaller than that of estimator (6.254) thanks to the fact that (6.247) does not 

take into account the smallest sample values (i.e., the 𝑥(𝑖:𝑛) values for i < p). In this case the bias 𝛩(𝑛, 𝑝) takes the form: 

𝛩(𝑛, 𝑝) ≔ 𝑝𝑛∑(4𝑖(𝑛 − 4) − 2𝑛 + 74𝑛(𝑛 − 4) − 2 )𝑝−1𝑛
𝑖=𝑝 − 1 (6.260) 

This factor is estimated either by direct application of (6.260), or by its theoretical evaluation 

though the generalized Riemann zeta function ζ, i.e.: 𝛩(𝑛, 𝑝) = 𝑝(ζ(1 − 𝑝, 𝑝 − 𝑎(𝑛)) − ζ(1 − 𝑝, 𝑛 + 1 − 𝑎(𝑛)))𝑛(𝑛 − 𝑏(𝑛))𝑝−1 − 1 (6.261) 

where 𝑎(𝑛) and 𝑏(𝑛) are given by (6.258), or even by the following numerical approximation, 

which is close to accurate: 

𝛩(𝑛, 𝑝) = {0, 𝑝 = 1≈ − 124 (𝑝 − 4𝑛 )2 − (1 + 124 − 1√e) e𝑝−𝑛, 𝑝 > 1 (6.262) 



APPENDIX 6-VII: PROOF OF THE INVERSE RELATIONSHIP OF ORDER STATISTICS AND K-MOMENT ESTIMATORS  259 

 The bias for the estimator (6.259) is depicted in Figure 6.31. It can be seen there that the 

deviation is negligible (< 0.05%), for moment order up to 𝑝 = 𝑛/10, very small (< 1%) up to 𝑛/2, 

small (< 5%) up to 𝑝 = 𝑛–4, and increases rapidly thereafter. It is not difficult to evaluate 𝛩(𝑛, 𝑝) 
from equation (6.256) and then divide the K-moment estimate by 𝛩(𝑛, 𝑝) + 1 to remove bias.  

  

Figure 6.31 Deviation –𝛩(𝑛, 𝑝) in fulfilling the necessary unbiasedness condition (6.46) of the estimator 

(6.259), as a function of sample size 𝑛 and K-moment order p. Dash-dot lines correspond to the specified 

values of 𝑝 as fractions of 𝑛.  

Appendix 6-VII: Proof of the inverse relationship of order statistics and K-

moment estimators 

To prove that equation (6.92) holds true we take its right-hand side: 

𝑅 ≔ (𝑛𝑖 )∑(−1)𝑝−𝑖 𝑖𝑝 (𝑛 − 𝑖𝑝 − 𝑖) 𝐾̂𝑝′  𝑛
𝑝=𝑖  (6.263) 

and make algebraic manipulations on it. First, we substitute the right-hand side of (6.47) for 𝐾̂𝑝′  , 
also considering (6.44), and find  

𝑅 = (𝑛𝑖 )∑(−1)𝑝−𝑖 𝑖𝑝 (𝑛 − 𝑖𝑝 − 𝑖)∑( 𝑙−1𝑝−1)(𝑛𝑝)
𝑛
𝑙=𝑝  𝑥(𝑙:𝑛) 𝑛

𝑝=𝑖
=∑∑(−1)𝑝−𝑖 𝑖𝑝 (𝑛𝑖 ) (𝑛 − 𝑖𝑝 − 𝑖) (𝑙 − 1𝑝 − 1)(𝑛𝑝) 𝑥(𝑙:𝑛) 𝑛

𝑙=𝑝
𝑛
𝑝=𝑖 =∑∑𝐴(𝑝, 𝑙, 𝑖, 𝑛)𝑥(𝑙:𝑛) 𝑛

𝑙=𝑝
𝑛
𝑝=𝑖  

(6.264) 

where 

𝐴(𝑝, 𝑙, 𝑖, 𝑛) ≔ (−1)𝑝−𝑖 𝑖𝑝 (𝑛𝑖 ) (𝑛 − 𝑖𝑝 − 𝑖) (𝑙 − 1𝑝 − 1)(𝑛𝑝) = (−1)𝑝−𝑖 (𝑙 − 1)!(𝑖 − 1)! (𝑝 − 𝑖)! (𝑙 − 𝑝)!  (6.265) 

We change the order of summations: 
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𝑅 =∑∑𝐴(𝑝, 𝑙, 𝑖, 𝑛)𝑥(𝑙:𝑛)𝑙
𝑝=𝑖

𝑛
𝑙=𝑖 =∑𝑥(𝑙:𝑛)∑𝐴(𝑝, 𝑙, 𝑖, 𝑛)𝑙

𝑝=𝑖
𝑛
𝑙=𝑖  (6.266) 

We observe that the term 𝐴(𝑝, 𝑙, 𝑖, 𝑛) for 𝑝 = 𝑙 = 𝑖 becomes: 𝐴(𝑖, 𝑖, 𝑖, 𝑛) = (−1)0 (𝑖 − 1)!(𝑖 − 1)! 0! 0! = 1 (6.267) 

Isolating the latter term from the sum, we can write: 

𝑅 = 𝑥(𝑖:𝑛)𝐴(𝑖, 𝑖, 𝑖, 𝑛) + ∑ 𝑥(𝑙:𝑛)(𝐴(𝑖, 𝑙, 𝑖, 𝑛) + ∑ 𝐴(𝑝, 𝑙, 𝑖, 𝑛)𝑙
𝑝=𝑖+1 )𝑛

𝑙=𝑖+1  (6.268) 

where 𝐴(𝑖, 𝑙, 𝑖, 𝑛) = (−1)0 (𝑙 − 1)!(𝑖 − 1)! 0! (𝑙 − 𝑖)! = (𝑙 − 1𝑖 − 1) (6.269) 

The last sum is calculated as 

∑ 𝐴(𝑝, 𝑙, 𝑖, 𝑛)𝑙
𝑝=𝑖+1 = −(𝑙 − 1𝑖 − 1) (6.270) 

Hence, 

𝑅 = 𝑥(𝑖:𝑛)(1) + ∑ 𝑥(𝑙:𝑛)(0)𝑛
𝑙=𝑖+1 = 𝑥(𝑖:𝑛) (6.271) 

which proves that the right-hand side of (6.92) equals its left-hand side. 

Appendix 6-VIII: Derivation of equations for the effect of autocorrelation 

It is convenient to determine first the central K-moment under dependence, 𝐾2D, and then the 

noncentral one, which will be 𝐾2′D = 𝐾2D + 𝜇. For 𝐾2D we may assume that the stochastic variables 

have been transformed to normal distribution with zero mean and unit variance. As our 

derivations are approximate, we neglect the effect of that transformation to the autocorrelation. 

Assuming that the correlation coefficient of the variables 𝑥𝑖, 𝑥𝑗  is 𝑟𝑖𝑗 and using known results for 

normal variables (Nadarajah and Kotz, 2008; see also Appendix 5-II), the probability density of 𝑦𝑖𝑗 ≔ max(𝑥𝑖 , 𝑥𝑗) is:  

𝑓𝑦𝑖𝑗(𝑦) = 2𝑓(𝑦)𝐹 ( 1 − 𝑟𝑖𝑗√1− 𝑟𝑖𝑗2 𝑦)  (6.272) 

The expectation of 𝑦 is then easily evaluated to: 

𝐾2D,𝑖𝑗 = E[max(𝑥𝑖 , 𝑥𝑗)] = ∫ 𝑦𝑓𝑦𝑖𝑗(𝑦)d𝑦∞
−∞ = √1 − 𝑟𝑖𝑗π  (6.273) 

and since in an independent sample from the standard normal distribution the K-moment of order 

2 is 𝐾2 = 1/√π,  
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𝐾2D,𝑖𝑗𝐾2 = 1 − ΚD𝑖𝑗 = √1 − 𝑟𝑖𝑗 (6.274) 

where the K-dependence KD is defined in (6.105).  

 We assume that 𝑥𝑖 , 𝑥𝑗 are two terms amongst those in the sequence 𝑥1, 𝑥2, … , 𝑥𝑛, and that the 

process has autocorrelation function 𝑟𝑖𝑗 = 𝑟(𝘂), 𝘂 ≔ 𝑖 − 𝑗. We define an average (bulk) K-

dependence ΚDB and correlation 𝑟B and determine them as follows. For 𝑖 > 𝑗, there are (𝑛 − 1) 
ways to allocate i and j so that they have lag 𝘂 = 1, (𝑛 − 2) ways to allocate them so that 𝘂 = 2, 

etc. Thus, the average measure of all 𝐾2D,𝑖𝑗/𝐾2 will be: 𝐾2D𝐾2 = ∑(𝑛 − 𝘂)√1 − 𝑟(𝘂)𝑛−1
𝜂=1 /∑(𝑛 − 𝘂)𝑛−1

𝜂=1 = 2 𝑛(𝑛 − 1)∑(𝑛 − 𝘂)√1 − 𝑟(𝘂)𝑛−1
𝜏=1  (6.275) 

 We define the adjustment coefficient as (cf. equation (6.110)): 𝛩D ≔ 𝛫2D − 𝐾2𝐾2 = 𝛫2D𝐾2 − 1 = −KDB = √1 − 𝑟B − 1 (6.276) 

and find it as 𝛩D = 2 𝑛(𝑛 − 1)∑(𝑛 − 𝘂)𝑛−1
𝜂=1 (√1 − 𝑟(𝘂) − 1) (6.277) 

Noting that 𝑟(𝘂) < 1, and making a second-order approximation of the square root (√1 − 𝑟(𝘂) ≈1 − 𝑟(𝘂)/2 −  𝑟(𝘂)2/8), we find 

𝛩D ≈ 2 𝑛(𝑛 − 1)∑(𝑛 − 𝘂)𝑛−1
𝜂=1 ((1 − 𝑟(𝘂)/2 −  𝑟(𝘂)2/8) − 1)
= − 1 𝑛(𝑛 − 1) (∑(𝑛 − 𝘂)(𝑟(𝘂) + (𝑟(𝘂)2 )2)𝑛−1

𝜏=1 ) 

(6.278) 

 In a Markov process, in which 𝑟(𝜏) = 𝑟𝜏, using the first-order approximation (i.e., neglecting (𝑟(𝘂) 2⁄ )2), we get: 𝛩Μ(𝑛, 𝑟) ≈ −𝑟(𝑛(1 − 𝑟) − 1 + 𝑟𝑛)(𝑛 − 1)𝑛(1 − 𝑟)2  (6.279) 

Noting that the term 𝑟𝑛 is negligible, and also neglecting terms of order 1 over 𝑛, this results in 

(6.118). 

 For an HK process, where 𝑟(𝘂) ≈ 𝐻(2𝐻 − 1)𝘂2𝐻−2, (6.115) yields:  

𝛩HK(𝑛, 𝐻) ≈ −𝐻(1 − 2𝐻)(𝐻𝑛−1(1−2𝐻) − 𝑛𝐻𝑛−1(2−2𝐻)) − (𝐻(1 − 2𝐻))2 (𝐻𝑛−1(3−4𝐻) − 𝑛𝐻𝑛−1(4−4𝐻))(𝑛 − 1)𝑛  (6.280) 

A rough approximation of the generalized harmonic number 𝐻𝑛(𝑎) is (Lampret, 2015): 

𝐻𝑛(𝑎) = {1 + 𝑛1−𝑎 − 11 − 𝑎 , 𝑎 ≠ 11 + ln𝑛 , 𝑎 = 1 (6.281) 

With this approximation, after the algebraic operations and further simplifications, we find  
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−𝛩HK(𝑛, 𝐻) = ( 12𝑛2−2𝐻 − 2𝐻(1 − 𝐻)𝑛 ) + ( 12𝑛8−8𝐻 − 2𝐻(1 − 𝐻)𝑛4 ) (6.282) 

which proves equation (6.120). The first term in parentheses corresponds to the first-order 

approximation of √1 − 𝑟(𝘂) and the addition of the second term makes the approximation second 

order. The second fraction in each of the parentheses can be neglected if 𝐻 is large but it is 

necessary to include as for 𝐻 = 0.5 (independence) it yields 𝛩HK(𝑛, 𝐻) = 0, as it should. 

 Now, to assess the validity of the simplifying assumption that the same adjustment 𝛩 is 

applicable approximately to all orders p (equation (6.121)) we perform a Monte Carlo simulation 

as follows. We generate 𝑚 = 100 time series from the HK process with length 𝑛 = 100 each, thus 

forming a matrix 𝑿 = [𝑥𝑖𝑗], 𝑖 = 1… , 𝑛, 𝑗 = 1,… ,𝑚. For constant 𝑗, each of the series 𝑥𝑖𝑗  is a time 

series of the HK process and thus the estimated K-moments from it represent 𝛫𝑝D. For constant 𝑖, 
each of the series 𝑥𝑖𝑗  is a random time series (because for different 𝑗 the time series are generated 

independently) and thus the estimated K-moments from it represent 𝐾𝑝. In this manner, we 

determine an ensemble of 100 series of 𝛫̂𝑝D, 𝑝 = 1… ,100 and at the same time an ensemble of 100 

series of 𝛫̂𝑝, 𝑝 = 1… ,100. Taking the ensemble averages of 𝛫̂𝑝D and 𝛫̂𝑝 for each p, we estimate from 

them, using equation (6.121), the relative bias 𝛩HK(𝑛, 𝐻) for the different moment orders 𝑝 and 

compare it with the values predicted by equation (6.120). The results are shown in Figure 6.32 

for four values of 𝐻 = 0.8, 0.85, 0.9, 095 and for four distributions, uniform, normal, lognormal 

and Pareto. 

We observe in Figure 6.32 that the approximation achieved by equation (6.120) is very good 

for the normal distribution and remains good also for the other distributions for low orders 𝑝, 

especially for 𝑝 = 2. However, there are discrepancies in the nonnormal distributions for high 

orders 𝑝. Yet by applying the simplification of constant 𝛩 (determined from the first-order 

approximation) gives good results even for the lognormal distribution, as seen in Figure 6.17, and 

for the Pareto distribution as will be seen in other applications. 
 Finally, to find the adapted moment order 𝑝′, we proceed as follows. From section 6.19, 

equation (6.140), we have: 1𝐹N(𝐾𝑝) ≈ 𝛬∞𝑝 + 𝛬1 − 𝛬∞ (6.283) 

where for the normal distribution 𝛬1 = 2 and 𝛬∞ = eγ = 1.781, whilst γ is the Euler constant and 

the meaning of the Λ-coefficients is explained in section 6.19. For our approximation we will 

initially neglect the difference 𝛬1 − 𝛬∞, thus introducing some error for small p, which we will 

revoke later. In this case:  𝐹N(𝐾𝑝) ≈ 1𝛬∞𝑝 , 𝐹N(𝐾𝑝′) ≈ 1𝛬∞𝑝′ (6.284) 

where 𝑝′ is such that:  𝐾𝑝′ = 𝐾𝑝d = (1 + 𝛩)𝐾𝑝 (6.285) 

whereas for convenience we have simplified the notation 𝛩HK(𝑛, 𝐻) to 𝛩. From (6.285) and 

(6.284), solving for 𝑝′, we find 1𝑝′ ≈ 𝛬∞𝐹N ((1 + 𝛩)𝐹N−1 ( 1𝛬∞𝑝)) (6.286) 
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Figure 6.32 Results of Monte Carlo simulations to determine the relative bias, 𝛩(𝑛, 𝑝) for the indicated 

values of the Hurst parameter 𝐻 and the indicated distributions. The ‘simple approximation’ corresponds 
to equation (6.120). For the details of the simulation see text.  

 Now we use the approximation of the normal distribution function derived in Appendix 5-II 

(equations (5.45) and (5.46) for the distribution function and the quantile function, respectively) 

and find: 1𝑝′ ≈ 𝛬∞2 exp(1 + 𝛩2 (𝛩(√4 ln (𝛬∞𝑝2 ) + 1 − 1) ) − 2(1 + 𝛩) ln (𝛬∞𝑝2 ))) ≕ 𝐶(𝑝) (6.287) 

Calculating the log-log derivative of 𝐶(𝑝) we find 𝐶#(𝑝) = (1 + 𝛩)( 𝛩√4 ln(𝛬∞𝑝 2⁄ ) + 1 − 1 − 𝛩) (6.288) 

For 𝑝 → ∞, 𝐶#(𝑝) → −(1 + 𝛩)2, which does not depend on 𝛬∞. This allows simplifying the 

approximation (6.287) as: 
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 𝑝′ ≈ 𝐴𝑝((1+𝛩)2) + 1 − 𝐴 (6.289) 

for some constant A, where the term 1 − 𝐴 in the end was added so as to give 𝑝′ = 1 for p = 1, thus 

recovering from the error introduced by neglecting the difference 𝛬1 − 𝛬∞. By numerical 

investigation it was found that the constant 𝐴 = 1 − 2𝛩 makes the approximation satisfactory, 

thus resulting in equation (6.122). 

Appendix 6-IX: Derivation of limiting Λ-coefficients 

With reference to section 2.19 on the relationship of parent and extreme value distribution, 

combining equations (2.123) and (2.127), for sufficiently large threshold u we find that for a 

distribution function that belongs to the domain of attraction of the Extreme Value Type I 

distribution, the following approximation holds for 𝑥 ≥ 𝑢: 𝐹(𝑥) = 𝐹(𝑢) + 𝐹(𝑥|𝑥 > 𝑢)(1 − 𝐹(𝑢)) =  𝐹(𝑢) + (1 − exp (𝑥 − 𝑢𝜆 ) − 𝐹(𝑢)) (1 − 𝐹(𝑢)) (6.290) 

Inverting F we find that  𝑥(𝐹) = 𝑢 − 𝜆 ln (1 − 𝐹1 − 𝐹𝑢) , 𝐹 ≥ 𝐹𝑢 ≔ 𝐹(𝑢) (6.291) 

while for 𝐹 < 𝐹𝑢 the quantile function is unknown, say 𝑥U(𝐹). From equation (6.15) we find 

𝐾𝑝′ = 𝑝∫𝑥(𝐹)1
0 𝐹𝑝−1d𝐹 = 𝑝∫ 𝑥(𝐹)𝐹𝑢

0 𝐹𝑝−1d𝐹 + 𝑝 ∫𝑥(𝐹)1
𝐹𝑢 𝐹𝑝−1d𝐹 = 𝐴 + 𝐵 + 𝐶 (6.292) 

where: 

𝐴 ≔ 𝑝∫ 𝑥(𝐹)𝐹𝑢
0 𝐹𝑝−1d𝐹, 𝐵 ≔ −𝑝∫ 𝑥U(𝐹)𝐹𝑢

0 𝐹𝑝−1d𝐹, 𝐶 ≔ 𝑝∫𝑥(𝐹)1
0 𝐹𝑝−1d𝐹 (6.293) 

As 𝑥(𝐹) is a non-decreasing function with lower limit 𝑥(0) =  𝑢 + 𝜆 ln(1 − 𝐹𝑢) and upper limit 𝑥(𝐹𝑢) =  𝑢, we have for the term A: 

𝑝∫ ( 𝑢 + 𝜆 ln(1 − 𝐹𝑢))𝐹𝑢
0 𝐹𝑝−1d𝐹 ≤ 𝐴 ≤ 𝑝∫ 𝑢𝐹𝑢

0 𝐹𝑝−1d𝐹 (6.294) 

or (𝑢 + 𝜆 ln(1 − 𝐹𝑢))𝐹𝑢𝑝 ≤ 𝐴 ≤ 𝑢𝐹𝑢𝑝 (6.295) 

The unknown 𝑥U(𝐹) should also be a non-decreasing function with lower limit, say, c (assumed 

finite as happens in hydrometeorological variables, e.g. c = 0) and upper limit 𝑥U(𝐹𝑢) = 𝑥(𝐹𝑢) = 𝑢. Thus, we have for the term B: 

−𝑝∫ 𝑢𝐹𝑢
0 𝐹𝑝−1d𝐹 ≤ 𝐵 ≤ −𝑝∫ 𝑐𝐹𝑢

0 𝐹𝑝−1d𝐹 (6.296) 

or −𝑢𝐹𝑢𝑝 ≤ 𝐵 ≤ −𝑐𝐹𝑢𝑝 (6.297) 
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The term C evaluates to  

𝐶 =  𝑝∫(𝑢 − 𝜆 ln (1 − 𝐹1 − 𝐹𝑢))1
0 𝐹𝑝−1d𝐹 = 𝑢 + 𝜆(𝐻𝑝 + ln(1 −𝐹𝑢) (6.298) 

Now, combining all above we find: 𝐶 + (𝜆 ln(1 − 𝐹𝑢))𝐹𝑢𝑝 ≤ 𝐾𝑝′ ≤ 𝐶 + (𝑢 − 𝑐)𝐹𝑢𝑝 (6.299) 

or 1 + (𝜆 ln(1 − 𝐹𝑢))𝐹𝑢𝑝𝐶 ≤ 𝐾𝑝′𝐶 ≤ 1 + (𝑢 − 𝑐)𝐹𝑢𝑝𝐶  (6.300) 

As 𝑝 → ∞, clearly 𝐶 → ∞, while both the lower and upper limit in the above inequality tend to 1 

(notice that 𝐹𝑢 < 1 and thus 𝐹𝑢𝑝 → 0). Thus, as 𝑝 → ∞, 𝐾𝑝′ 𝐶⁄ → 1 and by virtue of (6.298), the 

following approximation holds: 𝐾𝑝′ = 𝑢 + 𝜆(𝐻𝑝 + ln(1 − 𝐹𝑢)) (6.301) 

From (6.290) we find: 𝐹(𝐾𝑝′) = 1 − exp(−𝐻𝑝) (6.302) 

and from (6.135) we obtain: 𝛬𝑝 = exp(𝐻𝑝)𝑝  (6.303) 

The last relationship holds true precisely for the exponential distribution for any p, as well as at 

the limit as 𝑝 → ∞ for any distribution belonging to the domain of attraction of the Extreme Value 

Type I distribution. This limit is evaluated to: 𝛬∞ = eγ (6.304) 

Appendix 6-X: Explanations for the approximation of Λ-coefficients 

Equation (6.139), i.e.: 𝛬𝑝 = 𝛬∞ + (𝛬1 − 𝛬∞) 1𝑝 (6.305) 

provides a first approximation of 𝛬𝑝 for any distribution but can be improved. While it captures 

the initial and final values, 𝛬1 and 𝛬∞, it does not reflect the rate at which 𝛬𝑝 tends to 𝛬∞, which 

differs in different distributions. We quantify this rate through the difference Δ𝛬𝑝 ≔ 𝛬𝑝 − 𝛬∞ (6.306) 

If we approximate 𝛬𝑝 with equation (6.141), the same difference will be given by: 

Δ𝛬𝑝A ≔ 𝛢𝑝 − 𝐵 ln (𝛽′ (1 + 𝛽(𝑝 + 1)𝛽 − 1)) , 𝛽′ ≔ {1, 𝛽 ≥ 011 − 𝛽 , 𝛽 ≤ 0 (6.307) 

where the superscript ‘A’ stands for “approximation”. It can be easily demonstrated that for any 𝛽 ∈ ℝ:  
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 Δ𝛬𝑝A 𝑝→∞→   0 

The rate at which Δ𝛬𝑝A tends to zero is described by the following asymptotic properties (given 

here without proof): 

Δ𝛬𝑝A 𝑝→∞→   
{   
  
   − 𝛣ln 𝑝 , 𝛽 = 0− 𝛽𝛣𝑝|𝛽| , 0 < |𝛽| < 1𝐴 − 𝛽′𝐵𝑝 , |𝛽| = 1𝐴𝑝 , |𝛽| > 1

 (6.308) 

Furthermore, we easily find for p = 1 that: 

Δ𝛬1A = {  
  𝐴 − 𝐵 ln (1 + 1ln 2) , 𝛽 = 0𝐴 − 𝐵 ln(1 + 𝛽′) , |𝛽| = 1𝐴 − 𝐵 ln (𝛽′ (1 + 𝛽2𝛽 − 1)) , otherwise (6.309) 

Now, for each distribution function we should find first the parameter β from the asymptotic 

properties of the function and then match Δ𝛬𝑝A and Δ𝛬𝑝 for 𝑝 = 1 and 𝑝 → ∞ utilizing the above 

two equations. A systematic study of several distributions, using both theoretical and numerical 

analyses, gave the results listed in Table 6.10. 

Appendix 6-XI: Approximation K-moments of a normal variable 

For a probability density that is an even function we have 𝑓(𝑥) = 𝑓(−𝑥), 𝐹̅(𝑥) ≔ 1 − 𝐹(𝑥) =𝐹(−𝑥), 𝑥(𝐹) = −𝑥(1 − 𝐹). Hence, using (6.15), we find: 

𝐾𝑝𝑞′ = 𝐾𝑝𝑞 = (𝑝 − 𝑞 + 1)(∫ 𝑥(𝐹)𝑞1/2
0 𝐹𝑝−𝑞d𝐹 + ∫(𝑥(𝐹))𝑞1

1/2 𝐹𝑝−𝑞d𝐹)
= (𝑝 − 𝑞 + 1)(∫ 𝑥(𝐹)𝑞1/2

0 𝐹𝑝−𝑞d𝐹 + ∫ (𝑥(1 − 𝐴))𝑞1/2
0 (1 − 𝐴)𝑝−𝑞d𝐴)

= (𝑝 − 𝑞 + 1)(∫ 𝑥(𝐹)𝑞1/2
0 𝐹𝑝−𝑞d𝐹 + ∫ (−1)𝑞(𝑥(𝐹))𝑞1/2

0 (1 − 𝐹)𝑝−𝑞d𝐹)
= (𝑝 − 𝑞 + 1)(∫ 𝑥(𝐹)𝑞1/2

0 (𝐹𝑝−𝑞 + (−1)𝑞(1 − 𝐹)𝑝−𝑞) d𝐹) 

(6.310) 

For 𝑞 = 1 this becomes 

𝐾𝑝′ = 𝐾𝑝 = 𝑝(∫ 𝑥(𝐹)1/2
0 (𝐹𝑝−1 − (1 − 𝐹)𝑝−1) d𝐹) (6.311) 
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Let 

𝐵𝑝 ≔ 𝑝(∫ 𝑥(𝐹)1/2
0 𝐹𝑝−1 d𝐹) (6.312) 

Then 

𝑝(∫ 𝑥(𝐹)1/2
0 (1 − 𝐹)𝑝−1 d𝐹) =  𝑝∑(𝑝 − 1𝑘 )𝑝−1

𝑘=0 (−1)𝑘 (∫ 𝑥(𝐹)1/2
0 𝐹𝑘  d𝐹)

=  ∑ 𝑝𝑘 + 1 (𝑝 − 1)! 𝑘! (𝑝 − 𝑘 − 1)!𝑝−1
𝑘=0 (−1)𝑘𝐵𝑘+1 = − ∑ 𝑝! (𝑘)! (𝑝 − 𝑘)!𝑝

𝑘=1 (−1)𝑘𝐵𝑘 

(6.313) 

and hence 

𝐾𝑝′ = 𝐵𝑝 +∑(𝑝𝑘)𝑝
𝑘=1 (−1)𝑘𝐵𝑘 (6.314) 

For the normal distribution 𝐵𝑝 can be approximated using (5.46), i.e., 

𝐵𝑝 ≈ 𝑝(∫ −34(√1 − 4 ln(2𝐹) − 1)1/2
0 𝐹𝑝−1 d𝐹) = −3√πe𝑝/4 erfc(√𝑝/2) 2𝑝+2√𝑝  (6.315) 

To find the Λ-coefficients we use the approximation (5.45) noting that 𝐾𝑝′ > 0 for any p > 0: 𝛬𝑝 ≈ 2𝑝 exp(−23𝐾𝑝′ (1 + 23𝐾𝑝1′ )) 
(6.316) 

This proves equation (6.155). 

 





 

Chapter 7. Stochastic simulation of hydroclimatic processes 

7.1 Desiderata of a simulation scheme 

In several instances in the previous chapters, we had to deal with problems that do not 

admit an analytical solution. A most promising alternative for such problems is the 

stochastic (or Monte Carlo) simulation, which has been introduced in section 2.6. If the 

processes we had to deal with could effectively be modelled as white noise, then the 

simple random number generators presented in section 2.6 would be enough for our 

simulations. However, hydroclimatic processes are characterized by several behaviours 

which we need to respect and reproduce in our simulations, both qualitatively and 

quantitatively. While here we avoid providing all details about these behaviours and to 

review the variety of methods devised to deal with them, we provide rather simple 

generic schemes that can be used in most problems related to extremes of hydroclimatic 

processes. In Digression 7.A we also discuss non-conventional types of stochastic 

simulation, by conversion of deterministic models into stochastic.  

 Before we discuss simulation schemes per se it is useful to summarize the 

characteristic behaviours.  

 Periodicity. When the time scale of interest is finer than annual, hydroclimatic 

processes exhibit seasonality, related to the annual motion of Earth around the Sun. In 

addition, when the time scale of interest is finer than daily, some of those processes may 

exhibit regular diurnal variation, related to the daily rotation of Earth. The most 

appropriate technique to deal with these regular variations is to build a so-called 

cyclostationary model, with single or double periodicity, depending on intensity of the 

periodic variation and its effect for the very problem of interest. In a cyclostationary 

model the parameters of the nth order distribution function vary according to periodic 

(apparently, deterministic) functions of time.  

 Here we will not discuss the rather sophisticated methods of this category, but we 

will resort to simpler methods in which only the first-order (marginal) distribution 

function of the process is dealt with. We list the following techniques of this category of 

approximate methods, from the most to the least complex. 

• Nonlinear transformation of the process by “season” and/or “hour”, where “season” is a part of the year (e.g. one or more months) in which the seasonal 
variation is no longer substantial and likewise for “hour” (which may mean one or 
more hours); the standard transformation of this type is a transformation making 

the distribution standard normal (normalization). 

• Linear transformation or else standardization of the process, usually expressed as 𝑦𝜏 = (𝑥𝜏 − 𝜇𝜏)/𝜎𝜏, where 𝜇𝜏 and 𝜎𝜏 are periodic functions of the time τ; this is 

followed by modelling the process and recovering of 𝑥𝜏 by applying the inverse 

transformation. 

• Proportional adjustment (or linear mapping), which is similar to the linear 

transformation expect that there is no subtraction, i.e., 𝑦𝜏 = 𝑥𝜏/𝛼𝜏, where 𝛼𝜏 is a 
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periodic function of the time τ; the advantages of this technique are its parsimony 

and avoidance of negative values in the case that the process is nonnegative (e.g. 

rainfall). 

• Null case (or do-nothing) is an option when the periodicity entails a negligible 

effect on the problem we study; an example where the null case is applicable is 

discussed in Digression 6.J. 

 Dependence (and particularly long-range dependence). The omnipresence of 

dependence in natural processes is a sufficient reason to replace the classical IID statistics 

with stochastic processes. Short-range dependence has been the basis of using ARMA-

type models, but these prove inadequate for many natural processes. Therefore, our 

simulation scheme should be able to reproduce long-range dependence. Dependence is 

typically handled through the second-order characteristics of a stochastic process, while 

long-range dependence is identified through the asymptotic LLDs of the second-order 

characteristics (section 3.8). Among them, the climacogram and climacospectrum are 

most useful for the model identification and fitting phases, while for the simulation phase 

the autocovariance becomes also very useful. Preservation of any one of the second-order 

characteristics results in preservation of all other. The second-order characteristics could 

be described by classical statistical tools or by K-moments (e.g., 𝐾2 moment instead of 𝛾). 

 Intermittence. At fine time scales, hydroclimatic processes exhibit intermittent 

behaviour. This is most clear in the rainfall process, where intermittence is quantified by 

the probability dry (probability of dry state). Similar is the situation with the streamflow 

in ephemeral streams. However, intermittence may appear in a less visible manner in the 

streamflow of large rivers with permanent flow, where the state switches between 

baseflow and flood. The baseflow is characterized by its own variability, and therefore a 

characterization by a single parameter, such as probability of the baseflow state, would 

be inefficient. A more general characterization of intermittence can be made in terms of 

high-order moments. 

 Skewness and high-order moments. At fine and intermediate time scales, most 

hydroclimatic processes have positively skewed distribution functions. The skewness is 

mainly caused by the fact that hydroclimatic variables are non-negative and sometimes 

intermittent. This is not so common in other scientific fields whose processes can safely 

be regarded as Gaussian. Thus, the preservation of skewness becomes important for 

hydroclimatic processes, while in combination with intermittence, proper modelling 

should include preservation of moments of order higher than 3. Unlike the second-order 

characteristics, where simulation schemes are able to preserve joint and marginal 

moments, for orders of ≥  3 only marginal moments can be dealt with in an explicit 

manner. 

 Time irreversibility. In the streamflow process, time irreversibility (the asymmetry in 

time, manifested e.g. with rapid increases followed by gradual decreases) is evident up to 

time scales of several days, while in atmospheric processes irreversibility appears only at 

very fine scales (Koutsoyiannis, 2019b). Irreversibility can be quantified by the skewness 

of the time differenced process 𝑥̃𝜏 ≔ 𝑥𝜏 − 𝑥𝜏−1, which in turn has to be preserved in 
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simulations. This preservation is feasible only if 𝑥𝜏 per se has a skewed distribution, while 

processes with symmetric distribution are also time symmetric.  

 Spatial variation and dependence. Hydroclimatic processes evolve both in time and 

space. Typically, simulation deals only with the temporal evolution. The most precise 

mathematical representation of hydroclimatic processes can be achieved extending the 

index set of the process from one dimension (representing time) to three dimensions (one 

for time and two for space). However, multidimensional modelling is not easy and has 

been implemented only in few cases. A midway solution, which is more common in 

applications, is to use multivariate models, which describe the temporal evolution of the 

process simultaneously at a number of points. Thus, instead of having a vector index set 

τ in 𝑥𝝉, we vectorize the process state 𝒙𝜏 keeping τ scalar. This vectorization type can also 

be directly used to model more than one cross-correlated process (e.g. rainfall and runoff) 

at the same location simultaneously. In the remaining of the chapter, we will deal only 

with scalar processes with scalar index set; the reader interested about multivariate or 

multidimensional processes is referred to Koutsoyiannis (2000) or Koutsoyiannis et al. 

(2011), respectively (see also Dimitriadis et al. 2019; Sargentis et al., 2020). 

Digression 7.A: Non-conventional stochastic simulation incorporating 

deterministic models 

Deterministic models have been widely used in hydroclimatic processes. In many cases their use 
has been very effective in providing reasonable predictions, yet they suffer from the fact that they 
neglect uncertainty, which is inherent in such processes. Uncertainty assessment within 
deterministic models has been the subject of relevant efforts (Beven and Binley, 1992; Beven, 
2006, 2019). 
 In a different context, a deterministic model can be converted into stochastic, and uncertainty 
could be assessed by stochastic simulation. A relevant technique, sometimes called an ensemble 

method, is to shift from one-to-many applications of the deterministic model. Each simulation is 
performed after stochastically perturbing either input data, model parameters, model output, or 
all of them. In particular, perturbing the model error is done by adding random outcomes from 
the population of model errors, whose probability distribution is conditioned on input data and 
model parameters. Montanari and Koutsoyiannis (2012) have provided a blueprint of this 
approach which was further applied in a data-driven mode by Sikorska et al. (2017) and further 
advanced by Papacharalampous et al. (2020a,b). A simpler and faster methodology of this type, 
named Bluecat, has been proposed by Koutsoyiannis and Montanari (2022a,b) and was further 
investigated and compared with machine learning methods by Rozos et al. (2022). 

In another option, deterministic model outputs can be converted to stochastic by connecting a 
(single-run) deterministic output to a stochastic model of the process using a Bayesian 
framework. Such an approach, accompanied with hydroclimatic applications, has been studied by 
Tyralis and Koutsoyiannis (2017). 

7.2 Simple discrete-time processes of the Time Series School 

The simplest of the processes of the Time Series School have been already described in 

section 3.11 and Digression 3.E, where it has also been explained why more complex 

models of that kind are not recommended. Instead of using complex time-series models, 

it is preferable to follow the general methodology summarized in the next sections. 

Nonetheless, when there is no persistence (or antipersistence) in the process of interest, 

the simple models, which are listed in Table 7.1 along with all equations needed for their 
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application, are convenient and readily applicable to simulate a process 𝑥𝜏 by filtering 

white noise 𝑣𝜏 as indicated in the second column of Table 7.1.  

Table 7.1 Equations of the simplest models of the Time Series School and their characteristics 
(see also section 3.11 and Digression 3.E). 

Name Process equation Equations for second-order 

characteristics 

Equation for marginal 

moments of any order 

Ref. to 

eqn. no. 

AR(1) 𝑥𝜏 = 𝑎𝑥𝜏−1 + 𝑣𝜏 𝑐0(1 − 𝑎2) = 𝜎𝑣2, 𝑐1 = 𝑎𝑐0 𝑐𝜂 = 𝑎|𝜂|𝑐0 
(1 − 𝑎𝑝)𝜇𝑝 = 𝜇𝑝(𝑣) (3.78)- 

(3.79) 

AR(2) 𝑥𝜏 = 𝑎1𝑥𝜏−1 + 𝑎2𝑥𝜏−2 + 𝑣𝜏 𝑐0 = 𝑎1𝑐1 + 𝑎2𝑐2 + 𝜎𝑣2 𝑐1 = 𝑎1𝑐0 + 𝑎2𝑐1 𝑐𝜂 = 𝑎1𝑐𝜂−1 + 𝑎2𝑐𝜂−2, 𝘂 ≥ 1 
 

(3.80)- 

(3.81) 

ARMA(1,1) 𝑥𝜏 = 𝑎𝑥𝜏−1 + 𝑣𝜏 + 𝑏𝑣𝜏−1 
𝑐0 = (1 + (𝑎 + 𝑏)21 − 𝑎2 )𝜎𝑣2 𝑐1 = 𝑎𝑐0 + 𝑏𝜎𝑣2 𝑐𝜂 = 𝑎𝜂−1𝑐1, 𝘂 ≥ 1 

 
(3.72)- 

(3.73) 

All models of Table 7.1 can reproduce the marginal mean and variance of the process, 

while the AR(1) can also reproduce marginal moments of higher order. In terms of 

characteristics of the joint distribution, the AR(1) model can reproduce the lag-one 

autocovariance, while the other two models can, additionally, reproduce the lag-two 

autocovariance. Notice that the equation giving 𝑐𝜂 in each of the models cannot preserve 

any quantity as it does not contain any additional parameter. The model parameters a (or 𝑎1 and 𝑎2) and b can be determined by solving the equations of the third column of Table 

7.1, while the high-order moments of the white noise process can be preserved by 

specifying the high order moments of 𝑣𝜏, 𝜇𝑝(𝑣), so as to satisfy the equations of the fourth 

column of Table 7.1. 

7.3 Generic simulation method for any stochastic structure 

To simulate the discrete-time stochastic process 𝑥𝜏 with any autocovariance function 𝑐𝜂 we can use the generalized moving average scheme (Koutsoyiannis 2000): 

𝑥𝜏 = ∑ 𝑎𝑗𝑣𝜏−𝑗𝐽
𝑗=−𝐽  (7.1) 

where 𝑎𝑗  are weights to be calculated from the autocovariance function, 𝑣𝑗  is white noise 

averaged in discrete-time (and not necessarily Gaussian), also known as innovation 

process, and J is theoretically infinite, so that in all theoretical calculations we will assume 𝐽 = ∞, while in the generation J is a large integer chosen so that the resulting truncation 

error be negligible. Here we stress that the above scheme is just the contrary to the 

schemes of the Time Series School. Specifically, (a) we use a purely moving average 

scheme without any autoregressive term and (b) we do not relate our scheme with 

observations, as the observations have already been used in the fitting phase of the 

stochastic model (e.g. equation (3.88)), which is totally isolated from the generation 

scheme.  
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 Writing equation (7.1) for 𝑥𝜏+𝜂 , multiplying it by (7.1) and taking expected values we 

find the convolution expression for 𝐽 = ∞:  

𝑐𝜂 = ∑ 𝑎𝑙𝑎𝜂+𝑙∞
𝑙=−∞  (7.2) 

We need to find the sequence of 𝑎𝜂 , 𝘂 = ⋯ ,−1,0,1, …, so that (7.2) holds true. The 

following generic solution of the generating scheme, giving the coefficients 𝑎𝜂 , has been 

proposed by Koutsoyiannis (2020a):  

𝑎𝜂 = ∫ e2πi(𝜃(𝜔)−𝜂𝜔)𝐴(𝜔)1/2
−1/2 d𝜔 (7.3) 

where 𝘃(𝜔) is any (arbitrary) odd real function (meaning 𝘃(−𝜔) = −𝘃(𝜔)) and 𝐴(𝜔) ≔ √2𝑠d(𝜔) (7.4) 

As proved in Koutsoyiannis (2020a) the sequence of 𝑎𝜂:  

(1) consists of real numbers, despite the expression in (7.3) involving complex 

numbers;  

(2) precisely satisfies equation (7.2); and  

(3) is easy and fast to calculate using the fast Fourier transform (FFT). 

This theoretical result is readily converted into a numerical algorithm, which consists of 

the following steps: 

(a) From the continuous-time stochastic model, expressed through its climacogram 𝛾(𝑘), we calculate its autocovariance function in discrete time (assuming time step 

D): 𝑐𝜂 = (𝘂 + 1)2𝛾(|𝘂 + 1|𝐷) + (𝘂 − 1)2𝛾((|𝘂 − 1|𝐷)2 − 𝘂2𝛾(|𝘂|𝐷) (7.5) 

(This step is obviously omitted if the model is already expressed in discrete time 

through its autocovariance function.) 

(b) We choose an appropriate number of coefficients J that is a power of 2 and perform 

inverse FFT (using common software) to calculate the discrete-time power 

spectrum and the frequency function 𝐴(𝜔) for an array of 𝜔𝑗 = 𝑗 𝑤1, 𝑗 =0,1, … , 𝐽, 𝑤1 ≔ 1 𝐽𝐷⁄ : 

𝑠d(𝜔𝑗) = 2𝑐0 + 4∑𝑐𝜂𝐽
𝜂=1 cos(2π𝘂𝜔𝑗) , 𝐴(𝜔𝑗) = √2𝑠d(𝜔𝑗) (7.6) 

(c) We choose 𝘃(𝜔) (see below) and we form the arrays (vectors) 𝑨R and 𝑨I, both of 

size 2J indexed as 0,… , 2𝐽 –  1, with the superscripts R and I standing for the real 

and imaginary part of a vector of complex numbers, respectively:  
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[𝑨R]𝑗 = {𝐴(𝜔𝑗) cos (2π𝘃(𝜔𝑗)) /2, 𝑗 = 0,… , 𝐽[𝑨R]2𝐽−𝑗, 𝑗 = 𝐽 + 1,… ,2𝐽 − 1 (7.7) 

[𝑨I]𝑗 = {−𝐴R(𝜔𝑗) sin (2π𝘃(𝜔𝑗)) /2, 𝑗 = 0,… , 𝐽 − 10, 𝑗 = 𝐽−[𝑨I]2𝐽−𝑗, 𝑗 = 𝐽 + 1,… ,2𝐽 − 1 (7.8) 

(d) We perform FFT on the vector 𝑨R + i 𝑨I (using common software), and get the real 

part of the result, which is precisely the sequence of 𝑎𝜂 . 

 We note that by choosing J as a power of 2, the size of the vectors 𝑨R and 𝑨I, which is 

2J, will also be a power of 2, thus achieving maximum speed in the FFT calculations. (More 

details are contained in a supplementary file in Koutsoyiannis, 2020a, which includes 

numerical examples along with the simple code needed to do these calculations on a 

spreadsheet). It may be useful to note the following additional points about the method: 

• Equation (7.3) gives not a single solution, but a variety of infinitely many solutions, 

all of which preserve exactly the second-order characteristics of the process. 

• A particular solution is characterized by the chosen function 𝘃(𝜔).  
• Even assuming 𝘃(𝜔) = 𝘃0 sign𝜔 with constant 𝘃0, again there are infinitely many 

solutions. 

• The availability of infinitely many solutions enables preservation of additional 

statistics (e.g. those related to time asymmetry; see section 7.5).  

• In addition, we always have several options related to the distribution of the white 

noise 𝑣𝜏, which in general is not Gaussian, thus enabling preservation of moments 

of any order (see section 7.4).  

 The special case 𝘃(𝜔) = 0 gives a symmetric solution with respect to positive and 

negative η:  

𝐴S(𝜔) ≡ 𝐴(𝜔) = √2𝑠d(𝜔), 𝑎𝜂S = ∫ √2𝑠d(𝜔) cos(2π𝘂𝜔) d𝜔1/2
0 = 𝑎−𝜂S  (7.9) 

where the superscript S stands for symmetric. This has been known as the symmetric 

moving average (SMA) scheme (Koutsoyiannis 2000). All other solutions denote 

asymmetric moving average (AMA) schemes. An interesting special AMA case is obtained 

for 𝘃(𝜔) = 1/4 sign𝜔 (or 2π𝘃(𝜔) = π/2 sign𝜔). This corresponds to an antisymmetric 

AMA scheme (ANTAMA) with: 

𝐴A(𝜔) = 𝐴(𝜔)δ(𝜔) + i𝐴(𝜔), 𝑎𝜂A = 𝛿0 + 12∫ √2𝑠d(𝜔) sin(2π𝘂𝜔) d𝜔1/2
0  (7.10) 

where the superscript A stands for antisymmetric, δ(𝜔) is the Dirac delta function, and  
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𝛿0 ≔ √2𝑠d(0)2(2𝐽 + 1) ≈ √ 𝛾𝐽2𝐽 + 1 (7.11) 

with 𝛿0 approaching zero as J becomes large. Any other case of constant 𝘃0 (where 𝘃(𝜔) =𝘃0 sign𝜔) can be expressed in terms of the above two limiting cases through:  𝑎𝜂 = 𝛿0 + (𝑎𝜂S − 𝛿0) cos(2π𝘃0) + (𝑎𝜂Α − 𝛿0) sin(2π𝘃0) (7.12) 

For example, the case 𝘃0 = 1/8 (or 2π𝘃0 = π/4) yields the interesting result: 𝑎𝜂 = √22 (𝑎𝜂S + 𝑎𝜂Α) − (√2 − 1)𝛿0 (7.13) 

 A most common solution is the ordinary backward AMA (OBAMA) scheme in which 𝑎𝜂 = 0 for any 𝘂 < 0; this latter is typically formulated in a different manner and denoted 

as simply moving average—MA, but since here we study a richer family of schemes, we 

use the distinct acronym OBAMA. A constant θ0 does not give a precise OBAMA and 

therefore a non-constant function 𝘃(𝜔) is needed in this case. A generic analytical solution 

of 𝘃(𝜔) that would give a precise OBAMA is not simple (this problem is known as factoring 

of the power spectrum; see Papoulis 1991, p. 402). However, there are solutions for 

simple special cases, e.g. for rational spectra (Papoulis 1991, p. 402-404) or for the 

Markov process in continuous time, as well as for the ARMA(1,1) process, including its 

special cases AR(1) and MA(1) (Koutsoyiannis, 2020a).  

 However approximate OBAMA solutions can be found rather easily. First, if for some 𝘃0 and for 𝘂 < 0 it happens that 𝑎𝜂 ≈ 0, then it can be verified that: 

𝑎𝜂 ≈ {0, 𝘂 < 0𝑎𝜂S cos(2π𝘃0) + (1 − cos(2π𝘃0) − sin(2π𝘃0))𝛿0, 𝘂 = 0√2𝑎𝜂S + (2 − √2)𝛿0, 𝘂 > 0 (7.14) 

Such a sequence with almost zero coefficients for negative η, will be close to the OBAMA 

scheme. It is interesting to notice that in this approximate solution only 𝑎0 depends on the 

constant 𝘃0, while for 𝘂 > 0 the coefficients are approximately equal to those in the SMA, 

multiplied by √2.  

 For stochastic structures with LRD, this OBAMA scheme approximation may not be 

satisfactory, and a better approximation can be found by adopting a parametric 

expression for 𝘃(𝜔) and optimizing its parameters (see examples in Koutsoyiannis, 

2020a).  

 The method is illustrated in Figure 7.1 using two example processes. The first is the 

Markov process, whose basic properties are shown in Table 3.5. The second is the FHK-C 

model defined in equation (3.88), which gives its climacogram, whilst all its other 

characteristics are evaluated through the equations listed in Table 3.3. Specifically, Figure 

7.1 shows three special cases, SMA (equation (7.9)), ANTAMA (equation (7.10)) and 

OBAMA for the two processes. For the OBAMA case and the Markov process the solution 

plotted is exact, while for the FHK-C process the sequence of 𝑎𝜂 is an OBAMA 
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approximation. Some slight (rather invisible) deviations from zero are present in the left-

bottom panel, which at a later step will be set to zero and the small resulting effect will be 

further handled as a truncation error (in the manner described by Koutsoyiannis, 2016) 

to obtain an exact OBAMA scheme.  

 All in all, this method of the AMA scheme renders ARMA-type models (including all 

their variants) unnecessary, particularly because of the generic, analytical and fast 

solution it offers. Here it is important to stress that, while optimization of coefficients 

involved in the function 𝘃(𝜔) could sometimes be required, it is not necessary in general. 

Any odd real function 𝘃(𝜔), chosen arbitrarily, will give 𝑎𝜂 that will satisfy equation (7.2) 

(apart from a truncation error) and thus can directly be used in generation. Even if the 

sequence of 𝘃(𝜔𝑗) is constructed at random (e.g., as a sequence of random numbers in the 

interval [0,1/4]), again equation (7.2) will be satisfied and the resulting 𝑎𝜂 can be directly 

used in generation.  

 

 

Figure 7.1 Illustration of the symmetric (SMA), antisymmetric (ANTAMA) and ordinary-
backward (OBAMA) cases of the generic AMA model for (upper row) a Markov process and (lower 
row) an FHK-C process. The parameter values are α = 10, λ = 1 (in both processes), H = 0.8, M = 
0.7, and the number of weights is 2049 (𝐽 = 1024 = 210); (left column) coefficients a; (right 
column) autocovariance function. (Source: Koutsoyiannis, 2020a.)  
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Digression 7.B: A simple analytical solution for the HK model 

According to the algorithm presented in section 7.3, to calculate the series of coefficients 𝑎𝜂 we 

need to perform the discrete Fourier transform (preferably in its FFT variant) twice, the first time 
to find the power spectrum of the process 𝑠d(𝜔) and the second time to determine 𝑎𝜂 from the 

vector 𝑨R + i𝑨I. Generally, these transformations are performed numerically. However, the HK 
process allows analytical calculations. Specifically, there is an explicit analytical SMA solution 
(Koutsoyiannis, 2016): 𝑎𝑙 = √𝑏(𝐻)𝛾1 (|𝑙 + 1|𝐻+0.5 + |𝑙 − 1|𝐻+0.52 − |𝑙|𝐻+0.5) (7.15) 

where 𝑏(𝐻) is a function of the Hurst coefficient H. For H > 0.5, the proximity of the power 
spectrum of the averaged process with that of the continuous-time process (equation (3.87)) 
allows the theoretical derivation of a consistent expression of 𝑏(𝐻), i.e. (Koutsoyiannis, 2016): 𝑏(𝐻) = 2Γ(2𝛨 + 1) sin(π𝐻) 𝛾1Γ2(𝛨 + 3 2⁄ )(1 + sin(π𝐻)) (7.16) 

For H < 0.5 the proximity is not good and thus equation (7.16) does not perform well. However, 
very good approximations, valid for any H, are (Koutsoyiannis, 2002, 2016): 𝑏(𝐻) ≈ 2(1 − 𝐻)(3 2⁄ − 𝐻)2 + 0.2(1 2⁄ − 𝐻)2 ≈ 2(1 − 𝐻)(3/2 − 𝐻)2 (7.17) 

7.4 Preservation of high-order moments 

The AMA and the SMA schemes allow preserving moments of any order by the method 

outlined below. In many applications, preservation of moments up to the fourth order 

gives adequate representation of hydroclimatic processes, as illustrated in Dimitriadis 

and Koutsoyiannis (2018) and Koutsoyiannis et al. (2018). However, if the focus is on 

extremes, moments of higher order should be preserved. It should be stressed that in 

typical sample sizes, high order moments should be evaluated theoretically through the 

distributional parameters (see Table 2.3) rather than estimated from the data, as their 

sample estimates are unreliable (Lombardo et al. 2014). 

 To more conveniently deal with moments of order > 2, we utilize the properties of 

cumulants of independent variables, and particularly homogeneity and additivity. The 

cumulants are directly determined from moments and vice versa (equation (2.36). For the 

pth cumulant, by virtue of (2.38), these properties result in: 

𝜅𝑝 = ∑ 𝑎𝑗𝑝 𝜅𝑝(𝑣)𝐽
𝑙=−𝐽  (7.18) 

where 𝜅𝑝 and 𝜅𝑝(𝑣) are pth cumulants of 𝑥𝜏 and 𝑣𝜏, respectively. Solving for 𝜅𝑝(𝑣) we find: 𝜅𝑝(𝑣) = 𝜅𝑝∑ 𝑎𝑗𝑝𝐽𝑙=−𝐽  (7.19) 

 Based on the above discourse, we can formulate the following steps of a general 

simulation strategy, starting from the observed data (noting that alternative modelling 
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strategies can be seen in a series of references provided by Dimitriadis and Koutsoyiannis, 

2018, and Tsoukalas et al., 2018): 

1. We construct the climacogram and climacospectrum, and we choose a suitable 

model of second-order dependence. 

2. We fit a theoretical model on the climacogram and climacospectrum, and estimate 

the Hurst parameter H, with appropriate provision for fitting issues, such as bias. 

3. We estimate K-moments for q = 1, and we choose a marginal distribution for the 

process based on K-moments and possibly relevant theoretical considerations 

(e.g., entropy maximizing distributions), with appropriate provision for bias. 

4. Based on the model parameters (for the marginal and joint distribution) we 

calculate theoretically (and not estimate from data) the classical moments of the 

process of interest.  

5. From equation (2.36) we calculate the cumulants of the process of interest.  

6. We calculate the linear filtering coefficients 𝑎𝜂 from equations (7.5)–(7.14) 

7. From equation (7.19) we calculate the cumulants of the white noise process and 

from (2.36) we calculate its moments.  

8. We choose an appropriate distribution for the white noise, calculate its parameters 

theoretically from its moments and generate a random sample with the required 

length. 

9. Filtering with equation (7.1) we synthesize the simulated series for the process of 

interest. 

In the case of an upper-tail index 𝜉 > 0, the moments and cumulants of 𝑥𝜏 of order ≥ 1/𝜉 

will be infinite, and hence those of 𝑣𝜏 will also be infinite. The moments involved in the 

modelling framework and the manner they are treated are summarized in Figure 7.2.  

Moment order 𝑝 or 𝑞 K-moment for (𝑞 = 1) Classical moment (𝑝 = 1) Cumulant (𝑝 = 1) 

1 𝐾1′ ≡ 𝜇 ≡ 𝜅1 

2 𝐾2′ , 𝐾2 = 𝐾2′  − 𝜇 𝜇2 ≡ 𝜎2 ≡ 𝜅2 

3 𝐾3′ , 𝐾3 = 𝐾3′  − 𝜇 𝜇3 ≡ 𝜅3 

4 𝐾4′ , 𝐾4 = 𝐾4′  − 𝜇 𝜇4 𝜅4 ≡ 𝜇4 − 3𝜇22 ⋮ ⋮ ⋮ ⋮ 𝑖 𝐾𝑖′, 𝐾𝑖 = 𝐾𝑖′  − 𝜇 𝜇𝑖  𝜅𝑖 ⋮ ⋮   𝑛 (sample size) 𝐾𝑛′ , 𝐾𝑛 = 𝐾𝑛′  − 𝜇   

Legend 

 Can be estimated 

from data 

  Should be derived by 

theoretical calculations 

  Estimation from data is possible for 

large samples but not recommended 

Figure 7.2 Schematic of the moments involved in stochastic modelling and the manner they are 
treated. It is assumed that we wish to preserve classical moments up to order 𝑖 ≪ 𝑛. 
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 A problem usually met in practice, including in the present simulation framework, is 

to approximate a distribution function up to an order 𝑝max. A convenient way to make the 

approximation is to choose a number L of elementary distribution functions with known 

cumulant expressions, thus, defining the white-noise processes 𝑤𝑙, 𝑙 = 1,… , 𝐿, and 

obtaining the approximation 𝑣𝜏′ of 𝑣𝜏 as a linear combination of 𝑤𝑙 with weights 𝑎𝑙′, i.e.: 

𝑣𝜏′ =∑𝑎𝑙′𝑤𝑙𝐿
𝑙=1  (7.20) 

The cumulants 𝜅𝑝(𝑤𝑙) of 𝑤𝑙 are then determined from the known cumulant expressions and 

those of 𝑣𝜏′, by virtue of (7.18), are: 

𝜅𝑝(𝑣′) =∑𝑎𝑙′𝑝  𝜅𝑝(𝑤𝑙)𝐿
𝑙=1  (7.21) 

 More details and applications are provided by Koutsoyiannis and Dimitriadis (2021). 

One of the applications for the generation of annual rainfall in Bologna up to moment 

order 8 is reproduced in Figure 7.3. The assumed distribution of the annual rainfall is PBF 

and the climacogram is of type FHK-CD (equation (3.91)). 

 In this application, the approximation 𝑣𝜏′ of 𝑣𝜏 is made by another PBF distribution 

(with slightly different parameters). As seen in Figure 7.3a, the achieved approximation 

of cumulants is good, except for a substantial difference in the first cumulants of 𝑣𝜏′ and 𝑣𝜏. This can be easily handled by a mere shift of origin 𝑐, i.e., 𝑣 = 𝑣′ + 𝑐, so that 

𝜅𝑝[𝑣] = 𝜅𝑝[𝑣′ + 𝑐] = {𝜅1[𝑣] + 𝑐 𝑝 = 1𝜅𝑝[𝑥] 𝑝 > 1 (7.22) 

and finally: 𝑐 = 𝜅1(𝑣) − 𝜅1(𝑣′) (7.23) 

 Comparisons of the theoretical statistical characteristics of the distribution of 𝑥𝜏 to 

the empirical ones of the generated sample are shown in the panels of Figure 7.3. In all 

panels, the agreement between theoretical and empirical characteristics is very good. 

7.5 Preservation of time irreversibility 

Time irreversibility can very easily be handled within the AMA framework. Assuming that 

the white noise 𝑣𝜏 (in discrete time τ) has variance 1 and coefficient of skewness 𝐶S(𝑣), we 

will have: 

var[𝑥𝜏] = ∑ 𝑎𝑗2𝐽
𝑗=−𝐽 , 𝜇3[𝑥𝜏] = ∑ 𝑎𝑗3 𝐶S(𝑣)𝐽

𝑗=−𝐽  (7.24) 

where 𝜇3[𝑥𝜏] is the third moment of the process 𝑥𝜏. Its coefficient of skewness will be: 
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𝐶S ≔ 𝜇3[𝑥𝜏](var[𝑥𝜏])3/2 = ∑ 𝑎𝑗3 𝐽𝑗=−𝐽(∑ 𝑎𝑗2𝐽𝑗=−𝐽 )3/2 𝐶S(𝑣) (7.25) 

 

Figure 7.3 Graphical depiction of the results of the simulation application (with 10 000 generated 
values) for a real-world case study for the precipitation process in Bologna at the annual time 
scale, modelled as a persistent FHK process with PBF distribution: (a) cumulants (for negative 𝜅𝑝 

the value − |𝜅𝑝1/𝑝| is plotted); (b) climacogram; (c) autocorrelogram; (d) marginal distribution 

(source: Koutsoyiannis and Dimitriadis, 2021). 

 Time asymmetry is quantified through the skewness of the differenced process 𝑥̃𝜏, 

which by virtue of (7.1) is written as: 

𝑥̃𝜏 ≔ 𝑥𝜏 − 𝑥𝜏−1 = ∑(𝑎𝑗 − 𝑎𝑗−1)𝑣𝜏−𝑗𝐽
𝑗=−𝐽  (7.26) 

with 𝑎−𝐽−1 = 0. Thus, its skewness will be: 

𝐶̃S ≔ 𝜇3[𝑥̃𝜏](var[𝑥̃𝜏])3/2 = ∑ (𝑎𝑗 − 𝑎𝑗−1)3 𝐽𝑗=−𝐽(∑ (𝑎𝑗 − 𝑎𝑗−1)2𝐽𝑗=−𝐽 )3/2 𝐶S(𝑣) (7.27) 
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𝐶̃S𝐶S = ∑ (𝑎𝑗 − 𝑎𝑗−1)3 𝐽𝑗=−𝐽(∑ (𝑎𝑗 − 𝑎𝑗−1)2𝐽𝑗=−𝐽 )3/2 (∑ 𝑎𝑗2𝐽𝑗=−𝐽 )3/2∑ 𝑎𝑗3 𝐽𝑗=−𝐽  (7.28) 

is independent of 𝐶S(𝑣) and primarily depends on 𝘃(𝜔), which determines the sequence of 𝑎𝜂 . The case 𝘃(𝜔) = 0, i.e. the SMA, results in complete time symmetry. However, a 

constant 𝘃0 ≠ 0 (appropriately chosen) can make the ratio 𝐶̃S 𝐶S⁄  as high as we wish, thus 

enabling preservation of time asymmetry.  

 The above results make it clear that without skewness in the original process 𝑥𝜏 (e.g. 

in the case of Gaussian processes), there cannot be time asymmetry. 

 More details and a real-world application are provided in the study by Koutsoyiannis 

(2020a), from which here we reproduce two figures for illustration, Figure 7.4 and Figure 

7.5. The application is for hourly streamflow North Branch Potomac River Near 

Cumberland, MD (39°37΄18.5΄΄N, 78°46΄24.3΄΄W; catchment area 2271 km2; USGS site 

01603000; data coverage 2013-10-01 to 2018-08-31). We note that time irreversibility 

of streamflow is marked for time scales up to several days (Koutsoyiannis, 2019b) and 

this is depicted even in hydrograph plots, in which the rising branches are generally 

steeper and the falling ones milder (Figure 7.4). 

 The streamflow process 𝑥𝜏 has been modelled as an FHK-C process. The time 

asymmetry has been quantified by the skewness coefficient of the differenced process 𝑥̃𝜏, 
which is much higher than the skewness of the original process 𝑥𝜏 (10.99 for 𝑥̃𝜏 and 2.98 

for 𝑥𝜏 at the hourly scale, a ratio 𝐶̃S 𝐶S⁄ = 3.69). Comparisons of the characteristics related 

to state and time asymmetry are shown in Figure 7.5. It is observed that the generated 

time series is consistent with the model and the original data in terms of all important 

statistics, marginal and joint, as well as related to time irreversibility. One slight 

discrepancy is that the curve related to time asymmetry in Figure 7.5, while it captures 

the skewness of the real-world differenced data for the hourly scale, has a steeper slope 

for intermediate time scales; however, this problem can be tackled by modelling the 

skewness coefficients at more than one time scale (Vavoulogiannis et al., 2021).  

 

Figure 7.4 Discharge time series generated for the North Branch Potomac River application (a 
close up for a six-month period of a total simulation period of 5 years, containing the highest 
generated discharge; time references are arbitrary; source: Koutsoyiannis, 2020a). 
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Figure 7.5 Climacograms and skewness coefficients of the original and differenced time series of 
the North Branch Potomac River application for: (upper) the real-world data and (lower) the 
generated data; plots refer to the standardized series (source: Koutsoyiannis, 2020a). 

Digression 7.C: A note on linearity and nonlinearity 

During the last decades of the 20th century, particular emphasis was given on the nonlinearity of 
physical—and particularly geophysical—processes. At the same time linear models were 
generally regarded as inappropriate and inconsistent with the then celebrated notion of chaos.  
 Indeed, linear deterministic models cannot produce chaos. To see this, let us consider a 
dynamical system with input 𝑣(𝑡) and output 𝑥(𝑡), which are connected with the linear 
differential equation  

𝑎𝑛 d𝑛𝑥d𝑡𝑛 +⋯+ 𝑎1 𝑑𝑥d𝑡 + 𝑎0𝑥 = 𝑣 (7.29) 

where 𝑎0, … , 𝑎𝑛 are constants. Specific cases of this equation are examined in section 3.11 and in 
Digression 9.A, where in the latter case a nonlinear extension is also studied. The general solution 
of the differential equation (7.29) is the convolution  
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𝑥(𝑡) = (𝑣 ∗ ℎ)(𝑡) = ∫ 𝑣(𝑡 − 𝜏)ℎ(𝜏)d𝜏∞
−∞  (7.30) 

where ℎ(𝑡) is the so-called impulse response function (IFR). If the system is causal, future values 
of the input 𝑣(𝑡) do not affect the current value of the output 𝑥(𝑡). Hence, ℎ(𝑡) = 0 for 𝑡 < 0, so 
that 

𝑥(𝑡) = ∫ 𝑣(𝑡 − 𝜏)ℎ(𝜏)𝑑𝜏∞
0 = ∫ 𝑣(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏𝑡

−∞  (7.31) 

Further, we assume that the transformation of input to output is mass preserving, which implies 
that the L1 norm of the IRF should equal 1, i.e., ‖ℎ(𝑡)‖1 = 1. 
 Now, we consider that the input is perturbed by a signal 𝑒𝑣(𝑡), i.e., 𝑣′(𝑡) = 𝑣(𝑡) + 𝑒𝑣(𝑡), which 
results in a perturbation in the output, 𝑒𝑥(𝑡) = 𝑥΄(𝑡)– 𝑥(𝑡). Taking the L2 norms, which are 
equivalent to second-order moments, and employing Young’s inequality, we find (Koutsoyiannis, 
2014b) ‖𝑥(𝑡)‖2 ≤ ‖𝑣(𝑡)‖2, ‖𝑒𝑥(𝑡)‖2 ≤ ‖𝑒𝑣(𝑡)‖2 (7.32) 

In plain language, a linear system reduces the variability and uncertainty when transforming 
input to output. In other words, linear dynamics damps perturbations. Any perturbation of initial 
conditions dies off, as does the potential for change. However, in nature we usually see the 
opposite—amplification of perturbations. Hence the importance of nonlinearity in deterministic 
approaches. 
 Now, in the same simple linear system, if the input is a stationary stochastic process (rather 
than a deterministic signal), then there is always change and uncertainty (Koutsoyiannis, 2014b). 
In other words, a stochastic system is not in need of nonlinearity in order to produce change and 
uncertainty, which are tightly related to each other. Stochastic dynamics need not be nonlinear to 
produce realistic trajectories and change. 
 Unfortunately, the dramatically different meaning of linearity vs. nonlinearity in 
deterministic and stochastic approaches is not often recognized in literature, and this creates 
confusion. Linearity may suffice for most stochastic simulation problems—and indeed all 
simulation models studied in Chapter 1 and in Chapter 7 are linear. The reasons can be 
summarized in the following points: • In stochastics, linearity is rather a powerful characteristic enabling the study of demanding 

problems, rather than a limitation (Koutsoyiannis 2014b; Koutsoyiannis and Dimitriadis, 
2021). • In stochastics, linearity is not an (over)simplification of the dynamics but has some sound 
justification, as indicated by the already mentioned Wold’s decomposition, in which the 
stochastic component (the regular process) is linearly equivalent to a white noise process (i.e. 
a linear combination of white noise terms; Wold, 1938, 1948; Papoulis 1991). • In addition, linearity in a stochastic description results from maximum entropy 
considerations (under plausible conditions; e.g. Papoulis, 1991) and, hence, it is related to the 
most powerful mathematical and physical principle of maximum entropy (Jaynes, 1991; 
Koutsoyiannis et al. 2008; Koutsoyiannis 2014a). • In a stochastic approach, a deviation from linearity can be conveniently incorporated through 
a stochastic error term.  • In studying causal systems in stochastic terms, as shown by Koutsoyiannis et al. (2022a,b), a 
linear approach effectively captures the important characteristics of causality, even in cases 
that the true dynamics is a priori known to be nonlinear. 
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7.6 A reordering method to generate an ensemble of correlated pairs of 

variables 

While the methodology described in the previous sections is very generic and powerful, 

it may be cumbersome and for this reason we provide in this and the next section simpler 

methodologies that can be readily applied. More specifically, in this section we describe a 

methodology to generate an ensemble of 𝑛 pairs of dependent variables with a specified 

correlation coefficient 𝑟 and arbitrary marginal distribution, the same for both variables. 

In the next section we will describe a method that generates a time series from a 

stochastic process with arbitrary distribution and dependence structure. The common 

characteristic of the methods in the two cases is that they perform reordering of an 

initially produced sequence, which has part of the properties required, specifically the 

correct dependence, but not the correct marginal distribution. The reordering of the 

initially generated series induces nonlinearity to an originally linear model. 

 The idea is simple and is described in the following steps.  

1. We generate two sequences 𝑥𝑖  and 𝑦𝑖 from the specified marginal distribution. 

2. We determine a sequence 𝑧𝑖′ as a linear combination of 𝑥𝑖  and 𝑦𝑖, namely 𝑧𝑖′ = 𝑟𝑥𝑖 +√1 − 𝑟2 𝑦𝑖 . The sequence 𝑧𝑖′ will have the required correlation coefficient 𝑟 with 𝑥𝑖 , 
but its marginal distribution will no longer be the specified one. 

3. We determine the ranks 𝑅𝑖′ of all 𝑧𝑖′, where 1 ≤ 𝑅𝑖′ ≤ 𝑛.  

4. For each 𝑧𝑖′ we find the value 𝑧𝑖 = 𝑦(𝑅𝑖′:𝑛), i.e., the value in the sequence of 𝑦𝑖 with 

rank 𝑅𝑖′. The sequence of pairs 𝑥𝑖 , 𝑧𝑖 is the final sought one. 

The sequence 𝑧𝑖 consists of all 𝑦𝑖 but rearranged so us to be correlated with 𝑥𝑖 . Obviously, 

the marginal distribution of 𝑧𝑖 is identical to that of 𝑦𝑖, i.e. the required one. The 

correlation coefficient will be somewhat distorted due to the replacement of 𝑧𝑖′ with 𝑧𝑖 but 

since 𝑧𝑖 has the same rank as 𝑧𝑖′, the distortion is expected to be negligible.  

 The method is illustrated by simulation applications for the exponential and Pareto 

distributions. Figure 7.6 summarizes the set of simulations for several values of the 

correlation coefficient 𝑟 and indicates its satisfactory preservation by the method, even 

for a mixed distribution with a discontinuity at zero as high as 𝑃0 = 0.9. Figure 7.7 shows 

the complete preservation of the distribution function for two of the simulations with a 

continuous and a mixed distribution. Finally, Figure 7.8 provides additional insights on 

the nonlinear relationships of the variables involved. 

7.7 A reordering method to generate non-Gaussian time series with 

arbitrary dependence structure 

In this section we describe a method that generates a time series of size 𝑛 from a 

stochastic process with arbitrary distribution and dependence structure. Like the method 

of section 7.6, it performs reordering of an initially produced sequence, which has part of 

the properties required, specifically the correct dependence, but not the correct marginal 

distribution. The method is described in the following steps.  
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Figure 7.6 Graphical depiction of the results of the simulation applications of the reordering 
method to generate ensembles of correlated pairs of variables. For each indicated theoretical 
correlation coefficient a single set 10 000 pairs of values were generated with marginal 
distribution (left column) exponential, and (right column), Pareto with 𝜆 = 𝜉 = 0.25, which is 
either (upper row) continuous, or (lower row) mixed with 𝑃0 = 0.9.  

 

Figure 7.7 Marginal distribution function for one of the simulation cases of Figure 7.6, namely 
that with correlation coefficient 0.8 and Pareto distribution with 𝜆 = 𝜉 = 0.25, which is either 
(left) continuous, or (right) mixed with 𝑃0 = 0.9. The empirical distributions (points) were 
estimated from order statistics using formula IV in Table 5.5. 
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Figure 7.8 More detailed information for one of the simulation cases of Figure 7.6, namely 

that with correlation coefficient 0.8 and Pareto distribution with 𝜆 = 𝜉 = 0.25, which is 

either (left) continuous, or (right) mixed with 𝑃0 = 0.9. (upper row) Dispersion of 

correlated sequences 𝑥𝑖  and 𝑧𝑖; (lower row) transformation of the intermediate sequence 𝑧𝑖′ to 𝑧𝑖. 
1. We use the method of section 7.5 to generate a sequence 𝑧𝑖′ that has the required 

dependence structure and marginal statistics up to the third moment, including 

the skewness ratio if time irreversibility is important, without provision for 

moments higher than 3. For the latter case, it is reminded that a skewed 

distribution is required to produce time series with time asymmetry and thus the 

normal distribution should be excluded. 

2. We generate a sequence of independent variates 𝑦𝑖 from the specified marginal 

distribution. 

3. We determine the ranks 𝑅𝑖′ of all 𝑧𝑖′, where 1 ≤ 𝑅𝑖′ ≤ 𝑛.  

4. For each 𝑧𝑖′ we find the value 𝑧𝑖 = 𝑦(𝑅𝑖′:𝑛), i.e. the value in the sequence of 𝑦𝑖 with 

rank 𝑅𝑖′. The sequence 𝑧𝑖 is the sought one. 

The sequence 𝑧𝑖 consists of all 𝑦𝑖 but reordered so us to become dependent in time. 

Obviously, the marginal distribution of 𝑧𝑖 is identical to that of 𝑦𝑖, i.e. the required one. 

The dependence structure will be somewhat distorted due to the replacement of 𝑧𝑖′ with 𝑧𝑖 but since 𝑧𝑖 has the same rank as 𝑧𝑖′, the distortion is expected to be negligible.  
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Figure 7.9 Results of the simulation application for a series of length 10 000 from the FHK process 
and Pareto distribution with upper-tail index 𝜉 = 0.1 (for additional parameters see Table 7.2): 
(upper) part of the generated time series with comparison of 𝑧𝑖′ and 𝑧𝑖; (middle) marginal 
distribution; (lower) climacogram, indicating the preservation of the dependence structure.  

 The method is illustrated in Figure 7.9 by a simulation application for the FHK process 

with Pareto distribution and parameters shown in Table 7.2, Notice that to generate 𝑧𝑖′ a 

Pareto distribution with 𝜉 = 1/3 was deliberately assumed, which has infinite skewness 

and excludes the possibility of controlling the skewness theoretically. Apparently, though, 

the empirical skewness is finite and allows controlling the skewness empirically. Indeed, 

the skewness and skewness ratio of 𝑧𝑖 shown in the table are as expected. Figure 7.9 

0.0001

0.001

0.01

0.1

1

10

100

0.0001 0.01 1 100 10000

D
is

tr
ib

u
ti

o
n

 q
u

a
n

ti
le

Excess return period, T – D

Theoretical ′ 

0

5

10

15

20

0 100 200 300 400 500

V
a

lu
e

Time, t

 ′  

0.1

1

1 10 100 1000

V
a

ri
a

n
ce

, γ
(κ

)

Time scale, κ

Theoretical

Theoretical, adapted for bias ′ 



288  CHAPTER 7 – STOCHASTIC SIMULATION OF HYDROCLIMATIC PROCESSES 

 

shows a satisfactory performance of the method in reproducing both the marginal 

distribution and the dependence structure. 

Table 7.2 Model parameters and statistical characteristics of the simulated series for the 
application of the reordering generation method (see also Figure 7.9). The meaning of the AMA 
model and its parameters are explained in section 7.3. 

Parameter AMA model / 𝑧′ 𝑧 

Theoretical Simulated Theoretical Simulated 

Hurst parameter, H 0.8    

Fractal parameter, M 0.7    

Time scale parameter, α 20    

Instantaneous variance, γ(0) 1.004    

Phase constant, θ0 0.0625    

Number of weights, 2q +1 2049    

Pareto distribution upper-tail index, ξ 0.333  0.1  

Pareto distribution scale parameter, λ 0.385  0.805  

Pareto distribution location parameter, c –0.547   0  

Mean, μ 0.567 0.898 0.894 0.896 

Standard deviation, σ 1 1.034 1 0.991 

Skewness ∞ 3.033 2.811 2.833 

Skewness ratio (for time asymmetry) 0 2.058 2.048 1.929 

 



 

Chapter 8. Rainfall extremes and ombrian modelling 

8.1 From ombrian curves to ombrian models 

One of the major tools in hydrological design is the ombrian relationships, more widely 

known by the misnomer rainfall intensity-duration-frequency (IDF) curves. An ombrian relationship (from the Greek ‘όμβρος’, rainfall*) is a mathematical relationship connecting 

the time-averaged rainfall intensity 𝑥 over a given time scale k (sometimes incorrectly 

referred to as duration) for a given return period T (also commonly referred to as 

frequency, although frequency is generally understood as reciprocal to period). Several 

forms of ombrian relationships are found in the literature, most of which have been 

empirically derived and validated by the long use in hydrological practice. Attempts to 

give them a theoretical basis have often used inappropriate assumptions and resulted in 

oversimplified relationships that are not good for engineering application.  

 Usually, the ombrian curves are constructed for time scales of some minutes to 

several hours. This range of time scales has been dictated from engineering needs. 

However, with just a few adaptations of ombrian curves we can have a complete and 

decent stochastic model of rainfall, an ombrian model. The adaptations needed are 

basically two: an extension of the temporal coverage for large time scales and a more 

consistent theoretical formulation, in connection to the stochastic concepts we have 

already developed. From a practical point of view, it is not a long way nor is a big effort 

required to move from the ombrian curves to an ombrian model. And once we have the 

model, we directly get the ombrian relationships ready for engineering application.  

 But do we really need a stochastic model? And if we do, why not choose one of the 

many stochastic rainfall models of the literature? An easy reply to the second question is 

that of course we can choose any available model, but a two-in-one solution, a 

theoretically consistent model and a practical tool, both in one expression, is a better 

choice. Coming to the first question, our answer is positive for two reasons: 

• While in traditional engineering design, the ombrian relationships are directly 

used in calculations, current hydrosystem configurations, which are increasingly 

complex, may require stochastic simulation, which is allowed by modern 

computational facilities. Stochastic simulation enables determination of risk at the 

end component of the hydrosystem, which actually is at risk, without relying on 

common simplifying assumptions, such as the equality of probability of occurrence 

of rainfall and flood discharge. 

• As already discussed, estimation from data always involves bias and uncertainty, 

whose determination requires a model. Both bias and uncertainty become 

substantial when there is persistence. As we have already seen in several 

 
* The Greek ‘ombr-‘ is also used in English in synthesis, e.g., ombrology for the branch of meteorology dealing 
with rain, ombrograph for an auto-recording raingauge, cf. https://www.merriam-
webster.com/dictionary/ombro-, https://www.merriam-webster.com/dictionary/ombrology, 
https://www.merriam-webster.com/dictionary/ombrograph.  

https://www.merriam-webster.com/dictionary/ombro-
https://www.merriam-webster.com/dictionary/ombro-
https://www.merriam-webster.com/dictionary/ombrology
https://www.merriam-webster.com/dictionary/ombrograph
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examples, this is the case with the rainfall process and, as we will see in this 

chapter, even the very common expressions of the relationship of rainfall and time 

scale are suggestive of persistence.  

 We will now discuss the basic postulates of an ombrian model, recalling that a model 

is always an approximation of reality and needs several assumptions to construct.  

1. A basic desideratum is that the end result should be readily used in typical 

engineering tasks even without resorting to simulation. It should thus be as easy 

to use as traditional ombrian relationships. To this aim we could sacrifice perfect 

theoretical consistency if this results in too involved expressions.  

2. On the other hand, a basic requirement of any stochastic model is to handle and 

preserve first and second-order characteristics of a process. As in ombrian 

relationships the variable of interest is the temporal average intensity 𝑥(𝑘) over 

any time scale k, it is natural to base our model on the climacogram, i.e. var[𝑥(𝑘)], 
recalling from Chapter 3 that by preserving the climacogram we preserve any 

other second-order characteristic. The need for preserving a constant mean is self-

evident, even though as we will see (Digression 8.C), no particular interest has 

been given in this requirement in common expressions of ombrian curves. 

3. The process variance should be finite for 𝑘 → 0 (otherwise it will not be physically 

consistent; see section 2.17) and zero for 𝑘 → ∞ (otherwise the process will not be 

ergodic; see section 3.4).  

4. The model should incorporate the fact that the probability dry, 𝑃0(𝑘) ≔ 𝑃{𝑥(𝑘) = 0} 
is nonzero for small time scales. This means that the probability wet, 𝑃1(𝑘) ≔𝐹(𝑘)(0) = 1 − 𝑃0(𝑘) is smaller than 1 for small k, including for 𝑘 → 0. 

5. As the emphasis of an ombrian model is on maxima, moments of order higher than 

two are important to consider. 

6. In particular, the upper-tail index of the distribution for all scales should be 

constant for all time scales. Theoretical justification of this requirement is given in 

Appendix 8-I. 

7. Because of its simplicity and explicit relationship between the time-averaged 

intensity and return period, the Pareto distribution is an optimal choice for small 

time scales; its suitability has been already verified in examples of previous 

sections. But as the time scale increases to several days or more, the Pareto 

distribution does not suffice and a PBF distribution is more appropriate. 

 In Digression 8.A and Digression 8.C we see that most of these requirements are 

violated in common ombrian relationships. 

Digression 8.A: Inconsistencies of common ombrian relationships 

The most common expression of ombrian curves (in particular in fractal-oriented studies) is: 

𝑥 = 𝜆𝛵𝜉𝑘𝜂  (8.1) 
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where 𝜆, 𝜉, 𝘂 are parameters, all positive numbers and 𝜉 ≤ 𝘂 ≤ 1. Apparently, it is not 
dimensionally consistent, but this can easily be remedied by introducing the parameters α and β 

with units of time and rewriting (8.1) in a dimensionally consistent manner, as: 

𝑥 = 𝜆′(𝛵/𝛽)𝜉(𝑘/𝛼)𝜂  (8.2) 

where 𝜆′ ≔ 𝜆𝛽𝜉 𝛼𝜂⁄  .  
 According to equation (5.51), the return period 𝑇 ≡ 𝛵(𝑘) is associated to time scale k and 

related to the latter by 𝑇/𝑘 = 1 𝐹(𝑘)(𝑥)⁄ . Hence: 

𝐹(𝑘)(𝑥) = 1 − 𝛼𝛽 (𝑎𝑘)𝜂 𝜉−1⁄ (𝜆′𝑥)1 𝜉⁄  (8.3) 

This is not a proper probability distribution function as for 𝑥 = 0, 𝐹(𝑘)(𝑥) = −∞. Also, for 𝑘 =0, 𝐹(𝑘)(𝑥) = −∞, irrespective of 𝑥, which again is an inconsistency.  
 Another ombrian relationship has been proposed by Koutsoyiannis et al. (1998) and refined 
in Koutsoyiannis (2007): 

𝑥 = 𝜆′ (𝛵/𝐷)𝜉 − 𝜓′(1 + 𝑘/𝛼)𝜂  (8.4) 

where D is a time unit, typically 1 year. At first glance this looks consistent with most of the 
requirements of section 8.1. In section 8.3 we will derive it in a slightly different form as a 
simplified ombrian model. As we will show, it is not free of inconsistencies, yet for small time 
scales is a good approximation of our consistent model, and can be useful in engineering 
application.  

8.2 Building an ombrian model 

To build a proper model in agreement with the postulates or, at least, without severe 

violations of the requirements set in section 8.1, we make the following assumptions: 

1. Pareto distribution with discontinuity at the origin for small time scales: 𝐹(𝑘)(𝑥) = 1 − 𝑃1(𝑘) (1 + 𝜉 𝑥𝜆(𝑘))−1 𝜉⁄  (8.5) 

As explained in section 8.1, the upper-tail index ξ should be constant, while the 

probability wet, 𝑃1(𝑘), and the state scale parameter, 𝜆(𝑘), are functions of the time 

scale k.  

2. Continuous PBF distribution with discontinuity at zero for large time scales, i.e.: 

𝐹(𝑘)(𝑥) = 1 − 𝑃1(𝑘) (1 + 𝜉 ( 𝑥𝜆(𝑘))𝜁(𝑘))−1 𝜉⁄  (8.6) 

In this case a new parameter 𝘁(𝑘) is introduced, which is again a function of time 

scale. The Pareto distribution is a special case of (8.6) for 𝘁(𝑘) = 1. In contrast to 

the Pareto distribution, whose density is a monotonically decreasing function of 𝑥, 

the PBF tends to be bell-shaped for increasing 𝘁(𝑘), a property consistent with 

empirical observation and reason.  
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3. Constant mean of the time-averaged process:  E[𝑥(𝑘)] = 𝜇 (8.7) 

4. Climacogram of type FHK-C (equation (3.88)), i.e.: 

var[𝑥(𝑘)] = 𝛾(𝑘) = 𝜆12 (1 + (𝑘𝛼)2𝑀)𝐻−1𝑀  (8.8) 

or of type FHK-CD (equation (3.91)). This has six parameters in total. To avoid an 

overparametrized model we set both time scale parameters equal and, as we 

expect 𝐻 > 0.5 due to persistence and 𝑀 < 0.5 due to roughness, we set 𝑀 = 1 −𝐻, thus getting:  var[𝑥(𝑘)] = 𝛾(𝑘) = 𝜆12 (1 + 𝑘𝛼)2𝐻−2 + 𝜆22 (1 − (1 + 𝛼𝑘)2𝐻−2) (8.9) 

Clearly, in both cases, 𝛾(𝑘) → 0, as 𝑘 → ∞, which makes the process ergodic; for 𝑘 = 0, 𝛾(0) = 𝛾0 = 𝜆12 in the case of (8.8) and 𝛾(0) = 𝛾0 = 𝜆12 + 𝜆22 in the case of 

(8.9). In both cases 𝛾(0) is finite and the number of parameters is four. 

5. Probability wet and dry, 𝑃1(𝑘) = 1 − 𝑃0(𝑘), varying with time scale according to: ln 𝑃0(𝑘) = ln𝑃0(𝑘∗) (𝑘/𝑘∗)𝜃, 𝑘 ≥ 𝑘∗ (8.10) 

where 𝑘∗ is the transition time scale from Pareto to PBF distribution, for which 𝑃0(𝑘∗) > 0 and 𝘁(𝑘∗) = 1 (for continuity of the transition), and θ is a parameter (0 ≤𝘃 ≤ 1). This equation has been derived in Koutsoyiannis (2006a) based on 

maximum entropy considerations.* As we will see, in the Pareto distribution, the 

probabilities dry and wet are derived directly from the distribution, and thus no 

equation additional to (8.10) is needed. The transition time scale 𝑘∗ is chosen at a 

point where the deviation of probability dry derived from the Pareto model from 

the empirical one is marginally acceptable. 

 Both the decreasing (Pareto) and the bell-shaped (PBF) types of probability densities 

are consistent with natural behaviours for small and large time scales, respectively. It 

must be noted though that the upper-tail index of the PBF distribution in the form of 

equation (8.6) is not ξ but 𝜉/𝘁(𝑘) and tends to zero as 𝑘 → ∞. Thus, with equation (8.6) 

we have sacrificed the requirement of a constant upper-tail index, but this violation 

happens only for large time scales. The alternative to keep (8.6) and replace ξ with 𝜉𝘁(𝑘), 
thus recovering a constant upper-tail index ξ, is not an option because it would result in a 

finite variance as 𝑘 → ∞ (with a coefficient of variation 𝜉/√1 − 2𝜉), i.e., in a nonergodic 

process. There is also the alternative to replace (8.6) with the distribution of the sum of 

 

* A slight modification of equation (8.10), i.e., ln 𝑃0(𝑘) = ln𝑃0(0) + ln (𝑃0(𝑘∗)/𝑃0(0)) (𝑘/𝑘∗)𝜃 , where 𝑃0(0) is an 

additional parameter representing the probability dry of the instantaneous process, with value close to 1, 
can cover the entire range of scales. However, here the assumption of the Pareto distribution for small scales 
renders the additional parameter superfluous.  
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correlated Pareto variables. Actually, there is an analytical solution for this (Arendarczyk 

et al., 2018, albeit not for distribution with discontinuity at zero) but it is quite 

complicated and would severely violate the basic desideratum (point 1 of section 8.1). 

Therefore, we deem that the sacrifice of the constant upper-tail index for the very large 

scales, which usually are not of interest in engineering practice, is unimportant.  

 What it remains to complete the model is to determine the functions 𝜆(𝑘) and 𝘁(𝑘) 
from the mean μ and the climacogram γ(k). In Appendix 8-II we derive these functions as 

well as approximations thereof which are sufficiently good and much more practical in 

application:  1𝘁(𝑘) ≈ √(1 − 2𝜉) (𝑃1(𝑘) 𝛾(𝑘) + 𝜇2𝜇2 − 1) (8.11) 

1𝜆(𝑘) ≈ 𝑃1(𝑘)𝜇 (1 + 1(1 − 𝜉)(𝘁(𝑘))2 − 1(𝘁(𝑘))√2) (8.12) 

 These correspond to the PBF distribution. In the Pareto case, 𝘁(𝑘) = 1, and hence 

(8.11) can be used to derive the probability wet as:  𝑃1(𝑘) = 1 − 𝜉1/2 − 𝜉  𝜇2𝛾(𝑘) + 𝜇2 (8.13) 

while (8.12) simplifies to: 1𝜆(𝑘) = 𝑃1(𝑘)𝜇(1 − 𝜉) = 𝜇(1/2 − 𝜉)(𝛾(𝑘) + 𝜇2) (8.14) 

Note that in the Pareto case, the equations are exact. The special case 𝑃1(𝑘) = 1 signifies 

the maximum time scale 𝑘max∗ , at which the Pareto distribution is mathematically feasible, 

at which: 𝑃1(𝑘max∗ ) = 1, 𝛾(𝑘max∗ )𝜇2 = 11 − 2𝜉 , 𝜆(𝑘max∗ ) = 𝜇(1 − 𝜉) (8.15) 

However, if we are interested in preserving the probabilities dry/wet according to 

equation (8.10), we should choose the time scale 𝑘∗ (of transition from Pareto to PBF) 

smaller enough than 𝑘max∗ . 

 The PBF distribution is feasible for any time scale, even when 𝑃1(𝑘) = 1 which actually 

is the case for large scales. In that case, equation (8.11) simplifies to: 1𝘁(𝑘) = √(1 − 2𝜉)𝛾(𝑘)𝜇  (8.16) 

 By setting 𝑇 = 1 (1 − 𝐹(𝑘)(𝑥)⁄ ), the ombrian expression resulting from equation (8.6) 

is: 
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𝑥 = 𝜆(𝑘)(( 𝑃1(𝑘) 𝑇 𝑘⁄ )𝜉 − 1𝜉 ) 1𝜁(𝑘)
 (8.17) 

and for 𝘁(𝑘) = 1 (Pareto), it simplifies to: 

𝑥 = 𝜆(𝑘) ( 𝑃1(𝑘) 𝑇 𝑘⁄ )𝜉 − 1𝜉   (8.18) 

For ξ = 0 the PBF and Pareto expressions switch to Weibull and exponential, respectively, 

i.e.: 

𝑥 = 𝜆(𝑘) (ln( 𝑃1(𝑘) 𝑇 𝑘⁄ )) 1𝜁(𝑘) , 𝑥 = 𝜆(𝑘) ln( 𝑃1(𝑘) 𝑇 𝑘⁄ ) (8.19) 

 Recapitulating the above discourse, our ombrian model gives directly the ombrian 

curves in the form of (8.17) and its special case (8.18) for the Pareto distribution, applying 

to small scales, which are of greatest interest from an engineering point of view. These 

relationships rely on the mean μ, the climacogram 𝛾(𝑘), the probability wet 𝑃1(𝑘) and the 

upper-tail index ξ of the distribution function of rainfall intensity. They are reproduced in 

Table 8.1.  

 Our ombrian model offers:  

(a) mathematical and physical consistency; 

(b) coverage of all time scales, from zero to infinity; 

(c) good behaviour on the very fine time scales, through the fractal parameter M; 

(d) good behaviour on very large time scales, through the Hurst parameter H and the 

mean μ whose effect becomes important as time scale increases; 

(e) simultaneous treatment and preservation of the climacogram; and 

(f) simultaneous treatment and preservation of the probability dry/wet. 

 The ombrian model uses a total of seven parameters listed in Table 8.2. This number 

is greater than that in the conventional ombrian curves, which is typically five. If the data 

cannot support the estimation of seven parameters, this number can be reduced by using 

default values (e.g. θ = 1, M = 0.5). 

 It is useful to note two inequality relationships among the parameters which would 

be useful in the model fitting phase. The first is implied by equation (8.13) and the fact 

that 𝑃1(𝑘) ≤ 1; as the domain of the Pareto distribution extends up to the transition time 

scale 𝑘∗, the following should hold. 𝜉 ≤ 12 − 𝜇22𝛾(𝑘∗)  (8.20) 

Furthermore, in order for (8.11) to be valid, the following inequality should hold for the 

entire domain of the PBF distribution, i.e. for any 𝑘 ≥ 𝑘∗: 
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𝑃1(𝑘) (𝛾(𝑘)𝜇2 + 1) ≥ 1  (8.21) 

Table 8.1 Mathematical relationships of the ombrian model. The ombrian curves per se are given 
in the last two rows. 

Quantity 
Small scales, 𝑘 ≤ 𝑘∗  

(Pareto, upper-tail index 𝜉)1 

Large scales, 𝑘 ≥ 𝑘∗  
(PBF, upper-tail index 𝜉′ = 𝜉 𝘁(𝑘)⁄ )1 E[𝑥(𝑘)] 𝜇 𝛾(𝑘) 𝜆12(1 + (𝑘/𝛼)2𝑀)𝐻−1𝑀    or   𝜆12 (1 + 𝑘𝛼)2𝐻−2 + 𝜆22 (1 − (1 + 𝛼𝑘)2𝐻−2) 

𝑃1(𝑘) 1 − 𝜉1/2 − 𝜉  𝜇2𝛾(𝑘) + 𝜇2 1 − (1 − 𝑃1(𝑘∗))(𝑘/𝑘∗)𝜃 , (0 ≤ 𝘃 ≤ 1) 1𝘁(𝑘) 1 √(1 − 2𝜉)(𝑃1(𝑘)(𝛾(𝑘)/𝜇2 + 1) − 1) 1𝜆(𝑘) 𝑃1(𝑘)𝜇(1 − 𝜉) 𝑃1(𝑘)𝜇 (1 + 1(1 − 𝜉)(𝘁(𝑘))2 − 1(𝘁(𝑘))√2) 

𝑥 for 𝜉 > 0 𝜆(𝑘) ( 𝑃1(𝑘) 𝑇 𝑘⁄ )𝜉 − 1𝜉  𝜆(𝑘)(( 𝑃1(𝑘) 𝑇 𝑘⁄ )𝜉 − 1𝜉 ) 1𝜁(𝑘)
 

𝑥 for 𝜉 = 0 𝑥 = 𝜆(𝑘) ln( 𝑃1(𝑘) 𝑇 𝑘⁄ ) 𝑥 = 𝜆(𝑘) (ln( 𝑃1(𝑘) 𝑇 𝑘⁄ )) 1𝜁(𝑘) 
1 The transition time scale 𝑘∗ is the time scale at which the empirical probability wet 𝑃1(𝑘) deviates from the 
expression given for the Pareto distribution; values are typically of the order of 10 to 100 h. The upper-tail 

index is 𝜉 for 𝑘 ≤ 𝑘∗ and 𝜉′ = 𝜉 𝘁(𝑘)⁄  for 𝑘 ≥ 𝑘∗. Note that for 𝑘 ≫ 𝑘∗, the probability wet 𝑃1(𝑘) becomes 1; 
this simplifies the relationships for the PBF distribution for very large scales. 

Table 8.2 Parameters of the ombrian model. 

Parameter Meaning of parameter Related tool Related equation 

μ Mean intensity Mean, μ (8.7) 𝜆1, 𝜆2 Intensity scale parameters1  Climacogram, 𝛾(𝑘) (8.8) or (8.9)  𝛼 Time scale parameter Climacogram, 𝛾(𝑘) (8.8) or (8.9) 

M Fractal (smoothness) parameter2 Climacogram, 𝛾(𝑘) (8.8)  

H Hurst parameter Climacogram, 𝛾(𝑘) (8.8) or (8.9) 

θ Exponent of the expression of 

probability dry  
Probability wet, 𝑃1(𝑘) (8.10) 3 

ξ Upper-tail index Probability distribution, 𝐹(𝑥) (8.5)–(8.6) 
1 One or two parameters for the cases that the climacogram is given by (8.8) or (8.9), respectively. 
2 The fractal (roughness/smoothness) parameter M is an independent parameter in the case that the 
climacogram is given by (8.8), while if it is given by (8.9) it is assumed 𝑀 = 1 − 𝐻. 
3 The expression also includes the transition time scale 𝑘∗ but this is not regarded a parameter but a 

modelling choice. 
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8.3 Model simplification for small time scales 

The Pareto ombrian expression in equation (8.18), which is applicable only for small 

scales 𝑘 ≤ 𝑘∗, can be written as: 𝑥 = 𝜆(𝑘) ( 𝑇 𝛽(𝑘)⁄ )𝜉 − 1𝜉   (8.22) 

where 𝛽(𝑘) is a function of time scale with units of time, i.e.: 

𝛽(𝑘) ≔ 𝑘𝑃1(𝑘) (8.23) 

By virtue of (8.14) we will have: 𝑥 = (1/2 − 𝜉)(𝛾(𝑘) + 𝜇2)𝜉𝜇 (( 𝑇𝛽(𝑘))𝜉 − 1 ) (8.24) 

 Now, we make the simplifying assumption 𝑃1(𝑘) ∝ 𝑘, which can stand as an 

approximation for small k; hence: 𝛽(𝑘) = 𝛽 = constant (8.25) 

A necessary condition for the validity of this is 𝑘 < 𝛽 (see Digression 8.C). Then (8.24) can 

be written as: 𝑥 = (1/2 − 𝜉)(𝛾(𝑘) + 𝜇2)𝜉𝜇 (( 𝑇𝛽)𝜉 − 1 ) (8.26) 

Further, by noting that for small time scales 𝛾(𝑘) ≫ 𝜇2, we can neglect the latter term in 

their sum. Assuming a climacogram in the form (8.8) and taking the neutral value 𝑀 =1/2 as default, we find: 𝑥 = 𝜆12𝜇  1/2 − 𝜉𝜉 (1 + 𝑘𝛼)2𝐻−2 (( 𝑇𝛽)𝜉 − 1 ) (8.27) 

 We can now see that, thanks to the simplifying assumption (8.25), the rainfall 

intensity 𝑥 is determined as the product of a function of time scale k and return period T. 

This facilitates calculations and particularly the parameter estimation. We can write this 

property in a more concise form as: 𝑥 = 𝜆 𝑏(𝑇)𝑎(𝑘) (8.28) 

where we have changed the product to quotient in order for both 𝑎(𝑘) and 𝑏(𝑇) to be 

increasing functions of their arguments. The function 𝑎(𝑘) is: 𝑎(𝑘) = (1 + 𝑘𝛼)𝜂 , 𝘂 ≔ 2 − 2𝐻 (8.29) 

The parameter λ and the function 𝑏(𝑇) are for 𝜉 > 0: 
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𝜆 = 𝜆12𝜇  1/2 − 𝜉𝜉 , 𝑏(𝑇) = ( 𝑇𝛽)𝜉 − 1 (8.30) 

and for 𝜉 = 0: 𝜆 = 𝜆122𝜇 , 𝑏(𝑇) = ln ( 𝑇𝛽)  (8.31) 

 Summarizing the above results, i.e., equations (8.28)–(8.31), the simplified ombrian 

relationship for the most usual case of 𝜉 > 0 is: 𝑥 = 𝜆 𝑏(𝑇)𝑎(𝑘) = 𝜆 ( 𝑇 𝛽⁄ )𝜉 − 1(1 + 𝑘 𝛼⁄ )𝜂  (8.32) 

 This has five parameters in total, falling in three categories, namely: (a) λ with units 

same as 𝑥 (typically mm/h); (b) α and β with units of time (typically in h, even though it 

may be convenient to express β in years); and (c) the dimensionless ξ and η (0 < 𝜉 <0.5, 0 < 𝘂 < 1). Comparison of the parameters of the ombrian model and the simplified 

ombrian relationship is provided in Table 8.3, while their physical meaning is discussed 

in Digression 8.B. 

As a final note, if we did not neglect the term 𝜇2 and we sought consistency in terms 

of preservation of the mean, then equation (8.28) would hold again but 𝑎(𝑘) would be 

modified to: 𝑎(𝑘) = 1(1 + 𝑘 𝛼⁄ )−𝜂 + 𝑐2 , 𝑐 ≔ 𝜇𝜆1 (8.33) 

However, this would add one more parameter (𝑐) which is not deemed necessary, unless 

the simplified model is to be used for simulation. 

Table 8.3 Comparison of the parameters of the ombrian model and the simplified ombrian 
relationship. 

Ombrian model  Simplified ombrian relationship 

Parameter Meaning of parameter  Parameter Meaning of parameter 

μ Mean intensity    𝜆1, 𝜆2 Intensity scale parameters   𝜆  Intensity scale parameter  𝛼 Time scale parameter for k  𝛼 Time scale parameter for k 

   β Time scale parameter for T 

M Fractal (smoothness) parameter  
    }η Exponent of the expression of the 

time scale function 𝑎(𝑘) H Hurst parameter  

θ Exponent of the expression of 

probability dry  

 

ξ Upper-tail index  ξ Upper-tail index 

 

Digression 8.B: Some notes on the physical meaning of the parameters of 

the simplified ombrian relationship 

The simplified equation (8.32) is dimensionally consistent and its five parameters have physical 
or logical meaning, as explained below. It is stressed, however, that parameter estimation is not 
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based on their physical meaning, but on the minimization of an error expression. Thus, the 
correspondence of parameter values and their meaning is not perfect, but nevertheless helps to 
understand the entire theoretical framework. 𝘂 [−]: Persistence parameter, where larger values indicate less strong persistence. It is 

asymptotically connected to the Hurst parameter 𝐻, with the relationship 𝘂 = 2 − 2𝛨 
(equation (8.29)). For a purely random process, 𝐻 = 0.5 and 𝘂 = 1, a value that is the 
upper allowable limit of 𝘂, but certainly not supported by empirical evidence. Clearly, 
any value of η < 1 results in H > 0.5, i.e., a process with persistence. In a fully persistent 
process, 𝐻 = 1 and 𝘂 = 0, a value that is the lower allowable limit of 𝘂. For 𝛨 = 0.75, 𝘂 = 0.5, which is a typical value of 𝘂. 𝛼 [Τ]: Time scale parameter, expressing the rate of deviation of the term 𝛢 ≔ 1/(1 + 𝑘/𝛼)𝜂 
from the pure power law 𝐵 ≔ (𝛼/𝑘)𝜂. For time scale 𝑘 ≫ 𝛼, 𝐴 and 𝐵 are practically 
identical. For 𝑘 = 𝛼, the 𝐴 term already deviates quite a bit (by 1/3 to 1/2) from the 
power law. For 𝑘 → 0 (instantaneous time scale), 𝛢 = 1, while 𝛣 → ∞. For 𝛼 → 0, 𝐴 and 𝐵 tend to coincide, but the rainfall intensity tends to infinity. For that reason, the value 𝛼 = 0 should be excluded. A recent study applying this framework for the entire Greek 
territory (Koutsoyiannis et al., 2023a) resulted in a single value of 𝛼 = 0.18 h, while, 
for a set of global rainfall records, Koutsoyiannis and Papalexiou (2017) suggested 𝛼 =0.07 h. 𝜉 [−]: Upper-tail index of the distribution of rainfall depth or intensity. Its minimum value, 𝜉 = 0, corresponds to an exponential distribution (or Gumbel distribution for annual 
maximum rainfall). Values of 𝜉 > 0 correspond to a Pareto distribution (or Fréchet 
distribution for annual maximum rainfall). For better understanding of the meaning of 
the parameter 𝜉 it is noted that, when 𝜉 > 0, the classical moments of the distribution 
are finite only for order 𝑝 < 1/𝜉, while for 𝑝 > 1/𝜉 they diverge to infinity. Therefore, 
values of 𝜉 ≥ 1 correspond to an infinite mean of the rainfall depth or intensity, which 
has no physical meaning. Values 𝜉 ≥ 1/2 are not considered admissible because they 
make the variance (𝑝 = 2) infinite. Values 𝜉 ≥ 1/3 and 𝜉 ≥ 1/4 result in infinite 
skewness (𝑝 = 3) and kurtosis (𝑝 = 4), respectively. The standard value for Greece was 
found 𝜉 = 0.18 (Koutsoyiannis et al., 2023a), while global investigations of 
precipitation extremes have given 𝜉 = 0.13 to 0.15 (Koutsoyiannis, 1999, 2004b). All 
these empirically estimated values suggest finite mean, variance, and classical 
skewness and kurtosis of the distribution. 𝛽 [T]: Scale parameter for return period, expressing the average temporal distance of two 
consecutive wet periods (e.g. days). It is recalled that the simplified ombrian 
expression is based on the assumption that the ratio of the time scale 𝑘 to the 
probability wet at scale 𝑘, 𝑃1(𝑘) is constant, equal to 𝛽, i.e. 𝛽 = 𝑘/𝑃1(𝑘). Considering 𝑘 = 1 d, we find 𝛽 = 1 d/𝑃1(1 d) = 𝛮/𝜈 d, where 𝑁 ≈ 365 is the number of days in a 
year and 𝜈 is the average number of wet days in a year. Thus, the ratio 𝑁/𝜈 is the 
average time interval between two wet days. If it rains every day, then 𝜈 ≈ 365 and the 
average distance between two wet days is 𝛽 = 1 d. If it rains 20% of the days, then 𝛽 =1/0.2 = 5 d =0.0137 years. Since the rain depth has a lower bound of 0, if we set 𝑇 = 𝛽, 
then the ombrian equation should yield 𝑥 = 0, which is indeed the case. Values 𝑇 < 𝛽 
are meaningless. Likewise, time scales 𝑘 > 𝛽 cannot be modelled by the simplified 
equation (8.32) (see Digression 8.C). 𝜆 [LT−1]: Characteristic instantaneous rainfall intensity (scale parameter), roughly 
corresponding to a one-year return period (𝛵 = 1 year). Indeed, for 𝑘 = 0, for typical 
values 𝜉 = 0.15, 𝛽 = 4 d (cf. the explanation of parameters 𝜉 and β above), and for 𝑇 =1 year = 365 d, it follows (𝑇 𝛽⁄ )𝜉 = (365 4⁄ )0.15 ≈ 2 and thus, from equation (8.32), 𝑥(0, 1 year) = 𝜆. 
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Digression 8.C: Limits of the simplified ombrian relationship  

By comparing equations (8.32) and (8.4), we see that they are mathematically equivalent, with 
the parameters α, ξ and η being identical in the two cases, and the remaining two related by: {𝛽 = 𝜓′1/𝜉𝐷, 𝜆 = 𝜆′𝜓′} ⇔ {𝜓′ = (𝛽/𝐷)𝜉 , 𝜆′ = 𝜆(𝐷/𝛽)𝜉} (8.34) 

As the particular form of equation (8.4) has been widespread (see an example below), equation 
(8.34) is useful for conversion between the two forms in engineering application.  
 Solving equation (8.32) for T we find the expression of the distribution function of mean 
intensity 𝑥 at time scale k as:  

𝐹(𝑘)(𝑥) = 1 − 𝑘𝑇 = 1 − 𝑘𝛽 (1 + 𝑥𝜆 (1 + 𝑘𝛼)𝜂)−1 𝜉⁄  (8.35) 

This latter indeed reflects a Pareto distribution with a discontinuity at zero, which is: 

𝑃0(𝑘) = 𝐹(𝑘)(0) = 1 − 𝑃1(𝑘) = 1 − 𝑘𝛽 (8.36) 

In this respect, at first glance it is consistent with respect to point 4 of section 8.1. However, for 
large k, this probability may become negative, which is a mathematical inconsistency. In addition, 

if 𝑘 =  0, 𝑃0(𝑘) = 𝐹(𝑘)(0) = 1, which means that only the value 𝑥 = 0 is allowed. This is also an 
inconsistency.  
 Furthermore, it is easy to find that its mean and squared coefficient of variation, are: 

𝛦[𝑥(𝑘)] = 𝜉𝜆(1 − 𝜉)(1 + 𝑘/𝛼)𝜂  𝑘𝛽  , 𝐶𝑣2[𝑥(𝑘)] = 1 − 𝜉1/2 − 𝜉 𝛽𝑘 − 1  (8.37) 

Both these expressions signify inconsistencies with respect to points 2 and 3 of section 8.1. The 
mean is clearly an increasing function of time scale, tending to infinity as 𝑘 → ∞, while it should 
be constant, and becoming zero if 𝑘 = 0, which is absurd. The squared coefficient of variation may 
become negative for large k, tending to −1 as 𝑘 → ∞, which is absurd as a square of a real number 
cannot be negative, and to +∞ as 𝑘 → 0.  

 However, if we restrict k so that 𝑘 < 𝛽 and hence the probability be reasonable (𝑃1(𝑘) < 1), 

then we can easily infer from (8.37) that 𝐶𝑣[𝑥(𝑘)] > 1 (1 − 2𝜉)⁄ > 0. In other words, the simplified 
ombrian relationship has reasonable behaviour for time scales sufficiently smaller than β, even 
though the constant mean condition will always be violated. Furthermore, to avoid an absurd 
behaviour close to 𝑘 = 0, we should also restrict k from below. A safe lower bound is the smallest 
value at which data were available and were used in the construction of ombrian curves.  
 To get a more specific quantified view of the above, we use as an example the ombrian 
relationship of Greater Athens (Kephisos River basin). This was derived by Koutsoyiannis et al. 
(2010) using data of time scales from 5 min to 48 h and assuming a validity for time scales 5 min 
to 100 h. For altitudes up to 200 m, the ombrian expression is: 

𝑥 = 207 𝛵0.15 − 0.61(1 + 𝑘/0.17)0.77 (8.38) 

with 𝑥 in mm/h, T in years and k in h. Using equation (8.34), we can express this in the form of 
(8.32) with parameters λ = 126 mm/h, α = 0.17 h, β = 325 h = 13.5 d, ξ = 0.15 and η = 0.77. Using 
equations (8.36) and (8.37), we can calculate the probability wet, the mean and the coefficient of 
variation. These are plotted in Figure 8.1 for time scales covering three orders of magnitude, from 
0.1 h (6 min) to 100 h. The probability wet and the coefficient of variation have a reasonable 
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behaviour in this range, as 100 h is much smaller than β =325 h. The constancy of the mean is 
violated, but this is not a severe limitation for this range of scales, which is dominated by the 
variance rather than of the mean. (If it were severe, section 8.3 provides the remedy.) 
 Summarizing the above considerations, the simplified ombrian relationship (equations 
(8.28)– (8.32)), can give an acceptable approximation of the ombrian relationship for a range of 
time scales of three orders of magnitude, provided that we have data in that range to fit this model. 
If we want to go to a wider range of time scales, or if we want to perform tasks other than direct 
application of the ombrian relationship (e.g. stochastic simulation) then we should use the full 
model of section 8.2.  

 

Figure 8.1 Mean, coefficient of variation and probability wet derived from the ombrian relationship of 
Athens. 

8.4 Data availability and processing 

For a reliable estimation of ombrian curves, it is important to utilize all available rainfall 

observations on all time scales. Modern rainfall measuring devices are sensors which 

readily provide digital information at small time steps (e.g. 10 min) but the older 

mechanical autographic devices should never be neglected, even though digitization of 

the archive of their recording charts is tedious.  

 It has been a common practice to base the construction of the ombrian curves of a 

certain area on the data of subdaily time scale only. However, this is a problematic practice 

that leaves out important information. As first noted in Koutsoyiannis et al. (1998), the 

(usually much longer) daily rainfall observation records can be fully utilized for a more 

reliable model fitting.  

 It is a strong suggestion of this text to combine and use the entire data sets of all types 

of devices and, as explained in Digression 2.M, work on the parent distribution rather than 

extracting values over threshold or, even worse, time-block (e.g. annual) extremes. It is 

noted though that in some cases the availability of data is such that does not allow access 

to the full information. For example, in several cases only a few of the extreme rainfall 

events have been digitized while the majority of rainfall recordings remain in charts. Even 

in such cases, in which the data set to be processed contains block (annual) maxima, the 

ombrian model should correspond to the parent distribution, which is the natural basis 
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for estimating design quantities. The method to estimate parameters (in particular, K-

moments) of the parent process from block maxima has been described in section 6.21 

and is simple.  

 An alternative method is to fit a distribution on the block maxima and in a second step 

convert it to the parent process. In this case, a Pareto distribution of the parent process 

corresponds to an EV2 distribution of block maxima. Therefore, the fitting of the model 

on block maxima should be made on the EV2, rather than the Pareto, distribution but the 

final model should be formulated for the Pareto distribution, using the parameter values 

that were estimated for EV2 distribution (see more details in section 2.19 and Digression 

2.M). In this case the block-maximum ombrian relationship that corresponds to that on 

the parent process in equation (8.32) becomes 

𝑥 = 𝜆 (−(𝛽 𝛥⁄ ) ln(1 − 𝛥 𝑇(𝛥)⁄ ))−𝜉 − 1 (1 + 𝑘 𝛼⁄ )𝜂 , 𝜉 > 0 (8.39) 

where 𝑇(𝛥) is the return period of the event that the value 𝑥 appears as a maximum in a 

time block of length Δ, typically Δ = 1 year. While the model parameters should be fitted 

on equation (8.39), the final model should be formulated for the Pareto distribution of the 

parent process (equation (8.32)) with precisely the same parameter values. 

 Some of the model parameters are more sensitive to the availability of data of a 

particular temporal resolution, as summarized in Table 8.4. Thus, the reliable estimation 

of those parameters depends crucially on the availability of the particular resolution on 

which is more sensitive. 

Table 8.4 Crucial sensitivity on particular temporal resolution of the parameters of the ombrian 
model and the simplified ombrian relationship. 

Temporal resolution Parameters that are most sensitive to the data type 

Sub-hourly α (time scale parameter for k), M (fractal/smoothness parameter) 

Sub-daily θ (exponent of the expression of probability dry), η (exponent of the 

expression of the time scale function a(k)) 

Daily and higher μ (mean intensity), ξ (upper-tail index), H (Hurst parameter), β 

(time scale parameter for T), 𝜆, 𝜆1, 𝜆2 (intensity scale parameters) 

 

Digression 8.D Do we need a sliding window and a Hershfield coefficient? 

When studying a process on multiple scales (e.g. to infer the climacogram of the process), we 
aggregate the available data from several time series to different time scales. No particular 
provision is made for the starting point for aggregation of each time series. To make this clearer, 
let us assume that we have a daily time series 𝑥𝜏 and from this we construct the 2-day time series 𝑥𝜏(2). Actually, we can construct two different time series 𝑥𝜏(2), depending on the selection we have 

made for the first term. Namely, the 𝑥1(2) that contains the daily term 𝑥2 could be either (𝑥1 +𝑥2)/2 or (𝑥2 + 𝑥3)/2. Likewise, if we construct a time series at time scale 10, there are 10 variants 

(the first term 𝑥1(10) that contains the daily term 𝑥10 could be anyone among (𝑥1 +⋯+ 𝑥10)/10 
through (𝑥10 +⋯+ 𝑥19)/10). All these are numerically different time series. But their statistical 
characteristics are precisely the same. Since we are doing stochastics and we are interested on 
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the statistical characteristics (and not on time series values) all options are equivalent. Thus, the 
notion of a sliding window is unnecessary for our study. 
 However, when studying extremes, it has been a tradition in hydrological practice (e.g. 
Linsley et al., 1975, p. 357) to use a sliding window and take the maximum value among the 

variants. In the above example, instead of constructing a time series 𝑥𝜏(2) whose first term would 

be, e.g., 𝑥1(2)=(𝑥1 + 𝑥2)/2, with the notion of a sliding window, a different time series 𝑦𝜏(2) will be 
constructed. Its first term would be:  𝑦1(2) ≔ max{(𝑥1 + 𝑥2)/2, (𝑥2 + 𝑥3)/2} = (𝑥2 +max{𝑥1, 𝑥3})/2  (8.40) 

 Let us consider the ratio of the expectations of the two cases, E [𝑦1(2)] E [𝑥1(2)]⁄ . If we 

temporarily assume a fully random process, then this ratio can be expressed in terms of 
noncentral K-moments as:  E [𝑦1(2)]E [𝑥1(2)] = 𝐾1′ +𝐾2′2𝐾1′ = 12 + 𝐾2′2𝐾1′ (8.41) 

Thus, in an exponential distribution of rainfall intensity, in which 𝐾2′ 𝐾1′⁄ = 1.5 (see Table 6.3), we 
will have a ratio equal to 1.25. If we increase the time scale κ beyond 2, simulation results showed 

that the corresponding ratio E [𝑦1(𝜅)] E [𝑥1(𝜅)]⁄  initially will increase, taking a value of about 1.3 for 𝜅 = 4, and then will decrease tending to 1 as 𝜅 becomes very large. If we replace the exponential 
distribution with Pareto, the ratio will slightly increase with increasing upper-tail index (e.g., for 𝑘 = 2, 𝜉 = 0.2, E [𝑦1(2)] E [𝑥1(2)]⁄ = 1.28).  

However, there are two factors that make this coefficient much smaller: first, the time 
dependence and, second, the fact that this practice is followed for large rainfall depths (e.g. the 
annual maxima) and not for the whole series. Thus, unconditional expectations should be 
replaced by conditional ones. For example, if we condition on the values that are higher than the 
mean 𝐾1′, then to each of 𝐾1′, 𝐾2′ , we should add 𝐾1′ and the result in equation (8.41) will change to (3𝐾1′ + 𝐾2′) 4𝐾1′⁄ = 3/4 + 𝐾2′ 4𝐾1′⁄ , which for the exponential distribution is 1.125.  

Hershfield and Wilson (1957) estimated a related ratio (not precisely the same) empirically, 
using rainfall data. The ratio they introduced is usually termed the Hershfield coefficient after the 
first author. Their conclusion was this: “It has been determined that, on the average, the maximum 

rainfall in any consecutive 60-minute period is 13 percent greater than the clock-hour rainfall for 

the same frequency for the corresponding period of record at most stations. Similarly, and by 

coincidence, the same factor applies to daily rainfall; to convert observation-day rainfall for a 

particular frequency to the maximum 1440-minute rainfall for the same frequency, multiply by 1.13.” 
The value of 1.13 has been extensively used worldwide and several later studies confirmed, rather 
than invalidated it.  

 In practice, studies of maxima on multiple time scales have been based on the series 𝑦𝜏(𝜅), 
determined as above, rather than 𝑥𝜏(𝜅). For the lowest available time scale, κ = 1 (the time step of 

the original series) as this method can no longer be applied, the values 𝑦𝜏(1) are calculated by 
multiplying 𝑥𝜏 by 1.13.  

 However, this tactic distorts the stochastic behaviour of the process 𝑥𝜏(𝑘) which is to be 

studied. As clarified above, the ombrian model is a stochastic model of the average intensity 𝑥𝜏(𝑘) 
at any time scale k. The quantity 𝑦𝜏(𝑘) is something different from 𝑥𝜏(𝑘) and there is no need to study 
it at all. Therefore, the notion of the sliding window is not recommended to use. A striding time 
window, with any arbitrary starting time is what is actually needed, without any conversion of 
the original time series, except taking temporal averages at several time scales. For consistency, 
a striding, rather than sliding, window should be used even in extracting block maxima. 
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 Having clarified that it is the time averaged process 𝑥𝜏(𝑘) which is modelled, we may further 
note that, even for the assessment of a certain event that occurred (e.g. the estimation of its return 
period for a certain time scale 𝑘), we must use a consistent methodology that relies on the process 𝑥𝜏(𝑘). Koutsoyiannis et al. (2023a) proposed the following procedure to this aim, which in a way 
reverses the notion of the sliding window. 

1. Assuming that the examined time scale 𝑘 (e.g.1 h) is a multiple of the time step 𝐷 (e.g.15 min), 
we average the time series at the discrete time scale 𝜅 = 𝑘/𝐷 (e.g. 1 h /15 min = 4) starting 
from an initial point in time, say 𝜏 = 0, and spanning the event being assessed. We designate 

this time series 𝑥𝜏(𝜅,0) with the index 𝜏 denoting (discrete) time. 
2. We repeat step 1 changing the initial point 𝜏 = 0 to 𝜏 = 1, 2, … , 𝜅 − 1, thus forming 𝜅 − 1 

additional time series designated as 𝑥𝜏(𝜅,𝑗), 𝑗 = 1,… , 𝜅 − 1. 
3. Having a total number 𝜅 of time series, for each of them we extract the maximum value 𝑀𝑗≔ max𝜏 𝑥𝜏(𝜅,𝑗) , 𝑗 = 0,… , 𝜅 − 1. Note that if we continued the procedure of averaging the 

time series for additional initial points, e.g., 𝜏 = 𝜅, 𝜅 + 1, etc., the sequence 𝑀𝑗 would repeat 
itself.  

4. We take the average of maxima, 𝑀 ≔ (𝑀0 +⋯+𝑀𝜅−1)/𝜅 and use this value for the 
assessment.  

We may note that the usual procedure in step 4 is to take the maximum of 𝑀𝑗 instead of the 
average, but, as we have articulated, this is improper. 

8.5 Ombrian model fitting  

Assuming that the ombrian model parameters are known, we can determine theoretically, 

based on the equations grouped together in Table 8.1, the following quantities: 

• the climacogram as a function of time scale 𝛾(𝑘); 
• the probability wet as a function of time scale, 𝑃1(𝑘); and 

• the rainfall intensity as a function of the time scale and the return period, 𝑥(𝑘, 𝑇). 
On the other hand, from the available data series, each one referring to a specific time 

scale k, we can determine empirical estimates of: 

• the standard climacogram estimate 𝛾(𝑘) using equation (4.23); and 

• the probability wet, 𝑃̂1(𝑘) = 𝑛̂1/𝑛, where 𝑛̂1 is the number of nonzero observations 

and 𝑛 is the total number of observations in the time series of observations (where 

both 𝑛̂1 and 𝑛 depend on k). 

 If we have both the model and the data series, then for each series referring to a 

specific time scale k, we can make tables of empirical values of intensities, 𝑥 and 

corresponding return periods, T, in two ways: 

• based on K-moments, or  

• based or order statistics.  

 For the approach based on the K-moments (Chapter 6), we can implement the 

following algorithm for each specified time scale k. 

1. We calculate the theoretical probability, 𝑃1(𝑘), from the number of observations 𝑛 

in the sample we specify 𝑛1 = 𝑃1(𝑘)𝑛 and we choose the 𝑛1 largest values from the 
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time series for further processing. (In a perfect model fit, 𝑛1 = 𝑛̂1, i.e., the observed 

number of nonzero values).  

2. By adapting equation (6.119), we calculate the bias correction factor 𝛩. Since the 

model is not a pure HK model, to estimate Θ we modify equation (6.119) neglecting 

the second term of its right-hand side, which is small, and adapting the first term 

as: 𝛩(𝑘, 𝐿, 𝐻) ≈ − 𝛾(𝐿)2𝛾(𝑘) (8.42) 

This is obtained by inspection of equations (6.119), (4.24) and (3.82). 

3. From the equations of Table 6.10 (entries on the Pareto and PBF distributions, 

given the upper-tail index ξ of the model, we calculate the Λ-coefficients 𝛬1 and 𝛬∞. 

4. We choose a number m of moment orders p ranging (in geometric progression) 

from 1 to 𝑛1 and for each one we estimate the noncentral K-moment 𝐾̂𝑝′  using the 

equations (6.47)–(6.49). 

5. For each order p, we estimate the bias corrected order 𝑝′ from equation (6.122). 

6. For each 𝑝′ we estimate the Λ-coefficients 𝛬𝑝′ from equation (6.139) and the return 

period from (6.140), which we adapt to the following formula*:  𝑇(𝐾̂𝑝′) = 𝑘𝑃1(𝑘) 𝑝′𝛬𝑝′ ≈ 𝑘𝑃1(𝑘) (𝛬∞𝑝′ + (𝛬1 − 𝛬∞)) (8.43) 

7. To the return period 𝑇(𝐾̂𝑝′) so calculated, there corresponds a value 𝑥̂ = 𝐾̂𝑝′ ; 
repeating this procedure for all p we make a table of empirical values of 𝑥̂ and 

corresponding T.  

 Alternatively, we can construct the required table using order statistics. In this case, 

the standard procedure of assigning return period to sample values is simpler (section 

5.6) but it does not take into account the persistence, as in the case of K-moments. Here 

we adapt the standard procedure to take it into account by the following quick-and-dirty 

manner for each specified time scale k. 

1. Using a value of the upper-tail index ξ of the model (see below) we calculate the 

coefficients A and B of equation (5.58) and Table 5.5 (formula VII for 

approximation of the Pareto distribution). 

2. We make a first estimate 𝑇0 of the return period of each nonzero value 𝑥 from 

equation (5.58) based on the rank i of each sample observation 𝑥(𝑖:𝑛), sorted in 

ascending order; this estimate is based on the assumption of independence.  

3. From equation (8.42) we calculate the bias correction factor 𝛩(𝑘, 𝐿, 𝐻). 
 

* To check the formula, let us consider k = 1 h, 𝑃1(𝑘) = 0.03, and period of observations of 100 years = 876 600 

h, and assume 𝛬1 = 𝛬∞ = 2. Then n = 876 600, 𝑛1 = 𝑃1(𝑘)𝑛 = 26 296; for the maximum value of 𝑝 = 𝑛1 =26 298, assuming independence so that 𝑝′ = 𝑝, the return period will be 𝑇(𝐾𝑝′) = (𝑘 𝑃1(𝑘)⁄ )(𝛬∞𝑝′ +(𝛬1 − 𝛬∞)) = (1/0.03)(2 × 26 298) = 1 753 200 h = 200 years (as expected, because 𝛬∞ = 2). 
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4. Based on the simplified approximation (rule of thumb) of the relationship of return 

period and order of K-moment, expressed in equations (6.133)–(6.134), and 

combining with equation (6.122), we estimate the adapted return period to take 

persistence into account as follows: 

𝑇 ≈ min((2𝛩 + (1 − 2𝛩) (𝑇0𝑃̂1(𝑘)2𝑘 )(1+𝛩)2) 2𝑘𝑃̂1(𝑘) , 𝑇0) (8.44) 

5. Repeating this procedure for all nonzero 𝑥(𝑖:𝑛) we make a table of empirical values 

of 𝑥̂ and corresponding 𝑇. 

6. We fit the model, estimate a new value of the upper-tail index ξ and repeat all above 

steps for a better approximation. 

 Prior to most of the above calculations, we need to have assumed an ombrian model 

and specify its parameter values. We may start from some guesses and find the final values 

by minimizing the error between theoretical and estimated statistics. Such errors are 

nonlinear functions of the parameters, and we need a nonlinear solver to perform the 

minimization. Solvers are now common in numerical software platforms (including 

spreadsheets).  

 If we wish to optimize the climacogram, then we can formulate the fitting error as: 𝐸𝛾 ≔∑𝑤𝛾(𝑘)(ln(𝛾(𝑘) − 𝛾(𝐿)) − ln(𝛾(𝑘)))𝑘
2  (8.45) 

where L is the observation period and 𝑤𝛾(𝑘) denotes some weight, which can be chosen 

as a function of k. As the climacogram spans several orders of magnitude, it is advisable 

to compare logarithms rather than actual values. Furthermore, as articulated in section 

4.6, due to the presence of bias, the estimate 𝛾(𝑘) is not comparable to the theoretical 

climacogram 𝛾(𝑘) but rather to the theoretical expectation of its estimator, based on 

equation (4.24), i.e., E [𝛾(𝑘)] = 𝛾(𝑘) − 𝛾(𝐿). This explains the specific mathematical form 

of equation (8.45). By minimizing 𝐸𝛾 we can determine the parameters related to the 

climacogram. However, the exponents θ and ξ cannot be determined from the 

minimization of 𝐸𝛾. 

 In a similar manner, we can define the fitting error in the probability wet (or dry) as: 𝐸𝑃 ≔∑𝑤𝑃(𝑘)(𝑃1(𝑘) − 𝑃̂1(𝑘))𝑘
2  (8.46) 

where 𝑤𝑃(𝑘) denotes some weight, which can again be chosen as a function of k. As all 

parameters of the ombrian model are involved in the mathematical expression of 𝑃1(𝑘), the 

minimization of 𝐸𝑃 can determine all parameters. However, as no model is a perfect 

description of reality, this type of specification of parameters, which focuses on the dry 

part of the rainfall process, is not good for extreme rainfall.  
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 For this reason, it is more advisable to fit by minimizing an error metric focusing on 

distribution quantiles 𝑥(𝑘, 𝑇) for all available time scales k and a series of return periods, 

as described above. The total fitting error in this case is:  𝐸𝑥 ≔∑ 1𝛾(𝑘) 1𝑛𝑘∑𝑤𝑥(𝑇)(𝑥(𝑘, 𝑇) − 𝑥̂(𝑘, 𝑇))2𝑇𝑘  (8.47) 

where 𝑤𝑥(𝑇) is a weighting factor, determined as a function of the return period T, and 𝑛𝑘 

is the number of 𝑥̂ values at time scale k. It is reminded that 𝑥̂ = 𝐾̂𝑝′  if we use the K-

moments approach and 𝑥̂ = 𝑥(𝑖:𝑛) if we use order statistics. The total square error over 

the entire set of return periods (the second sum in the right-hand side of (8.47)) is further 

normalized by the climacogram 𝛾(𝑘). Alternatively, we could formulate the error in terms 

of return periods as in equation (6.165), instead of quantiles. 

 A combined optimization would take into account all three error metrics in a linear 

combination with weights 𝑎𝛾, 𝑎𝑃, 𝑎𝑥, i.e.: 𝐸 ≔ 𝑎𝛾𝐸𝛾 + 𝑎𝑃𝐸𝑃 + 𝑎𝑥𝐸𝑥 (8.48) 

This can give a best compromise in a simple manner, even though multivariate (Pareto) 

optimization would make for a more sophisticated approach.  

Digression 8.E: Ombrian model for Uccle, Belgium 

We will illustrate the ombrian model against data using very long observational records. We start 
with the meteorological station at Uccle (a suburb of Brussels), Belgium (50.80°N, 4.37°E, 100.0 
m), which is perhaps the one with longest sub-hourly rainfall record worldwide. It belongs to the 
Royal Meteorological Institute of Belgium (RMIB) and its recording started in 1898. Here the data 
from 1898 to 2017 (not publicly available) with a gap in 2003 (119 years in total) have been used 
at the minimum available time step, which is 10 min, and at aggregate time scales up to 96 h. In 
addition, the daily precipitation record, publicly available through KNMI’s (Koninklijk Nederlands 
Meteorologisch Instituut) Climexp system, by accessing the European Climate Assessment & 
Dataset, has been used1. This covers the period 1880-2018 (139 years) with only very few missing 
daily values, which were left unfilled. The time scales of investigation start from the minimum 
available, i.e., daily, and advance up to 13 years (so that the aggregate time series have at least 10 
values). The sub-hourly and daily records are generally in good agreement with each other up to 
1999 but later there are notable deviations.  
 We fit the model simultaneously at both sources of data. We aggregate the data of the original 
10 min time step to time scales of 0.5, 1, 2, 4, 6, 12, 24 h, and 1, 2, 4 d (11 time scales in total). Also, 
we aggregate the data of the original 1 d time step to time scales of 2, 4, 8, 16, 32, 64, 128 d, and 
0.5, 1, 2, 4, 8, 13 years (14 time scales in total). By choosing not to use time scales > 96 h for the 
sub-hourly data and also to use a larger number of time scales for the daily data, we give more 
emphasis on the latter, as daily data are generally deemed more reliable than (sub)hourly, 
particularly on the large time scales. 
 Here we use the fitting approach based on the order statistics, as described in section 8.5. For 
each of the time scales of investigation we estimate from the sample the variance (climacogram) 
and probability wet and, once model parameters are assumed, the return period of each nonzero 
intensity value. The form of the theoretical climacogram we use is the FHK-C (equation (8.8)).  
 A first model fitting has been based on merely the climacogram, on the basis of equation 
(8.45), assuming equal weights, i.e., 𝑤𝛾(𝑘) = 1. In this case we estimated merely the four 
parameters that appear in equation (8.8). Another fitting has been based on the probability wet, 
on the basis of equation (8.46) assuming equal weights, i.e., 𝑤𝑃(𝑘) = 1. In this case all seven 
parameters are estimated. However, from an engineering point of view a more useful fitting is 
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that based on the total fitting error of distribution quantiles on the basis of equation (8.47). As in 
the approach based on order statistics the low return periods appear much more frequently than 
the high ones, if the weights 𝑤𝑥(𝑇) are set equal, then the fitting emphasis will be given on the 
small return periods. To avoid this, we have chosen an increasing function 𝑤𝑥(𝑇), namely 𝑤𝑥(𝑇) ∝√𝑇. Finally, a combined fitting on the basis of equation (8.48) has been performed with weights 𝑎𝛾 = 0.1, 𝑎𝑃 = 100, 𝑎𝑥 = 1. (Note that the chosen high value of 𝑎𝑃 counterbalances the fact that 𝐸𝑃 is much smaller than the other error components.)  
 The fitted parameters in all cases are shown in Table 8.5. The optimization cases for quantiles 
and combined resulted in virtually the same parameter values and thus one entry appears in 
Table 8.5 for both. By inspecting the table, we see that the parameter values of μ, H, θ and ξ, 
obtained with different optimization objectives, are fairly stable (do not change much with change 
of the objective function). Notable is the high value of ξ (0.20, against typical values of 0.1-0.15, 
but close to the value of 0.18 adopted for Greece; see Digression 8.B) and the moderate H (0.6). 
 The empirical and theoretical climacograms are shown in Figure 8.2. The model can obtain a 
perfect climacogram fitting, if the optimization objective is the climacogram per se, but even in 
the combined optimization the fitting remains good. Likewise, as seen in Figure 8.3, the model can 
obtain a perfect fitting on the probability wet, if the optimization objective is this latter, but even 
in the combined optimization the fitting remains relatively good. 
 The fitting on distribution quantiles for the combined optimization is shown in Figure 8.4, 
which is close to a typical depiction of ombrian relationships, except for the fact that here the time 
scales span 6 orders of magnitude (10 min = 0.17 h to 13 years = 113 958 h) and the return 
periods span almost 5 orders of magnitude. The fitting is generally good for those impressively 
wide spans of time scales and return periods and thus supports the suitability of the ombrian 
model. 
 If we delimit the ranges of time scales and return periods to those used in typical ombrian 
curves, we can obtain an even better fitting. This is illustrated in Figure 8.5 for k ≤ 2 d and T ≥ 1 
year. The ombrian relationships appear in this subdomain as straight lines in the double 
logarithmic plot of Figure 8.5, a fact that is characteristic for the upper tail of the Pareto 
distribution and has enticed the fans of fractals to perceive this behaviour as the magic of power 
laws.  
 The fitting on quantiles described above has also been used in this case and the resulting 
parameter values also appear in Table 8.5. Interestingly, the parameter values differ substantially 
in this case and, in particular, the mean does not approach its standard empirical estimate, as also 
happens in common approaches of construction of ombrian curves.  
 It is noted, though, that a more simplified model (section 8.3) and a simplified model fitting 
method (section 8.6) can be used if we are interested in that subdomain only. The real power of 
the full ombrian model is its coverage of all time scales and return periods, as well as its direct 
applicability in stochastic simulation.  

Table 8.5 Parameters of the ombrian model of Uccle. 

Case of optimization1 μ (mm/h) (2) 𝜆(mm/h) 𝛼 (h) M (-) H (-) θ (-) ξ (-) 

Climacogram –  0.530 0.645 0.28 0.58 – – 

Probability wet 0.0905 0.891 0.722 0.20 0.60 0.630 0.200 

Quantiles & combined 0.0916  1.178 0.140 0.50 0.62 0.573 0.194 

Quantiles for subdomain3 0.2454  1.688 0.250  1  0.56 1 0.123 
1 The transition time scale 𝑘∗ was chosen 12 h.  
2 The mean estimate is 0.0916 mm/h for the hourly series and 0.0905 for the daily series. In the 
quantiles/combined optimization cases the value was derived by optimization.  
3 The subdomain is defined as 𝑘 ≤ 2 d & 𝑇 > 2 years. 
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Figure 8.2 Fitting of the ombrian model (equation (8.8)) to the empirical estimates of the climacogram for 
Uccle. Note that the bias in the climacogram is negligible due to low Hurst parameter. 

 

 

Figure 8.3 Fitting of the ombrian model (equations (8.10) and (8.13)) to the empirical estimates of 
probability wet (𝑃1) or dry (1 − 𝑃1) for Uccle.  
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Figure 8.4 Ombrian relationships as resulted from the ombrian model for Uccle for time scales spanning 6 
orders of magnitude (10 min = 0.17 h to 13 years = 113 958 h). The empirical points are estimated from 
order statistics (using formula VII of Table 5.5) taking into account the effect of persistence. Continuous, 
dashed and dotted lines represent the theoretical values of model, the empirical estimates of daily series 
and those of the hourly series, respectively. The abbreviation “y” stands for year. 

 

Figure 8.5 As in Figure 8.4 but with fitting on time scales ≤ 2 d and return periods ≥ 1 year.  
__________ 

1 Climexp section “blended ECA&D”, data access 2020-08-10; data time stamp 2019-05-23. 
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Digression 8.F: Ombrian model for Bologna, Italy 

As already described (starting from section 1.3), Bologna, Italy, has one of the longest daily rainfall 
records worldwide, currently 206 years. Hourly rainfall data of the Bologna station are also 
available but for a much shorter period, 1990-2013, and are provided again by the Dext3r 
repository (retrieved and processed by Lombardo et al., 2019). The total length is 23 years, as the 
entire 2008 is missing. 
 Here we use the same ombrian model as in the Uccle case (Digression 8.E) except that we use 
the FHK-CD type climacogram (equation (8.9)), which is more appropriate for the more complex 
shape of the empirical climacogram, seen in Figure 8.6. We also apply the same procedure as in 
Uccle, but we also plot comparisons with quantiles estimated by K-moments.  
 The parameter values for the optimization cases examined, which are the same as in Uccle, 
are shown in Table 8.6. In comparison to Uccle, the most notable difference is the very high Hurst parameter (≥ 0.92; this is comparable to the value 0.90 that has been already estimated for the 
annual rainfall in Bologna in section 1.3). This has visible effects in terms of high bias in the 
climacogram for scales 𝑘 > 1000 h (about 40 d) in Figure 8.6.  

 

Figure 8.6 Fitting of the ombrian model (equation (8.9)) to the empirical estimates of the climacogram 
(upper) and climacospectrum (lower) for Bologna. The empirical estimates for time scales smaller than or 
greater than 1000 h (~42 d) are taken from the hourly and daily series, respectively. Note that the bias in 
the climacospectrum graph is negligible. 
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Table 8.6 Parameters of the ombrian model of Bologna. 

Case of optimization μ (mm/h) 𝜆1(mm/h) 𝜆2(mm/h) 𝛼 (h) H (-) θ (-) ξ (-) 

Climacogram – 0.02939 1.23 16.4 0.95 – – 

Probability wet 0.0773 0.08803 0.914 14.15 0.95 0.795 0.121 

Quantiles 0.0788  0.06380 1.26 7.70 0.93 0.693 0.125 

Combined 0.0823  0.03317  1.20  8.74  0.92 0.787 0.121 
Note: The transition time scale 𝑘∗ was chosen 96 h (= 4 d). 

 

Figure 8.7 Fitting of the ombrian model (equations (8.10) and (8.13)) to the empirical estimates of 
probability wet (𝑃1) or dry (1 − 𝑃1) of Bologna.  

 As seen in Figure 8.6, the empirical and theoretical climacograms compare very well or even 
perfectly for a fitting on the basis of the climacogram. This figure also includes the 
climacospectrum of the process, where the fitting is good enough. Likewise, as seen in Figure 8.7, 
the model can obtain a perfect fitting on the probability wet, if the optimization objective is this, 
but even in the combined optimization the fitting remains relatively good.  
 The fitting on distribution quantiles for the combined optimization is shown in Figure 8.8, 
with return periods assigned by order statistics (upper graph) or by K-moments (lower graph). 
In both cases adaptations to take into account the bias due to the intense HK behaviour have been 
performed. There are no noteworthy differences between the two graphs, except the smother 
empirical curves in K-moments graph. The fitting is good for the entire range of time scales and 
return periods, each of which spans five orders of magnitude. Again, the good fitting supports the 
suitability of the ombrian model. 
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Figure 8.8 Ombrian curves as resulted from the ombrian model for Bologna for time scales spanning 5 
orders of magnitude (1 h to 16 years = 140256 h). The empirical points are estimated from (upper) order 
statistics (using formula VII of Table 5.5) and (lower) K-moments. In both cases the effect of persistence 
was taken into account; the ombrian model results were plotted for bias-adapted variance in order to be 
comparable with empirical plots (thus, for 𝑘 > 1000 h or about 40 d, the true intensity resulting from the 
model is higher than what is shown in the graph). The abbreviation “y” stands for year. 
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 It can be observed in Figure 8.8 that the graphs for the largest time scales are not well 
distinguished. A better option is to plot the excess precipitation intensity (𝑥 − 𝜇) vs. the excess 
return period (𝑇 − 𝑘). This is depicted in Figure 8.9 where noticeable deviations between model 
and data can be seen for the largest time scales. A possible remedy would be to change the error 
expression in equation (8.47). It is expected that if the error was expressed in terms of the 
logarithms of excess rainfall, so as to correspond to that particular depiction, the deviations at the 
largest time scales would be smaller.  

 

Figure 8.9 Ombrian curves as resulted from the ombrian model for Bologna for time scales spanning 5 
orders of magnitude (1 h to 16 years = 140256 h) as in Figure 8.8 but plotted on axes of excess return period 
(𝑇 − 𝑘) and excess precipitation intensity (𝑥 − 𝜇). The empirical points are estimated from K-moments. 

8.6 Simplified ombrian relationship fitting  

The procedures of section 8.5 can also be applied in the simplified version of ombrian 

relationships of section 8.3, in the form of equation (8.28). In addition, the separability of 

functions 𝑎(𝑘) and 𝑏(𝑇) allows a two-step approach, with each step determining the 

parameters of each of the two functions separately. The procedure was introduced by 

Koutsoyiannis et al. (1998) and is based on expressing (8.28) in the form: 𝑎(𝑘)𝑥 = 𝜆𝑏(𝑇) (8.49) 

We observe that the time scale k is not a stochastic variable (rather it takes on a set of 

values, which are chosen considering the data availability) and 𝑎(𝑘) is a deterministic 

function thereof, while the right-hand side of the equation in essence is an expression of 

the (Pareto) distribution function, which does not depend on k. By substitution of 

equations (8.29) and (8.30), we can write (8.49) as:  
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(1 + 𝑘𝛼)𝜂 𝑥 = 𝜆 (( 𝑇𝛽)𝜉 − 1) (8.50) 

 Hence, for the different time scales 𝑘𝑗  the stochastic variables 𝑦𝑗 = 𝑎(𝑘𝑗)𝑥 =(1 + 𝑘𝑗 𝛼⁄ )𝜂𝑥 have a common distribution function. Thus, the 𝑦𝑗  for different 𝑘𝑗  can be 

regarded as samples from the same distribution with the same parameters. Let 𝑦𝑗𝑖 ≔𝑎(𝑘𝑗)𝑥𝑗𝑖 where 𝑥𝑗𝑖  is the ith item of the sub-sample of size 𝑛𝑗  corresponding to the time 

scale 𝑘𝑗  and let 𝑅 𝑗𝑖 be its rank in the merged sample of all the 𝑦𝑗𝑖  of size 𝑛 = ∑ 𝑛𝑗𝑗 . Let the 

mean rank of each sub-sample be 𝑅 𝑗 = ∑ 𝑅 𝑗𝑖𝑖 /𝑛𝑗 . We replace all 𝑅 𝑗𝑖 of each sub-sample 

with its mean 𝑅 𝑗 and we get a sample of size 𝑛 with 𝑛1 variables equal to 𝑅 1, 𝑛2 equal to 𝑅 2, etc. The estimators of its mean and variance* will be:  𝑅 ≔ 1𝑛∑𝑛𝑗𝑅 𝑗𝑗 , 𝛾𝑅 ≔ 1𝑛∑𝑛𝑗(𝑅 𝑗 − 𝑅)2𝑗  (8.51) 

where if there are no ties among different mean ranks, it is easy to see that 𝑅 = (𝑛 + 1)/2 

(a constant value as 𝑅 𝑗𝑖 vary from 1 to 𝑛).  

 Now, it is easy to understand that if the samples are from the same distribution, that 

in the right-hand side of equation (8.49), then each realization of 𝑅 𝑗 should be close to the 

mean and that of the variance 𝛾𝑅 should be minimal. Furthermore, given the observations 𝑥𝑗𝑖 , the variance estimate 𝛾𝑅 depends on the parameters α and η. Thus, we form a 

minimization problem, seeking to find the values α and η that minimize 𝛾𝑅. With current 

computational tools (even common spreadsheet software) numerical minimization of a 

function of two variables is an easy task (it can even be solved without using a solver, by 

a trial-and-error method).  

 We further note that the method could even work with the variables 𝑦𝑗𝑖  instead of 

their ranks 𝑅 𝑗𝑖. Nonetheless, using ranks makes the method more robust, i.e., not affected 

by the presence of outliers in the samples.  

 For the sake of improving the fitting of 𝑏(𝑇) in the region of higher intensities (and 

also to simplify the calculations) it may be preferable to use in this first step of calculations 

a part of the data values of each group instead of the complete series. For example, we can 

use the highest 1/2 or 1/3 of intensity values for each time scale (Koutsoyiannis et al., 

1998).  

 Once the values of α and η are determined, we proceed to the second step of 

calculations, which is straightforward. Assuming that, with these values, all 𝑦𝑗𝑖  are from 

the same distribution, we merge all k groups of values 𝑦𝑗𝑖  thus forming a single sample. 

To finalize the task, it suffices to estimate the parameters of the Pareto distribution using 

 
* We notice that the variance resembles the Kruskal-Wallis statistic used to test whether several samples 
are from the same distribution. However, here we do not apply any test, nor would it be possible, as the test 
assumes independent samples, while clearly here they are dependent. 
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e.g. the method of K-moments. This defines completely the form and the parameters of 𝑏(𝑇).  
 An advantage of the two-step method is that it allows giving different roles to 

different data sets in the fitting procedure. Thus, in the first step the parameters α (which 

is typically smaller than 1 h and needs sub-hourly data to be reliably estimated) and η (for 

which hourly or multi-hour time scales are most appropriate) should be based on 

subdaily and even sub-hourly data. In contrast, the parameters of 𝑏(𝑇) are better deduced 

from daily raingauge data rather than from autographic rain recorder data, because the 

latter are more susceptible to measurement errors and also of shorter length. In 

particular, the upper-tail index ξ of 𝑏(𝑇) should ideally be based on multi-station data of 

the area, or be assumed independently of data, according to experience in the area of 

study. 

 Further to the construction of at-site ombrian curves, the simplified fitting facilitates 

the parameter estimation for large regions with many stations simultaneously. Regional 

modelling of ombrian curves is particularly complex due to the need to account for spatial 

dependence together with the increased variability of rainfall extremes in space. A 

framework for the parsimonious regional ombrian modelling for any point in a given area 

was recently provided by Iliopoulou et al. (2022). Its application to the Thessaly region, a 

13 700 km² water district of Greece with varying topography and hydrometeorological 

properties, was based on a common ombrian model structure, except for a spatially 

varying scale parameter which is itself modelled by a spatial smoothing model for the 24 

h average annual rainfall maxima that employs elevation as an additional explanatory 

variable. The fitting is performed on the pooled all-stations data using K-moments that 

allows both for reliable high-order moment estimation and simultaneous handling of 

space-dependence bias. An even more comprehensive method was subsequently applied 

to the entire territory of Greece (Koutsoyiannis et al., 2023a). 

Digression 8.G: Upper-tail index of rainfall intensity worldwide 

Both the full ombrian model and the simplified ombrian relationships share the same parameters 
ξ and α. The upper-tail index ξ determines the behaviour of the distribution upper tail and it is the 
most difficult to estimate. In the examples of Uccle (Digression 8.E) and Bologna (Digression 8.F) 
the available data sets were quite long and supported a reliable estimate of the parameter ξ, which 
was found 0.194 for Uccle and 0.121 for Bologna. However, for short data records this is not 
possible and thus it is useful to refer to the global behaviour as revealed from the analyses of 
global data sets. 
 For years, the most prevailing model for rainfall extremes was the Gumbel distribution, which 
entails an exponential upper tail of the parent distribution, or 𝜉 = 0. This is the smallest possible 
value for a distribution that is unbounded from above. Unjustified specification of ξ to its smallest 
possible value results in unsafe (too small) design rainfall values for large return periods. 
Recently, however, the appropriateness for rainfall of the exponential tail and the Gumbel 
distribution has been questioned. Koutsoyiannis (2004a, 2005a, 2007) discussed several 
theoretical reasons that favour the Pareto/EV2/Fréchet distribution over the exponential/EV1/ 
Gumbel case. By now, several studies have provided empirical evidence supporting the Pareto 
case (𝜉 > 0). Some of them, based on empirical evidence from daily rainfall records worldwide, 
are explicitly mentioned below: 
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1. The data set compiled by Hershfield (1961) with 95 000 station-years, which he used to 
formulate his PMP method, was found by Koutsoyiannis (1999) consistent with the EV2 
distribution with shape parameter 𝜉 = 0.13, or slightly varying with the average annual 

maximum rainfall ℎ (in mm) as 𝜉 = 0.183 − 0.00049 ℎ (8.52) 

2. Koutsoyiannis (2004b, 2005a) compiled an ensemble of annual maximum daily rainfall series 
from 169 stations in the Northern Hemisphere (28 from Europe and 141 from the USA) 
roughly belonging to six major climatic zones, all having lengths from 100 to 154 years, and 
comprising a total of 18 065 station-years. The analysis provided sufficient support for the 
general applicability of a positive upper-tail index. Furthermore, the ensemble of all samples 
supported the estimation of a unique shape parameter ξ for all stations. The estimated value 
of ξ varied for different methods of estimation and was found 𝜉 = 0.09 for the maximum 
likelihood method, 𝜉 = 0.10 for the L-moments method, 𝜉 = 0.13 for the method of moments 
and 𝜉 = 0.15 for a weighted least squares method. The latter method, by assuming weights 
equal to the empirical quantiles, gives higher importance to the high values and, as the 
resulting value leads to more conservative design, the value 𝜉 = 0.15 was suggested as the 
preferred one. 

3. Papalexiou and Koutsoyiannis (2013) analysed the annual maximum daily rainfall of 15 137 
records from the GHCN daily database, with lengths varying from 40 to 163 years. Using the 
L-moments method, they fitted to all stations the GEV distribution, which comprises all three 
cases of extreme value distributions. The results clearly suggested that the EV3 distribution 
(a distribution bounded from above, with negative upper-tail index) is completely 
inappropriate for rainfall, while the EV2/Fréchet law (𝜉 > 0) prevails over the EV1/Gumbel 
law 𝜉 = 0. The mean value of the shape parameter ξ for all stations was found, using the L-
moments method, to be 0.114, which is not very different from that found in Koutsoyiannis 
(2004b, 2005a) for the same method. However, this value was not found to be representative 
for all parts of the world as there is variability. The statistical sampling effect explains a big 
part of the observed variability of the shape parameter around its mean value 𝜉 = 0.114, but 
not the total variability. The authors concluded that the geographical location on the globe 
may affect the value of 𝜉 and constructed a map of its geographical distribution, which shows 
that large areas of the world share approximately the same GEV shape parameter. As a final 
remark, the authors suggested not to follow blindly the statistical estimate of ξ based on 
whatever statistical method. In particular, they proposed that in the case where data suggest 
a negative upper-tail index (distribution bounded from above), this should not be used. 
Instead, in this case it is more reasonable to use a Gumbel or, for additional safety, a GEV 
distribution with an upper-tail index value equal to 0.114. 

4. Cavanaugh et al. (2015) analysed again a subset of the GHCN daily database, selecting over 
22 000 high quality stations across the globe, which pass certain quality control and temporal 
completeness criteria. They utilized an advanced test for differentiating between 
exponential- and heavy-tailed distributions of precipitation, and their results indicated that 
the majority of precipitation exceedance probabilities are of Pareto type and, therefore, most 
precipitation records have Pareto upper tails, not exponential. 

 Additionally, Veneziano et al. (2009) used multifractal analysis to show that the annual 
rainfall maximum for a specified time scale can be approximated by a GEV distribution and that 
typical values of ξ lie in the range 0.09 to 0.15 with the larger values being associated with more 
arid climates. Similar results were provided by Chaouche (2001) and Chaouche et al. (2002). 
Chaouche (2001) exploited a data base of 200 rainfall series of various time steps (month, day, 
hour, minute) from the five continents, each including more than 100 years of data. Using 
multifractal analyses, she found that (a) a Pareto/EV2 type law describes the rainfall amounts for 
large return periods; (b) the exponent of this law is scale invariant over scales greater than an 
hour (in fact, this is dictated by theoretical reasons; see Appendix 8-I); and (c) this exponent is 
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almost space invariant. Other studies have also expressed scepticism for the appropriateness of 
the Gumbel distribution for the case of rainfall extremes. Coles et al. (2003) and Coles and Pericchi 
(2003) concluded that inference based on a Gumbel distribution model fitted to the annual 
maxima may result in unrealistically high return periods for certain observed events and 
suggested a number of modifications to standard methods, among which is the replacement of the 
Gumbel model with the GEV model. Mora et al. (2005) and Bacro and Chaouche (2006) confirmed 
that rainfall in Marseille (a raingauge included in the study by Koutsoyiannis, 2004b) and other 
raingauges in southern France are not in the Gumbel law domain. Sisson et al. (2006) highlighted 
the fact that standard Gumbel analyses routinely assign near-zero probability to subsequently 
observed disasters, and that for San Juan, Puerto Rico, standard 100-year predicted rainfall 
estimates may be routinely underestimated by a factor of two. Schaefer et al. (2006) using the 
methodology by Hosking and Wallis (1997) for regional precipitation-frequency analysis and 
spatial mapping for 24-hour and 2-hour time scales for the Washington State, USA, found that the 
distribution of rainfall maxima in this State generally follows the EV2 distribution type. 
 

Digression 8.H: Area-reduction of point ombrian curves 

The statistical analysis of rainfall extremes and the construction of ombrian relationships 
typically refer to a point (i.e., the raingauge station). On the other hand, in hydrology the 
transformation of rainfall to runoff occurs at the catchment scale and thus in engineering 
applications the rainfall intensity should refer to the catchment area. This should require 
additional statistical analyses for the areally averaged rainfall intensity. However, this is usually 
too difficult or impossible, because of the sparse network of raingauges as well as synchronization 
problems among the recordings of different devices. Therefore, a common method for a 
transformation of point estimates, to account for the spatiotemporal variability of rainfall across 
the river basin, suggests applying a reduction coefficient, called the area-reduction factor (or areal 

reduction factor, ARF).  
 The ARF is defined to be the ratio of the areally averaged precipitation depth over a certain 
area A for a specified return period T and time scale k to the precipitation depth over any point of 
the area (assumed to be climatically homogeneous) for the same return period and time scale. 
Accordingly, to find the ARF we need to determine the distribution functions of both areal and 
point rainfall and divide the two for several return periods and time scales. A prerequisite for this 
is to form statistical samples of areal rainfall with sufficient length and for various time scales. 
Another prerequisite for the definition to apply is the climatic homogeneity of the entire area, so 
that the same ombrian relationship apply to any point at the given area.  
 Some studies miss the above definition and determine the ARF empirically, e.g. by averaging 
precipitation per event and considering the ratio of maximum point precipitation (also known as 
the centre point precipitation) to the areal precipitation; this does not make much sense. In fact, 
empirical procedures like the latter imply different empirical definitions of ARF. A comprehensive 
review of empirical procedures and alternative definitions can be found in Svensson and Jones 
(2010). Despite theoretical inconsistencies, results from empirical studies of ARF have certainly 
some usefulness. Recent studies which adopt the consistent definition have been made by 
Lombardo et al. (2006) and Overeem et al. (2010). Both of these studies use radar data to estimate 
ARF, which certainly provide a great potential for studying the spatial variability of extreme 
precipitation due to the improved spatial coverage, resulting in good indications of the spatial 
patterns of rainfall. Major improvements in ARF estimation are anticipated in the near future, as 
radar and satellite data of rainfall will become more reliable and will accumulate in time providing 
samples with lengths adequate enough to enable reliable investigation of the probability 
distribution of areal rainfall. It is noted though that the poorer quality of these data, compared to 
raingauge data, is also expected to affect ARF estimation. Indeed, Allen and DeGaetano (2005) 
found that radar-based ARF decays at a faster rate (with increasing area) than gauge-based ARF.  
 Current literature typically gives ARF as a function of A and k, disregarding the effect of T, 
which is deemed small. Comprehensive investigations were carried out in the UK by NERC (1975) 



318  CHAPTER 8 – RAINFALL EXTREMES AND OMBRIAN MODELLING 

 

which provided tabulated values of ARF for a wide range of areas (1 to 30 000 km2) and time 
scales (1 min to 25 days). Koutsoyiannis and Xanthopoulos (1999, p. 154) fitted the following 
empirical expression to those tabulated values: 

𝜑 = max(0.25, 1 − 0.048𝐴0.36−0.01 ln𝐴𝑘0.35 ) (8.53) 

where A is given in km2 and k in h. The same relationship has been compared with nomographs 
by Hershfield and Wilson (1957) for the eastern USA and by the US Weather Bureau (1960) for 
the western USA; differences are visible but not very substantial and this supports applicability 
of equation (8.53) in other parts of the world.  

Appendix 8-I: -Proof that the upper-tail index of a time-averaged process is 

constant at any time scale 

We assume that the stochastic variables 𝑥 and 𝑦 are nonnegative (if they are not, we truncate their 

distributions as we are interested in the upper tail only) and we let 𝑧 ≔ 𝑥 + 𝑦. With the help of 

Figure 8.10 we can write: 𝑃{𝑧 > 𝑧} ≥ 𝑃{𝑥 > 𝑧}, 𝑃{𝑧 > 𝑧} ≥ 𝑃 {𝑦 > 𝑧} (8.54) 

and 𝑃{𝑧 ≤ 𝑧} ≥ 𝑃 {𝑥 ≤ 𝑧/2, 𝑦 ≤ 𝑧/2} = 𝑃 {𝑥 ≤ 𝑧/2|𝑦 ≤ 𝑧/2}𝑃 {𝑦 ≤ 𝑧/2} (8.55) 

For independent and positively dependent 𝑥 and 𝑦 we have 𝑃 {𝑥 ≤ 𝑧/2}|𝑦 ≤ 𝑧/2} ≥ 𝑃{𝑥 ≤ 𝑧/2}. 
Thus, 𝑃{𝑧 ≤ 𝑧} ≥ 𝑃 {𝑥 ≤ 𝑧/2, 𝑦 ≤ 𝑧/2} ≥ 𝑃{𝑥 ≤ 𝑧/2}𝑃 {𝑦 ≤ 𝑧/2} and consequently: 𝑃{𝑧 > 𝑧} ≤ 𝑃{𝑥 > 𝑧/2} + 𝑃 {𝑦 > 𝑧/2} − 𝑃{𝑥 > 𝑧/2}𝑃 {𝑦 > 𝑧/2}≤ 𝑃{𝑥 > 𝑧/2} + 𝑃 {𝑦 > 𝑧/2} (8.56) 

 

Figure 8.10 Auxiliary sketch of the proof of the constancy of upper-tail index. 

 As a result: max(𝐹𝑥(𝑧), 𝐹𝑦(𝑧)) ≤ 𝐹𝑧(𝑧) ≤ 𝐹𝑥(𝑧/2) + 𝐹𝑦(𝑧/2) (8.57) 
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lim𝑧→∞ 𝑧1/𝜉max (𝐹𝑥(𝑧), 𝐹𝑦(𝑧)) ≤ lim𝑧→∞ 𝑧1/𝜉𝐹𝑧(𝑧) ≤ lim𝑧→∞ 𝑧1/𝜉𝐹𝑥(𝑧/2) + lim𝑧→∞ 𝑧1/𝜉𝐹𝑦(𝑧/2) (8.58) 

Let 𝜉𝑥 and 𝜉𝑦 be the upper-tail indices of 𝑥 and 𝑦, respectively, and assume 𝜉𝑥 ≥ 𝜉𝑦 (if not, we 

interchange 𝑥 and y and have the same results). According to the definition of upper-tail index 

(equation (2.64)), this means that: lim𝑥→∞ 𝑥1/𝜉𝑥𝐹̅𝑥(𝑥) = 𝑙𝑥 , lim𝑦→∞𝑦1/𝜉𝑦𝐹̅𝑦(𝑦) = 𝑙𝑦 (8.59) 

where 𝑙𝑥 and 𝑙𝑦 are finite. At the same time it means that lim𝑥→∞ 𝑥1/𝜉𝐹𝑥(𝑥) = 0 for any 𝜉 > 𝜉𝑥 and lim𝑥→∞ 𝑥1/𝜉𝐹𝑥(𝑥) = ∞ for any 𝜉 < 𝜉𝑥, and likewise for y. If we assume 𝜉𝑥 > 𝜉𝑦 and take 𝜉 = 𝜉𝑥, the 

rightmost part of (8.58) becomes: lim𝑧→∞ 𝑧1/𝜉𝑥𝐹𝑥(𝑧/2) + lim𝑧→∞ 𝑧1/𝜉𝑥𝐹𝑦(𝑧/2) = lim𝑧→∞(2𝑧′)1/𝜉𝑥𝐹𝑥(𝑧′) + lim𝑧→∞(2𝑧′)1/𝜉𝑥𝐹𝑦(𝑧′)= 21/𝜉𝑥𝑙𝑥 + 0 = 21/𝜉𝑥𝑙𝑥 
(8.60) 

and the leftmost part is lim𝑧→∞max(𝑧1/𝜉𝑥𝐹𝑥(𝑧), 𝑧1/𝜉𝑥𝐹𝑦(𝑧)) = max(𝑙𝑥, 0) = 𝑙𝑥. Thus, (8.58) 

becomes: 𝑙𝑥 ≤ lim𝑧→∞ 𝑧1/𝜉𝑥𝐹𝑧(𝑧) ≤ 21/𝜉𝑥  𝑙𝑥 (8.61) 

Furthermore, for any 𝜉 < 𝜉𝑥 the leftmost quantity in (8.58) is ∞ and thus lim𝑧→∞ 𝑧1/𝜉𝐹𝑧(𝑧) = ∞. Also 

for any 𝜉 > 𝜉𝑥 the rightmost quantity in (8.58) is 0 and thus lim𝑧→∞ 𝑧1/𝜉𝐹𝑧(𝑧) = 0. If 𝜉𝑥 = 𝜉𝑦 the 

above results are valid except that the rightmost part of (8.61) becomes 21/𝜉𝑥+1𝑙𝑥. Summarizing 

these results, we have: 

lim𝑧→∞ 𝑧1/𝜉𝐹𝑧(𝑧) = {0, 𝜉 > 𝜉𝑥𝑙𝑧 𝜉 = 𝜉𝑥∞ 𝜉 < 𝜉𝑥 (8.62) 

where 𝑙𝑧 is a finite number satisfying 𝑙𝑥 ≤ 𝑙𝑧 ≤ 21/𝜉𝑥+1𝑙𝑥. This proves that the upper-tail index of 

the distribution of the sum of two variables equals the maximum of the upper-tail indices of the 

two variables. This result is readily expanded for many variables. Consequently, for a stationary 

stochastic process, the upper-tail index is preserved in the cumulative process, which is a sum of 

many variables with same upper-tail index, and hence of the averaged process.  

Appendix 8-II: Relationships of climacogram and parameters of the 

ombrian model 

By standard algebra on equation (8.6) we find that the pth moment of 𝑥(𝑘) is: 

E [(𝑥(𝑘))𝑝] = 𝜇𝑝′ = 𝑃1(𝑘)(𝜆(𝑘))𝑝𝑝𝘁(𝑘)𝜉𝑝/𝜁(𝑘) B( 𝑝𝘁(𝑘) , 1𝜉 − 𝑝𝘁(𝑘)) (8.63) 

Hence, the mean is  

E[𝑥(𝑘)] = 𝜇 = 𝑃1(𝑘)𝜆(𝑘)𝘁(𝑘)𝜉1/𝜁(𝑘) B( 1𝘁(𝑘) , 1𝜉 − 1𝘁(𝑘)) (8.64) 

and the squared coefficient of variation is: 
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𝐶v2[𝑥(𝑘)] = 𝛾(𝑘)𝜇2 = 2𝘁(𝑘) B ( 2𝘁(𝑘) , 1𝜉 − 2𝘁(𝑘))𝑃1(𝑘) B ( 1𝘁(𝑘) , 1𝜉 − 1𝘁(𝑘))2 − 1 (8.65) 

 For the special case that 𝘁(𝑘) = 1 (equation (8.5); Pareto), the mean and squared coefficient 

of variation simplify to: 

E[𝑥(𝑘)] = 𝜇 = 𝑃1(𝑘)𝜆(𝑘)1 − 𝜉 , 𝐶v2[𝑥(𝑘)] = 𝛾(𝑘)𝜇2 = 2(1 − 𝜉)(1 − 2𝜉)𝑃1(𝑘) − 1  (8.66) 

Combining these with equations (8.9) and (8.15) we find: 𝛾0(1 + (𝑘max∗ /𝛼)2𝑀)𝐻−1𝑀𝜇2 = 11 − 2𝜉 ⇔ 𝑘max∗ = 𝛼(((1 − 2𝜉)𝛾0𝜇2 ) 𝑀1−𝐻 − 1) 12𝑀
 (8.67) 

 However, for the general case, equations (8.64) and (8.65) are implicit for ξ and 𝘁(𝑘), and too 

complicated for our purposes. Therefore, we look for simplifying approximations. For an 

approximation of (8.64) it can be seen that the part of the right-hand side that contains 𝜉 and 𝘁(𝑘) 
is equal to 1/(1 − 𝜉) for 𝘁(𝑘) = 1 and tends to 1 as 𝘁(𝑘) → ∞. A numerical investigation showed 

that a very good approximation with these properties is the following: 

𝜇 ≈ 𝑃1(𝑘)𝜆(𝑘)(1 + 1(1 − 𝜉)(𝘁(𝑘))2 − 1(𝘁(𝑘))√2) (8.68) 

 For an approximation of (8.65), we initially examine the case 𝑃1(𝑘) = 1, for which:  

𝐶v2[𝑥(𝑘)] = 2𝘁(𝑘) B ( 2𝘁(𝑘) , 1𝜉 − 2𝘁(𝑘))B ( 1𝘁(𝑘) , 1𝜉 − 1𝘁(𝑘))2 − 1 ≕ 𝐶(𝘁(𝑘)) (8.69) 

It is easily shown that for 𝘁(𝑘) = 1, 𝐶(𝘁(𝑘)) equals 1/(1 − 2𝜉). Furthermore, it can be shown 

analytically (the proof is omitted) that, as 𝘁(𝑘) → ∞ (which happens when 𝑘 → ∞), the LLD of C 

as a function of ζ is 𝐶#(𝘁(𝑘)) = −2. Also, numerical investigation shows that the slope of −2 is 

virtually constant for the entire domain of 𝘁 ≥ 1. This observation, combined with the value of 𝐶v2[𝑥(𝑘max∗ )], enables the very simple approximation:  𝐶(𝘁(𝑘)) ≈ 1(1 − 2𝜉)(𝘁(𝑘))2 (8.70) 

Hence, in the general case: 𝐶v2[𝑥(𝑘)] = 𝛾(𝑘)𝜇2 = 𝐶(𝘁(𝑘)) + 1𝑃1(𝑘) − 1 (8.71) 

which yields: 𝛾(𝑘)𝜇2 = 1𝑃1(𝑘)(1 − 2𝜉)(𝘁(𝑘))2 + 1 − 𝑃1(𝑘)𝑃1(𝑘)  (8.72) 
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Once 𝑃1(𝑘), 𝛾(𝑘) and μ are known, the unknown 𝘁(𝑘) and 𝜆(𝑘) are easily found to be given by 

equations (8.11) and (8.12). 





 

 

Chapter 9. Streamflow maxima and minima 

9.1 Streamflow extremes compared to rainfall extremes 

While rainfall databases have been publicly available for a few decades, and this enabled 

the study of rainfall extremes and extraction of generalized results over the globe, 

streamflow databases with publicly available data are a more recent—and partial—
development. Therefore, general results have not yet been obtained. The study of 

streamflow involves many more difficulties than that of rainfall. The measurement of 

streamflow is a demanding task and needs sophisticated equipment and analyses, and 

measuring experience. In addition, what we measure does not necessarily represent the 

natural streamflow process. Several large-scale control structures on rivers, such as dams, 

levees, intakes and diversions, have seriously modified the natural process. 

Reconstructing the natural regime from the measurements needs appropriate knowledge 

of the modified hydrosystem and its control, and simultaneous processing of several data 

sets. The so derived reconstructed time series, usually called “naturalized”, are rare and 

usually not available online. Therefore, to understand the natural regime, it is much easier 

to analyse data from pristine catchments.  

 In this chapter we provide several representative examples using long time series from the database of the US Geological Survey’s (USGS) National Water Information 
System. From this database, Hirsch and Ryberg (2012) selected 200 stream gauges in the 

coterminous USA, of at least 85 years length through water year 2008, from basins with 

little or no reservoir storage or urban development (less than 150 persons per km2 in 

2000). These stations are an ideal source of the examples given here. The data retrieved* extend up to 2020 and are free of missing values (some “provisional” values for the most 
recent months were not used in the analyses). In Europe, a set of 224 stream gauges was 

studied in Iliopoulou et al. (2019) but in this case the time series are shorter; thus, only 

the longest of them (Po River with 90 years of observations, Montanari, 2012†) is 

analysed.  

 As we will see in the examples and contrary to rainfall, where at the lowest scales the 

Pareto distribution, with lower-tail index 𝘁 = 1, is appropriate, the streamflow often 

exhibits a higher value of ζ even at small scales; this implies a bell-shaped density function. 

Therefore, a candidate distribution for streamflow is the PBF. While the lower-tail index 

ζ is most important for the low extremes, the upper-tail index ξ is most important for the 

high extremes. The relationship of ξ in streamflow with that of rainfall is discussed in 

Digression 9.A. 

 
* Data retrieved on 2020-08-22 from https://nwis.waterdata.usgs.gov/nwis/inventory; the discharge 
values were converted from ft3/s to m3/s. † Data made available by Alberto Montanari, https://www.albertomontanari.it/sites/default/files/ 
uploadedfiles/po-pontelagoscuro.txt, retrieved on 2020-08-22. The data set is affected by the Italian tactic 
to remove the values of 29 February at leap years. 

https://nwis.waterdata.usgs.gov/nwis/inventory
https://www.albertomontanari.it/sites/default/files/%20uploadedfiles/po-pontelagoscuro.txt
https://www.albertomontanari.it/sites/default/files/%20uploadedfiles/po-pontelagoscuro.txt
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 Intermittence is a prominent behaviour in rainfall and has been modelled in Chapter 

8 through the probability wet (𝑃1) or dry (𝑃0). This can also be the case in streamflow but 

only in small streams which often, during the summer months, become dry. Large rivers 

are very rarely dry, yet intermittence appears in a different mode. Specifically, there are 

two states, one in which the river is fed merely by groundwater (baseflow) and one 

dominated by flood. As we will see, a simple technique to model this type of intermittence 

is to set a positive lower limit to the PBF distribution. 

 As discussed in Chapter 8, in rainfall it is most often necessary to model extremes at 

multiple scales—whence the need to construct ombrian relationships. In streamflow this 

is not usually the case. Instead, often there is a need to construct an operational stochastic 

simulation model. Several tasks can only be studied by means of stochastic simulation. 

For example, in studying the design floods of dams, it does not suffice to determine the 

value of river discharge for the design return period. Rather, we should determine the 

value of the outflow discharge of the dam spillway. In terms of low events, again it does 

not suffice to determine the river discharge for a design return period or reliability. 

Rather, we need to establish a relationship between reservoir policy (e.g. reliable yield of 

the reservoir) and probability of emptying of reservoir.  

 All these tasks are easily dealt with by stochastic simulation. A theoretical description 

of the related concepts can be found in Koutsoyiannis and Economou (2003) while a 

simplified application of a simulation methodology for the design of a reservoir spillway 

can be found in Koutsoyiannis (1994). Here we will not give detailed applications of 

simulation, as this is not the focus of this text. However, all concepts necessary for 

simulation are contained in Chapter 7. We note that in a simulation focusing on minima 

(droughts), e.g. in determining the reliable reservoir yield, a monthly time step usually 

suffices and the preservation of seasonality by means of a cyclostationary model becomes 

important (e.g. Koutsoyiannis, 2000, 2001). Instead, in a simulation focusing on maxima (floods), e.g. in determining a spillway’s design discharge, a subdaily simulation step is 
necessary and, in this case, it becomes important to preserve the time irreversibility of 

the streamflow (see section 7.5 and Koutsoyiannis 2019b, 2020a), which however 

becomes negligible on the monthly time scale.  

 While a stochastic model is constructed for the specific time scale of interest 

(subdaily, daily, monthly or even annual, depending on the particulars of the application) 

a study of some multi-scale characteristics of the process is necessary (e.g., to characterize 

the time dependence and possibly the persistence). This is most effectively done through 

the process climacogram. In some applications (particularly in studies of large 

hydrosystems with many reservoirs) stochastic models at two or more time scales are 

often involved. It becomes thus imperative to make the models consistent to each other. 

This is done by techniques called model coupling or disaggregation (Koutsoyiannis and 

Manetas, 1996; Koutsoyiannis, 2001). 

Digression 9.A: Do the upper-tail indices of streamflow and rainfall differ? 

The upper-tail index is particularly important for characterizing the extraordinary extreme values 
(e.g., of return periods of the order of 1000 years). Underestimation of the upper-tail index may 
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markedly underestimate the value of such events in the design phase or overestimate the return 
period of extraordinary events that have occurred. As streamflow is caused by rainfall, it is 
interesting to examine whether or not the transformation of rainfall to runoff preserves the 
upper-tail index. Here we provide some hints about what we may expect, rather than a consistent 
analysis of the problem, which would not be easy.  
 In hydrology, we usually model this transformation within a catchment using the conceptual 
analogy of one or more connected reservoirs. Here we consider just one reservoir, which could 
be one segment in the catchment, with input the upstream flow discharge, 𝐼(𝑡), and output the 
downstream flow discharge, 𝑄(𝑡); alternatively, it could represent the entire catchment with the 
inflow being the precipitation. The outflow is assumed to be the reservoir spill. We wish to see 
whether or not the transformation of input to output preserves the upper-tail index.  
 Inflow and outflow are connected by the continuity equation (conservation of mass), i.e.: d𝑆d𝑡 + 𝑄 = 𝐼 (9.1) 

where S is the reservoir storage. We need one more equation to fully describe the transformation 
of I to Q which we construct by means of a stage-discharge and a stage-storage relationship. We 
assume these to be of power type: 𝑄 = 𝑘 𝑧𝑙 , 𝑆 = 𝑆0 +𝑚 𝑧𝑛 (9.2) 

where z is the water elevation and 𝑘, 𝑙,𝑚, 𝑛, 𝑆0 are constants. From these we get 𝑧 = (𝑄/𝑘)1/𝑙and 𝑆 = 𝑆0 +𝑚(𝑄/𝑘)𝑛/𝑙 = 𝑆0 + 𝛼𝑄𝛽 , where 𝛽 ≔ 𝑛/𝑙 and 𝛼 ≔ 𝑚/𝑘𝑛/𝑙. Eliminating S from the 
differential equation we obtain:  

𝛼𝛽𝑄𝛽−1 d𝑄d𝑡 + 𝑄 = 𝐼 (9.3) 

The value of the exponent 𝛽 − 1 determines the behaviour of Q. To get an idea of what the value 
of the exponent could be, we recall from hydraulics that a typical value of 𝑙 in spillways is 3/2. The 
exponent 𝑛 is determined by the topography of the reservoir. For a prismatic reservoir, 𝑛 = 1, 
while for a pyramidal or conic one 𝑛 = 3 and hence β becomes 2/3 and 2 for these two cases, 
respectively. Therefore, the exponent 𝛽 − 1 would be –1/3 and 1, respectively. The parameter α 
(whose dimension is such that 𝛼𝑄𝛽−1 has dimension of time) is also useful to interpret. A large 
inundation plain would imply a large α to express the fact that in a large plain Q would be less 
sensitive to S (as for, say, 𝛽 = 1, Δ𝑄 = Δ𝑆/𝛼).  
 The differential equation (9.3) admits a closed solution only if 𝛽 − 1 = 0. This case is indeed 
feasible according to the above discussion and results in a first-order linear differential equation 
with general solution (see section 3.11):  

𝑄(𝑡) = 𝑄0e−𝑡/𝛼 + 1𝛼∫ e−(𝑡−𝑠)/𝛼 𝐼(𝑠) d𝑠𝑡
0  (9.4) 

where 𝑄0 = 𝑄(0) (the initial condition). This has been very popular in hydrology and is known as 
the linear catchment model. Evidently, if we multiply the input by a constant A, the output will 
also be multiplied by the same constant. Furthermore, treating the input as a stationary stochastic 
process 𝐼(𝑡) and taking a large t, so that 𝑒−𝑡/𝛼 ≈ 0, we see that the output is also a stationary 
stochastic process. Now, temporarily assuming that the inflow is independent in time, we see from 
equation (9.4) that if for some q the moment E[𝐼(𝑡)𝑞] diverges to infinity, then E[𝑄(𝑡)𝑞] will 

diverge too; also, if E[𝐼(𝑡)𝑞] is finite, then E[𝑄(𝑡)𝑞] will be finite too. Therefore, as the inverse of 

the upper-tail index, 1 𝜉⁄ , is the threshold value determining whether or not the moments diverge 
(𝑞 ≥ 1/𝜉) or are finite (𝑞 < 1/𝜉), we infer that if the upper-tail index of 𝐼(𝑡) is 𝜉, then that of 𝑄(𝑡) 
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will also be ξ. This result can be extended to 𝐼(𝑡) dependent in time, taking into account that again 
any 𝐼(𝑡) is linearly equivalent to white noise (cf. Wold’s decomposition; Digression 3.E). 
 However, the behaviour changes if 𝛽 ≠ 1 as the differential equation (9.3) turns to nonlinear. 
To illustrate the behaviour in this case, as there is no closed solution, we consider as an example 
an input segment (surge) with mathematical form 𝐼(𝑡) = 𝐴𝑡e−𝑡, whose total volume is A. We solve 
the equation numerically to find 𝑄(𝑡) for several values of A, and investigate the ratio of the peaks 
of outflow to inflow, as the peak flows are the most representative for the behaviour in the 
distribution upper tails.  
 Some results have been plotted in Figure 9.1 for several values of the exponent β and the scale 
parameter α of the storage-discharge relationship 𝑆 = 𝛼𝑄𝛽 (𝑆0 = 0). It can be seen that, while in 

the linear case the ratio 
𝑄𝐼  of peak values is constant (as expected based on the discussion of the 

linear case), for 𝛽 ≠ 1, the results roughly support a relationship of power type, 
𝑄𝐼 ∝ 𝐼𝛾 where 𝛾 ≠0 is the slope in the doubly logarithmic plot of Figure 9.1. Thus, 𝑄1/(1+𝛾) ∝ 𝛪. If ξ is the upper-tail 

index of inflow, which means that E[𝐼(𝑡)1/𝜉] = ∞, then E [𝑄(𝑡)1/(1+𝛾)𝜉] = ∞. Hence, we conclude 

that the upper-tail index of the outflow will be 𝜉𝑄 = (1 + 𝛾)𝜉. As γ (i.e. the slope of Figure 9.1) can 
be either positive, zero or negative, 𝜉𝑄 will be either greater than, equal to, or smaller than ξ. In 
particular, the presence of large plains within the catchment will signify a decrease of ξ.  
 Of course, the whole runoff process on the entire catchment includes other types of routing 
in addition to that across the flow in a river. Some of them, like snowmelt, tend to increase the 
upper-tail index, while other, such as retention and infiltration, tend to decrease it.  
 In conclusion, we can expect an upper-tail index of streamflow equal to that of rainfall only 
in catchments where the assumption of linearity (𝛽 = 1) is justified. In large catchments, which 
include large flood plains, it would not be a surprise if we estimated an upper-tail index equal to 
zero (a light-tailed distribution) even if the upper-tail index of rainfall is positive.  

 

Figure 9.1 Ratio of peak outflow to peak inflow in a reservoir with inflow 𝐼(𝑡) = 𝐴𝑡e−𝑡, as a function of the 
inflow total volume of A, for several values of the exponent β and the scale parameter α of the storage-
discharge relationship 𝑆 = (𝑄/𝛼)𝛽 . Values of 𝛽 = 1, < 1 and > 1 correspond to a linear reservoir, a reservoir 
with roughly prismatic shape, and one with roughly pyramidal shape, respectively. A large α corresponds 
to a large reservoir area (e.g. the inundation of a plain).  

9.2 PBF distribution fitting on streamflow 

The extreme-oriented fitting of probability distributions has been already discussed in 

section 6.20, and implemented and further investigated in Digression 6.M. Here we will 

give a more general algorithm which can be used for fitting with emphasis either on high 

extremes or low extremes, or even on the body of the distribution. The algorithm uses 

upper K-moments (and for low extremes lower K-moments), with the order p being 
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within the feasible range (1, 𝑛), where 𝑛 is the sample size. The steps of the algorithm are 

the following. 

1. We choose a number 𝑚+ 1 of moment orders, i.e., 𝑝𝑖 = 𝑛𝑖/𝑚, 𝑖 = 0,… ,𝑚, with 𝑝0 =1, 𝑝𝑚 = 𝑛. While, when dealing, for instance, with daily flows, the sample size 𝑛 is 

usually of the order of several thousands, the number m could be chosen much 

smaller, e.g. of the order of 100, to speed up calculations without compromising 

accuracy. The orders 𝑝𝑖 need not be natural numbers. 

2. We estimate the upper K-moments 𝐾𝑝𝑖′ , 𝑖 = 0,… ,𝑚 (and for low extremes the 

lower K-moments 𝐾𝑝𝑖′ ) using equations (6.47) (or (6.48) for lower moments) and 

(6.49). 

3. We construct the climacogram of the time series and estimate the Hurst parameter. 

If the Hurst parameter is large, say 𝐻 ≥ 0.8, we replace in the following steps the 

orders 𝑝𝑖 with 𝑝𝑖′, where the latter are given by equations (6.119) or (6.120) and 

(6.122).  

4. Using default values of the parameters ζ and ξ we estimate the Λ-coefficients 𝛬1 

and 𝛬∞ (or 𝛬1 and 𝛬∞ for lower moments); furthermore, for all 𝑝𝑖 (or 𝑝𝑖′ if they are 

different) we estimate the empirical return period 𝑇̂(𝐾𝑝𝑖′ ) from equation (6.140) 

(or 𝑇̂ (𝐾𝑝𝑖′ ) from equation (6.150)). 

5. Assuming default values of the scale parameter λ and of the lower bound 𝑥L, we 

estimate the theoretical return period of each noncentral upper or lower K-

moment estimate as: 

𝑇(𝐾̂𝑝𝑖′ )𝐷 = (1 + 𝘁𝜉 (𝐾̂𝑝𝑖′ − 𝑥L𝜆 )𝜁) 1𝜉𝜁 ,   𝑇 (𝐾̂𝑝𝑖′ )𝐷 = 1
1 − (1 + 𝘁𝜉 (𝐾̂𝑝𝑖′ − 𝑥L𝜆 )𝜁)− 1𝜉𝜁

 

(9.5) 

6. We form an expression for the total fitting error as the sum of the logarithmic 

deviations of empirical and theoretical return periods, i.e.: 𝐸(𝘁, 𝜉, 𝜆, 𝑥L) ≔∑𝑤𝑇 (ln (𝑇̂(𝐾𝑝𝑖′ )) − ln (𝑇(𝐾̂𝑝𝑖′ )))𝑖
2, 

𝐸(𝘁, 𝜉, 𝜆, 𝑥L) ≔∑𝑤𝑇 (ln (𝑇̂ (𝐾𝑝𝑖′ )) − ln (𝑇 (𝐾̂𝑝𝑖′ )))𝑖
2

 

(9.6) 

where 𝑤𝑇 and 𝑤𝑇 denote weighting coefficients. These errors are functions of the 

chosen parameters (𝘁, 𝜉, 𝜆, 𝑥L) and we evaluate them for the chosen parameter set. 

Alternatively, we can use the logarithms of excess return periods as in equation 

(6.165). 

7. We repeat the calculations of steps 4-6 for different sets of parameters (𝘁, 𝜉, 𝜆, 𝑥L) 
until the fitting error becomes minimal. 
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 The repetitions of steps 4-6 are executed by a solver using as objective function (to 

be minimized) the error 𝐸(𝘁, 𝜉, 𝜆, 𝑥L) (or 𝐸(𝘁, 𝜉, 𝜆, 𝑥L) in the case of lower moments). The 

procedure is typically very fast, almost instant. The weights have default values 𝑤𝑇 =𝑤𝑇 = 1 but can be altered as in equation (6.166).  

 Obviously, instead of the linear approximations of the Λ-coefficients, the more 

accurate nonlinear approximations of section 6.19 could be used. And as we will see in 

the applications that follow, the difference in the fitting is negligible. 

 A first application of the methodology is given in Digression 9.B while additional 

applications will be seen in subsequent sections. 

Digression 9.B: Fitting of a single PBF distribution on the entire domain 

We have seen in Digression 6.M that the PBF distribution with a single parameter set provided a 
good fit for a 206-year long record of daily rainfall in Bologna. Now we investigate whether this 
is feasible for streamflow data. We use as an example the streamflow data of the French Broad 
River at Asheville, NC, USA (USGS station 03451500, 35.609°N, 82.578°W, drainage area 2 447.5 
km2). The data cover the period from October 1895 to March 2020 (more than 124 calendar years, 
uninterrupted; daily values 𝑛 = 45 468). 
 The climacogram of the time series is shown in Figure 9.2. Namely we give the σ-climacogram, 
which is the (doubly logarithmic) plot of the standard deviation, σ, vs. the time scale, k. In addition, 
we show in the same graph the 𝐾2-climacogram, which is the plot of the central K-moment of 
order 2, 𝐾2, vs. the time scale, k. Both quantities have units of m3/s and their plots become virtually 
parallel straight lines for scales 𝑘 > 1 year; their slope is 𝐻 − 1 where H is the Hurst parameter. 
Here the Hurst parameter is estimated by the algorithm by Koutsoyiannis (2003) at 𝐻 = 0.58. The 
relatively small value of H suggests that the time dependence effect can be neglected in estimating 
K-moments, which do not need any adaptation. 

 

Figure 9.2 Empirical σ-climacogram and 𝐾2-climacogram of daily data of the French Broad River at 
Asheville, NC, USA. The power-laws, fitted by regression and plotted as dashed lines, have slopes –0.49 and –0.48, respectively. The Hurst parameter, estimated from the annual series, is 𝐻 = 0.58. 

 The K-moments are estimated for 𝑚 + 1 moment orders with 𝑚 = 80, so that 𝑝𝑖 ≔ 𝑛𝑖/𝑚 
(𝑝0 = 1, 𝑝80 = 𝑛 = 45 468) using the unbiased estimators. Both upper and lower moments are 
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estimated. In a following step, for each 𝐾𝑝𝑖′  or 𝐾𝑝𝑖′ the return period of each 𝑇(𝐾𝑝𝑖′ ) or 𝑇 (𝐾𝑝𝑖′ ) is 

estimated through the Λ-coefficients using both the linear and nonlinear approximations. 

 

Figure 9.3 Comparison of empirical and theoretical PBF distribution fitted on daily data of the French 
Broad River at Asheville, NC, USA. The fitting was based on upper and lower K-moment using the linear approximation (denoted in the figure “K-moments 1”). For comparison the nonlinear approximation (“K-
moments 2”) is also shown but it is indistinguishable from the former case. Furthermore, empirical return 
periods assigned from order statistics are also shown. The distribution function is depicted in terms of 

return periods 𝑇 or 𝑇 (upper and lower row, respectively), either on their entire range (left column) or 
focusing on those greater than 1 year (right column). The parameters are: 𝜉 = 0.307, 𝘁 = 2.40, 𝜆 =51.4 m3/s, 𝑥𝐿 = 4.38 m3/s. 
 Figure 9.3 shows the empirical estimates of these K-moments against their return periods. 

Both 𝐾𝑝𝑖′  and 𝐾𝑝𝑖′  have been used for each of the plots; note that given the return period with 

reference to minima 𝑇 (𝐾𝑝𝑖′ ), the return period with reference to maxima is: 

𝑇 (𝐾𝑝𝑖′ )𝐷 = 1(1 − 𝐷/𝑇 (𝐾𝑝𝑖′ )) (9.7) 

In this manner, we use 2𝑚 + 1 = 161 points in each of the plots. Plots are given in terms of both 𝑇 and 𝑇 in Figure 9.3. 
 In all plots, the series of points, calculated by the linear and the nonlinear approximations of 
the return periods of K-moment, coincide almost completely and are virtually indistinguishable. 
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In addition, the empirical return periods based on order statistics are also plotted and agree very 
well with the K-moments plots, except a scatter for large return periods.  
 The fitting of the PBF distribution was made with the algorithm described in section 9.2 

minimizing the sum 𝐸 + 𝐸 with default weights (= 1). The parameters of the distribution are 
shown in the caption of Figure 9.3. The theoretical PBF distribution fitted is also indistinguishable 
from the curves of the K-moments. Overall, the plot shows a satisfactory global fit of a single PBF 
distribution on return periods spanning 5 orders of magnitude. 

 However, if we focus on the high return periods, as seen on the right panels of Figure 9.3, we 
will conclude that this global fit is not perfect. We may thus decide to perform two different 
fittings, with different parameter sets, separately for the low and the high flows. To do this it 
suffices to use the weights of equation (6.166). The resulting plots are shown in Figure 9.4, with 
the parameter values given in the figure caption. Now the two fittings are perfect. 

 

Figure 9.4 Comparison of empirical and theoretical PBF distribution fitted on daily data of the French 

Broad River at Asheville, NC, USA, as in Figure 9.3 but with a fitting on 𝑇 > 1 year (left) or 𝑇 > 1 year 
(right). The parameters are, for the left panel: 𝜉 = 0.277, 𝘁 = 5.06, 𝜆 = 81.7 m3/s, 𝑥𝐿 = 4.87 m3/s, and for 
the right panel: 𝜉 = 0, 𝘁 = 2.16, 𝜆 = 77.3 m3/s, 𝑥𝐿 = 4.40 m3/s. 
9.3 Model fitting on the distribution body  

While the fitting methodology described in section 9.2 is extreme-oriented and thus good 

for the distribution tails, it is also quite general and can easily provide a fit to the body of 

the distribution. The easiest way to do that is by using only low-order moments. As the 

PBF distribution, in the form used in this chapter, contains four parameters, a simple 

technique is to fit so that the first four theoretical K-moments match the corresponding 

empirical ones. This can be done applying again the framework of section 9.2 but with 

weights: 𝑤 (𝑇̂(𝐾𝑝𝑖′ )) = {1, 𝑝𝑖 = 1,2,3,40, otherwise  (9.8) 

The advantage of using this framework, in addition to its generality, is that we bypass the 

theoretical calculation of the K-moments per se, in essence replacing it with the 

calculation of Λ-coefficients which are easily and accurately approximated. An illustration 

is given in Digression 9.C. 
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Digression 9.C: An example of fitting a PBF distribution on its body 

Here we use another example, the streamflow data of the Susquehanna River at Danville, PA, USA 
(USGS station 01540500, 40.958°N, 76.619°W, drainage area 29 059.7 km2). The data cover the 
period October 1905 to June 2020 (more than 114 calendar years, uninterrupted; daily values 𝑛 = 42 081). The σ-climacogram and the 𝐾2-climacogram of daily data are shown in Figure 9.5. 
The Hurst parameter estimate is 𝐻 = 0.61 and its effect on return periods can be neglected. 
 Initially, we try a global fitting following the procedure of Digression 9.B. This is shown in 
Figure 9.6, where it can be seen that this fitting is unsatisfactory for both distribution tails, as well 
as for the body of the distribution. Good fittings on the tails are shown in Figure 9.7, performed in 
the same manner as in Digression 9.B.  
 For a fitting on the body of the distribution we can follow the procedure of section 9.3. This 
is illustrated in Figure 9.8. The resulting theoretical distribution is good for the body but totally 
inappropriate for either of the tails. 
 Thus, in this case we have three different fittings, with different parameters sets, each of 
which are good for a part of the distribution, the upper tail, the lower tail and the body. Assuming 
that we perform simulation for a particular technical problem, which of the three should we use? 
For problems related to floods, it is reasonable to use the fitting on the upper tail. But for problems 
related to low flows the answer is not that direct. At first glance it appears that the fitting on the 
lower tail is pertinent. This is actually the case when estimating environmental flows in pristine 
basins. However, when studying regulation structures such as reservoirs, simulation of low flows 
should be performed as, in this case, it is not the quantity of natural low flow that matters, but the 
succession of flows. Therefore, it may be more appropriate to make the fitting on the body of the 
distribution. 

  

Figure 9.5 Empirical σ-climacogram and 𝐾2-climacogram of daily data of the Susquehanna River at 
Danville, PA, USA. The power-laws, fitted by regression and plotted as dashed lines, have slopes –0.41 and –0.39, respectively. The Hurst parameter estimate is 𝐻 = 0.61. 
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Figure 9.6 Comparison of empirical and theoretical PBF distribution fitted on daily data of the Susquehanna 

River at Danville, PA, USA. The distribution function is depicted in terms of return periods 𝑇 or 𝑇 (upper 
and lower row, respectively), either on their entire range (left column) or focusing on those greater than 
1 year (right column). The parameters are: 𝜉 = 0.202, 𝘁 = 1.43, 𝜆 = 495.6 m3/s, 𝑥𝐿 = 15.56 m3/s. For 
further explanations see caption of Figure 9.3. 

 

Figure 9.7 Comparison of empirical and theoretical PBF distribution fitted on daily data of the Susquehanna 

River at Danville, PA, USA, as in Figure 9.6 but with a fitting on 𝑇 > 1 year (left) or 𝑇 > 1 year (right). The 
parameters are, for the left panel: 𝜉 = 0.0, 𝘁 = 0.721, 𝜆 = 339.1 m3/s, 𝑥𝐿 = 15.64 m3/s, and for the right 
panel: 𝜉 = 0.5, 𝘁 = 2.06, 𝜆 = 199.4 m3/s, 𝑥𝐿 = 14.60 m3/s. 
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Figure 9.8 Comparison of empirical and theoretical PBF distribution fitted on daily data of the Susquehanna 
River at Danville, PA, USA, as in Figure 9.6 but with a fitting focusing on the body of the distribution 
performed by fitting the first four noncentral K-moments. The distribution function is depicted in terms of 

return periods 𝑇 or 𝑇 (upper and lower row, respectively), either on their entire range (left column) or 
focusing on those greater than 1 year (right column). The parameters are: 𝜉 = 0.247, 𝘁 = 1.04, 𝜆 =329.8 m3/s, 𝑥𝐿 = 15.64 m3/s. For further explanations see caption of Figure 9.3. 

 Obviously, one may think of using a more complex model, such as the sum of two PBF 
distributions. This is feasible and only requires a slight modification of the methodology, but it is 
out of our scope as here model parsimony is a strong desideratum. 

9.4 Distribution fitting in the presence of persistence 

Persistence is quite frequent in streamflow. However, in the above illustrations, its 

intensity was moderate as the Hurst parameter was around 0.60. If it becomes large, 

around 0.80 or greater, then it affects the estimates of K-moments and should be taken 

into account. The fitting methodology described in section 9.2 can deal with such cases 

readily. An illustration is given in Digression 9.D. 
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Digression 9.D: An example of distribution fitting in the presence of 

persistence 

We use as an example of a streamflow record with persistence the Red River of the North at Grand 
Forks, ND, USA (USGS station 05082500, 47.927°N, 97.029°W, drainage area 77 958.6 km2). The 
data cover the period April 1882 to November 2019 (more than 136 full calendar years, 
uninterrupted; daily values 𝑛 = 50 269). The σ-climacogram and the 𝐾2-climacogram of daily 
data are shown in Figure 9.9. The Hurst parameter estimate is 𝐻 = 0.91 and should have a marked 
effect, i.e., bias, on return periods. We note that, with this value, the slope of the theoretical σ-
climacogram is –0.09. However, the empirical σ-climacogram in Figure 9.9 has a slope –0.18. This 
is not an inconsistency or an error; it is a result of the fact that the empirical climacogram is 
affected by bias, which was taken into account in the estimation of 𝐻 = 0.91. 
 The bias correction factor is 𝛩 ≈ 2𝐻(1 − 𝐻) 𝑛⁄ − 1 2𝑛2−2𝐻 = −0.071⁄  . Using 𝑝′ ≈ 2𝛩 +(1 − 2𝛩)𝑝((1+𝛩)2) we transform each p to 𝑝′. For 𝑝 = 1, 𝑝′ = 1 and for 𝑝 = 𝑛 = 50 269, 𝑝′ =12 977 (a big reduction, almost to 1/4). The return periods are then calculated as 𝑇̂(𝐾𝑝𝑖′ ) =𝛬∞𝑝′ + 𝛬1 − 𝛬∞. The remaining steps are the same as in Digression 9.B. The global fitting is 
shown in Figure 9.10. The empirical return periods based on K-moments, as plotted in the figure, 
are adapted for the bias due to persistence while those based on order statistics are not. While 
adaptation of the latter is possible, as described in section 8.5, we deliberately avoided it to 
illustrate the difference. Fittings on the tails are shown in Figure 9.11 performed in the same 
manner as in Digression 9.B.  

  

Figure 9.9 Empirical σ-climacogram and 𝐾2-climacogram of daily data of the Red River of the North at 
Grand Forks, ND, USA. The power-laws, fitted by regression and plotted as dotted lines, have slopes –0.18 
and –0.17, respectively. The Hurst parameter, estimated from the annual time series, is 𝐻 = 0.91. 
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Figure 9.10 Comparison of empirical and theoretical PBF distribution fitted on daily data of the Red River 
of the North at Grand Forks, ND, USA. The distribution function is depicted in terms of return periods 𝑇 or 𝑇 (upper and lower row, respectively), either on their entire range (left column) or focusing on those 
greater than 1 year (right column). The empirical return periods based on K-moments are adapted for the 
bias due to persistence while those based on order statistics are not. The parameters are: 𝜉 = 0.194, 𝘁 =0.906, 𝜆 = 106.8 m3/s, 𝑥𝐿 = 0.049 m3/s. For further explanations see caption of Figure 9.3. 

 
Figure 9.11 Comparison of empirical and theoretical PBF distribution fitted on daily data of the Red River 

of the North at Grand Forks, ND, USA, as in Figure 9.10 but with a fitting on 𝑇 > 1 year (left) or 𝑇 > 1 year 
(right). The parameters are, for the left panel: 𝜉 = 0, 𝘁 = 0.720, 𝜆 = 148.5 m3/s, 𝑥𝐿 = 0.033m3/s, and for 
the right panel: 𝜉 = 0.5, 𝘁 = 1.008, 𝜆 = 59.7 m3/s, 𝑥𝐿 = 0.047 m3/s. 
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9.5 Distribution fitting in the presence of extraordinary extremes 

Sometimes the streamflow time series contain an extraordinary extreme, which may 

differ significantly from other extremes. This is usually called an outlier and needs 

particular attention (Grubbs, 1969). An outlier may indicate measurement error but 

usually it just reflects the high variability of the streamflow—the so-named Noah effect 

(Mandelbrot and Wallis, 1968). Many view an outlier as a cause of serious problems in 

statistical analyses and exclude it from the data set to make the analysis easier and the 

model fitting more elegant.  

 However, this is not a proper tactic. When studying extremes, excluding the most 

extreme observation is rather irrational. The suggestion here is to check the measurement 

conditions to see if it reflects a measurement error. Once this possibility is excluded, the 

outlier should be kept in the data set and the fitting methodology described in section 9.2 

should be kept unchanged. The K-moments framework and in particular the use of K-

moments for order 𝑞 = 1 is the most robust in the presence of outliers. This does not 

mean that the model would not be affected by outliers—this would be unreasonable. An 

illustration is given in Digression 9.E, where we also discuss the difference when 

accounting for or excluding the highest observation. 

Digression 9.E: An example of distribution fitting in the presence of 

extraordinary extremes 

In this example we use the streamflow record of the Tenmile Creek near Rimini, MT, USA (USGS 
station 06062500, 46.524°N, 112.257°W). The drainage area is small, 80 km2. The data cover the 
period October 1914 to February 2004 with a gap from October 1994 to April 1997 (85 full 
calendar years, daily values 𝑛 = 31 706). The daily flow time series is plotted in Figure 9.12, from 
where it can be seen that on 1981-05-22 an extraordinary extreme flood occurred with a 
discharge of 53.24 m3/s. This is by an order of magnitude higher than the usual flood discharges. 

  

Figure 9.12 Plot of the discharge time series at the Tenmile Creek near Rimini, MT, USA. 

 The σ-climacogram and the 𝐾2-climacogram of data are shown in Figure 9.13. The 
climacograms show an erratic behaviour at scales between 1 and 2 years which could be the result 
of the annual periodicity (prominent also in Figure 9.12). Therefore, the climacograms derived by 
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the annual time series are also shown, whose plot is smooth. The Hurst parameter, estimated from 
the annual series is 𝐻 = 0.79 and should only have a slight effect, i.e., bias, on return periods. 

  

Figure 9.13 Empirical σ-climacogram and 𝐾2-climacogram of daily data of the Tenmile Creek near Rimini, 
MT, USA. The lines have been constructed from the daily series and the points from the annual series. The 
power laws, fitted by regression on the points of the annual series and plotted as dotted lines, have slopes –0.26 and –0.27, respectively. The Hurst parameter, estimated from the annual series, is 𝐻 = 0.79. 

 Contrary to the earlier investigated time series, the Tenmile Creek series contains zero values 
(dry condition), namely, 48 zero values out of 31 706 total values. This suggests a small 
probability dry, 𝑃0 = 0.00151 at the daily scale. Yet this small value makes the analysis of low 

extremes unnecessary. Indeed, the return period of the zero value will be 𝑇0/𝐷 = 1/0.00151 =660.5, or 𝑇0 = 660.5 d = 1.81 years. Therefore, for 𝑇 ≥ 𝑇0 = 1.81 years all distribution quantiles 
will be zero. Hence, we only study the high extremes here. 
 Even though the bias is expected to be small in this case (𝐻 = 0.79 < 0.80) we take it into 
account for illustration purposes. The upper and lower panels of Figure 9.14 depict fitting without 
and with bias adaptation, respectively. In the latter case, the bias correction factor is 𝛩 ≈2𝐻(1 − 𝐻) 𝑛⁄ − 1 2𝑛2−2𝐻 = −0.0064⁄ . As we have done in Digression 9.D, using 𝑝′ ≈ 2𝛩 +(1 − 2𝛩)𝑝((1+𝛩)2) we transform each p to 𝑝′. For 𝑝 = 1, 𝑝′ = 1 and for 𝑝 = 𝑛 = 31706, 𝑝′ =28 122 (an 11% reduction). The return periods are then calculated as 𝑇̂(𝐾𝑝𝑖′ ) = 𝛬∞𝑝′ + 𝛬1 − 𝛬∞. 

The fitting in the Figure 9.14 was made with weights 𝑤 = 1. It can be seen that the bias adaptation 
has only slight effects on the parameters, shown in the caption of the figure.  

Fittings on the tails, with 𝑤 = 0 for 𝑇 < 1 year, are shown in Figure 9.15. Its two panels 
compare the two fitting cases (a) considering all data, including the highest value (left panel), and 
(b) considering all data but the highest value (right panel). The differences in the two cases are 
dramatic, both in the distribution parameters (shown in the figure caption), particularly in the 
upper-tail index ξ and the resulting return periods. In case (a) the return period of the highest 
value is 213 and 383 years if estimated empirically and theoretically, respectively. The difference 
is reasonable for an outlier. But in case (b) the theoretical return period becomes 8600 years, 22 
times higher. Empirical return period cannot be assigned in this case as the value has been 
excluded from the analysis. One can further observe that the fitting in case (b) looks better as the 
agreement between model and (censored) observations is perfect. In case (a) there is difference 
between theoretical and empirical estimates and also between empirical estimates derived by K-
moments and order statistics. However, given the huge difference of the fittings in the two cases, 
and adopting an engineering point of view, we should clearly prefer the fitting of case (a) and 
abandon any temptation to dismiss the extraordinary extreme for the sake of modelling elegance.  

This case also emphasizes the better performance of K-moments against order statistics. 
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Figure 9.14 Comparison of empirical and theoretical PBF distribution fitted on daily data of the Tenmile 
Creek near Rimini, MT, USA, without (upper) and with (lower) bias adaptation (the points based on order 
statistics are not adapted in either case). The distribution function is depicted in terms of return period 𝑇, 
either on its entire range (left column) or focusing on values greater than 1 year (right column). The 
parameters are for the upper panels: 𝜉 = 0.305, 𝘁 = 0.896, 𝜆 = 0.37 m3/s, 𝑥𝐿 = 0, and for the lower panels: 𝜉 = 0.308, 𝘁 = 0.887, 𝜆 = 0.36 m3/s, 𝑥𝐿 = 0. For further explanations see caption of Figure 9.3. 

 
Figure 9.15 Comparison of empirical and theoretical PBF distribution fitted on daily data of the Tenmile 
Creek near Rimini, MT, USA, as in Figure 9.14 but with a fitting on 𝑇 > 1 year by considering the highest 
value (left) or not (right). The fitted theoretical distribution of the left panel is also plotted on the right 
panel as dashed line. The parameters are, for the left panel: 𝜉 = 0.325, 𝘁 = 5.08, 𝜆 = 1.25 m3/s, 𝑥𝐿 = 0, and 
for the right panel: 𝜉 = 0.205, 𝘁 = 20, 𝜆 = 2.67 m3/s, 𝑥𝐿 = 0. 
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9.6 Some general remarks 

The above framework, implemented in several case studies, suggests that the PBF 

distribution on one hand and the K-moments approach on the other hand, provide 

acceptable means to deal with the distribution of streamflow and particularly its tails. 

However, in most of the cases a single parameter set is not enough to cover the entire 

span of discharge variation, which can reach 6 orders of magnitude. We generally need 

different parameter sets for the high and low extremes, and perhaps a third one for the 

body of the distribution. Notably, the methodology is exactly the same in all three cases. 

Only the objective function (weighted fitting error) changes.  

 The case studies examined in the Digressions cover different conditions with varying 

characteristics. An additional case study is given in Digression 9.F for a large European 

basin which is not pristine and has a high baseflow, much higher than all other basins 

examined. As already stated in section 9.1, we cannot draw generalized conclusions from 

a few catchments. However, some indications can be seen in Table 9.1 which gathers the 

fitted parameter sets of all case studies. The upper-tail index ξ can take large values, but 

not higher than 1/3, which means that the classical coefficient of skewness is generally 

finite, even though that of the kurtosis could be infinite. For large basins the upper-tail 

index tends to become zero, which agrees with the indicative theoretical analysis of 

Digression 9.A. The lower-tail index ζ varies considerably; in most cases it is higher than 

1 (bell-shaped density function) but it also can be smaller than 1 (decreasing density 

function). The lower bound 𝑥L is generally >0 but can be zero for small ones, where a 

probability dry >0 can emerge. 

Table 9.1 Fitted parameter sets of all streamflow records studied. 

River and stream 
gauge 

Area (km2) H (-) 
Optimization 
case 

ξ (-) ζ (-) λ (m3/s) 𝑥L (m3/s) 

Tenmile Creek near 
Rimini  

80.0 0.79 𝐸 + 𝐸 (𝑤 = 1) 0.308 0.887 0.36 0 
  𝐸, 𝑇 > 1 year 0.325 5.08 1.25 0 

French Broad River  
at Asheville 

2 447.5 0.58 𝐸 + 𝐸 (𝑤 = 1) 0.307 2.40 51.4 4.38 
  𝐸, 𝑇 > 1 year 0.277 5.06 81.7 4.87 

   𝐸, 𝑇 > 1 year 0 2.16 77.3 4.40 

Susquehanna River  
at Danville 

29 059.7 0.61 𝐸 + 𝐸 (𝑤 = 1) 0.202 1.43 495.6 15.56 
  𝐸, 𝑇 > 1 year 0 0.721 339.1 15.64 

   𝐸, 𝑇 > 1 year 0.5 2.06 199.4 14.60 
   Four moments 0.247 1.04 329.8 15.64 
Po River  
at Pontelagoscuro 

70 091 0.61 𝐸 + 𝐸 (𝑤 = 1) 0.088 2.03 1879.8 158.9 
  𝐸, 𝑇 > 1 year 0 1.71 2419.1 0 

   𝐸, 𝑇 > 1 year 0.088 2.39 1582.4 148.1 

Red River of the North  
at Grand Forks 

77 958.6 0.91 𝐸 + 𝐸 (𝑤 = 1) 0.194 0.906 106.9 0.049 
  𝐸, 𝑇 > 1 year 0 0.720 148.5 0.033 

   𝐸, 𝑇 > 1 year 0.5 1.008 59.7 0.047 
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Digression 9.F: An example for a large European river 

In a final example we use the streamflow record of the Po River at Pontelagoscuro, Italy (near the 
city of Ferrara; 44.888°N, 11.607°E). The drainage area is large, 70 091 km2. The Po River has 141 
main tributaries, and the related river network has a total length of about 6 750 km and 31 000 
km for natural and artificial channels, respectively. About 450 lakes are located in the Po River 
basin. The water level of the larger south-alpine lakes of glacial origin is regulated according to 
given management policies, thus obtaining a regulation volume of approximately 1.3 km3. 
(Montanari, 2012). Therefore, because of regulation, the streamflow in this case is not natural. Yet 
one may assume that the highest floods would not differ substantially from natural as the 
regulation margin is diminished. The data cover the period January 1920 to December 2009 (90 
full calendar years, uninterrupted; daily values 𝑛 = 32 850).  
 The σ-climacogram and the 𝐾2-climacogram of data are shown in Figure 9.16. The Hurst 
parameter, estimated from the annual series is 𝐻 = 0.61 (a moderate value) and its effect (bias) 
on return period estimation is negligible. 
 The global fitting, performed by the procedure of Digression 9.B, is shown in Figure 9.17, 
where it can be seen that this fitting is not quite satisfactory for both distribution tails, as well as 
for the body of the distribution. Good fittings on the tails are shown in Figure 9.18, again 
performed in the same manner as in Digression 9.B.  

  

Figure 9.16 Empirical σ-climacogram and 𝐾2-climacogram of daily data of the Po River at Pontelagoscuro, 
Italy. The power-laws, fitted by regression and plotted as dotted lines, have slopes –0.45 and –0.42, 
respectively. The Hurst parameter estimate is 𝐻 = 0.61. 
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Figure 9.17 Comparison of empirical and theoretical PBF distribution fitted on daily data of the Po River 

at Pontelagoscuro, Italy. The distribution function is depicted in terms of return periods 𝑇 or 𝑇 (upper and 
lower row, respectively), either on the entire range with parameters: 𝜉 = 0.088, 𝘁 = 2.03, 𝜆 =1879.8m3 𝑠⁄ , 𝑥𝐿 = 158.9 m3/s (left column), or focusing on T > 1 year, with parameters: 𝜉 = 0, 𝘁 =1.71, 𝜆 = 2419.1 m3/s, 𝑥𝐿 = 0 (right column). For further explanations see caption of Figure 9.3. 

 

Figure 9.18 Comparison of empirical and theoretical PBF distribution fitted on daily data of the Po River at 

Pontelagoscuro, Italy, as in Figure 9.17 but with a fitting on 𝑇 > 1 year (left) or 𝑇 > 1 year (right). The 
parameters are, for the left panel: 𝜉 = 0, 𝘁 = 1.71, 𝜆 = 2419.1 m3/s, 𝑥𝐿 = 0, and for the right panel: 𝜉 =0.088, 𝘁 = 2.39, 𝜆 = 1582.4 m3/s, 𝑥𝐿 = 148.1 m3/s. 
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Chapter 10. Extremes of atmospheric processes 

We have already studied the most demanding processes: streamflow, which varies among 

several orders of magnitude, and rainfall, whose study requires description at many time 

scales simultaneously. The study of extremes of atmospheric process is easier and no 

additional methodological considerations are required. Furthermore, databases with 

observational information of atmospheric processes abound. This information includes 

ground data (measurements at meteorological stations), reanalyses (gridded data 

resulting from assimilation of meteorological measurements into weather models) and 

satellite data (resulting from images and observations by remote sensing instruments and 

incorporation of ground measurements). Here we will deal with ground data only, which 

are best suited for the study of extremes. The other categories are useful for studies in the 

global or continental scales (see examples in Koutsoyiannis, 2020b).  

 Atmospheric data such as wind, temperature, pressure, radiation, etc., can easily be 

retrieved from several databases publicly available. Among them, KNMI’s Climexp 

platform*, in connection with the European Climate Assessment & Dataset project (ECAD; 

Klein Tank et al., 2002)† is the most convenient. Other data such as relative humidity, 

vapour pressure and dew point can be accessed through national databases; good 

examples are the Climate Data Center (CDC) of the German Meteorological Service 

(Deutscher Wetterdienst)‡ and the USA NOAA’s National Centers for Environmental 

Information (NCEI).§  

 In the following sections of this chapter, we provide representative examples for the 

wind speed, temperature and dew point, where the latter is measured in the same units 

as temperature, but has higher hydrological importance as it determines the quantity of 

water vapour in the atmosphere. The behaviour of wind speed is not very different from 

that of precipitation, even though its variability is smaller. Temperature and dew point 

have different behaviour as their distributions are well-formed bell-shaped and not very 

distant from the normal. The distribution of air pressure is also bell-shaped. 

 In any of these processes the persistence can reach high levels (e.g. H = 0.9) and 

therefore, whenever this happens, the bias due to time dependence should be taken into 

account. Negligence (and often ignorance) of persistence is common among scientists and 

practitioners, less in the engineering community and more in the climatological 

community as well as in the insurance industry, which provides services related to 

extreme events. Not only does this negligence affect a distribution fitting but may also 

have negative consequences in the design, operation and management of structures. A 

relevant example is in wind farms, which are typically designed without studying 

 
* https://climexp.knmi.nl/. † This also provides access to data (more than 20 000 meteorological stations): https://www.ecad.eu/; see 
also: https://data.europa.eu/euodp/en/data/dataset/jrc-tmy-tmy-download-service. ‡ https://cdc.dwd.de/portal/. 
§ https://www.ncei.noaa.gov/access/search/dataset-search; http://www.ncdc.noaa.gov/isd; ftp://ftp. 
ncdc.noaa.gov/pub/data/noaa/. We note though that this data base is not as easy to use as the other ones. 

https://climexp.knmi.nl/
https://www.ecad.eu/
https://data.europa.eu/euodp/en/data/dataset/jrc-tmy-tmy-download-service
https://cdc.dwd.de/portal/
https://www.ncei.noaa.gov/access/search/dataset-search
ftp://ftp.ncdc.noaa.gov/pub/data/noaa/
ftp://ftp.ncdc.noaa.gov/pub/data/noaa/
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persistence. In the operation phase, the operators are often surprised to see the 

installation deliver less power than the average for long periods. However, this is a normal 

behaviour, related to persistence; it is exactly the clustering of low wind periods. 

 Most of the processes are characterized by double cyclostationarity, daily and annual. 

This should be taken into account when a full stochastic model of the process of interest 

is constructed (e.g. Dimitriadis and Koutsoyiannis, 2015b; Deligiannis et al., 2016). 

However, here we only deal with the marginal distributions with emphasis on extremes 

and we will omit the study of cyclostationarity.  

10.1 Wind 

As already mentioned, the behaviour of wind speed is not very different from that of 

precipitation. However, the variability of the former is smaller. As seen in Chapter 8, 

intermittence is a prominent behaviour in rainfall, which has been modelled through the 

probability wet (𝑃1) or dry (𝑃0 = 1 − 𝑃1). On the other hand, as seen in Chapter 9, in 

streamflow intermittence can appear either in a manner similar to rainfall (in small 

ephemeral streams), or in a two-state wet mode, one in which the river is fed merely by 

groundwater (baseflow) and one dominated by flood. In the case of wind, in principle 

there is no intermittence in the sense of a state where air ceases to move. However, the 

very small wind speeds are often registered as zero, because of imperfection of the 

measuring equipment. This case emerges particularly at hourly or finer time scales. 

 Long time series of wind speed suggest long-term persistence and, most often, heavy-

tailed distributions (Tsekouras and Koutsoyiannis, 2014; Koutsoyiannis et al., 2018), even 

though the light-tailed Weibull distribution has been the dominant model in the literature. 

 The stochastic analysis of wind speed has recently become very important because of 

its relevance with wind energy generation. In renewable energy design and management, 

it is the body of the distribution, rather than its tails, which matters. Indeed, values at 

either of the tails are not relevant to energy production because the production ceases 

when the wind speed is too low or too high. The lower tail per se is not quite important, 

apart from the probability that the wind speed is below the threshold at which the 

production ceases. However, the upper tail is very important for the safe design of the 

wind turbine and the entire construction, as the extreme winds determine the turbine 

loads. The calculations of the load (see e.g. Dai et al., 2011) are apparently out of our scope.  

 Below we provide representative examples for studies of daily (Digression 10.A) and 

hourly (Digression 10.B) wind speed data. 

Digression 10.A: An example of fitting a PBF distribution on mean daily 

wind speed 

To illustrate the behaviour of wind on daily scale we use one of the longest data sets, that of the 
Hoofdplaat station in Netherlands (51.38°N, 3.67°E, 0.0 m). The data cover the period April 1908 
to December 2019 (111 calendar years, with an interruption of 10 months starting in December 
1944; daily values 𝑛 = 40 720, all of which but four are >0). Characteristic plots of the time series 
are given in Figure 10.1. 
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Figure 10.1 Monthly plot of the daily wind speed time series at the Hoofdplaat station, Netherlands. For 
each month, the average, the minimum and the maximum daily values are plotted. 

  

Figure 10.2 Empirical σ-climacogram and 𝐾2-climacogram from daily wind speed time series at the 
Hoofdplaat station, Netherlands. The lines have been constructed from the daily series and the points from 
the annual series. The power laws, fitted by regression on the points of the annual series and plotted as 
dotted lines, have slopes –0.19 and –0.18, respectively. The Hurst parameter estimate is 𝐻 = 0.90. 

 The σ-climacogram and the 𝐾2-climacogram of data are shown in Figure 10.2. The Hurst 
parameter, estimated from the annual series is 𝐻 = 0.9 and its effect (bias) on return period 
estimation is substantial. 
 The fitting of the PBF distribution, performed by the procedure of Digression 9.B, is shown in 
Figure 10.3. It can be seen that this fitting is quite satisfactory for the body and tails of the 
distribution, even though it was made on 𝑇 > 1 year. The optimal parameter ξ is 0 and thus the 
PBF distribution in this case switches to the Weibull distribution. 
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Figure 10.3 Comparison of empirical and theoretical PBF distribution fitted on daily wind speed data of 
the Hoofdplaat station, Netherlands. The fitting was based on upper and lower K-moment using the linear approximation (denoted in the figure “K-moments 1”). For comparison the nonlinear approximation (“K-moments 2”) is also shown but it is indistinguishable from the former case. Furthermore, empirical return 
periods assigned from order statistics are also shown. The points for K-moments have been adapted for the 
bias effect of time dependence, but the points based on order statistics have not. The distribution function 
is depicted in terms of return period 𝑇, either on its entire range (left) or focusing on values greater than 1 
year (right). The parameters are: 𝜉 = 0, 𝘁 = 2.28, 𝜆 = 7.53 m/s, 𝑥𝐿 = 0 and were fitted with focus on 𝑇 > 1 
year.  

 

Digression 10.B: An example of fitting a PBF distribution on mean hourly 

wind speed 

Hourly or sub-hourly wind data are rarer than daily in publicly available databases. However, they 
are quite useful for operational use in diverse tasks such as simulation of wind energy generation, 
design of wind turbines and estimation of wind load on buildings. Here we use one of the longest 
hourly data sets, that of the MIT station in Boston, MA, USA (42.367°N, 71.033°W, 9.0 m).  

 

Figure 10.4 Monthly plot of the hourly wind speed time series at the MIT station in Boston, MA, USA. For 
each month, the average, the minimum and the maximum hourly values are plotted. 

 The data are available from the NOAA system, but a great deal of effort was needed to convert 
them to hourly time series, which was undertaken in the study by Dimitriadis and Koutsoyiannis 
(2018). They cover, with minor gaps, the period January 1945 to December 2014 (70 calendar 
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years with a few missing values; hourly values 𝑛 = 589 551, 1% of which are zero). Characteristic 
plots of the time series are given in Figure 10.4, while the climacograms are shown in Figure 10.5. 

  

Figure 10.5 Empirical σ-climacogram and 𝐾2-climacogram from hourly wind speed time series at the MIT 
station in Boston, MA, USA. The lines have been constructed from the daily series and the points from the 
annual series. The power laws, fitted by regression on the points of the annual series and plotted as dotted 
lines, –0.12 and –0.09, respectively. The Hurst parameter estimate is 𝐻 = 0.92. 

 The fitting of the PBF distribution, performed by the procedure of Digression 9.B, is shown in 
Figure 10.6. It can be seen that this fitting is quite satisfactory for the body and tails of the 
distribution, even though it was made with focus on 𝑇 > 1 year tails. In this case the upper-tail 
index is substantially different from 0 (0.12 to 0.15, depending on the focus of the fitting, similar 
to the typical values in rainfall). 

 

Figure 10.6 Comparison of empirical and theoretical PBF distribution fitted on the hourly wind speed time 
series at the MIT station in Boston, MA, USA. The distribution function is depicted in terms of return period 𝑇, either on its entire range (left) or focusing on values greater than 1 year (right). The parameters are: 𝜉 = 0.122, 𝘁 = 3.08, 𝜆 = 5.71 m/s, 𝑥𝐿 = 0 and were fitted on the entire domain of wind speed (a fit on 𝑇 >1 year increases the upper-tail index to ξ=0.148). For further explanations see caption of Figure 10.3.  

 In the above analysis we have used all values in the time series, including the zeros. If we 
exclude the zero values (𝑛0 = 6086), we can study also the resulting lower tail, using the 𝑛 =583 465 nonzero values. To visualize both tails in a single graph we use a probability plot in terms 
of the excess return period (see Digression 5.A). This is seen in Figure 10.7 where the fitting of 
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the PBF distribution is excellent (compare the theoretical curve with the empirical ones based on 
K-moments), spanning 13 orders of magnitude (more precisely, after considering the effect of 
dependence, 11 orders of magnitude) of excess return period.  

 

Figure 10.7 Comparison of empirical and theoretical PBF distribution fitted on the hourly wind speed time 
series at the MIT station in Boston, MA, USA, excluding the zero values. The distribution function is depicted 
in terms of the excess return period 𝑇 − 𝐷, on its entire range. The parameters are: 𝜉 = 0.120, 𝘁 = 2.73, 𝜆 =5.35 m/s, 𝑥𝐿 = 0.15 m/s and were fitted on the entire domain of wind speed. The fitting was done on upper 
and lower K-moments using the linear approximation (denoted in the figure “K-moments 1”). For comparison the nonlinear approximation (“K-moments 2”) is also shown but it is indistinguishable from 
the former case. Furthermore, empirical return periods assigned from order statistics are also shown. The 
points for K-moments have been adapted for the bias effect of time dependence, but the points based on 
order statistics have not.  

10.2 Temperature 

The study of temperature has been a very hot topic due its direct relationship with 

popular slogans such as “global warming”, “climate change”, “climate emergency”, “climate crisis”, “global boiling”, “climate collapse” (and more to come). Certainly, 

temperature is connected to the concentration of carbon dioxide in the atmosphere. 

Despite another heralded expression, “science is settled”, this relationship remains 

unclear, while recent studies have shown that the causality relationship is not as 

commonly perceived. Koutsoyiannis and Kundzewicz (2020) suggested that the relationship of atmospheric CO₂ and temperature (T) may qualify as belonging to the category of “hen-or-egg” problems (original Greek “ὄρνις ἢ ᾠὸν”; Plutarch, Quaestiones 

Convivales B), where it is not always clear which of two interrelated processes is the cause 

and which the effect. Examining modern data of T and CO₂ concentration, they concluded 

that, the dominant direction is T → CO₂ and not CO₂ → T as commonly perceived. In a 

subsequent study, Koutsoyiannis et al. (2022a,b) developed a generalized stochastic 

framework of causality, whose application on the same data excluded the causality 

direction CO₂ → T as it violates a necessary condition of causality. Koutsoyiannis et al. 

(2023c), using an expanded data set (~65 years) confirmed a unidirectional, potentially 
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causal link with temperature as the cause, and the CO₂ concentration as the effect. This 

causality direction holds for the entire period covered by the modern instrumental 

observations on all time scales. Paleoclimatic data also suggest that changes in 

temperature precede those in CO₂ (Koutsoyiannis, 2024). 

 At the global level, the temperature is meaningfully influenced by the rhythm of the 

major ocean-atmosphere fluctuations, such as the ENSO and IPO in the Pacific as well as 

the AMO in the Atlantic (Kundzewicz et al., 2020). At the local level, the global behaviour 

certainly plays a role on local changes, but other factors, most profoundly urbanization, 

may also influence the temperature substantially. This is exemplified in Digression 10.C, 

referring to the longest instrumental temperature record in Milano, Italy. The behaviours 

seen in that record are characteristic for temperature time series. Among these are the 

high persistence and the light-tailed distributions close to normal, which entail much 

lower variability than in other variables such as rainfall, runoff and wind. 

Digression 10.C: Study of the longest instrumental temperature record 

(Milano, Italy)  

According to both the Global Historical Climate Network (GHCN) – Daily and the European 
Climate Assessment & Dataset project (ECAD), the meteorological station with the longest 
temperature record is that of Milan (Milano) in Italy (45.47°N, 9.19°W, 150.0 m). The 
measurements have started in 1763 and the data are available up to 2008 from KNMI (and other 
data bases). They cover, with minor gaps, the period January 1763 to November 2008 (246 years 
with a few missing values; daily values 𝑛 = 89 686 for daily maximum temperatures and 𝑛 =89 697 for daily minimum temperatures). Here we study both the daily maximum and the daily 
minimum temperatures, which are typically original (raw) measurements. In contrast, the more 
commonly used mean daily temperatures are processed data and thus subject to the changes in 
processing methodologies. 
 For better understanding of the conditions in the wider area and also for seeing the evolution 
after 2008, we also study two adjacent stations with long records. The first is in Lugano, 
Switzerland (46.00°N, 8.97°E, 273.0 m, ~60 km from Milano), a small town with population of 
55 359 in 2018,1 which has not changed substantially in the last 50 years, while the geomorpholo-
gy of the area does not favour urban expansion. The measurements have started in 1901 and the 
data are available up to date from KNMI (and other data bases). They cover, with minor gaps, the 
period January 1901 to June 2020 (more than 119 years with a few missing values; total values 𝑛 
= 43 573 for daily maximum temperatures and 𝑛 = 43 585 for daily minimum temperatures).  
 The second is in Monte Cimone, Italy (44.20°N, 10.70°E, 2165.0 m, ~185 km from Milano), a 
mountainous area with no settlements. The measurements have started in 1950 and the data are 
available up to date from KNMI (and other data bases). They cover, with minor gaps, the period 
January 1951 to November 2018 (67 years, in some of which there are missing values; total values 𝑛 = 24 283 for daily maximum temperatures and 𝑛 = 24 263 for daily minimum temperatures).  
 The daily time series for Milano and Lugano are plotted in Figure 10.9, along with the running, 
on 10-year windows, maximum and minimum values for return period of 2 years. The latter were 
estimated on the basis of the K-moment for the appropriate moment order which corresponds to 
return period of 2 years. A separate plot is included for the running maxima and minima of 2-year 
return period for all three stations. All plots indicate upward and downward fluctuations with the 
upward ones prevailing for the minimum temperature in the period 1940 to today. At the same 
period, the maximum temperature in Milano is also increasing. However, by comparing the 
temporal evolution of maxima in Milano for the 2-year return period and those of the two nearby 
stations, Lugano and Monte Cimone, in which there is no increasing trend, it appears that 
urbanization might be the principal factor causing temperature increase, rather than global 
effects. On the other hand, the increase of the minimum temperatures in the recent decades seems 
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to be a more general behaviour (Glynis, 2020). Apparently, this is a favourable behaviour as it 
reduces the incidence and impacts of extreme cold (see section 11.3).  

 

 

Figure 10.8 (upper) Location of three meteorological stations (source: Google Earth). (middle and lower) 
Depiction of urbanization in Milano in 1988 (population 3 506 838, urban extent 88 417 ha) and in 2013, 
respectively (population 6 402 051, urban extent 277 177 ha) (source: Glynis, 2019, from data provided by 
the Atlas of Urban Expansion2).  

 A typical “modern” interpretation of the situation would be to attribute the upward segments 
to global warming, which in turn would be attributed to human CO₂ emissions, etc., and eventually 
to rely on climate models for future projections. However, here we prefer to investigate the 
stochastic properties of the time series and try to build a consistent stationary stochastic 
representation with long term persistence. Indeed, as shown in Figure 10.10, the σ-climacograms 
and the 𝐾2-climacograms of all series suggest high values of the Hurst parameter, estimated from 
the annual series, between 𝐻 = 0.91 and 𝐻 = 0.94. Even the Lugano series of maximum daily 
temperature, which does not show a warming trend, suggests 𝐻 = 0.91. 
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Figure 10.9 (upper) Time series of daily maximum (continuous lines) and minimum (dashed lines) 
temperature of Milano, along with the running, on 10-year windows, maximum and minimum values for 
return period of 2 years. (middle) As upper but for Lugano. (lower) Running, on 10-year windows, 
maximum and minimum values for return period of 2 years, for all three stations. For comparability, the 
temperatures of Monte Cimone were shifted up by 13 °C because of the altitude difference of 2 km, assuming 
a temperature gradient of 6.5 °C/km. 
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Figure 10.10 Empirical σ-climacogram (single lines) and 𝐾2-climacogram (double lines) from daily 
maximum and minimum temperatures at Milano, Italy, and Lugano, Switzerland. The lines have been 
constructed from the daily series and the points of the same colour from the annual series. The points 
corresponding to the annual series suggest power laws with slopes as indicated. The Hurst parameters, 
estimated from the annual series, are 𝐻 = 0.93 for both series of Milano, 𝐻 = 0.91 for the maximum 
temperature at Lugano and 𝐻 = 0.94 for the minimum temperature at Lugano. 

 

Figure 10.11 Comparison of empirical and theoretical Weibull distribution fitted on the daily maximum 
temperatures at Milano, Italy. The distribution function is depicted in terms of excess return period 𝑇 − 𝐷, 
either on its entire range (left) or on 𝑇 > 1 year (right). The parameters are: 𝘁 = 5.11, 𝜆 = 35.20 °C, 𝑥𝐿 =−15.37 °C for the left panel and 𝘁 = 6.97, 𝜆 = 40.23 °C, 𝑥𝐿 = −15.26 °C for the right panel. For further 
explanations see caption of Figure 10.3. 

 Notably, the oscillations in the climacograms constructed from the daily series in Figure 
10.10 reflect the annual periodicity of temperature (cf. Koutsoyiannis, 2017). Yet, these have not 
influenced the estimation of H as this has been based on the climacograms of the annual series. 

The fitting of the Weibull distribution on the daily maximum temperatures of Milano, 
performed by the procedure described in Digression 9.B, is shown in Figure 10.12. The fitting is 
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not ideal for the entire range of temperature (left panel) but if we focus on the upper tail, the 
fitting for 𝑇 > 1 year becomes perfect (right panel).  

 

 

Figure 10.12 Comparison of empirical and theoretical Weibull and normal distributions fitted on the daily 
maximum temperatures in August at Milano, Italy. The distribution function is depicted in terms of excess 
return period 𝑇 − 𝐷. The parameters of the Weibull distribution are: 𝘁 = 3.87, 𝜆 = 15.79 °C, 𝑥𝐿 =13.71 °C and those of the fitted normal distribution 𝜇 = 27.86 °C, 𝜎 = 3.83 °C (the sample statistics are 𝜇̂ =28.13 °C, 𝜎̂ = 3.33 °C). For further explanations see caption of Figure 10.3.  

  

Figure 10.13 Comparison of empirical and theoretical Weibull distribution fitted on the daily minimum 
temperatures at Milano, Italy. The distribution function is depicted in terms of excess return period 𝑇 − 𝐷, 

on its entire range (left) and in terms of the excess return period of minima 𝑇 − 𝐷, fitting on 𝑇 > 1 year 
(right). The parameters are: 𝘁 = 5.80, 𝜆 = 36.28 °C, 𝑥𝐿 = −23.45 °C for the left panel and 𝘁 = 12.93, 𝜆 =39.06 °C, 𝑥𝐿 = −34.43 °C for the right panel. For further explanations see caption of Figure 10.3. 

 The fitted Weibull distribution is in fact very close to the normal. This is illustrated in Figure 
10.12, which is similar to Figure 10.11 (left) but refers to the temperatures of the data of the 
hottest month, August, only. In Figure 10.12 both the Weibull and the normal distributions have 
been fitted and they are very close to each other. 
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 In turn, the fitting of the Weibull distribution on the daily minimum temperatures of Milano, 
is shown in Figure 10.13. Here again the distribution shape is close to normal. The fitting for the 
entire range of temperature (left panel) is better than that of maximum temperature (Figure 
10.12, left). If we fit on the upper tail, for 𝑇 > 1 year, the fitting again becomes perfect (right 
panel).  
__________ 
1 https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=urb_cpopcb&lang=en 
2 http://atlasofurbanexpansion.org/ 

10.3 Dew point 

When studying the extreme events related to the water cycle, a variable more useful than 

atmospheric temperature is the dew point, defined to be the temperature at which the air 

must be cooled to become saturated with water vapour. The dew point is measured in the 

same units as temperature, and depends on the temperature on the one hand and on the 

presence of atmospheric moisture on the other hand. The relationship of these quantities 

is provided by the Clausius-Clapeyron equation, i.e., the law determining the equilibrium 

of liquid and gaseous phase of water, which maps temperatures to saturation vapour 

pressures. This law in essence describes an entropy-maximizing state, that is, a state 

where the uncertainty at a microscopic level becomes maximum, interestingly yielding a 

virtually deterministic law at the macroscopic level. While probability is typically used for 

inductive reasoning, utilising data and statistics, this law serves as an example in which 

probability can also be used for deductive reasoning, with the impressive result described 

in Digression 10.D.  

 The dew point influences both the evaporation rate, which increases with an 

increasing departure thereof from temperature, as well storm intensity, which may 

increase with a larger dew point. It is natural to expect that, since temperature has been 

increasing in the recent decades, the dew point should have increased too. However, 

global reanalysis data (specifically from the ERA5 reanalysis*) show a slower increase in 

the dew point (Koutsoyiannis, 2020b). Interesting related information about the zonal 

variation of the increase of temperature and dew point is provided by Figure 10.14, which 

depicts the difference of the Earth’s average temperature and dew point over the entire 

period (1980-2019) from their averages in the period 1980-99. A positive difference 

corresponds to an increase after 1999. It is important to note that the greater increases 

are located in the northern polar area. In the tropical zone, which is hydrologically most 

important as the main source of evaporated water, the temperature increase is half the 

global average, while there is no increase at all in the dew point. The latter point is of 

highest hydrological significance. 

 
* The ERA5 (Copernicus Climate Change Service, 2017) is the fifth-generation atmospheric reanalysis of the 
European Centre for Medium-Range Weather Forecasts (ECMWF), where the name ERA refers to ECMWF 

ReAnalysis. The data availability spans the period from 1950 onward (with daily updates continuing 
forward in time, with fields available at a horizontal resolution of 31 km on 139 levels, from the surface up 
to 0.01 hPa—around 80 km). It has been produced as an operational service and its fields compare well 
with the ECMWF operational analyses. In 2020, the data prior to 1979 were not available and thus the 
analyses reproduced here from Koutsoyiannis (2020b) do not extend to the period earlier than 1979. 

https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=urb_cpopcb&lang=en
http://atlasofurbanexpansion.org/
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 While this information is useful for global and zonal studies, local studies should be 

based on local data. Their analysis is not different from that of temperature and the 

general behaviours reported for rainfall in section 10.2 are generally valid also for the 

dew point. This is illustrated in Digression 10.E.  

 

Figure 10.14 Zonal distribution of the difference of the Earth’s average temperature and dew 
point over the entire period (1980-2019) from their averages in the period 1980-99. Note that the 
graph represents averages for the entire 40-year period from the first 20-year period, rather than 
differences between two 20-year periods (the latter are about twice the former). (Source: 
Koutsoyiannis, 2020b.)  

Digression 10.D: How entropy maximization at a microscopic level results 

in a macroscopic deterministic law  

Koutsoyiannis (2014a) has highlighted the probabilistic nature of the law that determines the 
equilibrium of liquid and gaseous phase of water by deriving it purely by maximizing probabilistic 
entropy, i.e. uncertainty. In particular, the law was derived by studying a single molecule (Figure 
10.15) and maximizing the combined uncertainty of its state related to:  

(a) its phase (whether gaseous, denoted as A, or liquid, denoted as B); 
(b) its position in space; and 
(c) its kinetic state, i.e., its velocity and other coordinates corresponding to its degrees of 

freedom and making up its thermal energy.  

 The partial entropies of the two phases, i.e., the entropies conditional on the particle being in 
the gaseous (A) or liquid (B) phase, are: 𝜑A = 𝑐A + (𝛽A/2) ln 𝘀A + ln𝑉A , 𝜑B = 𝑐B + (𝛽B/2) ln 𝘀B + ln𝑉B (10.1) 

with 𝑐𝑖 (𝑖 = A, B) denoting a constant (incorporating several physical and mathematical 
constants), 𝛽𝑖 the degrees of freedom of a water molecule, 𝘀𝑖  the (thermal) energy of the water 
molecule and 𝑉𝑖 the volume available for the motion of the water molecule in the specified phase. 
As the water molecule has a 3-dimensional (not linear) structure, the rotational energy is 
distributed into three directions, so that the total number of degrees of freedom (translational 
and rotational) is 𝛽A = 6. The number of degrees of freedom in the liquid phase is greater than 6 because of the “social behaviour” of water molecules. Specifically, in addition to the translational 
and rotational degrees of freedom of individual molecules, there are local clusters with low energy 
vibrational modes that can be thermally excited. The average number of degrees of freedom per 
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molecule (individual and collective involving more than one water molecules) is very high, 𝛽B =18.  

 

Figure 10.15 Explanatory sketch indicating basic quantities involved in the equilibrium of the water 
vapour with liquid water, with zoom on a single “shy” molecule which “tries to hide itself” by maximizing 
the combined uncertainty related to its phase (being either gaseous or liquid with probabilities PΑ and PB, 
respectively), position and kinetic state. 

 The total entropy (a consequence of postulate (d) in entropy’s definition in section 2.9, which 
makes the entropy an additive quantity) is: 𝜑 = 𝑃Α𝜑A + 𝑃Β𝜑B + 𝜑𝑃 (10.2) 

where 𝑃𝑖 is the probability that the molecule is at phase 𝑖, with corresponding entropy:  𝜑𝑃 ≔ −𝑃Α ln 𝑃Α − 𝑃B ln 𝑃B (10.3) 

Thus, the total entropy can be written as: 𝜑 = 𝑃Α(𝜑A − ln𝑃Α) + 𝑃Β(𝜑B − ln𝑃B) (10.4) 

 The two phases are in open interaction and the constraints are: 𝑃Α + 𝑃B = 1, 𝑃Α𝘀Α + 𝑃B(𝘀B − 𝜉) = 𝘀 (10.5) 

where ξ is the amount of energy required for a molecule to move from the liquid to gaseous phase 
(i.e. to break its bonds with other molecules, the phase change energy). 
 We define the natural temperature, θ, which has units of energy (joules) rather than 
temperature (kelvins), in accordance to the probabilistic principle that entropy is a dimensionless 
quantity φ, as: 1𝘃 ≔ 𝜕𝜑𝜕𝘀  (10.6) 

 Denoting e the partial pressure of the 𝑁𝐴 water molecules being in the gaseous phase and 
maximizing the entropy in that phase, we obtain the law of ideal gases in the form (Koutsoyiannis, 
2014a): 𝑒 = 𝑁A𝘃𝑉A  = 𝘃𝑣 ⇔ 𝑒𝑣 = 𝘃 (10.7) 

where 𝑣 ≔ 𝑉A/𝑁A. 
 Furthermore, by maximizing the combined entropy of the two phases, as given in equation 
(10.4), we obtain the law of the equilibrium of the two phases as (Koutsoyiannis, 2014a):  
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𝑒 = 𝑒0 exp( 𝜉𝘃0 (1 − 𝘃0𝘃 )) (𝘃0𝘃 )𝛽Β/2 − 𝛽Α/2 −1 (10.8) 

where (θ0, e0) are the coordinates of the triple point of water (specifically, θ0 = 37.714 yJ 
corresponding to T0 = 273.16 K, e0 = 6.11657 hPa). 

 

 

Figure 10.16 (upper) Comparison of saturation vapour pressure obtained by the proposed equation in 
either of the forms (10.8) or (10.10) and by a standard equation of the literature, namely, 𝑒 =𝑒0 exp(19.84(1 − 𝑇0/𝑇)). (lower) Comparison of relative differences of the saturation vapour pressure 
obtained by the proposed and the standard equations with accurate measurement data of different origins, 
as indicated in the legend and detailed in Koutsoyiannis (2012).  

 The same law (also known as Clausius-Clapeyron equation in integrated form) can be written 
in more customary notation, in terms of absolute temperature in kelvins and using macroscopic 
quantities, as (Koutsoyiannis, 2012):  𝑒 = 𝑒0 exp( 𝛼𝑅𝑇0 (1 − 𝑇0𝑇 )) (𝑇0𝑇 )(𝑐L−𝑐𝑝)/𝑅 (10.9) 
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where (T0, e0) are again the coordinates of the triple point of water, R is the specific gas constant 
of water vapour (𝑅 = 461.5 J kg−1K−1), 𝛼 ≔ 𝜉𝑅/𝑘 = 𝜉𝑁a (with k the Boltzmann’s constant and 𝑁a the Avogadro constant), 𝑐𝑝 is the specific heat at constant pressure of the vapour and 𝑐L is the 
specific heat of the liquid water. By substitution of the various constants, we end up with the 
following form of the equation (Koutsoyiannis, 2012): 𝑒 ≔ 𝑒(𝑇) = 𝑒0 exp (24.921 (1 − 𝑇0𝑇 )) (𝑇0𝑇 )5.06 ,  𝑇0 =  273.16 K, 𝑒0  =  6.11657 hPa (10.10) 

This form is both convenient and accurate (more accurate than other customary forms, 
theoretical or empirical, as illustrated in Figure 10.16).  
 A state in which the vapour pressure 𝑒a is lower than the saturation pressure e(T) is 
characterized by the relative humidity:  𝑈 ≔ 𝑒a𝑒(𝑇) = 𝑒(𝑇d)𝑒(𝑇)  (10.11) 

which serves as a formal definition of both the relative humidity U and the dew point Td. If we 
know the temperature and the dew point, then the relative humidity is calculated as:  𝑈 = exp(24.921 (𝑇0𝑇 − 𝑇0𝑇𝑑)) ( 𝑇𝑇𝑑)5.06 (10.12) 

If we know the temperature and the relative humidity, then we need to find the inverse function 𝑒−1( ) of 𝑒( ), i.e., 𝑇d = 𝑒−1(𝑈 𝑒(𝑇)) (a direct result of (10.11)). This has the following analytical 
expression (Koutsoyiannis, 2022): 𝑇𝑑 = 4.925 𝑇0−W−1 (−4.925 𝑇0𝑇 exp (−4.925 𝑇0𝑇 )𝑈 15.06) 

(10.13) 

where the numerical value 4.925 is the ratio of the constants 24.921 and 5.06, and W−1(𝑧) is the 
Lambert W function of z (non-principal real branch; see Appendix 10-I). As in equilibrium the 
maximum U is 1, it results that 𝑇 is an upper threshold of 𝑇d.  
 

Digression 10.E: An example of fitting a distribution on daily dew point data 

The dew point can be derived by equation (10.13) from measurements of temperature and 
relative humidity, but can also be measured by devices called hygrometers. Data from raw 
measurements are not quite frequent, yet the KNMI database provides data of daily maximum 
dew points in 35 stations in the Netherlands. The station with the longest record is De Bilt 
(52.101°N, 5.177°E, 2.0 m). Its data cover the period January 1951 to May 2018 (66 calendar years 
with the entire 1960 missing and a few missing values in other years). The number of daily values 
is 𝑛 = 24 561, 2.6% of which are below 1 °C, while no negative values are listed in the data set. 
Characteristic plots of the time series are given in Figure 10.17.  
 According to equation (10.13) and Figure 10.16, negative values would have been expected, 
but they cannot be directly measured. Therefore, the smallest of the values (<1 °C), while were 
kept in the climacogram analysis, were not used in the distribution fitting.  
 Focusing on the running maximum for return period of 2 years, which is also plotted in Figure 
10.17, we may observe some fluctuation with a decreasing trend before 1990 and an increasing 
one thereafter. One may thus speculate that the global warming caused temperature increase in 
De Bilt which in turn drifted the dew point, because of its positive correlation with temperature. 
On the other hand, one should not forget the possible effect of urbanization on temperature, also 
having in mind the fact that the Netherlands constitute one of the most urbanized areas in Europe 
and in the world (Figure 10.18). 
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Figure 10.17 Time series of daily maximum dew point at De Bilt, Netherlands, along with the running, on 
10-year windows, average and maximum value for return period of 2 years.  

 

 

Figure 10.18 Rough depiction of urbanization in Europe by comparing satellite images of night lights of 
(upper) 2000 and (lower) 2012. Image source: https://www.nightearth.com/. The 2000 image was 
created by NASA using data from the Defense Meteorological Satellite Program’s (DMSP) Operational 
Linescan System (OLS), originally designed to view clouds by moonlight. The 2012 image was captured by 
NASA using the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite during April and October 
2012 (from the “day-night band” of the Visible Infrared Imaging Radiometer Suite—VIIRS, which detects 
light in a range of wavelengths from green to near-infrared). 

0

5

10

15

20

25

1950 1960 1970 1980 1990 2000 2010 2020

D
e

w
 p

o
in

t 
(°

C
)

Daily 10-year average 2-year maximum over 10 years

https://www.nightearth.com/


360  CHAPTER 10 – EXTREMES OF ATMOSPHERIC PROCESSES 

 

 Therefore, avoiding attribution attempts, here we merely investigate the stochastic 
properties of the time series and try to build a consistent stationary stochastic representation 
with persistence. Indeed, as shown in Figure 10.19, the climacograms suggest a high value of the 
Hurst parameter, estimated from the annual series at 𝐻 = 0.89.  
 The fitting of the Weibull distribution on the daily maximum dew point, performed by the 
procedure described in Digression 9.B and shown in Figure 10.20, is good for the entire domain 
of dew point except for the values < 1°C for the reasons explained above. The high value of the 
shape parameter ζ (close to 10) suggests a distribution shape close to normal.  

 

Figure 10.19 Empirical σ-climacogram and 𝐾2-climacogram of daily maximum dew point at De Bilt, 
Netherlands. The lines have been constructed from the daily series and the points from the annual series. 
The points corresponding to the annual series suggest a power law with exponent –0.14. The Hurst 
parameter, estimated from the annual series, is 𝐻 = 0.89. 

 

Figure 10.20 Comparison of empirical and theoretical Weibull distribution fitted on the daily dew point at 
De Bilt, Netherlands. The distribution function is depicted in terms of the excess return period 𝑇 − 𝐷, on its 
entire range (left) and on 𝑇 − 𝐷 > 1 year (right). The parameters are: 𝘁 = 9.98, 𝜆 = 45.42 °C, 𝑥𝐿 =−34.43 °C and were fitted on the entire domain of dew point except for the values < 1°C. For further 
explanations see caption of Figure 10.3 
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Appendix 10-I: The Lambert W function  

The Lambert W function (or ω-function) is defined to be the inverse of the function 𝑧 = 𝑓(𝑤) ≔𝑤e𝑤  . This function denoted as W𝑘(𝑧) ≔ 𝑓−1(𝑧), which thus satisfies W𝑘(𝑧)eW𝑘(𝑧) = 𝑧, is a 

multivalued function on the complex plane if the integer k is not specified, or single valued if k is 

specified. For real z and −1/e ≤ 𝑧 < 0, there are two possible real values of W𝑘(𝑧), denoted as W0(𝑧), and W−1(𝑧). If 𝑧 ≥ 0, there is a single real value W0(𝑧). The real-valued branch W0(𝑧) of W𝑘(𝑧) satisfying W0(𝑧) ≥ −1 is called the principal branch of the W function, and the other real-

valued branch, W−1(𝑧), which satisfies W−1(𝑧) ≤ −1, is the non-principal real branch.  

 Here we deal with the non-principal real branch W−1(𝑧) only. Approximations for this, even 

for one-shot evaluation, can be found in Chapeau-Blondeau and Monir (2002), Barry et al. (2004) 

and Chatzigeorgiou (2013). 

 The function W𝑘(𝑧) is available for direct use in most computational environments.* For 

values of z that are relevant to our particular problem, in addition to the approximations found in 

literature, we propose the following, which is very accurate and fast:  −W−1(𝑧) = 1.285(− ln(−𝑧))0.933 + 0.872(ln(− ln(−𝑧)))0.612 (10.14) 

The relative error is negligible, smaller than 3 × 10−5 for the values relevant to our calculations, 

i.e., those corresponding to the range of temperature shown in the figures of Digression 10.D (for 

which −0.07 ≤ 𝑧 ≤ −0.015). Notice the minus sign in −𝑊−1(𝑧), which makes this quantity 

positive. 

 
* In Mathematica and Maple, which perform both symbolic and numerical calculations, the function is 
named ProductLog and LambertW, respectively. With the latter name, it is also available in R 
(https://cran.r-project.org/web/packages/LambertW/index.html), MATLAB (https://www.mathworks. 
com/help/symbolic/lambertw.html), Python (https://docs.scipy.org/doc/scipy/reference/generated/ 
scipy.special.lambertw.html), etc., while several functions implementing it are available online; e.g. for Excel 
(https://www.vbforums.com/attachment.php?attachmentid=89337&d=1341009088) and for LibreOffice 
(https://gist.github.com/m93a/a0199c4f40b43bb8116810daa46dd92d). 

https://cran.r-project.org/web/packages/LambertW/index.html
https://www.mathworks.com/help/symbolic/lambertw.html
https://www.mathworks.com/help/symbolic/lambertw.html
https://docs.scipy.org/doc/scipy/reference/generated/%20scipy.special.lambertw.html
https://docs.scipy.org/doc/scipy/reference/generated/%20scipy.special.lambertw.html
https://www.vbforums.com/attachment.php?attachmentid=89337&d=1341009088
https://gist.github.com/m93a/a0199c4f40b43bb8116810daa46dd92d




 

Chapter 11. Epilogue: Technology for risk reduction 

As already mentioned (section 5.3), the notion of risk incorporates three factors: the 

probability of occurrence of a dangerous event, the exposure and the vulnerability (Kron 

et al. 2019). More formally, the risk is usually defined as the product of three variables: 𝑅 = 𝐻 𝐸 𝑉 (11.1) 

which have the following meaning: 

• H is the hazard, i.e., the occurrence probability of a dangerous event (unit: 

dimensionless). 

• E denotes the exposure, i.e., the “values” that are exposed to a dangerous event. 

These values are usually expressed in monetary terms (unit: e.g., $, €, ¥, ₽, ₹) 

representing the economic value of the objects that are present at the location 

involved. In its severest form, E represents human lives (unit: dimensionless).  

• V is the vulnerability, i.e., the lack of resistance to damaging or destructive forces, 

expressed as a value between 0 and 1 (unit: dimensionless), with the highest value 

1 representing full damage of the exposed values.  

 There is a single means to control any of these variables: technology. Considering as 

an example the flood risk at a specific location, we can reduce the hazard by several 

technological solutions, e.g., by building a dam upstream of that location—this, however, 

is not possible for other types of hazards, such as earthquakes. Yet, even in such cases 

technology can reduce vulnerability by constructing more resilient buildings. For floods, 

we can reduce vulnerability by developing early warning systems (Di Baldassarre et al., 

2010). We can also simultaneously reduce exposure and vulnerability by modelling the 

flood extent, delineating flood‐prone zones and then implementing urban planning to 

prohibit or discourage human settlements at those zones.  

 Risk is an objective quantity that should be distinguished from its perception. The 

latter is determined by other factors or interests: political, economic or social. For 

example, as a result of intensification of reporting of occurring disasters and projections 

of future catastrophes, people think that the risk from hydroclimatic extremes has been 

radically increasing. As we will see in the next sections, this is just a social perception, in 

fact opposite to reality.  

11.1 Is hydroclimatic hazard increasing? A first indication supporting a negative reply to the question in the section’s title is 
provided by a list of world record point precipitation measurements compiled by 

Koutsoyiannis and Papalexiou (2017) for various time scales ranging from 1 min to 2 

years. As can be seen in Figure 11.1, reproduced from that study, the fact is that the 

highest frequency of record rainfall events occurred in the period 1960-80; later the 

frequency decreased remarkably. 
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Figure 11.1 World record point precipitation measurements (locations and time stamps of the 
events producing record rainfall) for time scales ranging from 1 min to 2 years, compiled in 
Koutsoyiannis and Papalexiou (2017). The time scales on which the different events have given 
the record rainfall are as follows: A – 1 month to 2 years; B – 20 min; C – 2.17 h; D – 5 min; E – 15 
min; F – 8 min; G – 3 min; H – 2.75 h; I – 3 h; J – 42 min; K – 1 d; L – 9 h; M – 18 h; N – 1 min; O – 2.5 h; 
P – 30 min; Q – 1 h; R – 2 h; S – 2 d; T – 6 h; U – 9 d to 15 d; V – 72 min; W – 2 d to 7 d. 

 A more detailed analysis, again on global basis, has been provided by Koutsoyiannis 

(2020b), based on reanalysis and satellite data of daily rainfall. Analyses of precipitation 

maxima have been made to test the allegation by IPCC (2013a) about an intensification of 

the hydrological cycle and the related extremes. Notably, the intensification claim per se, 

if quantified, turns out to be of the order of 1%– 5% (IPCC, 2013a; Koutsoyiannis, 

2020b,c). Such percentages of change are negligible and rather non detectable, given the 

high variability of precipitation articulated in previous sections. Nonetheless, here we 

reproduce some of the results of Koutsoyiannis (2020b) for the incredulous reader. The 

analyses have been performed separately for each continent and their results are 

presented graphically. Figure 11.2 shows the temporal evolution of the monthly 

maximum daily precipitation areally averaged over the continents. None of the sources of 

data in none of the continents provides support on the intensification claim. In particular, 

the observational data (CPC and GPCP) could support the opposite hypothesis, that of 

extreme rainfall deintensification.  
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Figure 11.2 Variation of the monthly maximum daily precipitation areally averaged over the 
continents. Thin and thick lines of the same colour represent monthly values and running annual 
averages (right aligned), respectively. Dashed lines are for reanalyses and continuous lines for 
observations. (Source: Koutsoyiannis, 2020b; NCEP-NCAR: reanalysis data; ERA5: reanalysis data; 
CPC: unified gauge-based daily precipitation gridded over land; GPCP: precipitation data set 
combining gauge and satellite precipitation data over a global grid.) 

 

Figure 11.3 Variation of the standard deviation of daily precipitation in each month, areally 
averaged. Thin and thick lines of the same colour represent monthly values and running annual 
averages (right aligned), respectively. (Source: Koutsoyiannis, 2020b; GPCP: precipitation data set 
combining gauge and satellite precipitation data over a global grid; CPC: unified gauge-based daily 
precipitation gridded over land.) 
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 Deintensification in the 21st century becomes even more visible if we examine the 

temporal evolution of standard deviation of daily precipitation in each month, averaged 

over land. In this respect, Figure 11.3, shows that deintensification, expressed as 

decreasing standard deviation, is evident in the 21st century both from CPC and GPCP 

observational data. This finding is consistent with earlier findings by Sun et al. (2012). A 

similar result is shown in a different manner in Figure 11.4 in terms of precipitation rate 

exceeding a threshold. Clearly, neither the frequency of high precipitation nor the sum of 

high intensity precipitation is intensifying. Rather, in most of the cases, there has been 

deintensification in the 21st century. Again, however, it will be more prudent to speak 

about fluctuations rather than deintensification. This is consistent with the general 

approach in this book to use stationary models (with appropriate dependence structure) 

for extremes, a suggestion also made in other works (Koutsoyiannis, 2003, 2006b, 2011a; 

Montanari, and Koutsoyiannis, 2014; Koutsoyiannis and Montanari, 2015; De Luca et al., 

2020).  

 

Figure 11.4 (left column) Average days per month with precipitation exceeding a threshold value, 
which is 10 mm/d (upper row) and 20 mm/d (lower row); (right column) monthly total of daily 
precipitation exceeding the threshold value. Thin and thick lines of the same colour represent 
monthly values and running annual averages (right aligned), respectively. 
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 Similar are the results from a recent regional study (Koutsoyiannis et al., 2023b) 

investigating rainfall data from Greece and reanalysis data for the Mediterranean. A 

number of 238 stations with time series of annual maximum daily rainfall of length 60 

years or more were located in Greece. A representative depiction of possible climatic 

events could be provided by plotting the all-time records of from all those 238 stations 

and identifying when these records occurred. This is shown in Figure 11.5. The upper 

panel shows the record highs at all stations. The highest of all (580.5 mm) occurred in the 

hydrological year 1956–57. In Athens, which has the longest time series, the all-time 

maximum occurred in hydrological year 1899-1900. The lower panel shows the 

frequency of record occurrences per year, along with confidence intervals. The temporal 

distribution of record rainfall is within statistical expectations. Exceedances of the 95% 

confidence limits occurred in the years 1997–98 and 2002–03, which is not surprising 

since 2.5% of values are expected to be located above (and 2.5% below) the 95% 

confidence limits. The only notable finding is the absence of any record high in the three-

year period 1982–83 to 1984–85, which marks the onset of a dry period that peaked 

around 1990. 

 

Figure 11.5 (upper) Records of maximum daily precipitation depth and (lower) frequency 
thereof per year for the 238 stations with long time series of annual maxima in the entire Greek 
territory. The confidence limits in the lower panel have been calculated from the binomial 
distribution, assuming independence and identical distribution. (Source: Koutsoyiannis et al., 
2023b). 
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 More interesting is the picture in Figure 11.6, referring to the annual average daily 

precipitation at 62 stations with long and complete daily or monthly time series. Its upper 

panel shows the high and low records (magnitudes) for these stations and the lower panel 

shows the frequency of occurrence thereof per year, along with 95% confidence limits. It 

is seen on the graphs that the 1950s and early 1960s were particularly wet. This wet 

period reached its peak but also ended in the hydrological year 1962–63, in which 1/3 of 

all records of average annual rainfall are gathered. A 20-year climatically neutral period 

followed until the early 1980s. Then the climate entered a 20-year drought, peaking in the 

period from 1988–89 to 1992–93, in which more than 50% of record lows occurred. This 

drought caused the problems already discussed in section 1.5. The last twenty years, after 

the hydrological year 2002–03, are characterized by a return to neutral climatic 

conditions, although the hydrological years 2006–07 and 2014–15 marked deviations 

from neutrality, with a dry and a wet year, respectively. 

 

Figure 11.6 (upper) High and low records of average daily precipitation depth per year, and 
(lower) frequency thereof per year for the 62 stations with long and complete daily or monthly 
time series in the entire Greek territory. The confidence limits in the lower panel have been 
calculated from the binomial distribution, assuming independence and identical distribution. 
(Source: Koutsoyiannis et al., 2023b). 
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 In summary, the most important climatic events in Greece in the period covered by 

observations were the intensely wet hydrological year 1962–63 and the grouping of dry 

years shortly before and after 1990, while the alternation of dry and wet periods is 

notable. No signs of intensification or any type of climate crisis were spotted for the most 

recent period—despite the creation of a Ministry of Climate Crisis in 2021, which the 

Greek Government is proud of.  

Greece is no exception across the Mediterranean, which has been regarded by IPCC 

(2021) and numerous publications of the climate literature as one of the most prominent 

and vulnerable “climate change hotspots”. However, no such indications are seen in 

Figure 11.7, even though prominent change is again evident, particularly in the 10-year 

scale, which had occurred long earlier, in the 1960s and 1970s. This also happened in 

Greece, even though in the entire Mediterranean, the wettest year was 1971–72 instead 

of 1962–63. 

 

Figure 11.7 (upper) Annual average and (lower) standard deviation of daily precipitation series 
in the Mediterranean territory, i.e., the land grid points in the area 30° N–46° N, 6° W–36° E, from 
the daily European ERA5 reanalysis. The graphs also show (a) the high and low records, (b) the 
climatic values (10-year and 30-year averages), and (c) the fitted linear trends (Source: 
Koutsoyiannis et al., 2023b). 
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Additionally, a similar analysis by Iliopoulou and Koutsoyiannis (2023) at the global 

scale, did not find indications of recent climate worsening in terms of precipitation 

extremes. This study extracted time series of precipitation from the ERA5 reanalysis over 

30 so-called SREX regions, defined in IPCC (2012, 2013a), which altogether cover the 

entire land area of Earth. Figure 11.8 shows the time distribution of record highs of annual 

maximum daily precipitation in the 30 regions, after standardization by each region’s 
mean. This again does not concur with an intensification claim. The highest record value 

(with respect to the regional mean) was recorded in region 27CAR (Caribbean) in 1963, 

followed by the 26SAU (South Australia/New Zealand) in 1974. The globally highest 

number of occurrences was observed in the 1960s, but even this lies within the estimated 

confidence bands.  

 

Figure 11.8 (upper) Record highs of maximum daily precipitation depth per year, standardized 
by the mean, for the 30 SREX regions of the globe (marked are those being higher than 2, 04CNA: 
Central North America; 19WAS: West Asia; 20CAS: Central Asia; 21TIB: Tibetan Plateau; 22EAS: 
East Asia; 26SAU: South Australia/New Zealand; 27CAR: Caribbean; 28NTP: North Tropical 
Pacific). (lower) Number of record highs (as in the upper panel) per decade. The upper and lower 
95% confidence limits, calculated from the binomial distribution assuming independence and 
identical distribution, are 8 and 1 respectively for a decade and 4 and 0, respectively, for the 3-
year period 2020-22; thus, there are no record highs out of the confidence band. (Source: 
Iliopoulou and Koutsoyiannis, 2023). 
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 For examining floods, we use the already mentioned (section 9.1) database of the US Geological Survey’s (USGS) National Water Information System and in particular the 
registered annual peaks by Hirsch and Ryberg (2012) in 200 stream gauges in the 

coterminous USA in pristine or near-pristine catchments, of at least 85 years length 

through water year 2008. Figure 11.9 depicts the frequency of a record high flood per 

decade, obtained from this database. The annual average (= 0.0109 events per year) and 

the confidence limits on decadal basis are also plotted in the figure. Fluctuations are 

evident in the time evolution, with low flood occurrences in the 1960s and high in the 

1900s and 1990s, with highest ones in the 1890s. Only in the 1890s was the frequency of 

record high floods higher than the upper confidence limit. Even these very old events 

would not be an issue of concern: first because an exceedance from the 95% confidence 

area in one out of 13 decades is not unnatural and second because if we considered the 

dependence structure and performed Monte Carlo simulations to determine the 

confidence limits, the confidence zones would be wider. 

 

Figure 11.9 Frequency of a record high flood per decade, obtained from the database by Hirsch 
and Ryberg (2012) from 200 selected stream gauges in pristine or near-pristine catchments in the 
coterminous USA. The database contains 18 846 station years, and the record highs are 205 (> 
200 because of some ties) and thus the average probability of a record high is 205/18 846 = 
0.0109. The confidence limits are approximate, constructed for confidence level of 95% on the 
basis of independence (Papoulis, 1990, p. 284). 

 About the possible intensification of the wind field over the globe, some information 

is provided in Figure 11.10 in terms of the global maximum wind speed, zonal and 

meridional. The plots do not show any noteworthy change (e.g. trend). Only slight 

fluctuations appear. Thus, the regime shown does not justify intensification of wind or of 

precipitation extremes that the latter could induce. 

 On the other hand, temperature has been increasing in the last decades. According to 

the ERA5 reanalysis data, the rate of increase of the globally average temperature near 

the surface is 0.16 °C/decade (Figure 11.11, upper and middle panel) and at the 850 hPa 

level (about 1500 m elevation) is 0.12 °C/decade (Figure 11.11, lower panel). The high 

extremes are also increasing at a slightly higher level (0.20 °C/decade near the surface; is 
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0.14 °C/decade at 850 hPa). On the other hand, the low extremes become milder (cf. 

Glynis et al., 2021) as the minimum temperatures are increasing at a higher rate (0.31 

°C/decade near the surface; is 0.46 °C/decade at 850 hPa. Satellite data give similar rates 

of increase for the globally average temperature (0.13 °C/decade at the lower 

troposphere; Koutsoyiannis, 2020b).  

 These are the facts as seen from the data. Whether the increasing trends are 

threatening or not is not a scientific question. Yet the middle and lower panel of Figure 

11.11 may be helpful to perceive the magnitude of changes in comparison to the 

temperature range across the Earth. Whether the temperature increase is caused by 

increased CO₂, or the other way round, is a difficult question, which was touched upon in 
section 10.2. Whether the increasing trend in temperature will continue or bend is 

another difficult question, not relevant to the subject we are discussing. The fact is that, 

till now, the threatening predictions about the hydroclimatic impacts of the increasing 

temperature have not materialized. 

 

Figure 11.10 Variation of the monthly maximum wind speed, in each of the four directions (two 
zonal and two meridional) over the globe. Thin and thick lines of the same colour represent 
monthly values and running annual averages (right aligned), respectively. (Data source: ERA5 
reanalysis data retrieved from Climexp.)  
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Figure 11.11 Variation of the monthly global temperature (upper) average at 2 m; (middle) 
maximum, minimum and average at 2 m; (lower) maximum, minimum and average at 850 hPa (≈ 
1500 m altitude). Thin and thick lines of the same colour represent monthly values and running 
annual averages (right aligned), respectively. (Data source: ERA5 reanalysis data retrieved from 
Climexp.)  
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extremes is atmospheric moisture. From the extensive study thereof by Koutsoyiannis 

(2020b), we reproduce here a small part of the results, referring to the water vapour 

amount (also known as vertically integrated water vapour, or precipitable water* and 

expressed in mm or equivalently kg/m2). This is estimated by radiosonde data of 

temperature and relative humidity on a local basis, but on a global basis, which is of 

interest here, it can be either estimated by reanalysis data or provided by satellite data. 

In all cases, the water vapour amount is the mass of water vapour, integrated over the 

entire atmosphere, per unit area. An increased water vapour amount could potentially 

lead to increased storm severity. 

 However, the most recent satellite data set (MODIS) suggests a decreasing trend for 

the 21st century, just the opposite of the IPCC predictions. Figure 11.12, which provides 

layered information for the MODIS data, shows that the decreasing trend is more 

pronounced in the upper atmospheric levels (440 to 10 hPa). In addition, the data 

originating from two reanalyses, ERA5 and NCEP-NCAR†, plotted in Figure 11.13 and 

agreeing impressively well with each other, indicate fluctuation over time, with no 

monotonic trend. Another satellite data set (NVAP) also agrees on the average, indicating 

no trend.  

 In other words, as far as hydrological extremes are concerned, observations do not 

show any changes in the background conditions that would favour occurrence of more 

frequent or more intense extremes. 

 

Figure 11.12 Variation of water vapour amount according to MODIS satellite data set and 
separately for its two platforms, Terra and Aqua: (left) total of the vertical column; (middle) from 
surface to 680 hPa; (right) from 440 to 10 hPa. Thin and thick lines of the same colour represent 
monthly values and running annual averages (right aligned), respectively. (Source: Koutsoyiannis, 
2020b.) 

 
* The adjective precipitable for the water vapour amount is a misnomer: if the total water vapour amount in 
the atmosphere was indeed to precipitate in its entirety, this would violate the laws of thermodynamics. † The NCEP-NCAR reanalysis is jointly produced by the National Center for Environmental Prediction 
(NCEP) and the National Center for Atmospheric Research (NCAR). Its temporal coverage includes 4-times 
daily, daily and monthly values from 1948 to the present, at a horizontal resolution of 1.88° (~ 210 km). It 
uses a state-of-the-art analysis/forecast system to perform data assimilation using observations and a 
numerical weather prediction model. The data assimilation and the model used are identical to the global 
system implemented operationally at NCEP except in the horizontal resolution. 
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Figure 11.13 Variation of water vapour amount over the globe and the land and sea areas. Thin 
and thick lines of the same colour represent monthly values and running annual averages (right 
aligned), respectively. (Source: Koutsoyiannis, 2020b; NCEP-NCAR: reanalysis data; ERA5: 
reanalysis data; NVAP: satellite data from the NASA Pathfinder project; MODIS: satellite data, 
averages from the MODIS-Terra & MODIS-Aqua satellites.) 

11.3 Is the risk from hydroclimatic extremes increasing? 

If we try to approach changes in the risk from extremes, including the influence of 

exposure and vulnerability, the ultimate measure of risk is the number of deaths from 

natural disasters. Relevant data are shown in Figure 11.14 for all natural disasters 

classified into five categories, three of which are of hydroclimatic type. 
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Figure 11.14 Evolution of the frequency of deaths from natural disasters per decade in the 20th 
and 21st century. In addition to deaths from floods and droughts, deaths from other categories of natural catastrophes are also plotted: “extreme weather” includes storms, extreme temperatures 
(cold- or heatwave, severe winter conditions) and fog; “earthquake” also includes tsunamis; “other” comprises landslides (wet or dry), rockfalls, volcanic activity (ash fall, lahar, pyroclastic 
flow and lava flow) and wildfires. (Source: Koutsoyiannis, 2020b; victim data: OFDA/CRED 
International Disaster Database*; population data: United States Census†.) 

 Clearly, the impacts of hydroclimatic disasters, particularly the severest of them 

which caused human losses, have spectacularly dropped since the beginning of the 20th 

century. The victims from these categories of disasters have diminished, while other types 

of disasters still cause large numbers of victims. Thus, in the 2010s the primary cause is 

earthquake, representing 59% of the total number of victims. Obviously, the reason 

behind such diminishing is not that floods and droughts have become less severe or less 

frequent. Rather it is the improvement of technology, and risk assessment, management 

and reduction, along with the strengthening of the international collaboration and the 

economy, so that the advances could be actually implemented. 

 Interestingly, according to data of 2010-2017, the deaths from natural disasters 

represent 0.08% of the total number of deaths, as seen in Figure 11.15. This number ranks 

them in the last position in Figure 11.15, with the penultimate cause being cold and heat. 

Deaths from cold and heat are registered together. However, a multi-country analysis by 

Gasparrini (2015) suggests that these are mostly (at 95%) due to cold, while in the more 

recent study by Zhao et al. (2021) it has been estimated that the percentage of deaths from 

cold is more than 90% of the total. For comparison, the contribution to deaths of 

respiratory diseases (belonging in the broader category of health issues) is 11.6%, about 

150 times higher than natural disasters (and, apparently, this figure should have now 

increased due to the Covid-19). Also, the share of deaths due to road accidents is 30 time 

higher than natural disasters. The curious reader is encouraged to try to trace the reasons 

 
* https://ourworldindata.org/ofdacred-international-disaster-data † https://www.census.gov/data-tools/demo/idb/informationGateway.php  
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why the general perception of the public, informed by the media, is the inverse of reality. 

Also, why the climate related risks, the least severe of all, have been promoted so 

enormously by international organizations (governmental and non-governmental), 

politicians (almost of the entire political spectrum) and “philanthropists”.  

 

Figure 11.15 Average share of deaths per cause in the 2010s. Data from the database of Our 
World in Data*; note that the total is slightly greater than 100% (101.4%, perhaps suggesting that 
in some of the cases there are two causes).  

11.4 Gazing into the future 

The enormous promotion of climate related risks has been accompanied by the 

development of a paradigm of prophecy for the future of the planet and of humanity, 

based on models. There is no parsimony in the time horizon of such prophesies, which 

can reach the year 100 000 AD (Shaffer et al., 2009) or even 1 million years (Archer et al., 

2020).  

 The prophetic approach is also quite pessimistic, generally predicting future 

disasters, more recently despising science and technology, if not attempting to deprive 

mankind of them, like in Aeschylus’s extract from Prometheus Bound, which appears as a 
motto in the beginning of the book. 

 This book supported the more traditional historical approach, which is also 

stochastic, both in the modern and the ancient meaning of the term (cf. the quotation by 

Basilius Caesariensis in Digression 1.A). We use the scientific method to reveal hidden 

secrets of the past and quantify the evolution of natural processes. We use stochastics to 

describe that evolution in the past and to make induction for the future.  

 History teaches us that technology has substantially contributed to risk reduction, to 

the quality and length of human life, and to human life as a value. It can thus further 

improve the present. By improving the present, using lessons from the past, we might 

develop an optimistic vision for the future—and indeed, the information presented in this 

epilogue allows it. 

 
* https://ourworldindata.org/grapher/share-of-deaths-by-cause 
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 The real issues of concern about the future are related to social, rather than natural, 

dynamics (cf. Sargentis et al., 2022). These include the departure of societies from reason, 

their reluctance to envisage truth, combined with their preference for promoted virtual 

realities, and the intellectual decadence. 
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Stochastics of Hydroclimatic Extremes is a real monument in stochastics! It is a summary of the 

lifetime dedication by Demetris Koutsoyiannis to the science of environmental extremes, it is a 

demonstration of the value of stochastics itself to gain a better understanding of why and how 

extremes happen. The perspective adopted in the book is that of a scientist who is able to cross and 

transform disciplines by proposing an innovative synthesis of knowledge. This book is indeed 

presenting new concepts, new theoretical interpretations and new opportunities for engineering 

design, for the sake of mitigating the impact of extremes and adapting modern society to 

environmental variability. 

[tis fascinating that the book is self-produced and openly available to readers. Like any self-produced 

creation of the humankind, this book has a unique and independent history that is rooted in the 

intimate personality of the author. [tis a creation that does not require to adhere to any format 

other than those suggested by the author’s vision and creativity. For this reason, its value is 

incommensurably high, it is a real Cool Look at Risk as Demetris says. 

[ believe time will highlight Stochastics of Hydroclimatic Extremes as a transforming masterpiece 

which will bring illuminating ideas to the reader. 

Alberto Montanari 
Head of the Dept. of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna 

President of the European Geosciences Union 

This is a book that could not only transform your career, but also the entire fields of environmental 

statistics and stochastic hydrology. This seminal contribution is not like other books you have read 

which tend to summarize existing knowledge. Rather; it condenses existing knowledge in short order 

and spends nearly all its time on new knowledge, much of it never before published, communicating 

effectively both the theoretical and practical aspects of analysis of a wide range of hydroclimatic 

extremes. The style of presentation itself is novel and compelling, so that I could not resist reading it 

from cover to cover. 

If you think you understand how to apply probability and statistics to predict future extreme events, 

think again, because very quickly you will be convinced that extremes arise from spatial and temporal 

stochastic processes, and are neither independent nor identically distributed (iid) events, nor do 

most of our common probability distributions used for flood and drought frequency analysis capture 

the type of thick tails which are so convincingly documented in this book. 

[ predict that many of the novel concepts, examples and techniques introduced here, many for the 

first time, will find their way into widespread acceptance in hydroclimatology, over time. Foremost, 

the reader will appreciate the value of viewing extreme events as realizations of stochastic processes 

rather than a series of iid annual maxima/minima. The climacogram provides a new window into the 

structure of stochastic processes and may be more fundamental than the correlogram. I can’t wait to 

test out the so-called Pareto-Burr-Feller distribution and the novel knowable moments (K-moments) 

which appear to have clear advantages over ordinary moments for describing distribution tails. 

Itis remarkable that after a long career in hydrology, after reading this book, I gained many new 

insights into common statistical methods as well as new methods documented here for the first time. 

How [ wish my career were just beginning, and thus could have applied all the wonderful ideas and 

methods in this book during my career. This is literally a treasure for young scholars interested in the 

probabilistic behaviour of hydroclimatic extremes. 

Richard M. Vogel 
Professor Emeritus and Research Professor, Dept. Civil and Environmental Engineering, Tufts University 
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