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Foreword

[ feel really honoured and pleased to have received invitation from Professor
Koutsoyiannis to write a foreword to his fascinating scientific book entitled Stochastics of
Hydroclimatic Extremes: A Cool Look at Risk. As a matter of fact, Professor Koutsoyiannis
and myself do not always agree on different aspects of the science of climate change and
its impact as well as on the justification behind mitigation and adaptation. However, we
are both doing our best to heed the story that the raw observation data are telling us,
without forcing them to say what they are expected to say. The book is in this spirit, taking
a reader for a guided magical mystery tour to objective, and rational, methods and being
free of ideology or pre-conceptions.

The book opens the door to the thoughts of Professor Koutsoyiannis that deserve to
be broadly known. He is an established scientist with respectful publication track. He
authored or co-authored many journal papers that have attracted considerable attention
and multiple citations. Now, when the book is available, the scientific community can
conveniently access the findings reported in his seminal works in one place, instead of
having to refer to many journal papers. There are no restrictions in the book that are
usually imposed on journal articles, such as the word count or the need to bow to
recommendations by reviewers and editors. The author of a book is free to shape the
contents as he wants. Essential is that, on the one hand, the book must be scientifically
sound and rigorous, but on the other hand, it must be interesting, so that the reader does
not give up and walk away. In my opinion, these conditions are convincingly met by this
volume. In his works before writing the book, Demetris has contributed to each and every
subarea covered by the book. He reports on his own experience.

Professor Koutsoyiannis is a prolific writer, but some of his excellent papers,
challenging conventional wisdoms, had been rejected in established journals, so that they
are available in author’s portal on internet. Possibly, some of them conveyed inconvenient
truth. At times, rejection decisions were based on superficial, or simply wrong, reviews. I
witnessed one disappointing publication attempt, first hand, sharing with Demetris the
misfortune of having a joint paper rejected, based on two unfair, arrogant, reviews.
Demetris promotes eponymous reviewing, when the authors’ identity is disclosed to the
reviewers and the reviewers’ identity is disclosed to the authors. The symmetry of such
an arrangement improves responsibility. Yet, I am proud to state that I have co-authored
a few journal papers with Koutsoyiannis.

Professor Koutsoyiannis is fascinated by the overwhelming wealth of data available
nowadays in public domain, in our brave new world. Large sets of real observation data
can be freely accessed. So, the reader is welcome to help oneself to the data and to try
exploratory data analysis on one’s own, to search for a pattern.

[ can imagine that many readers will go through the whole book, possibly skipping
the masses of equations present in some chapters. For instance, there are 249 numbered
equations in Chapter 6 and 131 in Chapter 2. However, these equations are needed for
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those readers who wish to undertake a detailed study of selected parts of the book that
deal with the material of relevance to the particular problem at hand.

Professor Koutsoyiannis is a genuine ambassador of Hellenism. There are great
recourses to ancient Greek thoughts, philosophy and poetry in the book. It is fascinating
to observe how he explains Greek roots of words that everybody knows but not everyone
is truly aware of their Greek origin. He teaches us his interpretation of the very term
stochastics, playing the central role in the book and in its title. This essential notion is
derived from Greek roots, but has been broadly used in a different way. Demetris has
proposed new names, originating from Greek, to baptize scientific constructs, such as
“climacogram”, “ombrian”. They are indeed better justified than the existing terms that
are already in circulation, but it is clear from the google search counter that they are
certainly less known yet.

We live in the era of bibliometric indices being used as the principal, parametric,
measure of scientific achievements of an individual scientist or a scientific institution (at
times, even an entire country). Indeed, nowadays, citation count and Hirsch index are the
currencies in which scientists are evaluated. Hence, a book is not a product that gets
adequately rewarded by the bibliometric indices. So, in a way, writing a book is a sacrifice
for the author in comparison to publication of articles in leading peer-reviewed journals
from the top quartile of a disciplinary division of the Web of Science list, with respectful
value of the impact factor. The very terms “bibliometry” and “bibliometric” are clearly of
Greek origin, stemming from two words: SifAiov (biblion) meaning a book, and the verb
UETPLGW [ ueTpéw (metriao / metreo) meaning to measure. By the way, even if the terms
bibliometry or bibliometric refer to books by construction, in real world they now mostly
refer to journal articles rather than books or book chapters.

The book reads really well. It contains numerous illustrations (131 figures, 36 tables).
There are also a wealth of interesting digressions and appendices, and, finally, an
excellent, truly international and multi-lingual, list of references, including little known
works of Soviet or Russian scientists.

In my view, this is the best book ever published in this area, successfully competing
with other recognized giants. I might consider this book as a candidate to a short list of
books I would pack in my luggage for a visit to an uninhabited island, where I would have
much time to study it over and over again. Forty-five years ago, I would take a handbook
entitled Probability, Random Variables and Stochastic Processes, written by another
scientist of Greek origin, Athanassios Papoulis. Now, I would swap Papoulis by
Koutsoyiannis. One could rightly ask, what would be the sense of taking such a book to an
uninhabited island, where the concepts of extremes, probability, statistics and stochastic
processes are of little practical relevance. Well, there is an internal beauty in the theory
exposed by Demetris. There are ample illuminating examples, in particular related to
hydroclimatic processes and extremes. Considerable time is needed to study this volume
in detail, especially coming back to the bits and pieces that were skipped during the first
pass. I find the book enriching and I am really confident that it would be enriching to any
readership.
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[ am pretty sure that our common friend, the late Vit Klemes, would applaud this book,
greeting Demetris now from his cloud #17. This is how Vit projected his eternal residence
address, even if cloud numbering, assuming some stability, is more a construct of poetry
than a climatologically-justified notion. I see spiritual similarities between Vit and
Demetris. Indeed, Koutsoyiannis is using pins against balloons in Klemes’s style.

There are ample references to the return period in the book, so I wish the readers to
have many happy returns to the book. I am sure that the return period will be finite. Once
in, again in.

In Greek mythology, it was believed that drinking from the Pierian Spring of
Macedonia, sacred to the Muses, would bring great knowledge and inspiration. | wish the
readership to enjoy drinking from the Pierian Spring of Koutsoyiannis.

Zbigniew W. Kundzewicz

Corresponding Member of Polish Academy of Sciences
Member of Academia Europaea






Prolegomena

In 2005, my colleague and friend at the U.S. Geological Survey, the late Timothy A. Cohn,
and I began looking at the inherent weakness in standard approaches to testing the
statistical significance of hydroclimatic trends. The subject was of interest because both
of us had used trend tests in our investigations of discharge and water quality time series
and realized that although trend magnitude was easily determined with little ambiguity,
the corresponding statistical significance was less certain because significance depended
critically on the null hypothesis. The latter, of course, reflects subjective assumptions
about the underlying stochastic process. Our curiosity was fostered by an awareness that
the standard approaches to significance testing of hydroclimatic time series were all
based on the assumption of independence.

We knew based on the work of Harold Edwin Hurst, and subsequently discussed by
Mandelbrot and Wallis, Klemes, Hosking, among others, that hydroclimatic records are
realizations of physical processes whose behaviour exhibits long-term persistence (LTP).
Such behaviour was sometimes modelled as fractional Gaussian noise (fGn) or fractionally
differenced ARIMA processes. Importantly, LTP is a stationary process. Our specific
interest, however, was not in evaluating LTP, but rather in exploring what effects LTP had,
if present, on the significance of observed trends. What we found was an effect that was
much more noteworthy than we had imagined. In looking at a nearly 150-year record of
northern hemisphere temperature, we found that the standard test of significance, which
assumes no LTP, yielded a highly significant increasing trend with p-value of 1.8 x 10727,
We then applied a test which assumed the presence of LTP and found an increasing trend
with p-value of 7.1 X 1072, i.e., a trend not significant at the p = 0.05 level. In changing from
one test to another, 25 orders of magnitude of significance vanished. This result was and
remains somewhat troubling given the uncertainty about the stochastic process and the
possibility that the observed temperature warming over the past 150 years could be
explained by natural dynamics in the form of long-term persistence and complexity in the
climate system.

During our initial literature review on long-term persistence, we noticed a number of
very recent papers by a Greek hydrologist named Demetris Koutsoyiannis whom neither
of us knew. After digesting and discussing these papers, it became clear that Demetris had
an unusually profound understanding of stochastics, and particularly its relevance to the
field of hydroclimatology. Accordingly, we quickly contacted him to learn more about his
work. We also sent him a draft of our paper and solicited his thoughts and comments.
Demetris’ comments were astute, yet humble, and conveyed a clarity in his understanding
of this subject that went well beyond what we had seen described by others. His
suggestions substantially improved the manuscript, even going so far as to suggest a more
meaningful, less contentious, yet still provocative title... Nature’s Style: Naturally Trendy.
The paper was published in Geophysical Research Letters shortly thereafter with minor
revisions.
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That initial contact opened a dialog that has continued to this day and dramatically
expanded our perspective on stochastic hydrology. Along the way, we have witnessed an
evolution in Demetris’ own thinking on the subject; from the more conventional
understanding of stochastics, wherein the notions of stationarity and nonstationarity are
defined; to his innovative articulation of Hurst-Kolmogorov dynamics, which is (1)
stationary and demonstrates how stationarity can coexist with change at all time scales,
(2) linear, thus emphasizing the fact that stochastic dynamics need not be nonlinear to
produce realistic trajectories, (3) simple, parsimonious, and inexpensive, and (4)
transparent, because it does not hide uncertainty nor pretend to predict the distant future
deterministically; to his theoretical development of stochastics in defining moments for
use in assessing hydroclimatic extremes, a major focus of this book.

A consummate teacher, Demetris always presents his theses with precision, logic and
imagination. Readers will find themselves following the concept of stochastics from its
original usage by classical Greek philosophers to its modern formulation and application
in hydroclimatology. Its applicability, however, extends to all areas of geophysics. This
book incorporates the contributions of many of the most influential researchers in
stochastic hydrology over the past half-century, with a significant number of those
contributions coming from the author himself, as well as his students and collaborators.
It is the pinnacle of nearly two decades of scholarship from someone who has become
recognized as the leading and most influential voice for stochastics among modern
hydrologists, joining a very select circle of late 20th century scholars who influenced his
early work.

Stochastics of Hydroclimatic Extremes: A Cool Look at Risk is the single most
authoritative discourse on the theory and application of stochastics from a geophysical
perspective available to any interested scholar. It is an essential resource in any serious
stochastic hydrologist’s library, and an incomparable reference for every advanced
student in hydrology. It will undoubtedly become the standard reference on stochastic
hydrology for decades to come.

Harry F. Lins

Past-President, Commission for Hydrology, World Meteorological Organization
U.S. Geological Survey, Retired
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But listen to the tale

Of human sufferings, and how at first

Senseless as beasts I gave men sense, possessed them

Of mind. I speak not in contempt of man;

I do but tell of good gifts I conferred.

In the beginning, seeing they saw amiss,

And hearing heard not, but, like phantoms huddled

In dreams, the perplexed story of their days

Confounded; knowing neither timber-work

Nor brick-built dwellings basking in the light,

But dug for themselves holes, wherein like ants,

That hardly may contend against a breath,

They dwelt in burrows of their unsunned caves.

Neither of winter’s cold had they fix'd sign,

Nor of the spring when she comes decked with
flowers,

Nor yet of summer’s heat with melting fruits

Sure token: but utterly without knowledge

Moiled, until I the rising of the stars

Showed them, and when they set, though much
obscure.

Moreover, number, the most excellent

Of all inventions, I for them devised,

And gave them writing that retaineth all,

The serviceable mother of the Muse.

I was the first that yoked unmanaged beasts,

To serve as slaves with collar and with pack,

And take upon themselves, to man's relief,

The heaviest labour of his hands: and |

Tamed to the rein and drove in wheeled cars

The horse, of sumptuous pride the ornament.

And those sea-wanderers with the wings of cloth,

The shipman’s waggons, none but me devised.

These manifold inventions for mankind

I perfected, who, out upon’t, have none,—

No, not one shift—to rid me of this shame.

Aeschylus, Prometheus Bound (442-471),
Translated by G. M. Cooksont

* http://www.greek-language.gr/digitalResources/ancient_greek/library/browse.html?page=12&text_id=132

T https://en.wikisource.org/wiki/Four_Plays_of_Aeschylus_(Cookson)/Prometheus_Bound
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Preface

A year ago, a flash flood claimed the lives of 24 people in Mandra, a small town near
Athens”. The losses are a result of lack of infrastructure for flood protection, while the
natural stream network had been abused by urban development. If the storm had been
predicted and if there were alert systems and evacuation plans in place, the consequences
would not be that tragic. However, predictions for storms of small duration and extent,
occurring at dry places, are difficult. This year some meteorologists in Greece (not the
official meteorological service), perhaps envying the glory of American meteorologists
who deal with storms of different type such as hurricanes—and at the same time facing
the fact that in Greece there are no hurricanes—decided to give names to every
meteorological depression entering Greece. The journalists received this initiative
enthusiastically advertising the names in all media, while authorities started to react by
closing schools in days of predicted (named) bad weather. At the very day I am writing
these lines, the weather in Athens is wintry (as it should normally be in February). In
preceding days, meteorological predictions spoke of an unprecedented, “historical snow
event” (lotopwkog xloviag)t. But, to the forecasters’ disappointment, this so-called
historical snowfall was, once again, not to come about.

If meteorological predictions are difficult, especially those for a week after, what
about climate predictions which are for really long time horizons? A few years ago, it was
predicted that “snowfalls are now just a thing of the past”* Soon this prediction changed to
the opposite one, “Extreme snowfall is actually an expected consequence of a warmer
world”.§ However, despite their variety, reaching self-contradiction, all these predictions
have some things in common. For most people, they are scary. And in contrast to
Cassandra’s sorrowing prophesies, which were true but not believed by people, current
prophesies of catastrophes usually are widely believed but very often do not come true.

Apocalyptic prophesies have been common in history and were mostly connected—
and owed their power—to religion. Modern prophesies are instead connected to the
ideology of environmentalism and owe their power to scientists. However, they share
several characteristics with prophesies of old; most prominently, the scare-mongering
and world-saviour attitudes. Since 1970, several environmental scientists predicted lots
of catastrophes, with which apparently God laughed and, as they did not come to pass, we
too may laugh now™. I believe that bombarding people with negative predictions is
detrimental to society—and is objectively contrary to these world-saving pretences. It
makes the society more vulnerable. This has been vividly expressed more than 2600 years

* https://en.wikipedia.org/wiki/Mandra
T https://tvxs.gr/news/ellada/erxetai-istorikos-xionias

F https://web.archive.org/web/20150905124331/http://www.independent.co.uk/environment/snowfalls-
are-now-just-a-thing-of-the-past-724017.html
§ http://www.bbc.com/earth/story/20160127-will-snow-become-a-thing-of-the-past-as-the-climate-warms

** Koutsoyiannis, D., 2017. Saving the world from climate threats vs. dispelling climate myths and fears,
Invited Seminar, Lunz am See, Austria, WasserCluster Lunz - Biologische Station GmbH, doi:
10.13140/RG.2.2.34278.42565.


https://en.wikipedia.org/wiki/Mandra
https://tvxs.gr/news/ellada/erxetai-istorikos-xionias
https://web.archive.org/web/20150905124331/http:/www.independent.co.uk/environment/snowfalls-are-now-just-a-thing-of-the-past-724017.html
https://web.archive.org/web/20150905124331/http:/www.independent.co.uk/environment/snowfalls-are-now-just-a-thing-of-the-past-724017.html
http://www.bbc.com/earth/story/20160127-will-snow-become-a-thing-of-the-past-as-the-climate-warms
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ago in the Aesop’s fable originally entitled “shepherd playing” («Ilownv maiwv»), better
known in English as “the boy who cried wolf.”* More than 2300 years ago, Epicurus
pronounced science as the enemy of fear and of superstition. And a couple of centuries
before Epicurus, other philosophers such as Plato and Aristotle clarified the meaning and
the ethical value of science as the pursuit of the truth—pursuit that is not driven by
political agendas and economic interests. For the latter, they used the term sophistry.

I believe what is needed is a cool look at risk. For risk exists—as it existed all the time
in the past and will certainly exist in the future. Because of the rapid growth of population
in the 20th century, increasing by an order of magnitude since 1800 and two orders of
magnitude since the era of Plato and Aristotle, and becoming now a significant percentage
(>7%) of the people that have ever lived on Earth, one would think that the risk, measured
in terms of damages and human losses due to natural hazards, has increased. This
however is not the case. Thanks to substantial progress in engineering and technology the
risk has decreased.f

Engineers’ profession is tightly connected to risk. The infrastructure they build
generally decreases risk from natural hazards but does not eliminate it. At the same time,
infrastructure is subject to risk per se. The comedian and writer John Oliver gave it an
interesting definition: “Infrastructure: it’s our roads, bridges, dams, levees, airports, power
grids—basically anything that can be destroyed in an action movie.”* Accordingly, the
engineers’ profession is socially sensitive and responsible at an enormous degree. Unlike
Aesop’s shepherd, an engineer cannot play with risk; the consequences, in case of a failure
of infrastructure or its management, are not as ecologically friendly as wolves eating
sheep.

Being an engineer, I have dealt with risk for decades. It is my intent to convey my
experience to the readers of this book. Although I have published a lot of articles and gave
even more conference talks related to this subject, what is contained in the book is mostly
new.

One important issue that [ have consistently tried to communicate is my belief that
the current standard methodologies underestimate substantially the probability of
extreme events. I hope I have substantiated my claims in this book. The reasons of
underestimation are basically two. The first is an inappropriate assumption of classical
statistical methodologies: that the different events are independent of each other. They
are not. This will repeatedly be illustrated in the book using long records of
hydrometeorological processes, as well as invoking theoretical arguments. The second is
the assumption that the upper tail of the distribution of those processes exhibits a rapid
decay as we go to larger and larger values: an exponential descent, like in the exponential
or even the normal distribution. The inappropriateness of both these assumptions has not
been widely known because the relevant behaviours are hidden if the time series of

https://en.wikisource.org/wiki/The_Shepherd%27s_Boy_and_the_Wolf;  original = Greek text:
https://el.wikisource.org/wiki/Atcwmov_MuUBot/Towunv_ttai{wv.

T Related data are given in the last chapter of the book.
¥ Infrastructure: Last Week Tonight, https://www.youtube.com/watch?v=Wpzvaqypav8.


https://en.wikisource.org/wiki/The_Shepherd%27s_Boy_and_the_Wolf
https://el.wikisource.org/wiki/Αισώπου_Μύθοι/Ποιμήν_παίζων
https://www.youtube.com/watch?v=Wpzvaqypav8
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observations are not long enough. And both assumptions are connected to each other and
act synergistically to underestimate the probability of occurrence of extremes and hence
the risk.

In particular, the independence assumption is virtually equivalent to a static climate.
Accordingly, if we remove this assumption, we get a varying climate, which is consistent
with the real-world climate. These statements may sound counterintuitive or even wrong,
because typically dependence is interpreted as memory rather than change. Nonetheless,
the close relationship of dependence, particularly the long-range one, with change is
illustrated in the book both empirically and theoretically. Given, on the one hand, the
adherence to independence in typical studies of extremes and, on the other hand, the fact
that independence entails a static climate, it is not surprising that most recent studies try
to remedy the consequences of the inappropriate assumptions by invoking climate
change—or anthropogenic global warming, the global scapegoat of our era. Methods to
embed climate change into studies dealing with occurrence probability vary, but all have
several weaknesses—examples are provided in the book. I believe that just removing the
independence assumption—and thus representing a changing climate without additional
assumptions—resolves most of the underestimation problems.

The language used in this book is the language of stochastics. This may be
inapprehensible at first glance, but it is an effective language. The book tries to adhere to
the rigorous use of stochastics, on the one hand, and to make its presentation both easy
and self-contained, on the other hand. In this respect, the biggest part of the book is
devoted to the theory of stochastics which is necessary for inferences about extremes.
Stochastics is a scientific area broader than statistics—actually, according to the
definition I adopt, statistics is part of stochastics. Another part is the theory of stochastic
processes, in which time has a hypostasis that is typically absent in statistics. The direct
analogy is dynamics vs. statics. This does not mean that statistics is underrepresented in
the book. On the contrary, several new developments are presented—most notably the
new tool of knowable moments, which have two relevant characteristics: they are closely
connected to extremes and their estimation is unbiased in the framework of classical
statistics or involves small bias in stochastic processes with dependence in time, whilst
the bias in the estimation of classical statistical moments can be huge. As will be seen in
the book, knowable moments help to develop an extreme-oriented fitting methodology of
probability distributions.

In parallel to being theoretical, the book is oriented to application. The new
theoretical developments are supported by derivations and proofs, which to improve
readability are contained in a number of Appendices in each chapter. The application is
supported by several examples and illustrations, usually standing out as parenthetical
sections or Digressions, as well as by tabulations of mathematical formulae that are used
for each task.

Athens, 24 February 2019

Demetris Koutsoyiannis
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Notational conventions

The book follows the Guidelines for the use of units, symbols and equations in hydrology*. In turn, these
guidelines are based on (i) the Systeme International (SI) brochureT; (ii) the ISO 80000-2 Standard,
Mathematical Signs and Symbols to Be Used in the Natural Sciences and Technology; and (iii) Unicode

Technical Report #25, Unicode Support for Mathematics.¥ We list some of the conventions here for the
reader’s convenience.

Physical dimensions and units

(a)
(b)
(c)

(d)

(e)

0
(8)

All quantities are dimensionally consistent. In particular, arguments of functions such as exp( ) and
In( ) are dimensionless.

We use s, min, h, and d for second, minute, hour and day respectively. We do not abbreviate week,
month or year, which are non-SI units.$

Multiplication of units is indicated by a space, e.g. N m, and division either by negative exponents (e.g.
m s-2) or by use of the solidus (oblique line, e.g. m/s2); however repeated use of the solidus (e.g. m/s/s)
is not permitted.

Prefixes of units such as M (mega = 10¢) and pu (micro = 107®) have no space between (e.g. us, MW).
According to the S, the prefix for kilo is lower case k (e.g. km—K is the symbol of the kelvin).

For areas and volumes, we use m? and m3; the hectare (ha) and the litre (L) are also allowed in SI. A
million m? is denoted as square kilometre (1 km? = 10 m?). A million m3 is denoted as cubic hectometre
(1 hm3 =10 m3—not 1 Mm3 because 1 Mm?3 = 1018 m3; note that in SI any power to a unit applies also
to the prefix); a billion m?3 is denoted a cubic kilometre (1 km3 = 10°m3).

All units are typeset in upright (Roman) fonts, not italic or bold.

Numerals are also typeset in upright fonts. The symbol for the decimal marker is the dot. To facilitate
reading, numbers are divided in groups of three using a thin space (e.g. 12 345.6). (Note that neither
dots nor commas are permitted as group separators). A space is used to separate the unit from the
number (e.g. 10 m).

Symbols and equations

(a)

(b)
()
(d)
(e)

G
(8)

(h)
@

We prefer single-letter variables (if necessary, with subscripts, e.g. Erms) over multi-letter ones. Single-
letter variables or parameters and user-defined function symbols are italic (e.g. x, Y, 5, f(x)). Multi-letter
variables, if cannot be avoided, are typeset in upright, not italic (e.g. RMSE).

Common, explicitly defined, functions are not italic, whether their symbols are single-letter (e.g. ['(x)
for the gamma function, B(y, z) for the beta function) or multi-letter (e.g. In x, exp(x + »)).

Textual subscripts or superscripts are not italic (e.g. Xmax, Tmin Where ‘max’ and ‘min’ stand for
maximum and minimum, respectively).

Mathematical constants are upright (e.g. e = 2.718..,, m= 3.141..,,i2 = -1). Also, mathematical operators
are upright (e.g. dx in integrals and derivatives, Ay for the difference operator on y).

Vectors, matrices and vector functions are bold and, for single-letter variables, italic. In particular,
vectors are usually denoted with lower case letters (e.g. X, w as vectors; f(x) as a vector function of a
vector variable) and matrices with upper case letters (e.g. A as matrix; AB as the product of matrices 4
and B, AT as the transpose of 4, det 4 as the determinant of a square matrix 4).

We use nested parentheses for grouping (e.g. In(a (b + c¢)) rather than In[a (b + ¢)]

To distinguish between stochastic variables from common variables we use the Dutch convention™,
i.e,, we underline the stochastic variables. Further, we use the curly brackets for sets (e.g. P{x < x} for a
scalar x or P{x < x} for a vector x; note that the argument of probability (P) is a set, not a number).

We use square brackets for expectations, variances and other operators on stochastic variables (e.g.
E[g], Var[g], cov[g, g]; note that E[g] is not a function of x and thus it should not be denoted as E(g).)
Definitions by mathematical equations are denoted using the symbols “="and ‘=’ (e.g. to define c as
the sum of a and b we writec:=a+ bora + b = c).

* Prepared by D. Koutsoyiannis and H.H.G. Savenije, 2013, doi: 10.13140/RG.2.2.10775.21922
T Ninth edition, http://www.bipm.org/en/si/si_brochure/

¥ http://www.unicode.org/reports/tr25

§ We avoid ‘a’ for year, because in SI ‘a’ is the prefix atto, meaning 10-18; also it is the symbol of an ‘are’, a
non-SI unit whose multiple hectare is accepted in SI (1 a=100 m?% 1 ha =100 a=104m2 =1 hm?).

** Hemelrijk, ]., 1966. Underlining random variables. Statistica Neerlandica, 20(1), pp.1-7.
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Main use of single-letter symbols

O WS xQ

o

a9 ~

—~

Sy xS

S SNSTSENTLHYE ITOR VT OO0 =

w
XY,z

coefficients of stochastic generators

as a standard, the beta function B(, )
autocovariance

as a standard, the differential operation d
time unit, discretization time step
as a standard, e = 2.71828...

probability density function
probability distribution function

time lag, dimensional
Hurst parameter (also, H,, = P 1/iand

Hz(,a) =3 1/i" are the pth harmonic numbers
of orders 1 and a, respectively).

identity matrix (in bold); as a standard, the
indicator function I,

time scale, dimensional
K-moment

Length of observation period
moment

Mandelbrot parameter

size of sample or vector

size of sample or vector
moment order

probability

moment order

correlation coefficient
power spectrum

time, dimensional

return period (as a superscript, ‘T’: transpose)
white noise process
frequency

as a standard, the Lambert W function W, (x)
stochastic variables and processes or time series

X,Y,Z cumulative stochastic processes or time series

~ [N% ~ R ITT™™>RK

oo TS N

~

Mz TR OS> X A

S XN /G- RTIA M VD 3 O M

<

w

time scale parameter in stochastic processes

as Latin A

background measure

as Latin B

climacogram; as a standard, the Euler’s
constant,y = 0.577216...

cumulative climacogram; as a standard, the
gamma function I'( ) and the incomplete gamma
function Ta( ).

dimensionless location parameter in
distributions

dimensionless shape parameter (lower-tail
index) in distributions; as a standard, the
Riemann zeta function ¢( )

as Latin Z

time lag, dimensionless

as Latin H

angle (phase); also ombrian parameter
bias correction factor

as Latin

time scale, dimensionless (also cumulants)

as Latin K

state scale parameter in distributions
A-coefficient

mean, moment

as Latin M

similar to n (size of sample or vector)

as Latin N

dimensionless shape parameter in distributions
(upper-tail index)

as Latin O
as a standard, ™= 3.14159...

standardized cross-climacogram
as Latin P

standard deviation

sum

time, dimensionless

as Latin T

structure function

as Latin Y

entropy production

Entropy

as Latin X
climacospectrum; as a standard, the digamma
function P (x) or the polygamma function

W)

frequency, dimensionless









Chapter 1. An introduction by examples

1.1 General setting

We will start our journey to the hydroclimatic extremes with some illustrative examples.
The purpose is to recognize the physical behaviours before we start discussing the
mathematical and technical weaponry to tackle the problems about the risk related to the
occurrence of extremes. In particular, by studying these examples we may understand
how hard (perhaps infeasible) it is (and most probably will ever be) to deal with extremes
using deterministic methods, while at the same time the theory of stochastics provides
suitable means to quantify the extremes and the related risks. Generally speaking,
deterministic approaches are popular as they are simple to understand and our education
system is based on them, but methods offered by stochastics are much more powerful.

An interesting example of a spectacular failure of a deterministic approach in
quantifying extremes is the so-called probable maximum precipitation (PMP), regarded
to be an upper bound of precipitation that is physically feasible. Such an upper bound is
philosophically and scientifically inconsistent. Moreover, the methods devised to
determine it, even though they are thought to be physically-based deterministic methods,
are statistical methods using bad statistics. Therefore, we will not consider approaches of
this type, while the reader interested to see the reasoning about the inconsistency of these
methods is referenced to Koutsoyiannis (1999, 2007) and Koutsoyiannis and Papalexiou
(2017). More recently, the National Academies of Sciences (2024), by providing a new
probabilistic definition of PMP, effectively abolished the concept, retaining only the term.

But what is stochastics, the term appearing also in the title of the book? In the modern
scientific vocabulary, it is used to collectively refer to (a) probability theory, (b) statistics
and (c) stochastic processes. More loosely speaking, stochastics is the mathematics of
stochastic variables and stochastic processes, which will formally be introduced in
Chapter 2 and Chapter 3. However, the notion of stochastics, long before being implanted
to the scientific vocabulary by Jacob Bernoulli, had originally appeared in ancient Greek
philosophical texts. These appearances both enrich and elucidate the notion of stochastics
and it is thus useful to trace back its different meanings through the history of philosophy
and science. Relevant information is contained in Digression 1.A, which helps us to
perceive the meaning of a stochastic approach, a rich meaning with several facets,
including those of being:

e probability theoretic;

e adept at quantifying the imprecise, the uncertain, or else the random;

¢ insightful—not superficial;

e capable of prediction in a probabilistic sense, using information from the past;
e suitable for the calculation of the mean, or expectation, of uncertain quantities.

Naturally, once we have adopted a stochastic approach, we will deal with
probabilities and expectations of extreme quantities, and our inferences will be based on
past observations of the processes of interest. Thus, the examples below make use of the
available information to make inferences of probabilistic type. But before we make
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inferences of quantitative type, we need to (a) identify the most important characteristics
of the process behaviour and (b) assume a model consistent with this behaviour. The
examples discuss three types of models, namely (1) the classical probabilistic model
according to which the different events are independent of each other, (2) a linear trend
model and (3) amodel assuming a certain type of dependence in time. By comparing these
three models with the help of the examples, we will form a general guide with directions
that we should follow in studying extremes, which are also the directions underlying the
next chapters of this book.

Digression 1.A: The meaning of stochastics

Literally, stochastics is a term of Greek origin, stemming from the adjective ‘stochasticos’
(otoxaoTikog), or better its feminine gender, ‘stochastice’ (ctoxaotikn). It is generated from the
verb ‘stochazesthai’ (otoyxalecBat), which in turn comes from the noun ‘stochos’ (otdx0g),
meaning the target.

Aristotle, in his treatise Nicomachean Ethics (written ~350 BC) uses the term stochastice in
its original meaning, related to the target, which, according to him, is the mean: “virtue, therefore,
is a balance [‘'mesotes’], in the sense that it is able to hit [as a target — ‘stochos’]| the mean”1.
Furthermore, in his treatise Rhetoric he uses the term with a metaphorical meaning, which could
be translated into English as guessing or guesswork: “men have a sufficient natural instinct for what
is true, and usually do arrive at the truth. Hence the man who makes a good guess at truth is likely
to make a good guess at probabilities [stochastically].”2

However, it was Plato who used the term with a meaning closer to the modern one, i.e.,
related to uncertainty. In his dialogue Philebus (written ~360 BC) he contrasts “arithmetic and the
sciences of measurement” to stochastics and parallels the latter with music, which “attains harmony
by guesswork [...] so that the amount of uncertainty mixed up in it is great, and the amount of
certainty small.”3

The contrast between stochasticity and precision is made clear later by Galenus using the
example of a city’s clock: “When a city is being built, let the following problem be set before those
who will inhabit it: they want to expertly know, not stochastically but precisely, on an everyday basis,
how much time has passed, and how much is left before sunset.”*

The connection of stochastics with prediction or forecast becomes evident in an excerpt from
Basilius Caesariensis who contrasts a prophet to a ‘stochastes’ (otoyxaotig, a noun usually
translated into English as diviner): “On the one hand, a prophet is he who foretells the future by
revelation of the Spirit; on the other hand, a stochastes is he who infers the future by prudence,
comparing similar states, and by the experience of forefathers.”s It seems that this comment has
influenced later scholars (e.g. Procopius) and perhaps determined the meaning of stochastic in
modern Greek, which is imaginative, insightful, thoughtful, cogitative, contemplative, meditative.

The transplantation of stochastics, as an international scientific term, to the modern
vocabulary is due to Jacob Bernoulli, evidently aware of the Greek language and literature, and in
particular of the passage from Plato’s Philebus mentioned above. In his famous book Ars
Conjectandi (written in Latin in 1684-89 but published after his death; Bernoulli, 1713) he writes:
“To conjecture about something is to measure its probability. Therefore we define the art of
conjecture, or stochastics, as the art of measuring the probabilities of things as exactly as possible,
to the end that, in our judgments and actions, we may always choose or follow that which has been
found to be better, more satisfactory, safer, or more carefully considered. On this alone turns all the
wisdom of the philosopher and all the practical judgment of the statesman.”¢

The term was revived by Bortkiewicz (1917; Russian economist and statistician of Polish
ancestry) and also by Slutsky (1925, 1928a,b, 1929; Ukrainian/Russian/Soviet mathematical
statistician and economist). It appears that the prevalence in USSR of the more sophisticated term
stochastic (over the term random) must have been related to political and ideological reasons
(incongruence of randomness with the dialectic materialism: models beyond strict deterministic
were considered with a priori suspicion; see Mazliak 2018).
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But it was Kolmogorov (1931) who made the term popular and widespread, as he introduced
the term stochastic process, also clarifying that process means change of a certain system.
Additionally, he used the term stationary to describe a probability density function that is
unchanged in time (while at the same time the system state changes). Soon after, Kolmogorov
(1933) introduced the modern and consistent definition of probability in an axiomatic manner,
based on the measure theory (see section 2.1).

1 «ueadtng Ti¢ dpa é0Tiv 1) dpeth, TOYAGTIKY Ye oUoa ToD péoov» (Aristot. Nic. Eth. 1106b, translation into
English adapted from that by H. Rackham. Cambridge, MA, Harvard University Press; London, William
Heinemann Ltd. 1934). The notion of ‘mesotes’ (ueadtng), loosely translated as balance, middle, mean
between a respective ‘too much’ and ‘too little’, is a key concept in Aristotle’s ethical philosophy and thus
to hit it as a target is important for him.

2 «ol @vBpwToL TPOG TO AANOES TEPUKATLY iKaVvAS Kal Ta TAslw TUyyavoval Tij¢ aAnbBelag: 510 Tpog Ta E&vdoéa
OTOYAOTIKWGS Exelv TOD Ouoiws éyovtog kal mpog tnv dAnbeidv éotiv» (Aristot. Rh. 1.1, translation into
English by W. Rhys Roberts, http://classics.mit.edu/Aristotle /rhetoric.1.i.html).

3 The complete passage is: ZQOKPATHX: «olov mac@v mov Texv@dv &v Ti¢ dptOuntikny ywpiln kai HeTpnTIKNY
Kal 0TATIKIV, WG ETT0G EITEIV PATAOV TO KATAAELITIOUEVOY EKAOTNG AV YiyvorTto. [...] TO yoiv ueta tadt’ eikalety
Aelmoit” Qv kal Tag aioOnoels kKataueAeT@v eumelpiq kal Tvi TP, TALS TS CTOXAOTIKIG TTPOCXPWUEVOUS
duvaueotv & moAdol Téyvag Emovoudlovaot, UEAETH Kal IOV TNV POUNY amelpyaouévag. [...] ovkodv ueotn
UEV TTOV UOVGLKT) TIPDTOV, TO GCUUPWVOV APUOTTOVOA 0V UETPW GAAX UEAETNG OTOXAOUD, KAl CUUTTACA AUTI|G
aUANTIKY, TO UETPOV EkAOTNG XOPSTIG T OTOYXA{EGOaL pepousvns Onpevovoa, WoTE TTOAD UEUELYUEVOY EXELV
TO U1 OaPES, GULKPOV O TO BEBatov.»

(SOCRATES: “For example, if arithmetic and the sciences of measurement and weighing were taken away from
all arts, what was left of any of them would be, so to speak, pretty worthless. |[...] All that would be left for us
would be to conjecture and to drill the perceptions by practice and experience, with the additional use of the
powers of guessing, which are commonly called arts and acquire their efficacy by practice and toil. [...] Take
music first; it is full of this; it attains harmony by guesswork based on practice, not by measurement; and flute
music throughout tries to find the pitch of each note as it is produced by guess, so that the amount of
uncertainty mixed up in it is great, and the amount of certainty small” (Plat. Phileb. 55e, translation by Harold
N. Fowler; Cambridge, MA, Harvard University Press; 1925.)

4 «modews kTi{ouévng mpokelcOw Toig oikfjoovowv avtny émiotacOdal fovdsaOal, un oTOXAOTIKODS dAM’
akpLBae, €@’ Exkaatne NUEPAS, OTTOO0V TE TAPEANAVOEY 16N ToT ypdvou Tol kat’ avtiv, 0mécov 6’ VTTGAoLTGY
oTwv dypt Svoews nAlov.» (FaAnvol Ilept Alxyvowoews kat Oepameiag TV €v Tif €kdotouv Wuxif
Apaptmuadtwv —  De  Dignotione et Curatione cujusque Animi  Peccatorum, 80,
http://www.poesialatina.it/_ns/greek/testi/Galenus/De_animi_cuiuslibet_peccatorum_dignotione_et _cur
atione.html).

5 «00K0DV TpoeNTNG U€v 0TIV, O KaTd dmokdAvty ToU IIveVuatog Tpoayopelwv 0 UEAAOV’ GTOXAGTIS 68,
0 O ovveaww €k Th¢ TOoU opolov mapabécews, O TNV mElpAV TOV TPOAABOVTWY, TO UEAAOV
ovvtekuaipouevos.» (Basilius, Epunveia eig tov mpo@nmv Hooiav —Enarratio in prophetam Isaiam,
3.102.26).

6 “Conjicere rem aliquam est metiri illius probabilitatem: ideoque Ars Conjectandi sive Stochastice nobis
definitur ars metiendi quam fieri potest exactissimé probabilitates rerum, eo fine, ut in judiciis & actionibus
nostris semper eligere vel sequi possimus id, quod melius, satius, tutius aut consultius fuerit deprehensum; in
quo solo omnis Philosophi sapientia & Politici prudential versatur” (Bernoulli, 1713).

1.2 Introductory notes on the examples

The examples that follow make use for some of the longest available records of
hydroclimatic observations. Only long records reveal the secrets of hydroclimate and its
behaviours, which seem peculiar as they are very different from our perception of
“random events”. As we will see with the help of the examples:

1. While classical probability and statistics adhere to the assumption that different
events are independent, this assumption is totally inappropriate when dealing
with hydroclimatic processes—and most other natural and artificial real-world
processes. An illustration of the difference is provided in Digression 1.B.


http://classics.mit.edu/Aristotle/rhetoric.1.i.html
http://www.poesialatina.it/_ns/greek/testi/Galenus/De_animi_cuiuslibet_peccatorum_dignotione_et_curatione.html
http://www.poesialatina.it/_ns/greek/testi/Galenus/De_animi_cuiuslibet_peccatorum_dignotione_et_curatione.html
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2. Popular “modern” approaches, such as those discovering “nonstationarity” are
even more inappropriate. Models of this type identify mostly linear trends
everywhere, trying to reconcile, in an inappropriate and inefficient manner, the
disagreement between natural behaviours and those resulting from the
independence assumption.

3. Less popular approaches assuming dependence of events in time, in particular the
type of dependence known as long-range dependence or persistence, can provide
consistent quantification of extremes and the uncertainty thereof, which turns out
to be much higher than captured by the other two alternatives.

One may think that an approach leading to high uncertainty is unsuccessful and, in
this respect, approaches of type 2 are advantageous. Indeed, such approaches have been
promoted as physically based and consistent with the popular anthropogenic global
warming literature and with the industry of climate models and their predictions (or
projections). If climate model information was really incorporated in the stochastic model
and if this information was consistent with reality, then, indeed, the resulting
nonstationary model, in which the trend was derived by a deterministic model, would be
a progress. However, climate model outputs in their original form (without cosmetic
reformations known as “bias correction” or “downscaling”) are irrelevant to reality
(Koutsoyiannis et al., 2008a; Anagnostopoulos et al., 2010), particularly if we focus on
extremes (Tsaknias et al., 2016). Attempts to incorporate climate model information
within a stochastic framework in a consistent manner (Tyralis and Koutsoyiannis, 2017;
Koutsoyiannis and Montanari, 2022b) lead to increased uncertainty or, in the best case,
in indifferent results. For these reasons, we will not consider approaches based on climate
model outputs in this book.

A necessary note about the examples which follow is that they do not refer to the
details of the marginal distribution of extremes. Certainly, this is quite an important issue
that will be studied in subsequent chapters—and of course there is a large body of
publications that study it. However, it is equally important to study the variation of the
occurrence of extremes in time, which actually is the focus of the examples. This problem,
which severely influences modelling of hydroclimatic risk and decisions related to it, has
not been given the deserved attention in the literature, or has been dealt with using naive
methods.

Digression 1.B Practical difference of dependence and independence

We assume that, using observational data of river discharge, we have concluded that the
probability of the event that the mean daily discharge at a certain location of a river exceeds 500
m3/s is small, equal to 1073. Practically, this means that this event happens on the average once
every 1000 days or once every 2.74 years. What is the probability that this event occurs for five
consecutive days?

Even though we have not yet defined what independence formally is (this will be done in
section 2.5 and 3.5 and Digression 3.B), we intuitively know that the probability of independent
events occurring all together equals the product of the probabilities of the separate events. Thus,
under independence, the probability sought is simply (1073)> = 107>, This is an extremely low
probability: it means that we have to wait on the average 10'° days or 2.74 trillion years, or about
200 times the age of the universe, to see this event happen. However, such events (successive
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occurrences of extreme events for multiday periods) have been observed in several historical
samples. This indicates that the independence assumption is not a justified assumption and yields
erroneous results. Thus, we should avoid such an assumption if our target is to estimate
probabilities for periods longer than the reference period. Methodologies admitting dependence,
i.e.,, based on the theory of stochastic processes, are more appropriate for such problems and will
result in probabilities much greater than 10~1°; these will be described in next chapters.

Now let us assume that for four successive days our extreme event has already occurred, i.e.,
that the mean daily river discharge was higher than 500 m3/s in all four days. What is the
probability that this event will also occur in the fifth day?

Many people, based on an unrefined intuition, may answer that the occurrence of the event
already for four days will decrease the probability of another consecutive occurrence, and would
be inclined to give an answer in between 10-3 and 1071°. This is totally incorrect. If we assumed
independence, then the correct answer would be exactly 1073; the past does not influence the
future. If we assume positive dependence, which is a more correct assumption for natural
processes, then the probability sought becomes higher, not lower, than 1073; it becomes more
likely that a flood day will be followed by another flood day.

As we will see in next chapters, similar things happen if we move from the daily scale of the
above example to the annual scale, or even larger. For example, if several warm winters have
occurred in a series, then the probability that the next winter would also be warm is increased—
not decreased. Ignorance of this simple truth may have severe consequences for those who aspire
to predict the future and those who believe their predictions. A didactic historical example is the
failed prediction of Hitler's meteorologist Franz Baur about the 1941-42 winter in Russia, which
marked the Battle of Moscow. Quoting a fascinating paper by Neumann and Flohn (1987)1:

Baur was requested by the headquarters of the German Air Force to distribute his long-range
forecasts to about 25 military offices. A forecast for winter 1941-42 was issued by him, probably
at the end of October 1941, based on regional climatology and (supposed) sun-spot-climate
relationships. The prediction called for a normal or a mild winter. Baur’s main justification for
this rested with the assertion that never in climatic history did more than two severe winters
occur in a row. Since both of the preceding two winters, 1939-40 and 1940-41, were severe in
Europe, he did not expect that the forthcoming winter would also be severe.

However, that winter, in which the first major Soviet counteroffensive of the war was launched,
turned out to be one of the coldest in record:

The cold outbreak of early December, coming after a cool to cold October and November [...]
gravely hit the German armies that were not appropriately clothed (Hitler expected to break
the resistance of the USSR before the coming of winter) and which were not equipped with
armaments, tanks, and motorized vehicles that could properly function even in a “normal”
winter in the northern parts of the USSR, let alone in a winter as rigorous as that of 1941-42.
On or about 8 December, K. Diesing, chief of the CWG and scientific adviser to the chief of the
Weather Service of the Air Force (General Spang), asked Flohn to listen in on a second earphone
to a telephone call to Baur. In the call, Diesing cited to Baur the reports of very low temperatures
in the East and asked him if he maintains his seasonal forecast in face of the reports. Baur’s
response was “the observations must be wrong”.

Those who interact with deterministic modellers of today may recognize in the last phrase in
quotation marks a pretty modern attitude.

1 A more detailed account about Baur’s infamous prognosis, which is now public, can be found in Wiuff
(2023).

1.3 Precipitation and its extremes as seen in a long record

Extreme behaviour in precipitation causes floods and droughts and therefore its study is
very useful. Notably, even when flow records exist, rainfall probability has still a major
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role in engineering design; for instance, in major hydraulic structures, the design floods
are generally estimated from appropriately synthesized design storms, which are rare
extreme-rainfall events (e.g. U.S. Department of the Interior, 1987).

Therefore, we start our exploration of extremes with precipitation. In our example
we study one of the longest daily rainfall records worldwide, that of Bologna, Italy
(44.50°N, 11.35°E, 53.0 m). The time series of observations is available online in the frame
of the Global Historical Climatology Network - Daily (GHCN-Daily; Menne et al., 2012)". It
is uninterrupted for the period 1813-2007, 195 years in total. For the most recent period,
2008-2018, daily data are provided by the online data repository Dext3r of ARPA Emilia
Romagna (Rete di monitoraggio RIRER).t With these additional data, the record length
becomes 206 years. The analyses that follow are based on the GHCN 195-year data set,
while the most recent 11-year data are used for validation purposes.

Figure 1.1 depicts the daily time series as well the (right-aligned) moving averages
and moving maxima for a time window of 10 years, representing the 10-year climatic
values (for clarification of the meaning of climatic in our context see Digression 1.C). The
most spectacular behaviour shown in the figure is the changing climate: The 10-year
climatic average daily rainfall has been changing between a minimum of 1.2 mm (having
occurred in the 1820s) and a maximum of 2.5 mm (having occurred at the decade ending
in 1902)—more than twice the minimum. At the same time the 10-year climatic value of
the maximum daily rainfall has varied between a minimum of 48.5 mm (having occurred
in the 1820s) and a maximum of 155.7 mm (having occurred in the 1930s)—more than
three times the minimum. These changes do not follow a linear pattern but have the form
of long-term non-periodic fluctuations, up and down. In the most recent years, after 1950,
there is a roughly increasing trend in both climatic indices, but such increasing trends
were also observed before 1900, followed by drops thereafter.

A popular approach to deal with such changing patterns is to assume linear trends;
publications adopting this approach abound (see Iliopoulou and Koutsoyiannis, 2020). A
linear trend is presumably a deterministic model (even though we use the data to fit it),
as it describes the change of the mean of the process as a deterministic linear function of
time. Here it is pertinent to recall the good practice of fitting deterministic models to data,
which is typical for hydrological modelling, albeit commonly overlooked in fitting trend
models. This practice is the so-called split sample testing, in which the available record is
split into two segments one of which is used for calibration and the other for validation,
as emphatically suggested by KlemeS (1986).

We have applied the split-sample technique to the annual values of some indices
extracted from the Bologna rainfall record. These are:

* GHCN Version 3; data retrieved on 2019-02-17 from https://climexp.knmi.nl/gdcnprep.cgi?WMO=
ITE00100550.

T Data retrieved on 2019-02-17 from http://www.smr.arpa.emr.it/dext3r/. In particular, the data from the
station Bologna Idrografico (coordinates 44.499883°N, 11.346156°E, 84.0 m, practically the same as those
given for the GHCN station (except a 31 m difference in the elevation, perhaps indicating that this particular
station is located at the roof of a building), were used except for year 2008 for which no data are provided
for this station. For this year, as well as for very few days with missing values in other years, the daily
precipitation values of the station Bologna Urbana (44.500754°N, 11.328789°E, 78.0 m) were used instead.


https://climexp.knmi.nl/gdcnprcp.cgi?WMO=ITE00100550
https://climexp.knmi.nl/gdcnprcp.cgi?WMO=ITE00100550
http://www.smr.arpa.emr.it/dext3r/
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e theannual total precipitation, i.e., the sum of daily precipitation from all (wet) days
of each year;

e the annual maximum daily precipitation, i.e., the greatest of all daily rainfall depths
over the (wet) days of a specific year;

e the probability dry, i.e., the ratio of the days with zero precipitation to the total
number of a year’s days (365 or 366); and

e the annual average wet-day precipitation, i.e., the ratio of the annual total
precipitation to the number of wet days.

The annual maximum daily rainfall is related to the generation of floods. At the other end
of extremes, as the annual minimum daily rainfall does not vary but it is always zero, an
index of extreme behaviour is the probability dry, related to the occurrence of droughts.

Plots of these annual indices are shown in Figure 1.2 along with fitted trends. Using
the split-sample technique, we fitted the linear model on the mean of each index on the
most recent part of the GHCN time series, namely the period 1950-2007. The linear trend
model is

u(t) = a+bt (1.1)

where u is the mean of each process (index as a function of time), t is time and a and b are
the parameters fitted by the standard linear regression method. As the simplest possible
alternative, the constant mean model was used (not shown in the graph), i.e.,

u(t) = a = constant (1.2)
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Figure 1.1 Plot of the time series of daily rainfall in Bologna, along with moving averages and
moving maxima for a time window of 10 years (right-aligned, i.e., the value plotted at a specific
year is the average or the maximum of the previous 10 years). The lines in darker colour represent
the GHCN time series while those in lighter colour represent the newer data which are not
included in the GHCN time series.
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Figure 1.2 Plots of annual indices related to the (daily) rainfall process, namely annual total
precipitation, annual maximum daily precipitation, probability dry and annual average wet day
precipitation, with trends fitted on the most recent part of the GHCN time series, namely the
period 1950-2007, for which the graphs are plotted with thicker lines. For the plots of the bottom
row, namely the probability dry and the annual average wet day precipitation, trends are also
plotted for the earliest 25-year period, 1813-1837. The newer data that are not included in the
GHCN time series are plotted with dotted lines.

Two validation periods were used, namely the earlier period 1813-1949 of the GHCN
time series, and the next period with the newer data of 2008-18, not contained in the
GHCN time series. The comparison of the two models for each of the two validation
periods is made in Table 1.1 in terms of the root mean square error in each case, defined
as

n
1
ERMS = EZ(xT - .u‘r)z (13)
=1
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where x; denotes the tth item of the observed time series, u; = u(zD), and D is a time
step. Clearly, the comparison shows that the simpler, constant-mean model outperforms
the linear model in all cases and in both validation periods. The inferior performance of
the linear model is also seen visually in Figure 1.2. Therefore, we have no good reason to
choose the linear-trend model.

Table 1.1 Root mean square error for the two validation periods and the two models, linear trend
and constant mean, fitted to the calibration period (1950-2007).

Annual total Annual maxi- Probability Annual average
precipitation mum daily pre- dry (-) wet-day pre-
(mm) cipitation (mm) cipitation (mm)
Validation period 1813-1949
Assuming linear trend 206.9 36.8 0.194 6.12
Assuming constant mean 204.0 21.8 0.076 2.38
Validation period 2008-2018
Assuming linear trend 138.3 16.3 0.064 1.54
Assuming constant mean 127.7 8.7 0.053 0.85

Actually, there are additional reasons not to choose the linear-trend model, even if its
performance was good. These are related to the poor logical background (or complete
lack thereof) in using time per se as an exploratory variable in a natural process, as well
as in fundamental concepts of stochastics, namely stationarity and ergodicity, which
despite being fundamental are widely misunderstood. These concepts will be discussed
in Chapter 3, while the reasons for excluding such models (including the exceptions in
which such models are valid) are discussed elsewhere (Koutsoyiannis, 2011a; Montanari
and Koutsoyiannis, 2014; Koutsoyiannis and Montanari, 2015). And even assuming that
there were no theoretical obstacles and inferior performance, again we might adopt the
constant mean model because of its parsimony (Iliopoulou and Koutsoyiannis, 2020).
Specifically, philosophical reasoning (principle of parsimony, also known as Occam’s
razor) and practical considerations (model uncertainty) suggest preferring the more
parsimonious model (Gauch, 2003). Quantification of such comparison of the model,
which is not given here, is routinely done within stochastics—cf. the Akaike (1973, 1974)
criterion and the Bayesian information criterion (Schwarz, 1978), as well as Serinaldi and
Kilsby (2015), Serinaldi et al. (2018), and Iliopoulou and Koutsoyiannis (2020).

But even without these theoretical reasons, one can easily understand the absurdity
of the linear-trend model by examining Figure 1.2. For example, if we assumed that the
record of measurements did not reach that far back in time and we had adopted the linear-
trend model for the annual maximum daily precipitation, we would conclude that about
1800 there was no intense rainfall at all, and that in the 18th century the precipitation was
negative.

To further this example, let as make a thought experiment and assume that in the
beginning of the 19t century there lived in the area three scientists, Drs A, B and C. Dr A
kept records of the dry days of each year and Dr B observed the storm severity. In the
1830s, Dr A cast the prediction that rainfall will totally cease by 1850. In contrast, Dr B
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said that storms become more severe and by 1850 the storm activity will be tripled at
least. Then came Dr C who reconciled the two theories stating that dry becomes drier and
wet becomes wetter, and that the storms are much more severe while the regular rainfall
events are becoming more and more rare, and will soon disappear. Now if we look again
at Figure 1.2, in particular the bottom panels where trends are also plotted for the 25-year
period 1813-1837, we will understand that these claims would stand if we were ready to
accept the trend model as a decent one. Fortunately, however, scientists of our modern
epoch do not use such naive approaches to make groundless predictions, particularly of
catastrophic or even apocalyptic events™.

Now having rejected the widespread practice of fitting linear trends, the question is,
can we think a better alternative? Apparently, the answer is positive within stochastics.
Otherwise, it would be a big failure, because the behaviour seen in our rainfall example is
neither a peculiarity of rainfall, nor one of Bologna. It is quite common everywhere, even
though we often do not see it for at least two reasons: (a) we do not have long enough
records and (b) we are misled by the fact that we learnt probability by examples such as
idealized (not even real) dice and roulettes.

In an idealized die, the probabilities of the six possible outcomes are always the same,
irrespective of the results of previous throws. Macroscopically this simple system
undergoes no change at all. That is, if we take the moving average of very many outcomes,
we will have a flat line. In real-world processes the situation is different. There is change
all the time and over all scales. Also, all events depend on each other. Dependence and
change are closely related. We will see this relation later on (Digression 3.B). For now, we
may take a note that dependence should not be interpreted as memory, as typically seen
in literature, but as change. In particular, long-range dependence is not long-term
memory but long-term change.

How is change quantified in stochastics? A simple way would be to describe some of
the statistical characteristics as deterministic functions of time, but this is neither so
effective nor rational, as we have seen in this Bologna rainfall example. Another option is
to make this quantification in a stochastic, rather than deterministic, manner. In this case
we view the change as variability across different time scales. In turn, the variability is
quantified in terms of the variance.

Referring again to the annual time series of rainfall indices of Bologna for the entire
206-year period, which we denote as x4, x5, ..., X306, We take the following steps:

e We calculate the estimate 7(1) of the variance y(1), where ‘1’ indicates the time
scale of 1 year, as:
o =2+ = ;e
fi=

)

— - (1.4)

7(1) =

* By the way, by examining the frequency of word usage in books with the help of Google’s Ngram Viewer
(https://books.google.com/ngrams/), we see that the word ‘catastrophic’ was practically not used in the
19t century but its frequency per million of words increased linearly in the 20t century to reach a recent
peak value of 3.6. The usage of the word ‘apocalyptic’ peaked in 1808 with a frequency of 2.8 and again
more recently in 1995 with a frequency of 3.6 (Koutsoyiannis, 2013b).


https://books.google.com/ngrams/
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where /i is the estimate of the mean and n = 206 is the sample size. The notion of
estimate, which we denote with the accent “*”, will be clarified later on, in Chapter
4.

e We form a time series at time scale 2 (years) by averaging pairs of consecutive
items of the time series, i.e.:

@._X1tT X o _X3tXy 2 . X205 1 X206

1 ) » Xy : ) y e Xq03 T )

and we calculate the estimate of the variance ¥(2) in a similar manner.

(1.5)

e Werepeat the same procedure to form time series at time scales 3, 4, ..., up to scale
20 (1/10 of the record length) and calculate the variances 7(3),7(4),... 7(20).

e We plot (in double logarithmic axes) the variance ¥ (x) as a function of time scale
K.

The function of the variance vs. time scale is called the climacogram™ (Koutsoyiannis,
2010). If we have assumed a model for our process and we determine the variance, y(k),
from the model, we have the theoretical climacogram. If we estimate the variance, ¥ (i),
from a time series, then we have the empirical climacogram. Notably, if we have produced
the times series from a model, the empirical climacogram will not necessarily coincide
with the theoretical, because there is estimation bias. To make them coincide, we must
add the bias to the theoretical climacogram. This is not difficult because, once we know
the model, the bias is readily determined from that model by a simple and explicit
relationship (see sections 4.3 for the definition of bias and 4.6 for its calculation).

Now, if the time series x; represented the so-called white noise, i.e., a pure random
process, in which all events are independent of each other, the double logarithmic plot of
the climacogram would be a straight line with slope -1; the proof is straightforward (see
equation (3.50)). In real-world processes, the slope is different from -1, designated as
2H — 2, where H is the so-called Hurst parameter which takes on values in the interval (0,
1). We will see later on (section 3.7) that H is identical to the entropy production in
logarithmic time. The case where this slope is constant for all time scales corresponds to
a simple scaling behaviour (e.g. Koutsoyiannis, 2006b), or the power law:

y(x) = —K};(_lz),, (1.6)

which defines the Hurst-Kolmogorov (HK) process, a name giving credit to Hurst (1951),
who was the first to discover this behaviour in natural processes, and to Kolmogorov
(1940) who was the first to introduce the process as a mathematical object.

* The term climacogram, from the Greek xAwwakdypauua, deriving from rAiuaé (climax = scale, as well as
ladder; pl. kAluakeg) and ypduua (gramma = written, drawn), was coined by Koutsoyiannis (2010) and could
be translated in English as scale(o)gram, but the latter term is used for another concept. Climacogram should
not be confused to climatogram which has another meaning related to climate and, specifically, the climatic
regime of temperature and precipitation at a site or area. The term xAiua (climate) was first used in the
Hellenistic period by Hipparchus (see Digression 1.C), in relationship to the slope of the sun’s rays, and is
different from the other derivative noun xA{uaé. Interestingly though, both kA{uaé and kAiua are eventually
etymologized from the same verb kAiverv (klinein = to slope).
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Figure 1.3 Empirical and theoretical climacograms of annual indices of daily rainfall at Bologna:
(left) probability dry; (right) annual average wet-day precipitation. Note that bias is a negative
number.

It is easily seen that the value H = 1/2 corresponds to white noise as the slope is -1.
High values of H (> 1/2) indicate enhanced change at large scales, also known as long-term
persistence, or strong clustering (grouping) of similar values. This is quite common in
natural processes (0’Connell et al., 2016; Dimitriadis et al., 2021). Low values of H (< 1/2)
indicate quite a different behaviour, called antipersistence. This is often confused with a
periodic behaviour and hence called quasi-periodic (because the period of fluctuations is
not constant). Such behaviour is much less frequent in hydroclimatic processes.

Now we apply this method to the annual indices of daily Bologna rainfall. Figure 1.3
depicts the climacograms of the probability dry and the annual average wet-day
precipitation. In both cases, the observed behaviour is spectacularly different from white
noise while the Hurst-Kolmogorov behaviour is evident with Hurst parameter H as high
as 0.95 for the probability dry and 0.90 for the wet-day precipitation. The situation is
somewhat more complex for the annual total rainfall (not shown in Figure 1.3), in which
the slope is different for small and large scales, an effect already known and analysed in
Markonis and Koutsoyiannis (2016). The slope for large scales again suggests a strongly
persistent behaviour with Hurst parameter H = 0.86. The annual maxima series tend to
hide the Hurst behaviour, as explained in [liopoulou and Koutsoyiannis (2019) and indeed
the estimated H in this case is much smaller, ~0.60 (again not shown in Figure 1.3).

The Bologna precipitation example, as well as those that follow and many others, help
shape a classification of change shown in the hierarchical chart of Figure 1.4. In simple
systems (left part of the graph) the change is regular, either periodic or aperiodic. Regular
change in simple cases is predictable in deterministic terms, using equations of dynamical
systems. But this type of change is rather trivial. More interesting are the more complex
systems at long time horizons (right part of the graph), where change is unpredictable in
deterministic terms, or random. Pure randomness, like in classical statistics, where
different variables are identically distributed and independent, is a useful model for
idealized dice experiments, but in most natural systems it is inadequate. A structured
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randomness, like in the HK process, should be assumed instead. The structured
randomness is enhanced randomness, expressing enhanced unpredictability of enhanced
multi-scale change.
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Figure 1.4 Classification of change (from Koutsoyiannis 2013b).

Digression 1.C: What is climate?

As is the case with stochastics (Digression 1.A), the concept of climate is an old one. Aristotle in
his Meteorologica describes the climates on Earth in connection with latitude but he uses a
different term, crasis (kpdoig!, literally meaning mixing, blending of things which form a
compound, temperament).2 The term climate (kAiua, plural kAiuata) was coined as a geographical
term by the astronomer Hipparchus3 (190 -120 BC). He was the founder of trigonometry but is
most famous for his discovery and calculation of the precession of the equinoxes (uetantwaolg
lonueptav) by studying measurements on several stars. In the 20t century, this precession would
be found to be related to the climate of Earth and constitutes one of the so-called Milankovitch
cycles. The term climate originates from the verb kAi{verv, meaning ‘to incline’ and originally
denoted the angle of inclination of the celestial sphere and the terrestrial latitude characterized
by this angle (Shcheglov, 2007).

Hipparchus’s Table of Climates is described by Strabo the Geographer (63 BC — AD 24), from
whom it becomes clear that the Climata of that Table are just latitudes of several cities, from 16°
to 58°N (see Shcheglov, 2007, for a reconstruction of the Table). However, Strabo himself uses the
term climate with a meaning close to the modern one.* Furthermore Strabo, defined the five
climatic zones, torrid, temperate and frigid, as we use them to date.>

The term climate was used with the ancient Greek geographical meaning until at least 1700
as imprinted in a dictionary of that era.6 A search on old books? reveals that the term climatology
appears after 1800. With the increasing collection of meteorological measurements, the term
climate acquires a statistical character as the average weather. Indeed, the geographer A.J.
Herbertson (1907) in his book entitled “Outlines of Physiography, an Introduction to the Study of
the Earth”, gave the following definition of climate, based on, but also distinguishing it from,
weather:
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By climate we mean the average weather as ascertained by many years’ observations. Climate
also takes into account the extreme weather experienced during that period. Climate is what on
an average we may expect, weather is what we actually get.8

Herbertson also defined climatic regions of the world based on statistics of temperature and
rainfall distribution, a work that was influential for the famous and most widely used Képpen
(1918) climate classification; this includes six main zones and eleven climates which are on the
same general scale as Herbertson’s (Stamp, 1957). Herbertson’s definition is kept virtually
without essential changes till now; for example, Lamb (1972) states:

Climate is the sum total of the weather experienced at a place in the course of the year and over
the years. It comprises not only those conditions that can obviously ‘near average’ or ‘normal’
but also the extremes and all the variations.

Modern scientific glossaries also provide similar definitions of climate. We quote a few:

e By the USA National Weather Service:
Climate - The composite or generally prevailing weather conditions of a region, throughout the
year, averaged over a series of years.?

e By the Climate Prediction Center of the latter:
Climate - The average of weather over at least a 30-year period. Note that the climate taken
over different periods of time (30 years, 1000 years) may be different. The old saying is climate
is what we expect and weather is what we get.10

e By the American Meteorological Society1,

Climate — The slowly varying aspects of the atmosphere-hydrosphere-land surface system. It is
typically characterized in terms of suitable averages of the climate system over periods of a
month or more, taking into consideration the variability in time of these averaged quantities.
Climatic classifications include the spatial variation of these time-averaged variables.
Beginning with the view of local climate as little more than the annual course of long-term
averages of surface temperature and precipitation, the concept of climate has broadened and
evolved in recent decades in response to the increased understanding of the underlying
processes that determine climate and its variability.

In turn, the climate system is defined as:

The system, consisting of the atmosphere, hydrosphere, lithosphere, and biosphere, determining
the earth’s climate as the result of mutual interactions and responses to external influences
(forcing). Physical, chemical, and biological processes are involved in the interactions among
the components of the climate system.

e Bythe WMO (1992):
C0850 climate — Synthesis of weather conditions in a given area, characterized by long-term
statistics (mean values, variances, probabilities of extreme values, etc.) of the meteorological
elements in that area.
C0900 climate system - System consisting of the atmosphere, the hydrosphere (comprising the
liquid water distributed on and beneath the Earth’s surface, as well as the cryosphere, i.e. the
snow and ice on and beneath the surface), the surface lithosphere (comprising the rock, soil and
sediment of the Earth’s surface), and the biosphere (comprising Earth’s plant and animal life
and man), which, under the effects of the solar radiation received by the Earth, determines the
climate of the Earth. Although climate essentially relates to the varying states of the atmosphere
only, the other parts of the climate system also have a significant role in forming climate,
through their interactions with the atmosphere.

e BytheIPCC (2013b):
Climate - Climate in a narrow sense is usually defined as the average weather, or more
rigorously, as the statistical description in terms of the mean and variability of relevant
quantities over a period of time ranging from months to thousands or millions of years. The
classical period for averaging these variables is 30 years, as defined by the World
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Meteorological Organization. The relevant quantities are most often surface variables such as
temperature, precipitation and wind. Climate in a wider sense is the state, including a statistical
description, of the climate system.

A useful observation is that all definitions use the term “average” (an exception is the
definition by Lamb who uses the loose term sum total with the same meaning). Thus, by its
definition, climate is a statistical concept. And since climate is not static but dynamic, it is better
to think of it as a stochastic concept.

By scrutinizing these definitions, several questions may arise. A first one might be: Why “at
least a 30-year period”? Is there anything special with the 30 years? Probably this reflects a
historical belief that 30 years are enough to smooth out “random” weather components and
establish a constant mean. In turn, this reflects a perception of a constant climate—and a hope
that 30 years would be enough for a climatic quantity to get stabilized to a constant value. It can
be conjectured that the number 30 stems from the central limit theorem (see section 2.17) and in
particular the common (but not quite right) belief that the sampling distribution of the mean is
normal for sample sizes over 30 (e.g. Hoffman, 2015). Such a perception roughly harmonizes with
classical statistics of independent events. This perception is further reflected in the term anomaly
(from the Greek avwualia, meaning abnormality), commonly used in modern climatology to
express the difference from the mean. Thus, the dominant idea is that a constant climate would
be the norm and a deviation from the norm would be an abnormality, perhaps caused by an
external agent (a forcing). However, such a belief is incorrect. The examples given in this chapter
support the idea of an ever changing climate.

Actually, this was pointed out almost 50 years ago by Lamb (1977):

the view, regarded as scientific, which was widely taught in the earlier part of this century, that
climate was essentially constant apart from random fluctuations from year to year was at
variance with the attitudes and experience of most earlier generations. It has also had to be
abandoned in face of the significant changes in many parts of the world that occurred between
1900 and 1950 and other changes since.

Clearly, however, even the later generations were not able to get rid of this “view regarded as
scientific”, which remains dominant as manifested by the popularity of the term climate change
(as if change is not inherent to climate) and reflected in the above definitions. It is noted, though,
that the changing character of climate is recognized in the definition of the American
Meteorological Society, which highlights the “slowly varying aspects of the atmosphere-
hydrosphere-land surface system”.

A second question inspired by Climate Prediction Center’s definition is: Why the climate
taken over 30 or 1000 years is different? The obvious reply is: Because different 30-year periods
have different climate. This contradicts the tacit belief of constancy and harmonizes with the
perception of an ever-changing climate. With the latter perception, Herbertson’s idea (whose
origin the Climate Prediction Center seems not aware of, referring to as an “old saying”) that
“climate is what we expect, weather is what we get” can be reformulated as “weather is what we get
immediately, climate is what we get if you keep expecting for a long time” (Koutsoyiannis, 2011a).

As many of the above definitions refer to weather, it is useful to clarify its meaning, noting
that it represents a popular notion, often used with respect to its effects upon life and human
activities, rather than a rigorously scientific one. Interestingly, in its colloquial use in Greek and
Romance (Neo-Latin) languages, weather is almost indistinguishable from time (Greek: kaip6g;
[talian: tempo; French: temps; Spanish: tiempo; Portuguese: tempo). On the other hand, in English
and Greek, weather refers to short-scale variations in the atmosphere and is distinguished from
climate; note however that in colloquial Spanish and Portuguese there is no such distinction (the
term clima is used interchangeably with tiempo and tempo, respectively). In scientific terms, the
definition given by the WMO (1992) is this:

W0410 weather - State of the atmosphere at a particular time, as defined by the various
meteorological elements.
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Based on the above discussion, here we attempt to give a definition of climate, which is used
in this book, in a hierarchical manner (avoiding circular logic) starting from the concept of climatic
system, as follows:

e (limatic system is the system consisting of the atmosphere, the hydrosphere (including its
solid phase—the cryosphere), the lithosphere and the biosphere, which mutually interact
and respond to external influences (system inputs) and particularly those determining the
solar radiation reaching the Earth, such as the solar activity, the Earth’s motion and the
volcanic activity.

e (limatic processes are the physical, chemical and biological processes, which are produced by
the interactions and responses of the climatic system components through flows of energy
and mass, and chemical and biological reactions.

e C(limate is a collection of climatic processes at a specified area, stochastically characterized
for a range of time scales.

According to this latter definition—and given that the term process means change
(Kolmogorov, 1931), climate is changing by definition. Thus, there is no need to define or use the
term climate change; actually, this latter term, which appeared in literature only after the 1970s,
serves non-scientific purposes (Koutsoyiannis, 2020b,c, 2021). Change occurs at all scales
(Koutsoyiannis, 2013b), and there is nothing particular in any specific one, like the commonly
assumed 30-year scale. By studying long observation series of atmospheric and hydrological
processes, one would see that the only characteristic scale with clear physical meaning is the
annual—beyond that there is no objective “border scale” that would support a different definition
of climate. The above definition includes all scales beyond the annual, thus leaving out the smaller
scales (e.g. of several minutes or days) to be associated to weather.

The stochastic characterization, appearing in the definition of climate, includes all statistics
used in other definitions, such as averages, variability, extremes, etc, and collectively
encompasses all related concepts of the scientific areas of probability, statistics and stochastic
processes (Koutsoyiannis, 2021).

The main distinction between weather and climate is this. While weather, according to its
definition by WMO (1992) which is kept unchanged here, refers to a particular time, climate refers
to the entire climatic process, throughout all times.

As stated in the WMO (1992) definition of climate quoted above, the typical use of the term
climate relates to the atmosphere only, leaving out the other parts of the climatic system.
However, since the climatic system includes the hydrosphere, there is no reason to exclude the
hydrological processes from the climatic processes. Therefore, our definition includes them.
Nevertheless, to give more emphasis on the inclusion of hydrological processes, the term
hydroclimatic has been used even in the title of the book. This provides additional clarity or
emphasis, butitis rather a pleonasm as the hydrosphere is already included in the climatic system
and water is, in fact, the most important driver of climate (Koutsoyiannis, 2021).

1 The same root has the modern Greek word xpaoi for wine. Yet the term is still in use today in Greek for
derivative names related to climate such as evxpatog¢ (well-tempered, temperate) and evkpaoia (eucracy).
2 [Aristot. Mete., 362b.17] «...0 Te yap Adyos deikvuorv 3Tt €mil mAGTog UéV [TV oikovpévnv] dptotat, To 6¢
KUKAQW OUVATITELY EVOEXETAL OLA TNV KPAOLY, -00 yap UmepPardel Ta kavuata kal To Piiyos katd uiKog, aAl’
éml mAdtog, Wot’ &l uij mov kwAvel BadtTng TAROOG, dmav elval mopevoLuov, —kal KaTd T& parvoueva mwepi
TE TOVG TAOTGS Katl TG mopeiag»

“... theoretical calculation shows that [inhabited Earth] is limited in breadth, but could as far as climate is
concerned, extend round the Earth in a continuous belt; for it is not difference of longitude but of latitude that
brings great variation of temperature, and if were not for the ocean which prevent it, the complete the
complete circuit could be made. And the facts known to us from journeys by sea and land also confirm the
conclusion...” (English translation by H.D.P. Lee, Harvard University Press, Cambridge, Mass. USA, 1952).

3 In his Commentary on Aratus (Immdpyov Twv Apdtov kat Evdoéov pawvouévwv eényrjoews; Shcheglov,
2007).
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4 [Strab. 1.1] «wdvteg, doot TOTWY (SL16TNTAG AEYELV EMiyelpoToLy, oikelwe TpoodmTovVTalL Kal TGV ovpaviwv
Kal YewUETpiag, oxyfuata kai usyén kal amrootiuara kai KAUata SnAoUvTes kai QAT kal Yuxn kai amAdg
TNV TOU TEPLEYOVTOG PUGLY.»

“Every one who undertakes to give an accurate description of a place, should be particular to add its
astronomical and geometrical relations, explaining carefully its extent, distance, degrees of latitude, and
‘climate’—the heat, cold, and temperature of the atmosphere.” (English translation by H.C. Hamilton, and W.
Falconer, M.A.,, 1903)

5 [Strab. 2.3] «altn 6¢ t@ €ic tag [mévte] {Wvag uepiou®d Aaufdver v olkelav Sidkpiotv: al te yap
katepvyuévar 6vo tnv EAAenpry Tol OdATovs VTTayopevovaLY LG uiav ToU TEPLEXOVTOG PUALY auvayousval, al
Te eUKpaToL TapanAnoiwg eic piav TNy ueodtnta dyovra, gic 8¢ v Aotmny 1 Aowmn) pla kai Stakekavuévn.»
“In the division into [five] zones, each of these is correctly distinguished. The two frigid zones indicate the want
of heat, being alike in the temperature of their atmosphere; the temperate zones possess a moderate heat, and
the remaining, or torrid zone, is remarkable for its excess of heat.” (English translation by H.C. Hamilton, and
W. Falconer, M.A., 1903). Notice the use of the Aristotelian crasis (kpdotg) in the term elkpartot (temperate)
zZones.

6 The following definition appears in Moxon (1700): “Climate, From the Greek word Clima. of the same
signification; it is a portion of the Earth or Heaven contained between two Parallels. And for distinction of
Places, and different temperature of the Air, according to their situation; the whole Globe of Earth is divided
into 24 Northern, and 24 Southern Climates, according to the half-hourly encreasing of the longest days; for
under the Equator we call the first Climate: from thence as far as the Latitude extends, under which the longest
day is half an hour more than under the Equator, viz. 12 hours and an half, is the second Climate: where it is
encreased a whole hour, the third Climate: and so each Northerly and Southerly Climate respectively hath its
longest day half an hour longer than the former Climate, till in the last Climate North and South, the Sun Sets
not for half a year together, but moves Circularly above the Horizon.”

7 https://books.google.com /ngrams/graph?content=climatology.

8 Thus, Herbertson appears to be the father of the famous quotation “climate is what we expect, weather is
what we get”, often attributed to Mark Twain. What Twain has actually written, attributing it to an
anonymous student, is “Climate lasts all the time and weather only a few days”; see
https://quoteinvestigator.com/2012/06/24 /climate-vs-weather/.

9 https://w1l.weather.gov/glossary/index.php?letter=c

10 https://www.cpc.ncep.noaa.gov/products/outreach/glossary.shtml#C

11 http://glossary.ametsoc.org/wiki/Climate

1.4 Temperature and its extremes as seen in a long record

Next, we study temperature data of the same site, Bologna, Italy (coordinates same as in
the GHCN station above), again one of the longest temperature records worldwide, which
has been thoroughly studied for that reason. The time series of average daily temperature
is available online in the frame of the European Climate Assessment & Dataset (ECAD;
Klein Tank et al., 2002).” It is uninterrupted for the period 1814-2003, 190 years in total.
For the most recent period, 2004-2018, daily data are provided by the online data
repository Dext3r, described above.f With these additional data, the record length
becomes 205 years. The analyses that follow were based on the ECAD 190-year data set,
while the most recent data were used for validation purposes. Additional time series for

* Data retrieved on 2019-02-17 from https://climexp.knmi.nl/ecatemp.cgi?WM0=169.

T In particular, the average daily temperature values of the station Bologna Urbana (44.500754°N,
11.328789°E, 78.0 m) were used (note that no temperature data are provided for Bologna Idrografico,
which was used for rainfall). The data at Bologna Urbana were adjusted by adding a constant temperature
difference of 0.19 °C to become consistent with those of the ECAD station. To find this adjustment, as there
is no common period of observation between the ECAD station and Bologna Urbana, a third station whose
observations have common periods with both, namely the Bologna Meteo station (44.501223°N,
11.328197°E, 80.0 m) was used.


https://books.google.com/ngrams/graph?content=climatology
https://quoteinvestigator.com/2012/06/24/climate-vs-weather/
https://w1.weather.gov/glossary/index.php?letter=c
https://www.cpc.ncep.noaa.gov/products/outreach/glossary.shtml#C
http://glossary.ametsoc.org/wiki/Climate
https://climexp.knmi.nl/ecatemp.cgi?WMO=169
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earlier periods that go back to 1715 have been compiled and made available online by
Camuffo et al. (2017a,b), but they were not used in this study except as background
information.

Figure 1.5 shows plots of the time series of daily temperature, along with moving
averages and moving maxima and minima for a time window of 10 years (right-aligned),
representing the 10-year climatic values. We may first observe that the temperature has
varied from -13 to 34.2 °C, a range of 47.2 °C, which would be much higher than 50 °C if
we also considered the diurnal variation. The minimum value of -13 °C occurred on
January 1830 and the maximum of 34.2 °C on August 2017. This latter value is thus not
contained in the ECAD time series, whose maximum is 33.8 °C, occurring on August 1947.
If we focus on the 10-year climatic values we will see again change, which however is
small compared to the 47.2 °C range. Specifically, the 10-year climatic average daily
temperature has been changing between 12.6 °C (for the 10-year period ending in 1861)
and 15.6 °C (for 2007). At the same time, the 10-year climatic value of the maximum daily
temperature has varied between 29.6 °C (for 1904) and 34.2 °C (in 2016 or 33.8 °C in
1947). Finally, the 10-year climatic value of the minimum daily temperature has varied
between -13 °C (for 1830) and -2.4 °C (in 2007 or -3.8 °Cin 1917).
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Figure 1.5 Plot of the time series of daily temperature in Bologna, along with moving averages
and moving maxima and minima for a time window of 10 years (right-aligned). The lines in darker
colour represent the ECAD time series while those in lighter colour represent the data of the most
recent years, which are not included in the ECAD time series.

As in precipitation, the climatic changes of temperature do not follow a linear pattern
but have the form of long-term non-periodic fluctuations, up and down. After 1970 the
trends are increasing for average, maximum and minimum temperatures, but such
increasing trends were also observed in other periods (most prominently after 1900),
lasting several decades and followed by drops thereafter. As shown in Figure 1.6, the
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recent trends for the 35-year period 1969-2003 are very intense. Interestingly, by
examining graphs of mean annual temperature for earlier periods, before 1814, published
in Camuffo et al. (2017a,b), we note that there was an equally (or even more) intense
increasing trend between 1740 and 1780, preceded by an even more rapid decreasing
trend from 1720 to 1740. Thus, the minimum temperature in the last 300 years was
observed in 1740.

However, if we follow the split-sample logic expounded in section 1.3, we will reject
the linear-trend model. Even the visual information in Figure 1.6 suffices to realize its bad
performance for the early period, as well as the more recent period, after 2003.
Furthermore, Figure 1.7 tells the same story as in precipitation (section 1.3): The Hurst
behaviour is evident, with a Hurst parameter H = 0.94 for the annual average temperature
and H = 0.74 for the annual maximum daily temperature.
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Figure 1.6 Plots of annual average, maximum and minimum daily temperature in Bologna, with
trends fitted on the most recent 35-year part of the ECAD time series representing the most
warming period 1969-2003, for which the graphs are plotted with thicker lines. The newer data
that are not included in the ECAD time series are plotted with dotted lines.
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Figure 1.7 Empirical and theoretical climacograms of annual indices of daily temperature at
Bologna: (left) annual average; (right) annual maximum daily.

1.5 Asevere drought in a historical context

Discussions about droughts have been intense in the 21st century, triggered by climate
change fears as well as by the severity of some droughts that have occurred: in Australia
(2001-09), California (2011-17; Griffin and Anchukaitis, 2014) and Europe (2003, 2015;
Hanel et al., 2018). Nonetheless, even though the 21st-century droughts in Europe have
been broadly regarded as exceptionally severe, the Hanel et al. (2018) study shows that
they were much milder in severity and areal extent in comparison to many older extensive
drought events in Europe.

About a decade before these droughts, a prolonged and severe one hit Greece. It
particularly influenced the Athens water supply system and shook society. Despite that,
the resulting water crisis is not as famous as the current economic crisis in Greece.
Certainly, the reason for not being famous is the very successful management of the water
crisis, in contrast to the economic crisis. Indeed, the entire campaign to handle the
drought in Athens was very successful and, despite the long (7-year) duration (1988-95)
and severity of the drought, there was not even one day of system failure (cf.
Koutsoyiannis, 2011a); all inhabitants had water in their tap all the time.

Here we will study the hydrological conditions behind this water crisis using
streamflow data for one of the major three catchments that supply water to Athens,
namely, the Boeoticos Kephisos River at the Karditsa station (close to the outlet to
Karditsa tunnel; catchment area 1930 km?). The monthly runoff time series we use
(compiled by Koutsoyiannis et al., 2007 and updated by Makropoulos et al., 2018 and
Efstratiadis et al., 2019), is the longest streamflow time series in Greece, beginning in
1907 and uninterrupted since then (112 years up to 2018-19; note that the convention of
a hydrological year is used, from October of previous year to September of the current
year). In contrast to floods, whose study requires high temporal resolution data, the
monthly time scale is more than sufficient for studying droughts.
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The 112-year monthly series of river discharge is shown in Figure 1.8, along with the
10-year moving average (right-aligned; left panel), as well as a linear trend fitted to the
latest 50-year period before the beginning of the drought, i.e., the period 1937-87. It is
seen in the left panel of the figure that, after the drought period, the climatic value of
streamflow recovered (increased), but not to the level that was before the 1980s. The
trend model would predict that the falling trend would continue.

Comparison of the two models introduced in section 1.3, the linear-trend model and
the constant mean model, is given in Table 1.2 for two validation periods, before and after
the calibration period. The constant-mean performs better. Furthermore, if, in spite of
that, we preferred the trend model and if we plan for a period of, say, 50 years in the
future, we must think what we will do as we approach the end of the planning period. For
extrapolation of the trend will give negative streamflow at 2060, forty years from now.
This is similar to the early trend discussed in section 1.3, according to which the
probability dry in Bologna would become 1 just after 1850. Therefore, it is again better
not to trust the linear trend model. Later on (section 4.10), we will discuss how to make
better future predictions for a specified prediction horizon with the constant-mean model
along with Hurst-Kolmogorov dynamics.
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Figure 1.8 Plots of the time series of monthly average discharge of Boeoticos Kephisos, with (left)
10-year moving averages (right-aligned) and (right) trend fitted to the period 1937-87 (the 50-
year period before the beginning of the drought).

Table 1.2 Root mean square errors (in m3/s) for the two validation periods for the linear-trend
model and the constant-mean model, fitted to the calibration period (1937-87).

Validation period 1907-37  1987-2019
Assuming linear trend 13.4 12.7
Assuming constant mean 9.3 10.3

It is useful to study in more detail the drought period. In contrast to a flash flood, a
drought is not a rapid event, but its evolution usually extends over many years. To
characterize that evolution stochastically, we may use a multi-scale representation of the
time series, as we did to define the climacogram. Figure 1.9 shows such a representation
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at scales ranging from 1 to 10 years. The difference from the definition of the climacogram
is that the values plotted in Figure 1.9 are constructed for a sliding window of length equal
to the time scale, while in the standard definition of the climacogram the time windows
are fixed in position. It is seen in the plots of the time series that the minima for all time
scales for the entire period of observations are concentrated at that particular drought
period. This is a characteristic of the HK behaviour; had the series been produced by a
white noise model, that clustering would be quite improbable.
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Figure 1.9 (left) Plot of the (right-aligned) moving average of the Boeoticos Kephisos discharge
for the time scales noted in the legend; the time locations of the observed minima at each scale
are also shown with dashed lines of the same colour as the corresponding moving-average time
series. (right) Close up of the left panel for years 1980-2000.
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Figure 1.10 (left) Empirical and theoretical climacograms of the Boeoticos Kephisos discharge
time series; (right) return periods of the lowest and highest observed average discharge over time
scale 1 (annual scale) to 10 years (decadal scale) assuming normal distribution.

Indeed, the climacogram plotted in Figure 1.10 suggests Hurst behaviour of the
process with Hurst parameter H = 0.82. Again, the difference from white noise is
substantial. This difference is further illustrated in the right panel of Figure 1.10 in which
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the return periods of the lowest and highest observed average discharge over time scale
1 to 10 years.

The concept of return period will be discussed in detail in Chapter 5. For the current
discussion of our example, it suffices to say that, theoretically, the return period T of an
event, which has probability P to occur in a time interval D, is related to P and D by the
almost obvious relationship:

P== (1.7)

If we consider the highest or the lowest value that have been observed in a time period
nD (where n is the sample size), then we can empirically assign to each of them a
probability P = 1/n and thus T = nD (these are rough estimates, which will be refined
later, in Chapter 5 and Chapter 6). If we change the time interval D to kD then the sample
size of the observations becomes n/x and again the empirical return period will be T =
nD (= (n/x)xD). Thus, in our record of 112 years (n = 112, D = 1 year) the empirical
return period of the highest or the lowest observed value can for now be assumed to be
112 years, regardless of the time scale we consider.

That is about the empirical return period. Now let us make a model for the process
assuming normal marginal distribution with mean y and standard deviation ¢ at time
scale 1 (year), and time dependence consistent with the HK model. The estimates of these
parameters for the HK model from the 110-year sample of annual values are y = 11.69
m3/s,0=5.56 m3/s and H = 0.82. The method proposed in Koutsoyiannis (2003) was used
for this estimation. For scales k > 1 the normal distribution is preserved and so does the
mean, while, according to equation (1.6), the standard deviation o(x) = \/m will
decrease according to o (k) = o/k* . Therefore, for each scale we can determine the
theoretical mean and standard deviation, find the theoretical probabilities of the highest
and lowest values xy and xy, i.e., Py = P{g > xH} and P, = P{g < xL}, respectively, from
the distribution function of the normal distribution, and determine the return period T
from equation (1.7). The results of this exercise are visually shown in the right panel of
Figure 1.10, where an agreement of theoretical and empirical distributions (T = 112
years) is observed. An underestimation of the theoretical return period of the lowest
values for time scales 1-3 years is attributed to the fact that the normal distribution is not
good enough for the distribution lower tail, as it is not bounded by 0, as it should; this
deficiency ceases for larger scales, as the ratio o/u becomes smaller. All in all, the story
told by the graph for the case that we assumed the HK model is that, in whatever time
scale, the severe drought was as severe as expected for a 112-year period. Nothing more
severe than expected.

Now let us assume that an expert on extremes, acting in 1995—around the end of the
drought—was asked by water managers to assess the severity of the drought in terms of
its return period. Further, let us assume that our extreme expert was ignorant of the HK
behaviour and used classical statistics, as usually extreme experts usually do. Apart from
that, let us assume that he adopted the same approach as above except the HK behaviour,
which is equivalent to assuming H = 0.5. The expert at that time, based on the data and
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ignoring the estimation bias, which is absent in classical statistics, would estimate for the
annual scale the mean as y = 12.56 m3/s and the standard deviation as ¢ = 5.01 m3/s,
which are not quite different from the estimates given before. However, by assuming
independence and going to larger time scales, the standard deviation will differ
substantially (see the details in quantified terms in section 4.5) and, as a result, the return
period will elevate. As seen in Figure 1.10, according to classical statistics, for time scales
> 6 years the return periods of the lowest values exceed 100 000 years! Even for the
largest values, high return periods are estimated, of the order of 10 000 years. Thus, the
extreme expert would conclude that something extraordinarily extreme has happened,
which requires an attribution study to relate it most probably to anthropogenic global
warming. Evidently, such attributions differ substantially from similar ones in previous
centuries. For example, after the great flood of the Arno River in Florence in November
1333 (the first recorded, which killed more than 3 000 people), it was chronicled by
Giovanni Villani® that “the great debate in Florence was on whether the flood occurred for
God’s will or for natural causes.”

Therefore, it is the Hurst-Kolmogorov dynamics that characterizes the natural
changes, restores the estimates of extremes to reality and enables a cool look at extremes
and their uncertainty, which is useful, if not absolutely necessary, for their management.
And indeed, the HK behaviour has been the theoretical (stochastic) backing of the
modelling and the successful handling of the Athens drought episode. On the other hand,
it is striking that the name “Hurst” does not even appear in recent publications related to
drought episodes (some of which have already been cited).

1.6 Maximum and minimum water level of the Nile

The longest instrumental record in history is that of the water level of the Nile.
Observations have been taken even before 3000 BC and have survived in archaeological
findings such as inscriptions on cliffs or stones (Koutsoyiannis and Iliopoulou, 2023).
However, these do not provide a continuous record over those millennia. Yet there is an
almost uninterrupted record of observations, registered, documented and preserved to
date, which covers more than eight centuries. These comprise maximum and minimum
water levels, taken at the Roda Nilometer, near Cairo (Figure 1.11). Toussoun (1925)
processed and published these data for the period 622 to 1921 AD. Koutsoyiannis (2013b)
made the measurements available on the internetf, also converting water levels into
water depths, assuming a datum for the river bottom of +8.80 m a.s.l. (above sea level).
To account for the change of the riverbed due to sedimentation through the centuries,
Koutsoyiannis and Iliopoulou (2023), based on documented information, assumed a
linearly increasing datum, starting at +8.15 m a.s.l. in 622 AD and reaching +8.81 m a.s.l.
in 1861 AD. After 1470 AD, there are large gaps in the record. Therefore, here we analyse
the data of the period 622-1470 AD, 849 years, and, regarding the riverbed, we follow the

* Cronica, Tomo I, Libro XII, II; original text: “D’una grande questione fatta in Firenze se ‘l detto diluvio venne
per iudicio di Dio o per corso naturale ...”

T http://www.itia.ntua.gr/1351/.
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convention by Koutsoyiannis and Iliopoulou (2023). A few missing values before 1470
(namely, of the years 1285, 1297, 1303, 1310, 1319, 1363 and 1434) were filled in by
Koutsoyiannis (2013b) using a simple method from Koutsoyiannis and Langousis (2011;
p. 57), refined in Pappas et al. (2014).

Figure 1.11 The Roda Nilometer, near Cairo. Water entered through three tunnels and filled the
Nilometer chamber up to river level. The measurements were taken on the marble octagonal
column (with a Corinthian crown) standing in the centre of the chamber; the column is graded
and divided into 19 cubits (each slightly more than 0.5 m) and could measure floods up to about
9.2 m. A maximum level below the 16th mark could portend drought and famine and a level above
the 19t mark meant catastrophic flood (Photos by Loai Samen and Mohamd Mubarak; Google
maps, https://goo.gl/maps/T8NUgoDAorK2 and https://goo.gl/maps/dsdJH]YVv572).

The annual minimum and maximum water levels of this period are plotted in Figure
1.12 along with their climatic values given as 30-year moving averages. Due to the large
extent of the Nile basin, the climatic fluctuation shown in the figure reflects the climate
evolution of a very large area in the tropics and subtropics. We may notice that at the 780s
the climatic (30-year) minimum value was 1.8 meters, while at AD 1130 it was 4.5 meters,
2.5 times higher. In the lower panel of Figure 1.12 we can see a simulated series from a
roulette wheel, which has equal variance as the minimum water depth Nilometer series.
Despite equal “annual” variability, the roulette wheel produces a static “climate”, while
the actual climate has varied substantially over time.

Comparing the two Nilometer series, we observe that the series of maximum water
depths exhibits much smaller variability than that of the minimum depths. This seems
counterintuitive at first glance, but we should bear in mind that, while the minimum depth
refers to water confined in the riverbanks, the maximum one refers to a wide area
inundated by the Nile water during flooding. One may express doubts about the accuracy
of the measurements and record keeping in that era, several centuries ago, particularly in
view of some points in the graph that look extraordinarily low or high outliers in each of
the time series. On the other hand, one may observe that the measuring equipment used
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(Figure 1.11) is much more elaborate than modern measuring devices. Also, in some
instances the data can be crosschecked by historical information.
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Figure 1.12 (upper) Nile River annual minimum and maximum water depth at Roda Nilometer
(849 and 848 values, respectively, from Toussoun, 1925, as provided by Koutsoyiannis, 2013b,
after the modification by Koutsoyiannis and Iliopoulou, 2023). (lower) Synthetic time series, each
value of which is the minimum of m = 36 roulette wheel outcomes; the value of m was chosen so
that the standard deviation equals that of the minima of Nilometer series (where the latter is
expressed in metres). In all series the climatic values, given as 30-year moving averages, are also
plotted (right aligned).

As an example, we have evidence for the year 1200 AD, in which the second lowest
maximum water depth was registered (elevation 15.70 m, depth 7.24 m; see Figure 1.12),
by the Arab physician, philosopher, historian, grammarian and traveller, ‘Abd al-Latif al-
Baghdadi (2022), who stayed in Egypt in that period. His text goes far beyond confirming
that there was a drought. It describes extreme social behaviours triggered by the drought
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and the resulting famine (most horrific reactions in history, such as cannibalism with
parents eating their children). A similar drought (elevation 15.58 m, depth 7.25 m)
occurred in 967 AD with similar social reactions (Hassan, 2007, quoting the Egyptian
historian Taqi el-Dine Al-Maqrizi, 1365-1441), while it was estimated that 600 000
people died of starvation and famine-related diseases, a quarter of Egypt’s population
(Fagan, 2008).

While both decreasing and increasing trends appear in both time series, with most
prominent the increasing trend in the series of maximum depths in the 14th and early 15t
century, their alternating and aperiodic character defies a deterministic description. On
the other hand, the stochastic description of the changes based on the HK dynamics is
efficient. Indeed, Figure 1.13, which depicts the empirical and theoretical climacograms
of the two Nilometer time series, shows that the natural changes are consistent with the
HK behaviour.

The big length of these time series enables the validation of the HK hypothesis for a
large range of time scales, from 1 to 84 (years). The difference from the popular white
noise model (slope -1) is striking, as well as that of other popular models such as the
Markov, which will be discussed in section 3.11. The Hurst parameters are high, H = 0.85
for the series of minima and H = 0.82 for the series of maxima. Similar H values have been
estimated from the contemporary, 131-year long, flow record of the Nile (naturalized)
flows at Aswan (Koutsoyiannis and Georgakakos, 2006; Koutsoyiannis and Iliopoulou,
2023). The most notable deviation of the empirical behaviour and the HK model, shown
in Figure 1.13, appears at scale 1 year for the series of maxima. The difference
corresponds to the occurrence of extraordinarily high or low maxima at isolated years.
And as discussed above, these occurrences have been responsible for famines with
thousands of lives lost.
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Figure 1.13 Empirical and theoretical climacograms of the two Nilometer series: (left) minimum
and (right) maximum water depth; in the left graph the empirical climacogram of the roulette
wheel time series is also shown, which, as expected, is consistent with the white noise model.
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In summary, the long Nilometer time series augments our confidence in the
applicability in hydroclimatic processes of the HK behaviour, which appeared in all our
examples. According to this behaviour:

e long-term changes are more frequent and intense than commonly perceived;

e these changes are irregular and aperiodic (as thoroughly assessed by
Koutsoyiannis and Iliopoulou, 2023), appear as alternating trends that can persist
even for centuries, and are unpredictable per se;

e future states are much more uncertain and unpredictable on long time horizons
than implied by pure randomness.



Chapter 2. Basic concepts of probability with focus on extreme events

2.1 Definition of probability

For the proper understanding and use of probability, it is very important to insist on the
definitions and clarification of its fundamental concepts. Such concepts may differ from
other, more familiar, arithmetic and mathematical concepts, and this may cause confusion
or even collapse of our cognitive construction, if we do not base it on solid foundations.
For instance, in our everyday use of mathematics, we expect that all quantities are
expressed by numbers and that the relationship between two quantities is expressed by
the notion of a function, which to a numerical input quantity associates (maps) another
numerical quantity, a unique output. Probability too makes such a mapping, but, instead
of a number, the input quantity is an event, which mathematically can be represented as
a set. Probability is then a quantified likelihood that the specific event will occur. This type
of representation was proposed by Kolmogorov (1933). There are other probability
systems different from Kolmogorov’s axiomatic system, according to which the input is
not a set. Thus, in Jaynes (2003)" the input of the mapping is a logical proposition and
probability is a quantification of the plausibility of the proposition. The two systems are
conceptually different, but the differences lie mainly on interpretation rather than on the
mathematical results. Here we will follow Kolmogorov’s system.

Kolmogorov was an outstanding member of the Moscow School of Mathematics,
which gave importance to definitions and to clarity, following the Aristotelian tradition of
sapheneia (Digression 2.A). His approach to probability theory is based on the notion of
measure, which maps sets onto numbers. The objects of probability theory, the events, to
which probability is assigned, are thought of as sets. For instance, the outcome of a
roulette spin, i.e. the pocket in which the ball eventually falls on to the wheel, is one of 37
(in a European roulette pockets numbered 0 to 36 and coloured black or red except 0
which is coloured green). Thus, all sets {0}, {1}, ... {36} are events (also called elementary
events). But they are not the only ones. All possible subsets of (2, including the empty set
@, are events. The set 2:={0, 1, ..., 36} is an event too. Because any possible outcome is
contained in (), the event 2 occurs in any case and it is called the certain event. The sets
ODD:=({1, 3,5, .., 35}, EVEN:={2, 4,6, .., 36}, RED := {1, 3,5,7,9, 12, 14, 16, 18, 19, 21,
23, 25, 27, 30, 32, 34, 36}, and BLACK := 2 - RED - {0} are also events (in fact, betable).
While events are represented as sets, in probability theory there are certain differences
from set theory in terminology and interpretation, which are shown in Table 2.1.

According to Kolmogorov's (1933) axiomatization, probability theory is based on
three fundamental concepts and four axioms. The concepts form the triplet (2, 2, P), called
probability space, where:

1. 21is a non-empty set, which Kolmogorov calls the basic set (sometimes also called
sample space or the certain event), whose elements w are called elementary events
(also known as outcomes or states).

* Jaynes’s book cited here was published posthumously (he died in 1998).
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2. Y'is a set known as o-algebra or o-field whose elements E are subsets of (2, known
as events. 2 and @ are both members of 2, and, in addition, (a) if E is in 2 then the
complement 2 - E is in X; (b) the union of countably many sets in X' is also in 2.

3. P is a function called probability that maps events (i.e., sets) to real numbers,
assigning to each event E (member of ) a number between 0 and 1.

Table 2.1 Terminology correspondence in set theory and probability theory (adapted from
Kolmogorov, 1933).

Set theory Events

A=0 Event A is impossible

A=1 Event A is certain

AB = @ (or AN B = @; disjoint sets)  Events A and B are incompatible (mutually
exclusive)

AB---N=0 Events 4, B, ..., N are incompatible

X:=AB--N Event X is defined as the simultaneous
occurrence of 4, B, ..., N

X=A+B+-+N Event X is defined as the occurrence of at least

(orX:=AUBU:- UN) one of the events 4, B, ..., N

X=A-B Event X is defined as the occurrence of A and, at

the same time, the non-occurrence of B

A := ) — A (the complement of A) The opposite event 4 consisting of the non-
occurrence of A
B € A (Bis asubsetof A) From the occurrence of event B follows the

inevitable occurrence of event 4

The four axioms, which define the properties of P, are:

[. Non-negativity: For any event 4, P(A4) = 0.
II. Normalization: P(2) = 1.
III. Additivity: For any incompatible events A and B (i.e, AB = @), P(A+ B) = P(A) +
P(B).
IV. Continuity at zero: If A1 2 A2 > ... 2 An D ... is a decreasing sequence of events, with
AA, - A, -+ = @, then lim,,_,,, P(4,) = 0.

We note that in the case that 2 is finite, axiom IV follows from axioms I-III; however, for
infinite fields it should be put forward as an independent axiom.

Digression 2.A: What is sapheneia?

It is stunning that before Kolmogorov, the concept of probability was in wide use for almost three
centuries, since its introduction by Jacob Bernoulli, without a proper definition. Earlier definitions
were problematic (e.g. affected by circular logic). For this reason, they are not referred to here,
but the interested reader can find them in any probability book.

One may have noticed that more recently there is an increasing trend of disrespect of clarity
in science, and this also affects definition. This disrespect is theorized in the following statement
by Mandelbrot (1999, p. 14):
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Let me argue that this situation [absence of a definition] ought not create concern and steal
time from useful work. Entire fields of mathematics thrive for centuries with a clear but evolving
selfimage, and nothing resembling a definition.

Perhaps the reason why modern science prefers a pace of fuzziness over that of clarity is its
strengthening links to politics and finance. Fuzziness indeed better serves contemporary politics.
On the other hand, fuzziness per se has been theorized by the modern fuzzy set theory, which
however is one of the several modern reinventions of probability.

Probability and stochastics try to replace fuzziness with rigour in fields where uncertainty
dominates. Therefore, it needs a rigorous definition per se, and this has been provided by
Kolmogorov. The Moscow School of Mathematics, and in particular its founders Dimitri Egorov
and Nikolai Luzin (the latter being Kolmogorov’s mentor) had a different approach, opposite to
Mandelbrot’s. This is vividly expressed by the following Luzin’s note, quoted by Graham (2011):

Each definition is a piece of secret ripped from Nature by the human spirit. I insist on this: any
complicated thing, being illumined by definitions, being laid out in them, being broken up into
pieces, will be separated into pieces completely transparent even to a child, excluding foggy and
dark parts that our intuition whispers to us while acting; only by separating into logical pieces
can we move further, towards new successes due to definition.

In fact, Luzin’s approach was formed much earlier, in the first steps of the development of
science. Aristotle promoted sapheneia (ca@nvelal), which includes clarity and is also related to
the accurate accounting of the phenomena and the attainment of accurate scientific knowledge
(Lesher, 2010). Aristotle clearly linked sapheneia with truth:

We must always endeavor, from statements that are true but not clearly expressed [00 ca@®g],
to arrive at a result that is both true and clear [ca@®g] (Aristotle, Eudemian Ethics 1220a).2

The importance he attributes to sapheneia is understood by his parallelism of those who do not
practice it to untrained soldiers:

These thinkers [...] seem to have grasped |...] the causes [...] only vaguely and indefinitely
[dpudpdds kai o0Bev cag|. They are like untrained soldiers in a battle, who rush about and
often strike good blows, but without science; in the same way these thinkers do not seem to
understand their own statements, since it is clear that upon the whole they seldom or never
apply them (Aristotle, Metaphysics 985a).3

The introduction of terminology, i.e., of sophisticated terms, which either do not exist in the
colloquial language or exist with a loose meaning, and their definitions, is another reflection of
the sapheneia desideratum. Note that, in Greek, the names term and definition have common
origin (0pog and 0plopudg, respectively), and Aristotle sometimes uses the two interchangeably,
perhaps reflecting the fact that a term without a definition is not a proper term. He emphasizes
the need to name scientific concepts:

Now most of these [concepts] have no names, and we must try |...] to invent names ourselves
for the sake of clarity [ca@nvewa] and ease to follow (Aristotle, Nicomachean Ethics, 985a).4

Furthermore, Aristotle attributed the first endeavours to introduce definitions to Socrates
and emphasized that the need for them is linked to the use of abstract theoretical concepts rather
than of sensible things:

Socrates, disregarding the physical universe and confining his study to moral questions, sought
in this sphere for the universal and was the first to concentrate upon definitions [0plou@®Vv].
[Plato] followed him and assumed that the problem of definition is concerned not with any
sensible thing but with entities of another kind; for the reason that there can be no general
definition [0pog] of sensible things which are always changing (Aristotle, Metaphysics
1.987b).5

The importance of names, especially in mathematics, has been emphasized by Graham
(2011), who asserts that naming plays an essential role because mathematical objects that have
not yet been named are difficult to work with. For mathematicians naming is the path toward
gaining control over the objects they just conceive. In their book Naming Infinity, Graham and



32 CHAPTER 2 - BASIC CONCEPTS OF PROBABILITY WITH FOCUS ON EXTREME EVENTS

Kantor (2009) gave a detailed account of how naming of abstract concepts contributed to the
development of the Moscow School of Mathematics and the founding of descriptive set theory,
which gave birth to the modern definition of probability and the development of stochastics.

1 Greek words related to the noun ca@nvela (sapheneia) are the adjective ocapng/ca@ég (saphes), the
adverb ca@®¢ (saphos) and the verb cagnvilewv (saphenizein).

Z A€l 51 T@V dAnO ¢ pev Aeyouévawy ov oapds 8¢ mepdoBat Aafelv kal 1o aAn6d¢ kal aapds. (ApLoTOTEANG,
'HOwk& Evdnjuia, 1220a).

3 0dtotr pév odv [..] nuuévol paivovra, [...] duudpdc pévrol kal ovOV capds dAX’ olov év taic pdyaig oi
ayvuvaotol mololatv: kal yap EKEIVOL TEPLPEPOUEVOL TUTTTOVOL TTOAAAKLS KAAAXS TTANY &G, dAA” 0UTE EKETVOL ATO
émotiung olite oUTol éoikaoty ibévar § TL Aéyovowv: oxeSov yap o00Ev ypuevol paivovtal TovTols GAA fi
Kata uikpov (AplototéAng, Metd ta Puoika, 985a).

4 Eiol pév odv kai To0Ttwv 1a mAelw dvavoua, mewpatéov 8’ [...] abtovs évouaromoielv capnveiag éveka kai
T0U evTapakxoiovOrtov (AplototéAng, 'HOwa Nuikopdyewa, 1108a).

5 XwKpdtoug 8¢ Tepl uev T N0k Tpayuatevouévov mepl 6 Tii¢ 6ANG puoews oV, £v UEVToL TOUTOLS TO
KkaBoAov (nTtolvTog kal TEPL OPLOUGY ETLOTHOAVTOS TTPWTOU TNV diavolay, [[TAdtwv] ékeivov amodeéauevog
S T0 TolotiTov VméAaPev w¢ TEPL ETEPWV TOUTO YiyvOueVOY Kal ol T@V aloOnTdv: dsivatov yap eivar Tov
KOOV Gpov T@V aloOnTdV TIvag, del ye uetafarlovrwv (AplototéAng, Meta ta Puoikd, 1.987b).

2.2 The concept of a stochastic variable

A stochastic variable or random variable” is a function that maps outcomes to numbers, i.e.
enumerates the basic set (2. More formally, according to Kolmogorov’s (1933) definition,
a real single-valued function x(w), defined on the basic set (2, is called a random variable
if for each choice of a real number a, the set {x(w) < a} for all w for which the inequality
x(w) < a holds true, belongs to 2. With the concept of the stochastic variable, we can
conveniently express events using basic mathematics. In most cases enumeration is done
almost automatically. For instance, a stochastic variable that takes values 1 to 6 is
intuitively assumed when we deal with a die throw experiment. If the phenomenon we
study is related to the physical world and the quantity in study is represented as a real
number, then this real number (e.g. a) has some dimension (e.g. length) and hence a
physical unit (e.g. m) associated with it. It is convenient to extend the notion of the
stochastic variable to also include the same unit, so that {x(w) < a} be meaningful.

We must be attentive that a stochastic variable is not a number but a function.
Intuitively, we could think of a stochastic variable as an object that represents
simultaneously all possible outcomes and only them. The following analogy may help us
to develop intuition about stochastic variables. Let us consider the equation x3(x — 1)? =
0. This has five roots, three of them being x = 0 and two being x = 1. What do we mean
when we say “root of this equation”? Probably we mean both x = 0 and x = 1 and also we
have in mind that there is no symmetry between the two; rather we would give a weight
3/5 on the former and 2/5 on the latter. Similar is the situation with a stochastic variable
which takes on the values 0 and 1 with probabilities 3/5 and 2/5, respectively.

While formally a stochastic variable is a function x(w), we usually omit reference to
its argument w and keep the symbol x. However, in this case we need to distinguish it
symbolically from a common variable; the best notation devised to this aim and used here
is the so-called Dutch convention (see Hemelrijk, 1966, who mentions that it was

*The two terms stochastic variable and random variable have identical meaning. Here we prefer the former,
even though the latter is more common.
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introduced by D. Van Dantzig in 1947, i.e, later than Kolmogorov’'s foundation of
probability). According to it, stochastic variables are underlined, i.e. x. In this case the
inequality {x(w) < a} used for the formal definition of the stochastic variable is written
as {x < a}. Accordingly, {x < a} denotes an event (a subset of (2), and therefore it has a
probability, P({g < a}). For simplicity, in the latter notation we drop the parenthesis and
we write P{g < a}. Some texts drop the curly brackets instead of the parentheses, but this
practice misrepresents the important fact that the argument of probability is a set. The
notation is further explained in Digression 2.B, along with its importance.

From a practical point of view, compared to a common variable, a stochastic variable
is a more abstract mathematical entity, which we use when a quantity of interest is
something uncertain, unpredictable, unknown; this is the meaning of stochastic and
random (cf. Koutsoyiannis, 2010; Dimitriadis et al., 2016). While a common variable takes
on one value at a time, a stochastic variable can be thought of as taking on all of its possible
values at once, but not necessarily in a uniform manner. Therefore, a probability
distribution function, defined in section 2.3, should always be associated with a stochastic
variable. A stochastic variable becomes identical to a common variable only if it can take
on only one value.

When an observation of a quantity that is modelled as a stochastic variable is made,
then this observation is usually a common variable. For example, we model a die throw
with a stochastic variable x with possible values 1 to 6. After a specific throw of the die
and before we observe the outcome, we still have the same uncertainty as described by
stochastic variable x. When we observe the outcome, it becomes a common variable x (e.g.
x = 5). The particular value is called a realization of x and is denoted by the non-
underlined symbol x. This happens when our observation is exact. Sometimes the
observation is contaminated by error—our observations are not always exact
(particularly those of real valued variables). Then we can use another stochastic variable
to describe the uncertain outcome. For example, if an observer has presbyopia combined
with astigmatism (like the author) he may not be sure whether the outcome was 5 or 4
and he could model it as a stochastic variable z with possible outcomes 4 and 5.

Considering a certain (deterministic) function y = g(x), mapping the common
variable x to the common variable y (e.g. y = g(x) = x?), we can extend its meaning to
apply to stochastic variables, ie, y = g(x) (e.g. y = g(x) = x?). As implied by the
notation, when the function’s argument x is a stochastic variable, the result y is also a

stochastic variable (formally, it is the composite function y(w) = g(x(w)). In other
words, functions of stochastic variables are stochastic variables.

Digression 2.B: The importance of notation

The following simple example shows that the common practice of not distinguishing the notation
of common and stochastic variables is a bad practice. Let x and y represent the outcomes of each

of two dice. What is the probability of the following cases?

@{x<y}, <y, ©f<y @&<w
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(a) First, the formal meaning of the notation x < y is that for any x € R, P{g > x} <P {y > x}

(Shaked and Shanthikumar, 2007). Here, we approach the question in a practical manner. There
are 62 = 36 different possible combinations of outcomes of x and y. In six of them x = y. Due to

symmetry, in half of the remaining 30, x < y. Thus:

15 5

Ple<rf=35=1

(b) Now yis a number, not a stochastic variable. For convenience we assume that y is integer, even

though it can also be assumed to be real. If y > 6 then obviously the event {g < y} is certain. If y =
6 then the probability of {g < y} is 5/6. Continuing like this we conclude that:

P{& < y} = max (0, min (1,%) )

(c) Thinking as in (b) and noting that x is a number, assumed integer, and y a stochastic variable
we find that:

P{x<y}= max(O,min(l,l—g))

(d) As both x and y are numbers, the expression {x < y} does not denote an event and therefore,
strictly there is no probability associated with this expression. Loosely we may say that
P{x < y} = 1if x < y and 0 otherwise.

Obviously, if we did not distinguish y from y, we would not even be aware of the fact that

P {g < X} is a number while P {x < X} is a function of x.

Many texts (research articles and probability theory books) make the notational distinction
of stochastic and common variables, but they use upper case letter for stochastic variables and
lower case ones for common variables. This practice may also be inadequate. If in our context we
used another quantity denoted with the Greek letter y (and actually y is quite common in
statistical texts—cf. the chi and chi-squared distributions), how would we distinguish the
stochastic variables corresponding to x and y? (In both cases the upper case letter is X, while in
our convention x and y are distinguishable.) Furthermore, this would be too restrictive in our use

of mathematical symbols. For example, the symbol H used in Chapter 1 (and many other chapters)
to denote the Hurst parameter would be an incorrect notation if we adopted the upper- vs. lower-
case notation. Another convention was used by Papoulis (1990, 1991), who denoted stochastic
variables in bold letters. However, the typical use of bold letters is to denote vectors. Therefore,
the Dutch convention of underlining the stochastic variables is the most convenient, clearest and
safest.

2.3 Distribution function

According to Kolmogorov’s (1933) foundation™ of probability theory, the function of the
real variable x,

F(x) == P{x < x} (2.1)

where x is a stochastic variable, is called the distribution function. We notice that the
stochastic variable with which this function is associated is not an argument of the
function. Even though we use the same letter for both x and x, the two are fundamentally
different. For example, in a die throw, the stochastic variable x represents the whole

* We note that Kolmogorov used ‘<’ in his definition but modern literature uses ‘<’ as in (2.1).
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numbers 1 to 6 and the common variable x takes on any real value from -oo to +co. (The
domain of F(x) is not identical to the range of the stochastic variable x; rather it is always
the set of real numbers.) If there is risk of confusion (e.g., if we study a problem with many
stochastic variables), the stochastic variable should also appear in the notation of the
distribution function. Usually, it is denoted as a subscript: F;(x).

Typically, F (x) has a mathematical expression depending on some parameters. Itis a
non-decreasing function of x obeying the relationship:

0 = F(-) < F(x) < F(+») =1 (2.2)

For its non-decreasing attitude, in the English literature F(x) is also known as cumulative
distribution function, but here we adhere to Kolmogorov’s (1933) original terminology,
which did not contain the adjective cumulative. In practical applications the distribution
function is also known as non-exceedance probability. Likewise, the non-increasing
function:

F(x) = P{g > x} =1-F(x) (2.3)

i.e., the complement of F(x) from 1, is called here the distribution function complement. It
is also known as tail function, survival function, or survivor function, and represents
exceedance probability.

The distribution function is always continuous on the right; however, if the basic set
Q is finite or countable, F(x) is discontinuous on the left at all points x; that correspond
to outcomes w;, and it is constant between them (staircase-like). Such a stochastic
variable is called discrete. If F(x) is a continuous function, then the stochastic variable is
called continuous. A mixed case is also common; in this the distribution function has some
discontinuities on the left, but is not staircase-like. These are better explained in
Digression 2.C.

For continuous stochastic variables, the inverse function F~1()of F() exists.
Consequently, the equation u = F(x) has a unique solution for x, called u-quantile of the
variable x, that is:

x, = F71(w) (2.4)

2.4 Probability mass and density function

In discrete stochastic variables, the probability of each event:

P=P(x;) = Plx=x}=F(x)) = F(xj_1), Jj =1,...] (2.5)
where J is the number of possible outcomes (which can be infinite), is the probability mass
function. It is easy then to see that the step (discontinuity) of the distribution function
F(x) at point x; equals P;.

In continuous variables there are no discontinuities and hence any particular value x
has zero probability to occur. However, we can still tell which of two outcomes is more
probable and by how much, by examining the ratio of the two probabilities. As this is a
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0/0 expression, having in mind I’'Hopital’s rule, we need to examine the ratio of derivatives
of probabilities.

The derivative of the distribution function is called the probability density function
(PDF) or simply density:

Fo = L (2.6)
and its basic properties are:
f(x) =0, foof(x)dx =1 (2.7)

Obviously, the probability density function does not represent a probability; therefore, it
can take on values higher than 1. Its relationship with probability is described by the
following equation:

{fx <x <x+Ax}

P
=i 2.8
f&) Alalcrllo Ax (28)
The distribution function can be calculated from the density function by:
X
Feo= | oy (29)

In discrete stochastic variables, the density is a sequence of Dirac 6 functions (see
definition of § in equation (3.52)), while in mixed distributions Dirac § functions appear
at the points of discontinuity. This text mostly deals with continuous variables, but mixed-
type variables appear in several cases as will be discussed in Chapter 6 and Chapter 8.

Some of the most common distributions of discrete and continuous variables are
shown in Table 2.2. Additional continuous distributions are shown in Table 2.3, along with
their moments, while the derivation of these and other distributions in terms of the
principle of maximum entropy is discussed in section 2.10 (see also Table 2.4 and Table
2.5).

As already discussed (section 2.2), the one-to-one mathematical transformation on x,
y = g(x) defines a new stochastic variable y. If the function g(x) is invertible, then the

event {y < y} is identical to the event {x < g™*(y)} where g™! is the inverse function of

g- Consequently, the distribution functions of x and y are related by:

R =Ply<y}=Plz<g '} =FE(s'®) (2.10)

In the case that the variables are continuous and the function g differentiable, it can
be shown that the density functions of x and y are related by:

fe(g7* ()

REAC AN 2.11
lg'(g=* () (241)

fz(y) =

where g’ is the derivative of g.
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Table 2.2 Some of the simplest and most common distributions.

Name (and Probability mass function or Probability distribution function
parameters) probability density function

Discrete variable x with values x; = j

Discrete uniform, 1

j=1..] P(y) =7 F(x) = max(0, min(|x|/J, 1))

Geometric 1 u o\ B gl

j=01,..u>0 P& = —1+#(—1+u> F(x)—ma"("'l‘(m) >

: )

Poisson ! ~ W Ty
) = n— — e H —_—

j=01,.. >0 PO = PO = 2=

]:

Continuous variable x

1/], for0<zx<
Uniform in [0, J] f(x) = {/] or0<x<]J

F(x) = max(0, min(x/J, 1))
0, otherwise

i ek fu, x>0 _ e/
Exponential fx) = /u F(x) = {1 e *H*,  forx=>0
(u > 0) 0, x <0 0, forx <0
Normal 1 (x — H)Z) 1 < X — M)
x) = exp | ——=——] F(x) =—erfc|—
(reRo>0) @) V210 P < 202 () 2 V2o

Note: [x]| denotes the floor of the number x (the greatest integer less than or equal to x).

Digression 2.C: Illustration of distribution function by an example

For clarification of the basic concepts of probability theory, we give the following example of
hydroclimatic interest. In particular, we study (a) the occurrence of rainfall at a particular site and
a specific time of the year, and (b) the rainfall depth at that site and time.

In (a) we are interested on the mathematical description of the possibilities that a certain day
in the specified site and time is wet or dry. These are the outcomes or states of our problem, so
the basic set is:

0 = {wet, dry}
The field X~ contains all possible events, i.e.:
> = {@, {wet}, {dry}, 2}

To fully define probability on X it suffices to define the probability of one of the two states, say
P{wet}. In fact, this is not easy - usually it is done by induction, and it needs a set of observations
to be available and concepts of the statistics theory (see Chapter 4) to be applied. For the time
being let us arbitrarily assume that P{wet} = 0.2. The remaining probabilities are obtained by
applying the axioms. Clearly, P(2) = 1 and P(J) = 0. Since wet and dry are incompatible, P{wet} +
P{dry} = P({wet} + {dry}) = P(Q2) = 1, so P{dry} = 0.8.

We define a stochastic variable x based on the rule

x(dry) =0, x(wet) =1
We can now easily determine the distribution function of x. For any x < 0,

F(x)=P{x<x}=0
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(because x cannot take negative values). For0 < x <1,
F(x)=P{x < x}=P{x=0}=0.8
Finally, for x > 1,
Fx)=P{x<x}=P{x=0}+P{x=1}=1

The graphical depiction of the distribution function is shown in Figure 2.1 (left). The staircase-
like shape reflects the fact that the stochastic variable is discrete.

F(x) F(x)
1+ — (I et
0.8 @ 0.8 &
0.6 | ! 06 |
04 + 5 04 +
0.2 + i 0.2 +
-1 0 1 2 0 1 2
X X

Figure 2.1 Distribution function of a stochastic variable representing events related to rainfall of
a given day at a certain area and time of the year: (left) the dry or wet state; (right) the rainfall
depth.

In (b) the state is described by the rainfall depth which can be zero or positive. Therefore, the
basic set is the set R* U {0}. The stochastic variable x is given by the rule x(w) = w. Again, the
distribution function of x will be F(x) = P{x < x} = 0 for x < 0 with a discontinuity at 0, so that
F(0%) = P{g = 0} = 0.8. For x > 0 the distribution function will be continuous and increasing,
approaching 1 as x - o. To construct a plausible distribution function, without examining
observations, we make an assumption that smaller values are more probable than higher and
specifically that for two values x; and x, > x;, the ratio of densities (expressing the ratio of
probabilities according to 'Hopital’s rule) depends on the difference x, — x4, i.e.,

f(x1) _
f(Tz) =g(x; — x1)

where it is easy to see that the function g( ) should be given as g(x) = f(0)/f (x). In turn, it can
be shown (homework) that f(x) = A exp(—Bx) where A and B are constants. By integrating
(according to equation (2.9)) we find:

F(x) = g(l —exp(—Bx)) + C

and, since F(0*) = 0.8 and F() = 1,C=0.8 and A/B = 0.2, thus:
F(x) = 0.2(1 — exp(—Bx)) + 0.8

where B can be any positive number. An example is depicted in Figure 2.1 (right) for B = 1. The
resultis a modified exponential distribution (see Table 2.2), where the modification resulted from
the fact that the distribution is not continuous everywhere but mixed.

If this mathematical model is to represent a physical phenomenon, we must keep in mind that
all probabilities depend on a specific location and a specific time of the year. So, the model cannot
be a global representation of the wet and dry state of a day, nor of the rainfall depth. The model
as formulated here is extremely simplified. It does not make any reference to the succession of
dry or wet states in different days. This is not an error; it simply diminishes the predictive capacity
of the model. A better model would describe separately the probability of a wet day following a
wet day, a wet day following a dry day (we anticipate that the latter should be smaller than the
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former), etc. In addition, while the assumption on the rainfall depth leading to a mixed exponential
distribution seems plausible at a first glance, it does not fully correspond to the empirically
observed behaviour. There are better models than the exponential. We will discuss these issues
in subsequent sections.

2.5 Conditional probability, independent and dependent events

By definition (Kolmogorov, 1933), conditional probability of the event A given B (i.e. under
the condition that the event B has occurred) is the quotient:

P(4B)
P(B)

=: P(A|B) (2.12)

Obviously, if P(B) = 0, this conditional probability cannot be defined. It follows that:
P(AB) = P(A|B)P(B) = P(B|A)P(A) (2.13)
From this it follows that:

P(A|B)
P(4)

P(B|A) = P(B) (2.14)

Equation (2.14) is known as the Bayes theorem.

Ifithappensthat P(A|B) = P(A),i.e., the probability of A does not depend on whether
or not B has occurred, then the events A and B are called (stochastically) independent. In
this case from equation (2.12) it follows that:

P(AB) = P(A)P(B) (2.15)

Otherwise, A and B are called (stochastically) dependent.
The definition can be extended to many events. Thus, the events A;,A4,,... are

independent (or mutually independent) if for any finite set of distinct indices iy, iy, ..., i:
P(A;, Ay, - Ai,) = P(A;) P(4,) .. P(A;,) (2.16)

Thus, handling probabilities of independent events is easy. However, this is a special case
because usually macroscopic natural events are dependent. In handling dependent events
the notion of conditional probability is vital.

It is easy to show that the generalization of (2.16) for dependent events takes the
forms:

P(A, ..A)) = P(A,|Ap_q1 .. Ay) - P(A3]|A1)P(A) (2.17)

P(An "'AllB) = P(AnlAn—l ...AIB) o P(A2|A1B)P(A1|B) (2.18)
which are known as the chain rules. It can also be proved (homework) that if A and B are
mutually exclusive, then

P(A+ B|C) = P(A|C) + P(B|C) (2.19)

P(C|A)P(A) + P(C|B)P(B)

PClA+B) = P(A) + P(B)

(2.20)

and if A+ B = ,sothat P(A + B) = 1, then
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P(C) = P(C|A)P(A) + P(C|B)P(B) (2.21)

Digression 2.D: An example on the dependence of probability on
information

We assume that, at a certain place on Earth (say, in a city in the United Kingdom) and a certain
period of the year, a dry and a wet day are equiprobable and that in the different days the states
(wet or dry) are independent. What is the probability that two consecutive days are wet under
the following conditions? (a) Unconditionally. (b) If we know that the first day is wet. (c) If we
know that the second day is wet. (d) If we know that one of the two days is wet.

We denote A = {first day wet}, A == {first day dry}, B := {second day wet}, B := {second day
dry}. The basic setis {AB, AB, AB, AB}.

(a) We seek to find P(AB). Obviously, given the independence assumption, P(AB) = P(A)P(B) =
(1/2)%? = 1/4. Because of equiprobability and independence, each of the four events has
probability 1/4.

(b) Now the probability sought is P(AB|A). Using the chain rule in equation (2.18) we find
P(AB|A) = P(A|AB)P(B|A) =1x 1/2 = 1/2.

(c) Like in (b), we find P(AB|B) = 1/2.

(d) The condition that one of the two days is wet corresponds to the composite even AB + AB +
AB. Thus, the probability sought is
P(AB|AB + AB + AB) = FABAE | le J’_AB)) = P(Af?) — 1/4 = 1
P(AB + AB + AB) P(AB+AB+AB) 3/4 3

where we have used the definition of conditional probability and the fact that AB, AB, AB are
mutually exclusive.

To connect the example to the real world, let us assume that a friend travelled to this city for
a specified couple of days. If we do not have any information except the specific dates, then to the
event that she used her umbrella in both days we will assign probability 1/4. If we have seen (e.g.
in her social media posts) a photo showing her in the city holding an umbrella, then to the same
event we may assign a probability of 1/3. If, in addition, the photo has a time stamp on it, then we
will change the probability to 1/2. In other words, the information we have in a problem may
introduce dependencies in events that are initially assumed independent. More generally, the
probability is not an invariant quantity, characteristic of physical reality in absolute terms, but a
quantity that depends on our knowledge or information on the examined phenomenon. It may
sound paradoxical that the probability depends on information, but it is not. The rules according
to which we are assigning probabilities are objective and theoretically consistent. Yet it may not
always be direct to assign probabilities and also the assigned values may depend on the way the
information was obtained (see relevant discussion for the particular problem examined here in
Bar-Hillel and Falk,1982). We may additionally recall that even in classical deterministic physics
we are dealing with similar situations. For instance, the location and velocity of a moving particle
are not absolute objective quantities. If we change the coordinate system, the numerical values of
the coordinates and the velocity will also change.

Digression 2.E: An example on dependent events

The independence assumption in the problem in Digression 2.D is obviously a poor
representation of the physical reality. To construct a slightly more realistic model, let us assume
that the probability of today being wet (B) or dry (B) depends on the previous day’s state (4 or
A). It is reasonable to assume that the following inequalities hold:

P(B|A) > P(B) =05, P(B|A) >P(B) =05
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Now, the problem becomes more complicated than before. Let us arbitrarily assume that
P(B|A) = 0.6. Then the probability that both days are wetis P(AB) = P(B|A)P(A) = 0.6 X 0.5 =
0.3 > 1/4. For the sake of completeness, we also calculate the probabilities of the other
combinations. From (2.21), we get P(B) = P(B|A)P(A) + P(B|A)P(A), from which we find:

P(B|4) P(B|A) [P(A)] _ [P(A)] P(A|B) P(B|B) [P(B)] _ [P(B)] [P(B) _ [P(A)]
P(B|A) PBIA| P IP@AI [PBl4) PBIA|IPB)  LPB) [P(B)  LP(A)
where for convenience we have used matrix/vector representation. Thus,
P(B) — P(B|A)P(A) 05-0.6%05 o
P(A) B 0.5 B
Hence, P(AB) = P(B|A)P(A) = 0.4 x 0.5 = 0.2 < 1/4. Because of symmetry P(AB) = 0.3 and
P(AB) = 0.2. Thus, the dependence resulted in higher probabilities that the consecutive events

are similar and smaller probabilities that they are dissimilar. This corresponds to a general
natural behaviour (see also Chapter 3).

P(B|A) =

2.6 Random number generation for stochastic simulation

One of the important scientific advances offered by stochastics in the last several decades
is the Monte Carlo method, else known as stochastic simulation. It was originally
developed for the numerical solution of integro-differential equations in Los Alamos in
the framework of the Manhattan Project (Metropolis and Ulam, 1949). It can easily be
shown (e.g. Niederreiter, 1992) that in high dimensional numerical integration (specifi-
cally for a number of dimensions d > 4), a stochastic (Monte Carlo) integration method (in
which the function evaluation points are taken at random) is more accurate (for the same
total number of evaluation points) than classical numerical integration (based on a grid
representation of the integration space).

This gave importance to the much older concept of random numbers, whose first
appearance in a scientific publication was Tippett's (1927) table, with 41 600 random
digits taken from a 1925 census report. Before that (and even after; see Digression 3.F)
random sampling was performed by means of dice and cards. Thus, Galton (1890)
invented a set of three modified dice to generate samples from a normal distribution.
“Student” (pseudonym of W.S. Gosset) in 1908 performed simulation experiments using
3000 cards (in 750 groups of size 4) to find the distribution of the t-statistic and of the
correlation coefficient (see more information in Stigler, 2002).

With today’s meaning, a sequence of random numbers is a sequence of numbers Xx;
whose every statistical property is consistent with that of realizations from a sequence of
independent identically distributed stochastic variables x; with specified distribution
function F(x) (adapted from Papoulis, 1990). In turn, a random number generator is a
device (typically computer algorithm) that generates a sequence of random numbers x;
with given distribution F(x). Random number generation is also known as Monte Carlo
sampling.

The basis of practically all random generators is the uniform distribution in [0,1] (see
Table 2.2). A typical procedure for that distribution is the following:

e We generate a sequence of integers q; from the recursive algorithm g; =
(k qi_1+c)modm wherek, cand m are appropriate integers (e.g. k = 69 069,
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c =1, m = 23 = 4294967 296 or alternatively k = 7> = 16807, ¢ = 0,
m = 231 —1 = 2147 483 647; Ripley, 1987, p. 39).

e We calculate the sequence of random numbers u; with uniform distribution in
[0,1] asu; = q;/m.

Obviously, this is a simple algorithm, purely deterministic. Why the numbers it
generates are regarded as random? The answer is simple: Because if we do not know the
algorithm and the initial condition (g, or gq; — 1) we cannot predict these numbers. As most
algorithms, like this one, are purely deterministic, sometimes the numbers are called
pseudorandom. But this implies the idea that there exists another category of true or
genuine random numbers. Even though in the literature references to true random
numbers abound, this may reflect a misunderstanding of the notion of randomness and a
dichotomic view of natural processes (cf. Koutsoyiannis, 2010; Dimitriadis et al., 2016).
In any process of the macroscopic world, if we were able to know the “algorithm” (the
system dynamics), and the initial conditions with full precision, the situation would be the
same as with the simple algorithm described. The fact that we are not able to precisely
know the algorithm of a physical process and the initial conditions does not make the
numbers of different type.

A more recent and better algorithm for random number generation with uniform
distribution is the so-called Mersenne twister, which is available in most computer
languages and software packages™.

Once we have a random generator for the uniform distribution, we can make one for
any distribution F(x). A direct (but sometimes time demanding) algorithm to produce
random numbers x; from any distribution F(x) is given by:

X; = F‘l(ui) (222)

where u; is the sequence of random numbers with uniform distribution in [0,1]. This is
very easy to apply in any computational environment.t However, there exist algorithms
much faster than this for the most common distribution, which the interested reader can
find in relevant probability books (e.g. Papoulis, 1990).

2.7 Expectation

Expectation is a key concept of stochastics, enabling a macroscopic view of a phenomenon
or process in which the details are intentionally neglected. It converts a stochastic
variable into a common one.

For a discrete stochastic variable x, taking on the values x4, x5, ..., x; (where J could
be o) with probability mass function P; = P(x;) = P{x = x;}, if g(x) is an arbitrary
function of x (so that g(x) is a stochastic variable per se), we define the expectation or
expected value or mean of g(x) as:

* For example, for Excel (which by default includes the function rand) the Mersenne twister algorithm, called
NtRand, can be found in www.ntrand.com/download/.

T For example, in Excel the function normsinv(rand()) generates random numbers from the normal
distribution.
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E[g(x)] : zg(x,)P(xj) (2.23)

Likewise, for a continuous stochastic variable x with density f(x), the expectation is
defined as:

(0]

E[g(x)] = f g f (x)dx (2.24)

— 00

Expected values are common variables: for example, E[g] and E[g (g)] are
constants—neither functions of x nor of x. That justifies the notation E[x] instead of E(x)
or E(x), which would imply functions of x or x.

2.8 C(Classical moments and cumulants

For certain types of functions g(g) we get very commonly used statistical parameters, as
specified below:

e The noncentral moment of order q (or the qth moment about the origin):

g(x) = x9, g =E[x7] (2.25)
e The mean (or the first moment):
9(x)=x = =El] (2:26)
e The central moment of order q:
g(x)=@x-w9  pg=Ex—w] (2.27)

For ¢ = 0 and 1 the central moments are respectively 1 and 0.
e The variance:

9(x) = @-w? ¥y =E[x-w= o (2.28)

The variance is also denoted as var|x|; its square root o (also denoted as std[x]) is
called the standard deviation.

To distinguish the above quantities from other types of moments, to be introduced
below, we call them classical moments. Amongst the moments of order higher than two,
most used are the third and fourth. If we standardize them by appropriate powers of o to
make them dimensionless, we get, respectively, the coefficients of skewness and kurtosis:

Cs :=£ Cx :=ﬂ

= - (2.29)

Other dimensionless indices are the ratios:

=,  —=0 (2.30)
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Where the former is always meaningful, while the latter is meaningful for u # 0 (e.g. for
nonnegative stochastic variables) and is called coefficient of variation.
Central and noncentral moments are related to each other by:

q q

Mg = Z (?) W, g = Z (‘Z) (=) (2.31)

i=0 i=0

where ug = uy = 1, 44 = 0, u; = u. Proof of these relationships is given in Appendix 6-I1.
For small g they take the following forms:

py = 0% +p?,  py=pz+30iu+pd, py = pg +dpsu+ 6%+t (2.32)

and can be inverted as follows:

0% =y —p?  pz =3 =3+ 20, gy = pg — 4usp + 6ppu® —3ut (2.33)
For ready reference, Table 2.3 provides the analytical expressions of the moments of
some common distribution functions.
Another useful expectation is formed by choosing g(g) = e'X for any t. The logarithm
of the resulting expectation is called the cumulant generating function:

K(t) :== InE[e*¥] (2.34)
The power series expansion of the cumulant generating function i.e.:
K(t) = Z Koy (2.35)

q=1
defines the cumulants k,. These are related to noncentral moments of similar order by
(Smith, 1995):

q-1 q-1
Mg = Z (“ . 1) Kgoillh, kg =l — Z (q B 1) Kqoill] (2.36)
=0 i=1

For small g they take the following forms:

Ko = U1 =0, K= =W K2 = U, K3 = Uz, Ka = flg — 3443 (2.37)

The importance of cumulants results from their homogeneity and additivity properties.
Namely, for a stochastic variable that is the weighted sum of r independent variables v;,
ie,x = a,vy + - + a, v, the gth cumulant of x is given as

kg = af Kévl) + -+ al Kévr) (2.38)
where Kévl) is qth cumulant of v,. This property is quite useful in stochastic simulation

(see Chapter 7).
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Table 2.3 Some common distributions of continuous variables and their moments (and
cumulants when their expressions are simple).

Name, parameters, Probability density or
domain distribution function

Moments and cumulants

Uniform in [a, b], 3 , _a+tb _(b-a)? |, b —qa??
a<x<b 6 =34 M=y =T M T I Do -0
-1 -1
Beta, 0 <x <D (%) (1_%)¢ p =F(6+g) INCEXS) qu(q+§,c)
{>06>01>0 f(¥) = B0 T T@Or@+{+9 B(¢,¢)
. _{ I — 2 [ 1,49
Exponential e H M =M, Hp =5 pg=qtul,
p>0,x=>0 fe) == kg = (g — 1)l
I'(q+?{)
Gamma x/A)"tex/A ' =2, =722, A ST}
FQ) = (/D) e =g B2 =¢ Kq 509

{>0,1>0,x=0 AT

Kq ={(q— 1)1

Weibull
{>01>0,x>0

F(x) =1—exp (— (;)3

u;=r(1+%>,1, 1 =<r(1 +§)—r(1 +%>2>,12

u;:r(1+%)aq

0, odd
m=u  Hp=0t ”qz{aq(q—l)ll geven’
Normal (x — p)? , B I,
UER,0>0 €Xp \ T 252 p=un q=1
XER f(x)_ ,—ZT[O_ Kq= 0_2 q=2
0 q>2
Lognormal (In x is 1 2\ 2
NQnA,c)) wp(-gz@)) e . e
'S flx) = U =ez2l, pu,=e (e —1)1, g =€z A
¢>0,1>0,x=>0 V2mex

Pareto? X\"Z
£§>0,1>0,x>0 F(x)=1—(1+€;)

A ~ 22
=0 -92a-20
Aq

Pareto-Burr-

Feller! (PBF)2 WO\ T 4 =B 1_a ﬂ+1) A
$>0,6>0, F(x)=1—<1+66(1)) A S
A>0,x=>0

Dagum! 1 et —¢5

¢(>0,§>0, F(x) = (1 +—(—) 5) g =0 B(1—¢q,8(q + )2
1>0,x>0 ¢\

Extreme value
type I (EV1)

X
1>0x€R P = exp (_e A)

m2A?

6 ’

U1 = YA, Uy = Kq = (‘Dqllj(q_l)(l))tq

Extreme value
type Il (EV2)?
E>0,A1>0,x=0

F(x) = exp (—E (%)_?>

W =ETA = A pp = E45 (I (1= 28) —T(1 = §)*)A?
g = E9T(1 - g§)A?

1 The moments exist (have finite values) only for order g < 1/¢; for larger g they are infinite.
2 Also known as Pareto 11l and IV, Burr XII and Feller; for justification of the name PBF see Koutsoyiannis et al. (2018).
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Digression 2.F: Illustration of the first four classical moments and related
statistical characteristics

The geometrical meaning of the first four classical moments is visualized in Figure 2.2. Essentially,
the first moment, i.e. the mean, describes the abscissa of the centre of gravity of the shape defined
by the probability density function and the horizontal axis (Figure 2.2a). It is also equivalent with
the static moment of this shape about the vertical axis (given that the area of the shape equals 1).
Often, the following quantities are alternatively used as location parameters:

e The mode, or most probable value, x,, is the value of x for which the density f(x) becomes
maximum, if the stochastic variable is continuous, or, for discrete variables, the probability
mass becomes maximum. If f(x) has one, two or many local maxima, we say that the
distribution is unimodal, bi-modal or multi-modal, respectively.

e The median, x, 5, is the value for which P{g < xo.s} =>1/2 and P{g > x0_5} = 1/2. Thus, for a
continuous stochastic variable, a vertical line at the median separates the graph of the density
function into two equivalent parts each having an area of 1/2.

Generally, the mean, the mode and the median are not identical unless the density has a
symmetrical and unimodal shape.

f(x) f(x)
0.6 - 0.6 -
B (0) (a) | (b)
0.4 + 0.4 + (0)
0.2 + 02+ (1
0 S~ = 0 “ | -
0 2 4 6 8 0 2 4 6
X X
f(x)
0.6 M @ (©
0.4 +
0.2 0)
0 i |
0 2 4 6 8 8
X

Figure 2.2 Graphical illustration of the geometrical interpretation of moments of a stochastic variable: (a)
Effect of the mean. Curves (0) and (1) have means 4 and 2, respectively, whereas they both have standard
deviation 1, coefficient of skewness 1 and coefficient of kurtosis 4.5. (b) Effect of the standard deviation.
Curves (0) and (1) have standard deviation 1 and 2 respectively, whereas they both have mean 4, coefficient
of skewness 1 and coefficient of kurtosis 4.5. (c) Effect of the coefficient of skewness. Curves (0), (1) and (2)
have coefficients of skewness 0, +1.33 and -1.33, respectively, but they all have mean 4 and standard
deviation 1; their coefficients of kurtosis are 3, 5.67 and 5.67, respectively. (d) Effect of the coefficient of
kurtosis. Curves (0), (1) and (2) have coefficients of kurtosis 3, 5 and 2, respectively, whereas they all have
mean 4, standard deviation 1 and coefficient of skewness 0.

The variance of a stochastic variable and its square root, the standard deviation, which has
the same dimensions as the stochastic variable, describe a measure of the scatter or dispersion of
the probability density around the mean. Thus, a small variance shows a concentrated
distribution (Figure 2.2b). The variance cannot be negative; its lowest possible value is zero. This
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corresponds to a variable that takes one value only (the mean) with absolute certainty.
Geometrically, the variance is equivalent to the moment of inertia about the vertical axis passing
from the centre of gravity of the shape defined by the probability density function and the
horizontal axis.

Alternative measures of dispersion are provided by the so-called interquartile range, defined
as the difference xy,5 — xg 5, i.e., the difference of the 0.75 and 0.25 quantiles (or upper and
lower quartiles) of the stochastic variable (they define an area in the density function equal to
0.5).

The third central moment is used as a measure of skewness. A zero value indicates that the
density is symmetric. This can be easily verified from the definition of the third central moment.
If the third central moment is positive or negative, we say that the distribution is positively or
negatively skewed respectively (Figure 2.2c). In a positively skewed unimodal distribution, x,,, <
X5 < W; the reverse inequality holds for a negatively skewed distribution.

The fourth central moment is used as a measure of kurtosis, a term which describes the
“peakedness” of the probability density function around its mode. A reference value for kurtosis
is provided by the normal distribution, which has €, = 3. Distributions with kurtosis greater than
the reference value are called leptokurtic (acute, sharp) and have typically heavy upper tail (see
below), so that more of the variance is due to infrequent extreme deviations, as opposed to
frequent modestly-sized deviations. Distributions with kurtosis less than the reference value are
called platykurtic (flat; Figure 2.2d).

2.9 Definition and importance of entropy

The enumeration of the basic set and hence the definition of a stochastic variable entails
arbitrary choices and one could think of different options. In turn, expectations and
moments depend on the option chosen. One may think of defining the function g( ) whose
expectation is sought, in terms of the probability per se, i.e. g(g) = h(P(x)) for a discrete
variable or g(x) =h ( f (g)) for a continuous variable, where h() is any specified
function. Among the several choices of h( ), most useful is the logarithmic function, which
results in the definition of entropy. The emergence of the logarithm in the definition of
entropy follows some postulates originally set up by Shannon (1948). Assuming a discrete
stochastic variable x taking on values x; with probability mass function P; = P(x;) =
P{x = xj},j = 1,...,J, which satisfies the obvious relationship:

]
Z P =1 (2.39)
j=1
the postulates, as reformulated by Jaynes (2003, p. 347), are:

(a) Itis possible to set up a numerical measure @ of the amount of uncertainty which
is expressed as a real number.

(b) @isa continuous function of P;.

(c) Ifall the P; are equal (P; = 1/]) then @ should be a monotonic increasing function
of .

(d) Ifthere is more than one way of working out the value of @, then we should get the
same value for every possible way.
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Quantification of postulate (d) is given, among others, in Robertson (1993, p. 3) and Uffink
(1995; theorem 1), and is related to refinement of partitions to which the probabilities P;
refer.

From these general postulates about uncertainty, a unique (within a multiplicative
factor) function @ results, which serves as the definition of entropy:

J
®[x] =E[-InP(x)] =- ) PInP, (2.40)
.

Shannon’s work leading to the above definition was on information theory, but followed
the works of Boltzmann, Gibbs and Planck in thermodynamics. Additional notes on the
historical evolution of the entropy concept are given in Digression 2.G. We note that in
classical thermodynamics, entropy is denoted by S (the original symbol used by Clausius),
while probability texts use the symbol H. Here @ was preferred as a unifying symbol for
information and thermodynamic entropy, under the interpretation that the two are
essentially the same thing” (see Koutsoyiannis, 2013a, 20144, even though others are of
different opinion).

Extension of the above definition for the case of a continuous stochastic variable x
with probability density function f(x), where:

f fx)dx =1 (2.41)

is possible, although not contained in Shannon’s (1948) original work. This extension
presents some additional difficulties. Specifically, if we discretize the domain of x into
intervals of size 8x, then (2.40) would give an infinite value for the entropy as §x tends to
zero (the quantity —In P = —In(f (x) 6x) will tend to infinity). However, if we involve a
(so-called) background measure with density B(x) and take the ratio (f(x)éx)/
(B(x)dx) = f(x)/B(x), then the logarithm of this ratio will generally converge. This
allows the definition of entropy for continuous variables as (see e.g. Jaynes, 2003, p. 375,
Uffink, 1995):

€51 I )
CD[&] =E _lnﬁ(l)l =— [oln @f(x)dx (2.42)
The background measure f(x) can be any probability density, proper (with integral equal
to 1, as in (2.41)) or improper (meaning that its integral diverges); typically, it is an
(improper) Lebesgue density, i.e. a constant with dimensions [8(x)] = [f(x)] = [x 1], so
that the argument of the logarithm function be dimensionless. It can be easily shown that
for f(x) = B = constant, equation (2.42) can be expressed in a simpler manner in terms
of the derivative of the quantile function x(F) as:

* One of the reasons for this preference is historical: for a long time, entropy used to be denoted by @ (Perry,
1903; Swinburne, 1904; Ewing, 1920), and this is still echoed in the term tephigram (T-®-gram) used in
meteorology.
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1
?x] = fln(ﬁ x'(F)) dF (2.43)
0

This is useful for the numerical evaluation of @ [g], particularly when the quantile function
is estimated empirically, provided that the estimated x(F) is smooth, so that its derivative
can be reliably estimated (see Chapter 6).

It is easily seen that for both discrete and continuous variables the entropy @[x] is a
dimensionless quantity. For discrete variables it can only take positive values, while for
continuous variables it can be either positive or negative, depending on the assumed S (x).
In contrast to the discrete variables where the entropy for a specified probability mass
function is a unique number, in continuous variables the value of entropy depends on the
assumed S (x).

The importance of the entropy concept relies on the principle of maximum entropy
(Jaynes, 1957). This postulates that the entropy of a stochastic variable x should be at
maximum, under some conditions, formulated as constraints, which incorporate the
information that is given about this variable. This principle can be used for logical
inference as well as for modelling physical systems; for example, the tendency of entropy
to become maximal (Second Law of thermodynamics), a tendency that is the driving force
of natural change, can result from this principle. On the other hand, the same principle
equips the entropy concept with a powerful tool for logical inference.

Digression 2.G: The meaning of entropy

Entropy is etymologized from the ancient Greek évtpomia (from the verb évtpémey, to turn into,
to turn about) but was introduced as a scientific term by Rudolf Clausius only in 1865, although
the concept appears also in his earlier works (as described in Clausius, 1872). The rationale for
introducing the term is explained in his own words (Clausius, 1867, p. 358, which indicates that
he was not aware of the existence of the word évtpomia in ancient Greek):

We might call S the transformational content of the body [...]. But as I hold it to be better to
borrow terms for important magnitudes from the ancient languages, so that they may be
adopted unchanged in all modern languages, I propose to call the magnitude S the entropy of
the body, from the Greek word tpomi, transformation. I have intentionally formed the word
entropy so as to be as similar as possible to the word energy; for the two magnitudes to be
denoted by these words are so nearly allied in their physical meanings, that a certain similarity
in designation appears to be desirable.

In addition to its semantic content, this quotation contains a very important insight: the
recognition that entropy is related to transformation and change and the contrast between
entropy and energy, where the latter is a quantity that is conserved in all changes. This meaning
has been more clearly expressed in Clausius’ famous aphorism (Clausius, 1865):

Die Energie der Welt ist konstant. Die Entropie der Welt strebt einem Maximum zu.
(The energy of the world is constant. The entropy of the world strives to a maximum).

In other words, entropy and its ability to increase (as contrasted to energy and other
quantities that are conserved) is the driving force of change. This property of entropy has seldom
been acknowledged (Hill and Holman, 1986; Atkins, 2003, 2007). Instead, in common perception
entropy epitomizes all “bad things”, as if it were disconnected from change, or as if change can
only have negative consequences, always leading to deterioration (Koutsoyiannis and Sargentis,
2021; see also Digression 2.1).
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Mathematically, the thermodynamic entropy, S, is defined in the same Clausius’ texts through
the equation 6S = 6Q/T, where Q and T denote heat and temperature. The definition, however,
applies to a reversible process only. The fact that in an irreversible process 6S > 6Q /T makes the
definition imperfect and affected by circular reasoning, as, in turn, a reversible process is one in
which the equation holds.

Two decades later, Ludwig Boltzmann (1877; see also Swendsen, 2006) gave entropy a
statistical content as he linked it to probabilities of statistical mechanical system states, thus
explaining the Second Law of thermodynamics as the tendency of the system to run toward more
probable states, which have higher entropy. The probabilistic concept of entropy was advanced
later in thermodynamics by Gibbs (1902), while Planck (1906, 1914) generalized its definition,
thus approaching the modern one.

The next important step was made by Shannon (1948) who used a definition essentially
similar to Planck’s to describe the information content, which he also called entropy, at von
Neumann'’s suggestion (Robertson, 1993; Brissaud, 2005; Koutsoyiannis, 2011b). According to
the latter definition, entropy is a probabilistic concept, a measure of information or, equivalently,
uncertainty. In the same year, in his famous book Cybernetics,! Wiener (1948a) used the same
definition for information, albeit with a negative sign (p. 62) because he regarded information as
the negative of entropy (p. 11).

A few years later, von Neumann (1956) obtained virtually the same definition of entropy as
Shannon, in a slightly different manner. Notably, as von Neumann, in addition to being a
mathematician and computer scientist, was also a physicist, engineer and polymath, he clearly
understood the connection of the probabilistic definition of entropy with its pre-existing physical
content. Specifically, he wrote:

An important observation about this definition is that it bears close resemblance to the
statistical definition of the entropy of a thermodynamical system. [...] Pursuing this, one can
construct a mathematical theory of the communication of information patterned after
statistical mechanics.

He also cited an earlier work in physics by Szilard (1929), who implied the same definition of
entropy in a thermodynamic system. However, mathematical expressions similar to Shannon'’s
definition of entropy had already appeared in a thermodynamic context in Boltzmann
(1896/1898), Gibbs (1902) and especially Planck (1906, 1914).

The last fundamental contribution to the entropy concept was made a year later by Jaynes
(1957), who introduced the principle of maximum entropy, which is described in section 2.9.

More than half a century later, the meaning of entropy is still debated and a diversity of
opinion among experts is encountered (Swendsen, 2011). In particular, despite having the same
name, probabilistic (or information) entropy and thermodynamic entropy are still regarded by
many as two distinct notions having in common only the name. The classical definition of
thermodynamic entropy (as above) does not give any hint about similarity with the probabilistic
entropy. The fact that the latter is a dimensionless quantity and the former has units (J/K) has
been regarded as an argument that the two are dissimilar. Even Jaynes (2003), the founder of the
maximum entropy principle, states:

We must warn at the outset that the major occupational disease of this field is a persistent
failure to distinguish between the information entropy, which is a property of any probability
distribution, and the experimental entropy of thermodynamics, which is instead a property of a
thermodynamic state as defined, for example by such observed quantities as pressure, volume,
temperature, magnetization, of some physical system. They should never have been called by
the same name; the experimental entropy makes no reference to any probability distribution,
and the information entropy makes no reference to thermodynamics. Many textbooks and
research papers are flawed fatally by the author’s failure to distinguish between these entirely
different things, and in consequence proving nonsense theorems.

However, the units of thermodynamic entropy are only an historical accident, related to the
arbitrary introduction of temperature scales (Atkins, 2007). In a recent book, Ben-Naim (2008)
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has attempted to replace the concept of entropy altogether with the concept of information. Still,
such a replacement is unnecessary or even meaningless (and opposite to von Neumann'’s
suggestion to Shannon) if we accept that the two concepts are identical. As has recently been
shown (Koutsoyiannis, 2013a, 2014a), the thermodynamic entropy of gases can be easily
produced by the formal probability theory without the need of strange assumptions (e.g.
indistinguishability of particles). The logical basis of the latter study includes the following points:

¢ The classical definition of thermodynamic entropy is not necessary; it can be abandoned and
replaced by the probabilistic definition.

e The thus defined entropy is the fundamental thermodynamic quantity, which supports the
definition of all other derived ones. For example, the temperature is defined as the inverse of
the partial derivative of entropy with respect to the internal energy (see Digression 10.D).

¢ The entropy retains its dimensionless character even in thermodynamics, thus rendering the
unit of kelvin an energy unit.

¢ The entropy retains its probabilistic interpretation as a measure of uncertainty, leaving aside
the traditional but obscure ‘disorder’ interpretation (see Digression 2.I).

e The entropy conceptis complemented by the principle of maximum entropy, which states that
entropy tends to take the maximum value that is allowed, given the available information
about the system. The latter is incorporated into maximization in the form of constraints.

e The tendency of entropy to reach a maximum is the driving force of natural change. This
tendency can be regarded both as a physical (ontological) principle obeyed by natural
systems, as well as a logical (epistemological) principle applicable in making inference about
natural systems.

Examples of deductive reasoning in deriving thermodynamic laws from the formal
probabilistic principle of maximum entropy have been provided in Koutsoyiannis (2014a).
Notable among them is the derivation of the law of phase transition of water (Clausius-Clapeyron
equation) by maximizing entropy, i.e. uncertainty, at the microscopic level, yet leading to an
expression that is virtually certain at a macroscopic level (see Digression 10.D).

1 Interestingly, Wiener formed the celebrated term Cybernetics from the Greek word kvBepviitng, meaning
steersman, pilot, skipper, or governor, albeit incorrectly spelling it in his book (p. 11) as yvBepvijtng.

Digression 2.H: [llustration of the principle of maximum entropy

Here we illustrate the maximum entropy (ME) principle in a few simple cases. The examples may
look trivial. However, we must have in mind that, as already mentioned in Digression 2.G, with
the same reasoning we can infer more interesting things, such as the saturation vapour pressure
in the atmosphere (Digression 10.D). The logic is the same: we maximize the uncertainty with
respect to the state of a die or a water molecule.

(a) We thus start from the simple example of determining the probabilities of the outcomes of a
die throw. For the die the entropy is:

® = E[-InP(x)] = —P,InP, — P,InP, — P;InP; — P,InP, — PsInP; — PgIn Pg
Considering also the equality constraint:
Pi+P,+P3+P,+P;+P,=1
we form the objective function to maximize as:
A:=—-P;InP,—P,InP, —P;InP; — P,InP, — PsInP; — P;In P,
+a(Py+P,+P3+P,+Ps+P;—1)

where a is a Lagrange multiplier. We find the partial derivatives with respect to each of the
variables and equate them to zero, obtaining:
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04 _ 1—InP;+a=0 04 _
P, - nP,+a=0, P, -
Obviously, the solution of these equations yields the single maximum:

P1:P2:P3:P4:P5:P6:1/6

—1—InPg+a=0

The entropy is @ = -6 (1/6) In (1/6) = In 6. In general, the entropy for J equiprobable outcomes
is:

® =InJ (2.44)

It is noted that entropy and information are complementary to each other. When we know
(observe) that the outcome is i (P; = 1, P; = 0 for j # i), the entropy is zero.

In the above case of a fair die throw, the application of the ME principle is equivalent to the
principle of insufficient reason (attributed to Bernoulli and Laplace). However, while the former is
a variational law (equivalent to the solution of an optimization problem), the latter is formulated
in terms of equations. A single variational law is always much more powerful than very many
equations. Actually, from a variational law we derive as many equations as there are unknowns
(even an infinite number of equations). And as we showed, in this case the variational ME
principle entails the principle of insufficient reason, and thus there is no need at all to postulate
the latter as an additional philosophical or scientific principle.

(b) To illustrate that the variational ME principle is more powerful than the principle of
insufficient reason, we consider the following variant of the problem in which uniformity is a
priori excluded. Specifically, we assume that the die is loaded and that we have prior information
that P, = 2P;. What is the probability that the outcome of a die throw will be i in this case? For
the ME optimization we only need to take into account the additional constraint, by adding to the
objective function the term b(P; — 2P;) where b is an additional Lagrange multiplier. The solution
of the optimization problem is a single maximum, P, = P; = P, = P; = 0.1698 (slightly >1/6),
P; = 0.1069, P; = 0.2139. The entropy is @ = 1.7732, smaller than in the case of equiprobability,
in which @ = In 6 = 1.792. The decrease of entropy in the loaded die derives from the additional
information incorporated in the constraints.

(c) In another example we consider a roulette wheel which is not divided into pockets, but its
outcome is a real number measured on a circular scale graded 0 to J. In this case our stochastic
variable x is of continuous type. Assuming background density ﬁ(g) = 1, the entropy is

J
cb[g] =— f In f(x) f(x)dx
0
Considering also the constraint (2.41) with a Lagrange multiplier a, we should maximize:
J J
A= — f In f(x) f(x)dx — a ff(x)dx -1
0 0

Finding the partial derivative with respect to fand equating it to zero we obtain:

0A

W =
Hence f =exp(—1—a) = constant and from the constraint we obtain that the entropy
maximizing density is:

—1—Inf—a=0

flx)=1/] (2.45)

and the entropy is:
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®=1nJ (2.46)

This is the uniform distribution, given in Table 2.2. Notice that the expression of maximum
entropy for a discrete stochastic variable (equation (2.44)) is identical to that of a continuous
stochastic variable (equation (2.46)).

(d) If in the uniform distribution the upper bound J tends to o (while the lower bound remains
0), it becomes improper (f(x) = 0). Therefore, in this case we need an additional constraint to
find a proper distribution. The simplest one that we can think of is that the distribution has a
specified mean g, i.e.:

f xf(x)dx = pu
0

The expression of the entropy is the same as in the example (c), but the objective function to
maximize becomes:

(o] oo o

A:=—flnf(x)f(x)dx—a 0ff(x)dx—l —b fxf(x)dx—,u

0 0
Thus,
0A

ﬁz—l—lnf—a—bx=0

and

f(x) = B exp(—bx)

where from the two constraints we find, after the algebraic operations, that B = b = 1/u. This is
the exponential distribution given in Table 2.2. It is very common in physics, as the mean
constraint, from which it results, is omnipresent. For example, if x represents the kinetic energy
of one of many particles moving in a box, we do not know the exact energy of each particle (which
may change due to collisions, assumed to be elastic) but we may know the average u, which is
preserved according to the related physical principle (energy conservation). Consequently, the
distribution of the kinetic energy is exponential.

(e) If in the above example of moving particles, we limit the motion on a straight line and we
choose as stochastic variable x not the kinetic energy but the velocity, which can be either positive
or negative, the kinetic energy constraint is written as

f x2f(x)dx =y
0

where y is twice the average kinetic energy per unit mass. The objective function to maximize
becomes:

A=—|Inf(x)f(x)dx —a (x)dx—1|—=b| | x2f(x)dx —y
Of ) f Off f f
Thus,
a—A=—1—1nf—a—bx2=0
af

and

f(x) = Bexp(—bx?)
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where from the two constraints we find, after the algebraic operations, that B = ,/2my, b = 1/2y.
This is the normal distribution given in Table 2.2, with 4 = 0 and standard deviation o = +/y.
In fact, all distributions of Table 2.2 turn out to be entropy maximizing distributions, either

without a constraint or under a simple constraint in each case. The results are summarized in
Table 2.4.

Table 2.4 Entropy of the most common distributions of Table 2.2, which turn out to be entropy
maximizing distributions for Lebesgue background density (£(x) = 1) with simple constraints.

Name (and Probability density and Corresponding entropy for unit background
parameters) distribution function measure

Discrete variable x with values x;

Discrete <D[g] =InJ

; P(x;)=1/], : N
uniform, ) (the maximum among all distributions
x=1,.,] F(x) = max(0, min([x]/], 1)) withx; = 1,...,])

u J
POy = —— (1) + 1)p+t
Geometric ) 1+u\l+u 47[1] :ln(% ~ 1+In(u+1/e)
xj=01,.. F(x) : ! o
(> 0) 1 uo\ld (the maximum among all distributions
: = max <O, 1-— m <m) > with x; = 0,1, ..., and mean y)
Continuous variable x

1/] for0<x< _
Uniformin f(x) = { /] for 25 ®[x] =1InJ

[0, /] 0 otherwise (the maximum among all distributions with

F(x) = max(0, min(x/J, 1)) domain [0, a])

iy x=0
o f(x) = { Plx]=1+Inp

Exponential 0 x<0 ~ _ L .
(u>0) 1—e*t  forx>0 (the maximum among all distributions with

F(x) = { - domain [0, c0) and mean u)

0 forx <0
_ L —(x_”)z cb[x]=1(1+1n(2ﬂ))+lna=1419+1na
Normal flx) = \/—0 T 252 =12 '
u€ER, the maximum among all distributions wit
(LeER h i g all distributi ith
o >0) F(x) = lerfc (_ X~ '“) domain (- o0, ©), mean u and standard
2 V2o deviation o)

Note: | x| denotes the floor of the number x.

Digression 2.1: On different interpretations of entropy

In the public perception, entropy has a negative content, and is typically identified with
disorganization, disorder, decadence, decay, deterioration etc. (Koutsoyiannis and Sargentis,
2021). This misleading perception has its roots in the scientific community, albeit not with the
founders of the concept (except one, as seen below). Boltzmann did not identify entropy with
disorder, even though he used the latter word in a footnote appearing in two papers of his
(Boltzmann, 1897, 1901), in which he speaks about the

agreement of the concept of entropy with the mathematical expression of the probability or
disorder of a motion.
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Clearly, he speaks about the irregular motion of molecules in the kinetic theory of gases, for which
his expression makes perfect sense. Boltzmann also used the notion of disorder with the same
meaning, in his Lectures on Gas Theory (Boltzmann,1896/1898). On the other hand, Gibbs (1902),
Shannon (1948) and von Neumann (1956) did not use the terms disorder or disorganization at
all.

One of the earliest uses of the term disorder is in a paper by Darrow (1944), in which he
states:

The purpose of this article has been to establish a connection between the subtle and difficult
notion of entropy and the more familiar concept of disorder. Entropy is a measure of disorder,
or more succinctly yet, entropy is disorder: that is what a physicist would like to say.

Epistemologically, it is interesting that a physicist prefers the “more familiar” but fuzzy concept
of disorder over the “subtle and difficult”, yet well-defined at his time, concept of entropy.

However, it appears that Wiener (1948b) was the most influential scientist to support the
disorder interpretation. In his keynote speech at the New York Academy of Sciences he declared
that:

Information measures order and entropy measures disorder.
Additionally, in his influential book Cybernetics (Wiener, 1948a, p. 11), he stated that
the entropy of a system is a measure of its degree of disorganization

wherein he replaced the term “disorder” with “disorganization”, as in this book he extensively
used the former term for mental illness.

Even in the 21st century, the disorder interpretation is dominant. For example, Chaitin
(2002) stated:

Entropy measures the degree of disorder, chaos, randomness, in a physical system. A crystal has
low entropy, and a gas (say, at room temperature) has high entropy.

More recently, Bailey (2009) claimed:

As a preliminary definition, entropy can be described as the degree of disorder or uncertainty in
a system. If the degree of disorder is too great (entropy is high), then the system lacks
sustainability. If entropy is low, sustainability is easier. If entropy is increasing, future
sustainability is threatened.

It is relevant to remark that in the latter quotations disorder has been used as equivalent to
uncertainty or randomness—where the latter two terms are in essence identical (Koutsoyiannis,
2010). Furthermore, the claim that a high-entropy system lacks sustainability is at least puzzling,
given that the highest entropy occurs when a system is in the most probable (and hence most
stable) state (cf. Moore, 2003).

Interestingly, Atkins (2003) also explained entropy as disorder. Additionally, he noted:

That the world is getting worse, that it is sinking purposelessly into corruption, the corruption
of the quality of energy, is the single great idea embodied in the Second Law of thermodynamics.

There is no doubt that the notion of entropy entails difficulties in understanding, but this
happens because our education is based on a deterministic paradigm. Indeed, it is difficult to
incorporate a clearly stochastic concept, i.e., entropy, into a deterministic mindset. The notion of
order looks determinist-friendly, and its opposite, disorder, has a negative connotation in the
deterministic mindset.

However, the notions of order and disorder are less appropriate and less rigorous as scientific
terms, and more appropriate in describing mental states (as in Wiener’s use described above; cf.
personality disorder, stress disorder, bipolar disorder, mental disorder), and even more so in
describing socio-political states. The latter is manifest in the frequent use of expressions such as
“world order”, “new order”, “new world order”, “global order”, etc., in political texts
(Koutsoyiannis and Sargentis, 2021).
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In one of the earliest critiques of the disorder interpretation of entropy, Wright (1970) made
a plea for moderation in the use of “intuitive qualitative ideas concerning disorder”. More
recently, with a more absolute tone, Leff (2012) stated:

The too commonly used disorder metaphor for entropy is roundly rejected.
Furthermore, in an even more recent article, Styer (2019) stated:

we cannot stop people from using the word “entropy” to mean “disorder” or “destruction” or
“moral decay.” But we can warn our students that this is not the meaning of the word “entropy”
in physics.

Styer attributes an excessive contribution to the misconception of entropy as disorder to the
autobiographical book “The Education of Henry Adams” (Adams, 1918). He relates that it proved
to be enormously influential, as it won the 1919 Pulitzer Prize in biography, and in April 1999 was
named by the Modern Library the 20th century’s best nonfiction book in English. As quoted by
Styer, Adams dislikes chaos and anarchy, and states:

The kinetic theory of gas is an assertion of ultimate chaos. In plain words, Chaos was the law of
nature; Order was the dream of man.

This looks to be a very strong statement, which on the one hand contrasts nature with man and
on the other hand implies that there is a single type of order dreamed by man—a rather naive
idea.

Naturally, those viewing entropy as disorder have difficulties to understand the concept of life.
In early 20t century, the Swiss physicist C.-E. Guye (1922) asked the question: How is it possible
to understand life, when the whole world is ruled by such a law as the second principle of
thermodynamics, which points toward death and annihilation? He was followed by many other
scientists who were puzzled by the existence of life. As insightfully discussed by Brillouin (1949),
scientists of the era wondered if there was a “life principle”, a new and unknown principle that
would explain life as an entity that contrasts the second law of thermodynamics. A year after,
Brillouin (1950) coined the term negentropy as an abbreviation of negative entropy. In this, he
used information theoretical concepts to express the idea that every observation in a laboratory
requires the degradation of energy, and is made at the expense of a certain amount of negentropy,
taken away from the surroundings.

The term “negative entropy” had earlier been used by Schrodinger (1944) in his famous book
“What is life?”. Specifically, he argued that “What an organism feeds upon is negative entropy”. At
the same time, he did not mention any other “life principle” additional to the Second Law that
would drive life and evolution.

There is no general agreement about the meaning of negative entropy or negentropy. Some
(e.g., Lago-Fernandez and Corbacho, 2009) use them as technical terms referring to the difference
between the entropy of any variable and that of a variable with normal distribution, with the same
mean and variance (distance to normality). However, others, in a rather metaphysical context and
assuming a non-statistical definition of negentropy (e.g., Larouche, 1993), see a negentropic
principle governing life, the biosphere, the economy, etc., because these convert things that have
less order into things with more order.

Today it makes sense to ask: Has this question been answered by now? Or is it still relevant,
one hundred years after? Perhaps it is relevant to quote here Atkins (2003), who, as we have seen,
explained entropy as disorder. Yet he neatly remarked:

The ceaseless decline in the quality of energy expressed by the Second Law is a spring that has
driven the emergence of all the components of the current biosphere. [...] The spring of change
is aimless, purposeless corruption, yet the consequences of interconnected change are the
amazingly delightful and intricate efflorescences of matter we call grass, slugs, and people.

Apparently, if we getrid of the disorder interpretation of entropy, we may also be able to stop
seeking a negentropic “life principle”, which was never found and probably will never be. For, if
we see entropy as uncertainty, we also understand that life is fully consistent with entropy
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maximization. Human-invented steam engines (and other similar machines) increase entropy all
the time, and are fully compatible with the Second law, yet they produce useful work. Likewise,
the biosphere increases entropy, yet it produces interesting patterns, much more admirable than
steam engines. Life generates new options and increases uncertainty (Sargentis et al., 2020;
Koutsoyiannis and Sargentis, 2021). Compare Earth with a lifeless planet: Where is uncertainty
greater? On which of the two planets would a newspaper have more events to report every day?

However, if entropy is not disorder, what is its consistent interpretation? This question is not
as difficult to answer as the above discussion seems to imply. According to its standard definition
(section 2.9), entropy is precisely the expected value of the minus logarithm of probability. If this
sounds too difficult to interpret, an easy and accurate interpretation (again explained in section
2.9) is that entropy is a measure of uncertainty. Hence, maximum entropy means the maximum
uncertainty that is allowed in natural processes, given the constraints implied by natural laws (or
human interventions). It should be stressed that, with this general definition, entropy and its
maximization do not apply merely to physics—in particular to thermodynamics—but to any
natural (or even uncontrolled artificial) process in which there is uncertainty that necessitates a
(macroscopic) probabilistic description. This application is not meant as an “analogy” with
physics. Rather, it is a formal application of the general definition of entropy, which relies on
stochastics.

Not surprisingly, if “disorder” is regarded as a “bad thing” for many, the same is the case with
uncertainty. The expressions “uncertainty monster” and “monster of uncertainty” appear in about
250 scholarly articles registered in Google Scholar (samples are van der Sluijs, 2005, and Curry
and Webster, 2011, to mention a couple of the most cited with the word “monster” appearing in
their title). However, if uncertainty is a monster, it is thanks to this monster that life is liveable
and fascinating. Uncertainty is not an enemy of science or of life; rather, it is the mother of
creativity and evolution. Without uncertainty, life would be a “universal boredom” (to borrow a
phrase by Saridis, 2004, and reverse its connotation), and concepts such as hope, will
(particularly, free will), freedom, expectation, optimism, etc., would hardly make sense. A
technocratic system wherein an elite comprising super-experts who, using super-models, could
predict the future without uncertainty would also assume full control of the society
(Koutsoyiannis et al., 2008b). Fortunately, this will never happen because entropy, i.e.,
uncertainty, is a structural property of nature and life. Hence, in our view, uncertainty is neither
disorder nor a “bad thing”. How could the most important law of physics (the Second Law) be a
“bad thing”?

In a deterministic world view, there is no uncertainty, and there is no meaning in speaking
about entropy. If there is no uncertainty, each outcome can be accurately predicted, and hence
there are no options. In contrast, in an indeterministic world, there is a plurality of options. This
corresponds to the Aristotelian idea of Uvaui¢ (Latin: potentia—English: potency or potentiality).
The existence of options entails that there is freedom, in the following sequence:

entropy < uncertainty < plurality of options < freedom

This view, also depicted in Figure 2.3, is consistent with what has been vividly expressed by
Brissaud (2005):

Entropy measures freedom, and this allows a coherent interpretation of entropy formulas and
of experimental facts. To associate entropy and disorder implies defining order as absence of
freedom.

A final remark for this Digression is this. When speaking about entropy, we should have in
mind that the scale is an important element, and that entropy per se, being a probabilistic concept,
presupposes a macroscopic view of phenomena, rather than focus on individuals or small subsets.
If we viewed the motion of a particular die-throw, we might say that it was irregular, uncertain,
unpredictable, chaotic, or random. However, macroscopization, by removing the details, may also
remove irregularity. For example, as seen in Digression 2.H, the application of the principle of
maximum entropy to the outcomes of a die-throw results in equal probabilities (1/6) for each
outcome. This is the perfect order that can be achieved macroscopically. Likewise, as already
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mentioned, the maximum uncertainty in a particular water molecule’s state (in terms of position,
kinetic state and phase), on a macroscopic scale results in the Clausius-Clapeyron law. Again, we
have perfect order, as the accuracy of this law is so high that most people believe that it is a
deterministic law.

gvrpomio duvapug / potentia

®[x] = E[-In P(x)]

entro py uncertainty plurality of options freedom

Figure 2.3 An attempt at an artistic representation of the notion of entropy from Koutsoyiannis and
Sargentis (2021). Uncertainty is depicted by Marc Chagall’'s Palette (adapted from
https://www.metmuseum.org/art/collection/search/493731) and freedom by Marc Chagall’s Self-Portrait
with Seven Fingers (https://en.wikipedia.org/wiki/Self-Portrait_with_Seven_Fingers); dUvauig (Greek) or
potentia (Latin) is the Aristotelian idea of potency or potentiality.

2.10 Maximum entropy distributions

In Digression 2.H we illustrated several simple cases of entropy maximization, in which
we determined the entire probability mass or density function based on one or two
constraints. We can generalize the result for a number of constraints of the form:

Bla]=r e [ a@f@d-y=0 (2.47)

and for any background measure . In this case, after incorporating the constraints to the
entropy with Lagrange multipliers, the expression whose maximization is sought is:

__[01 g% ;f(x)dx a(ff(x)dx—1> i bi (_[o gi(x)f(x)dx—yi) (2.48)

Taking the partial derivative with respect to fand equating it to zero we find
f&)
—Inz-St+l-a-— Z bigi(x) =0 (2.49)

and, thus, the entropy maximizing density is:

f(x) = AB(x) exp (—Z bigi(x)> (2.50)

where A := e!~% is a constant.

As we have seen in Digression 2.H, some of the most typical distributions which are
used in a variety of scientific fields can be derived by entropy maximization using a simple
constraint. Here we will try to get a plethora of distributions again using a single
constraint but both with a Lebesgue background measure and a generalized one.


https://www.metmuseum.org/art/collection/search/493731
https://en.wikipedia.org/wiki/Self-Portrait_with_Seven_Fingers
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The background measure £ (x) reflects the way of measuring the distances d between
values of x; the Lebesgue measure corresponds to the Euclidean distance, d(x,x") = |x —
x'|. However, most hydrometeorological variables are non-negative physical quantities
unbounded from above (e.g, precipitation, streamflow, temperature—absolute,
expressed in kelvins). In positive physical quantities, often the Euclidean distance is not a
proper metric; sometimes we use a logarithmic distance d(x,x") = |In(x’/ x)|, as shown
in the example below referring to precipitation depth:

Euclidean distance Logarithmic distance

x=0.1mm, x"=0.2 mm 0.1 mm In2=0.693
x =100 mm, x' =100.1 mm 0.1 mm In 1.001=0.001
x =100 mm, x' =200 mm 100 mm In2=0.693

Which of the second and third pairs of points is equidistant to the first one? In an attempt
to merge (or unify) the Euclidean and logarithmic distance, we heuristically introduce
(see Koutsoyiannis, 2014a) a background measure for nonnegative variables that is based
on the hyperbola:

1
PO =~ (2.51)

where A is a characteristic scale parameter, which also serves as a physical unit for x. We
will refer to it as the hyperbolic background measure and we note that for A — oo, it tends
to Lebesgue measure (a constant 8 as x can be neglected over an infinite 4). According to
this measure, the distance of any point x from 0 is:

B(x) = f,w(s)ds =2 (1+ ;) (2.52)
0

An example plot for B(x) is given in Figure 2.4. Its limiting properties are:

: . . (B(&x) . (B(x)
llr% B(x) = ){1m B(x) = x, lim|——+1Inl)= llmé ——+Ind)=Inx (2.53)
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Figure 2.4 Illustration of the distance function B(x); the example plot of y = B(x) is for A = 10
and shows that for small x (<A/10) B(x) is indistinguishable from x, while for large x (> 104)
B(x) becomes a linear function of In x.
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The distance between any two points x and x is:

1+ x'/2
In{ ——~

( 1 +x/4 )

For small x values, i.e, x < x" < A, the distance is d(x,x") = AIn(1 + (x"-x)/(A + x)) =
x"- x (Euclidean distance). For large values, A< x <x’,d(x,x") = Aln(x"/x)
(logarithmic distance). We notice that both B(x) and d(x,x") have the same units as x
(physical consistency).

In the general solution (2.50) we use a single constraint for g(x) = B(x), that is
E[B(g)] =y, where we have assumed dimensions [B(x)] = [x] = [A]. We note that
B (x) = B’(x)/A, where the derivative B'(x) is dimensionless. Thus from (2.50) we get:

5 exp(—b, B(x)) = %exp (—b%x) + ln(B’(x))) (2.55)

d(x,x) =|B(x)- B(x)| =2 (2.54)

fx)=A

where b = b; . We may notice that all quantities in the big parenthesis are dimensionless.
Now we make the following generalizations by raising the following quantities in powers:

/D) > /D Bx)/1->B®/DYL  B'@) - (B'0)° (2.56)
and get
f(x) = %exp <—b <¥>d +e 1n(B'(x))> (2.57)
where
B(x) = Aln (1 + (;)) B'(x) = ¢ G(1 + (;—C)_> )_1 (2.58)

After the algebraic operations we find the generalized maximum entropy distribution:

=70 (@) (@) e
where A’ := Ae®.

As a special case, when 4 — oo, the hyperbolic background measure approaches the
Lebesgue measure and the quantities in (2.58) become:

X Cc X c—-1
B(x) = A (I) ., B'(x)=c (I) (2.60)
Hence, the density of (2.57) becomes

o =Fe(-0 (B)) +em(c() 7)) @261

or

Fo) = ,;Ll_’(%)(c—l)e exp (_b (;)Cd) (2.62)
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The densities (2.62) and (2.59) contain as special cases most common distributions
used in stochastics, including hydroclimatic stochastics. These special cases are listed in
Table 2.5 in terms of their densities f(x) and distribution functions complements F (x) =
1 —F(x). In particular, the density (2.62), which is derived from the Lebesgue
background measure, corresponds to a generalized gamma distribution also listed in
Table 2.5, after suitable transformation of its parameters. The density (2.59), which is
derived from the hyperbolic background measure, does not yield a closed expression for
F(x) in its general case, and therefore is not listed in Table 2.5. In this case, a sufficiently
general form with a closed expression of F(x) is derived if we set d = 1; this is listed as
the generalized (power transformed) beta prime distribution (where the standard beta
prime corresponds to ¢ = 1). The generalized gamma and generalized beta prime
distributions were also studied in Koutsoyiannis (2005a,c, where additional information
for some of their characteristics are provided) and Papalexiou and Koutsoyiannis (2012).

The distributions and the special cases resulting from equations (2.62) and (2.59)
correspond to nonnegative stochastic variables, x > 0. However, in some of the cases, in
which the variable x appears in Table 2.5 raised to power 2, the extension to the whole
real line is direct. The distributions of this type are earmarked as “half” in the table, and
their “full” versions (valid for all real numbers) are derived by dividing the expressions
given in the table by 2; this case includes the normal and Student distributions.

2.11 Tails, heavy-tailed and light-tailed distributions

There is a substantial difference between the distributions corresponding to equation
(2.62) on the one hand and (2.59) on the other hand. Specifically, the former are light-
tailed and the latter heavy-tailed. In heavy-tailed distributions for any ¢t > 0 (however
small) the following limit diverges to infinity:

lim e*F(x) = o (2.63)
X—00

In turn, a heavy-tailed distribution is characterized by the so-called upper-tail index
(or, if there is no risk of ambiguity, simply tail index), defined to be that number ¢ for which
the following asymptotic equation holds true:

lim x$F(x) = I, (2.64)
X—00

where [, is a nonzero and finite constant. The distributions listed in Table 2.5 under the
title Hyperbolic background measure are heavy tailed. Those distributions in which a
parameter ¢ appears have upper-tail index ¢ (e.g., Pareto, Pareto-Burr-Feller). The
remaining (e.g., lognormal) have upper-tail index zero (except a specific case of the
generalized log-gamma, shown in the table footnotes, whose upper-tail index is infinite).
At the same time, the moments of heavy-tailed distributions also diverge beyond a certain
order, i.e, E[x?] = oo for all g > 1/¢. The distributions with zero upper-tail index, such as
the lognormal distribution, have all their moments finite. For that reason, they are often
regarded as light-tailed. However, the lognormal distribution clearly satisfies (2.63) and
therefore according to this definition is heavy tailed.
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Table 2.5 Special cases of maximum entropy distributions given by equations (2.62) and (2.59).
(Expressions not to be used at face as different parameterizations may be used throughout the book.)

Name Parameters f(x) F(x)=1-F()
Lebesgue background measure
Exponential b=c=d=1 % exp (— ;—6) exp (— ;)
d=1/c,b =1 1 x\6t x L2 ()
G 1 , , _— _(Z _=
amma {=(c—-De+1 AT (,1) EXp( ,1) r' ()
. b=d=e=1 ¢ x\$1 X\ X\
Weibull? {=c € 7 (Z) exp (— (I) ) exp (— (E)
=1,d=2 x
Half*- 1 ¢ ’ < ) erfc (—)
alf*- norma b=1/2 A\/_ ( ) N
Extended b=d=1c=2, I, () _ (E)Z
half' normal? {=e+1 1 F((/Z) < ) exp( rQ’ )
Generalized (= (c—1)e+1, 4 (f) exo [ — (_)5/9 I, (¢) 3 (x)f/c
gamma* b=1¢={/cd A¢T(c) \1 P A I'(o)’ A
Hyperbolic background measure
1 1
b:c:d:l)f:l/e 1 —g—l X\"F
5 ¢
Pareto C=d=e=1’€=1/b Af (1+ ) (1+I)
1
Pareto-Burr- , ., 1 x\8-1 PN x\8\ &
oty === () (1+6)) (1-6))
Half 1 X\\?
lognormal Z - i/zz Ld=2, 2 ©Xp (_ 2 (ln (1 + 7)) ) erfc (%ln (1 + %))
h NP 1+ x/A
x 4 Fz(l/g)
Generalized b=e=1 ln L+ 7 )) r/¢y
log-gamma? = A\¢
g8 ¢=c F(l/c) 2 @1 : (1 NENES (m (1 () ))
11 11
Half Student® ¢=2,d=1,e=0 2 (1 + (f)2>_2_25 B% (7’? B (f)Z
§=1/(b+e-1) AB(%,%) ) B(li) Y=
2' 28
‘1 g1 1
= = 2\272 2 2 2¢ g —
Half extended g _ 2’_? 1 L 2 ((%) ) <1 + (%) ) B% (2'25) (x)2
- ’ ) y = |-
Student E=1/(b+e—1) AB(%’Z_lf B(%%) A
g1 71
Generalized d=1,¢=c¢, x\$1 X\ 56 By (2,5
il 1 d v =
e ey, @) ) |y
(GBP)? §=1/(b+e-1) 1B (g,é) (¢.2%)

Note: Distributions named “half” have their “full” version whose density f(x) and exceedance F(x) is obtained by dividing
those given in the table by 2. The “half” version given here corresponds to x > 0, while the “full” version is supported on the
whole real line, except for the full lognormal distribution in which x >- 1.
1 Special cases: Chi-squared and Erlang.
2 Special case: Rayleigh. Antisymmetric case (in which F(x) « F(x)): Fréchet.
3 Also known as Chi.

4 Special cases: Maxwell-Boltzmann, Maxwell-Jiittner, Nakagami. Antisymmetric: Inverse-chi-squared, Inverse-gamma, Lévy.
5 More precisely, Pareto Il or Lomax.
6 Also known as Pareto 11l and 1V, Burr XII and Feller. Antisymmetric: Log-logistic.
7 For d = 1 becomes PBF with upper-tail index § = 1/c. For d>1, £=0 (all moments exist). For d < 1, £ = o0 (no moment exists).
8 Also known as Tsallis or 1-particle kappa distribution (Olbert, 1968; Livadiotis and McComas 2013). Special case: Cauchy.

9 Special cases: Beta prime, F. Antisymmetric: Dagum—often referred to in hydrology as the kappa distribution (Mielke, 1973;
Mielke and Johnson, 1973; Hosking, 1994) but it is totally different from the kappa distribution of footnote 8.
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In a similar manner, we can define a lower-tail index. Whenever the domain of the
distribution is the entire line of real numbers, we must replace co with -co and x1/$with
(—x)'/¢. However, usually we deal with nonnegative quantities (lower bounded by 0) and,
in this case, we need a different manner to define the lower-tail index. Specifically, the
lower-tail index is that number ¢ for which the following asymptotic equation holds true:

. _( —
limx ™ F(x) = I3 (2.65)

where [; is again a nonzero and finite constant’™. Those distributions listed in Table 2.5, in

which a parameter { appears, have lower-tail index ¢ (e.g., Gamma, Weibull, Pareto-Burr-

Feller). Using I'Hopital’s rule, we see that lirré xSF(x) = lir% x1=¢f(x) /¢ and, thus, if { <
xX— xX—

1, the density f(x) should necessarily be a decreasing function, at least close to the origin,
with lir% f(x) = oo. In contrast when { > 1, the density f(x) is increasing close to the
X—

origin, with f(0) =0, and is usually bell-shaped. The particular case { =1 is
characteristic of the exponential and Pareto distributions, in which f(0) is finite and the
density f(x) is a decreasing function.

Table 2.6 summarizes the above cases and extends them to all possible upper and
lower tails and their indices. Later we will discuss how both tail indices can be visualized
in a probability plot (see Digression 5.A).

Table 2.6 Definitions of tail indices for the different cases of tail behaviour.

Characteristic Definition of tail index!

Upper bounded by cy, tail index ¢’ leT?U (cy—x)CFx)=1

Upper unbounded, tail index é )ll_)rgj xVEF(x) =1,

Lower bounded by ¢, tail index ¢ )}Lr?L(x — o) CF(x) = I3

Lower unbounded, tail index &’ xl_i)I_noo(—x)l/le(x) =1
11;,i = 1,...,4 are nonzero and finite constants.

Digression 2.]J: The hydrometeorological importance of heavy-tailed
distributions

In classical statistical mechanics the Lebesgue measure is used as background distribution. As a
consequence, a constrained mean results in exponential distribution which notably has coefficient
of variation o/u = 1. However, in several hydrometeorological processes, most notably rainfall,
when the time scale is small (e.g., daily or hourly), the empirical o/u is greater than 1, which
means that the exponential distribution is not suitable. One may think that adding one more
constraint would fix the problem. The natural choice seems to be to constrain entropy
maximization by both the mean u and the variance o2. However, this does not work as, for
nonnegative stochastic variables, entropy maximization with Lebesgue background measure
cannot yield ¢/ > 1. In other words, the exponential distribution is the upper limit.

*It would be more natural to use 1/ instead of {in (2.65) so that it be more consistent with (2.64). However,
we used that convention in order for the parameterization of common distributions, such as Gamma and
Weibul], to be similar to the one dominating in the statistical literature.
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The next solution to try is either to use a trickier (less natural) constraint, to change the
definition of entropy (using a generalized definition), or to change the background measure. The
first two cases have been studied in Koutsoyiannis (2005a) and Papalexiou and Koutsoyiannis
(2012) and the last one in Koutsoyiannis (2017). Whatever the choice may be, the result is
practically the same: a heavy-tailed distribution. The easiest way to derive that distribution is by
the framework described above, using the hyperbolic background measure and a single
constraint, the mean of the distance function. The resulting Pareto distribution has o/u = 1/
J1-=2& > 1.

In other words, by changing the background measure from Lebesgue to hyperbolic, the light-
tailed exponential distribution switches to the heavy-tailed Pareto one. The theoretical
framework otherwise remains unaffected—the same probabilistic definition of entropy is used in
both cases. But the change in the derived distribution may have important consequences in the
design and management related to extreme events. To illustrate this based on real world data we
use the daily rainfall data of Bologna, a data set already studied in section 1.3.

During the 206 years of observations there were 19 426 rain days, all of which are used in
the modelling. The nonzero rainfall depths of all 19 426 days are plotted against their empirical
return periods in Figure 2.5. Following the initial discussion of the concept of return period in
section 1.5, the return period of an observed value x is related to the probability of exceedance by
T(x) = D/F(x), where D would be 1 d if all days were considered, while, after neglecting the zero
rain days, it should be adapted to D = 365.25 X 206/19 426 = 3.87 d. More accurate and detailed
discussion of return period will be provided in Chapter 5.

The 19 426 values range between 0.1 and 155.7 mm, with a mean of 7.2 mm. In the
exponential distribution the single parameter A equals the mean, which allows plotting the
theoretical curve corresponding to it in Figure 2.5. Clearly, the comparison with the empirical
points of the figure indicates a bad performance of the exponential model. In contrast, the Pareto
model, also plotted in Figure 2.5 looks suitable. It is admirable that a model with only two
parameters (the upper-tail index & and the scale parameter A) can make such a good fitting on so
many observations of 206 years. The parameter values, ¢ = 0.11 and A = 7.78 mm (with
parameterization as in Table 2.3), have been estimated by a least squares method to minimize the
error between the empirical and theoretical return period. The empirical return period has been
assigned by the method described in section 5.6. The good performance of the Pareto distribution
suggests that the hypothesis of a hyperbolic background measure, along with the principle of
maximum entropy, leads to a good predictive capacity.

Now, comparing the behaviour of the light-tailed exponential distribution with the heavy-
tailed Pareto distribution, and both with the empirical distribution, we clearly see that the former
severely underestimates the magnitude of the extremes. Notably, for a return period of 10 000
years, which is typically used in the engineering design of major projects such as dams, Figure 2.5
shows that the exponential distribution predicts a rainfall depth of ~100 mm, a value that was in
fact exceeded seven times in the 206-year available record. On the other hand, the Pareto
distribution predicts a value of ~250 mm, 2.5 times higher (and as we will see in Digression 6.M,
it becomes even higher if we also take into account the dependence structure of rainfall). Thus,
inappropriate model selection, based on inappropriate theoretical considerations, may have
substantial consequences in practical applications. Sooner or later, nature per se will reveal the
inappropriateness (e.g. by frequent exceedances of the design values). In such cases, one could re-
examine the theory (even though an alternative and more popular practice is to blame external
agents and find good scapegoats).

Indeed, in the 20t century, the light-tailed distributions constituted the dominant theoretical
model in research and engineering practice. And given the substantial underestimation of
extremes by this model, its failure (and its severe consequences) should not be regarded a
surprise. By now, both theoretical advances and accumulated empirical evidence have shaken this
model and have pointed towards heavy-tailed distributions. More details will be provided in
Digression 8.G.
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In addition, Koutsoyiannis (2004a, 2005a, 2007) discussed several theoretical reasons that
favour the heavy tailed distributions over the exponential case, which are consistent to the above
discourse related to the hyperbolic background measure. Furthermore, the already discussed
(Chapter 1) omnipresence of change and the non-static climate are consistent with heavy-tailed
distributions, as will be further illustrated in Digression 3.H.
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Figure 2.5 Rainfall depth vs. return period for Bologna based on 19 426 daily rainfall depths
observed throughout the observation period of 206 years.

2.12 Two variables: joint distribution and joint moments

The above sections have been devoted to concepts of probability pertaining to the analysis
of a single variable x. Often, however, the simultaneous modelling of two (or more)
variables is necessary. Let the pair of stochastic variables (x, y) be defined on two basic
sets ({2, (), respectively. The intersection (simultaneous occurrence) of the two events
{1 < x} and {y <y}, denoted as {x < x,y < y} is an event of the sample space (2, =
{2, X (1,,. Based on the latter event, we can define the joint probability distribution function
of (x,y) as a function of the real variables (x, y):

Fy(xy) = Plx <x,y <y} (2.66)

The subscripts xy can be omitted if there is no risk of ambiguity.
If Fﬁy is differentiable, then the function:

GZFQ(x, y)

2.67
dx dy ( )

fgx(xr y) =

is the joint probability density function of the two variables. Obviously, the following
equation holds:
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y
f xy(u v)dudv (2.68)

Ixﬁj
II
8\><

The functions:
F() = Plx<x}=limFy&xy), KO =Py<y}=limbiy&xy) (269

are called the marginal probability distribution functions of x and y, respectively. Also, the

marginal probability density functions can be determined as

@ = [ fondy, KO = [ iy (2.70)

Similar to the univariate case, we can define the expected value of any given function

g (g, y) of the stochastic variables x and y by

Elg(x2)]= | [ oG fiyCuyraxdy (271)

—00 —00

In this manner, we define the (noncentral or about the origin) joint moment of orders p, q
as:

o = Exy?] = [ [ 2y fyry)acy 272)

—00 —00

as well as the joint central moment of orders p, q:

oo

g = B[ =) (y-1)'] = [ [@=n) (r-1) fyenaxay  @73)

— 00 —00

If p=0 or g =0, we get the marginal moments (e.g., means, [, = [, iy = [o1;
variances, var[x]|:=E [(g - ,ux)z] = liy0 = Yy = 02, var [X] = Hoz = ¥y = 02, etc.). The
lowest-order joint central moment is the covariance:

cov [& X] = E [(z — [hy) (X — uy)] = 1 = Oy = E [z X] — E[x]E [X] (2.74)

A dimensionless index derived from covariance is the correlation coefficient:

— Oy
Ty = ;ay (2.75)
which obeys the inequality:
—1<n,=<1 (2.76)

where the values -1 and 1 indicate fully anti-correlated (fully negatively correlated) and
fully (positively) correlated variables. Here is the mathematical proof about why this
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2
happens: We start from the obvious relationship E [(g + y) ] = E[gz] +E [yz] +
2E [5 y], observing that terms involving squares are nonnegative quantities. We assume,
without loss of generality, E[x] = E [y] = 0, so thatE[x?] = 0Z,E [yz] = oy,E [g y] = Oyy.

Thus, we get 67 + 07 + 20y, = 0 or 0y, /0,0, = —(1/2)(0y /0y + 0, /0,) = —(1/2) (a +
1/a), where a := 0, /0, = 0.Itis easy to see that (a + 1/a) has minimum value 2, so that

Oxy/0x0, = —1. Furthermore, E [(g - X)Z] = E[XZ] +E [22] — 2E [5 X] and, likewise,

Oxy/ 020y < (1/2)(0x/ay + ay/ax) =(1/2)(a+1/a) < 1.
The particular case where:

Oxy =Ty =0 E [g X] = E[g]E [X] (2.77)

defines uncorrelated variables. Independent variables are necessarily uncorrelated, but
independence is a stricter concept whose definition is:

ng(x:y) = Fg(x)FX(y)f fgz(x'y) = fg(x)fX(Y) (2.78)

The joint entropy is defined in an analogous manner with that in the univariate case
(section 2.9). For discrete stochastic variables the entropy is:

¢|xy|=E[-nP(xy)] ZP'J'IHPU (2.79)

where P;; == P {g =X,y = yj}. For continuous stochastic variables it is:

f(&z) _ f 001 fxy) (2.80)

cp[& X] = E —lnﬁ (x’y) = e flx, y)dx dy

2.13 Conditional densities and expectations

Of particular interest are the so-called conditional probability distribution function and
conditional probability density function of x for a specified value of y = y; these are given
by:

2o fey € y)dE fey (6, 9)

Fay(ly) === fay(ly) == (2.81)

respectively. Switching x and y we obtain the conditional functions of y.

The conditional expected value of a function g(g) for a specified value of y =y is
defined by

o

E[g(@)ly] =E|g(x)|y =¥| = J 9() fgy (xly)dx (2.82)

— 00
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An important quantity of this type is the conditional expected value of x:

(0]

E[xly] =E x|y =y| = f x fpy (xly)dx (2.83)

— 00

Likewise, the conditional variance is

(0]

var[x|y] = E[(x — E[xly])’|y = ¥ = f (% = E[x[y])" fugy (x1y)dx (2:84)

— 00

and can be also written as

var(x|y] = E[x2|y] - (E[z|y])* (2.85)

[t is obvious from the definition (2.82) that the conditional expectation E[g(g)b/] isa
function of the real variable y, call it h(y), rather than a constant. If we do not specify the
value y of the stochastic variable yin the condition, then the quantity E [g (§)| X] = h(z)
becomes a function of the stochastic variable Y- Hence, it is a stochastic variable itself. Its

own expected value is:

E[E[g(X)|y]] f lg(X)|y]f; 0dy = f f 9O fry (x,¥) dxdy (2.86)

—00 —00

where we have utilized (2.82) and (2.81). As a result,

E [E [g(§)|2” = E[g(x)] (2.87)

This can be readily generalized for a function of two stochastic variables, i.e.,

E [E |9 (xy) |X” =E[g(xy)] (2.88)

Entropy, as formally defined for the univariate case in section 2.9 and for the bivariate
case in equations (2.79) and (2.80), is an expectation and thus we can also define
conditional forms of entropy which are quite useful. Thus, for a specified value of y =y

and for a discrete stochastic variable the entropy is:
?[x|y] = E[-InP(x|y)] = —Zpiu In Py (2.89)
—

where P;j; := P {g = x;|ly = yj}, and for a continuous stochastic variable it is:

olxly] = E|- iE: |y)l €2 (2.90)

"800 In gy JxI)dx

These quantities depend on the specified condltlonmg value y of y. However, we can

define a global conditional entropy, for an unspecified value of y.



CONDITIONAL DENSITIES AND EXPECTATIONS 69

E[qj [ElX” = E[E [-1n P (xly) |X” = _Z;Piu In Py ; Py (2.91)

For continuous stochastic variables it is:

x y
B|o [xly]| = IE [ \ ‘ in’ [S( W felyyaxdy  292)
A relationship analogous to (2.87) does not hold in this case. This is easy to verify as
o o© 00 f(xly) ) o o & B 293
E [d) [ﬂX” = _[0 ) In 500 flx,y)dxdy # _.O[ J lnﬁ( )f(x,y)dx dy = <D[§] (2.93)

In fact, the true relationship between the (global) conditional entropy and the marginal
one is an inequality (e.g. Papoulis, 1991, p. 564):

E [d) [yz]] < o|x] (2.94)
Another distinction we have to stress is that:
E [cp [gz]] + o[x]y] (2.95)

because the quantity in the right-hand side is generally a function of y while that in the
left-hand side is not. An interesting exception is the case of a bivariate normal distribution
in which <D[§|y] turns out to be a constant rather than a function of y (& [£|y] =: ¢, [g] <
Qb[g]). Generally, we should stress that:

e conditional expectations like E[x|y] are deterministic functions of the conditioning
value y;
e conditional expectations like E[x|y] are stochastic variables, depending on y;

e expectations of conditional expectations, as in E [E [g (g, X) |X” and E [(p [glz”,

are constants.
These remarks have to be added to the notes of Digression 2.B about the importance of
notation.

Digression 2.K: Does information decrease entropy?

It is intuitive to say that, if a stochastic variable x has some relationship with another stochastic
variable y then, if we observe the value of y, our uncertainty on x would decrease. As entropy is a

formal measure of uncertainty, this can be formally stated as follows: the conditional entropy of
x given information on y is smaller than the unconditional entropy of x. However, this simple

truth is sometimes contradicted in scientific texts. The reasons of the contradiction are the
inattentive use of concepts and inattentive notation. We will illustrate them with the following
example.

In Digression 2.D and Digression 2.E we studied the probabilities of the dry and wet (rain)
state in an area. Continuing this study, we now introduce the stochastic variables and x and y for

today’s and yesterday’s state, respectively, with {g = 0} and {g = 1} representing a dry and wet
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state of today, respectively, and likewise for yesterday. We assume for illustration the conditional
probabilities:

Plx=1y=1}=04, P{x=1]y=0}=015
from which it directly follows that
Plx=0ly=1}=06  P{x=0ly=0}=085

and after some simple calculations (see Digression 2.E) we also find the marginal probabilities to
be

P{x=0}=08  P{x=1}=02
Hence the unconditional entropy is:
®[x] = E[-InP(x)] = —0.81n0.8 — 0.21n 0.2 = 0.500
while the entropy conditional on yesterday being dry is:
@ [xly = 0] =E[-InP (x|y = 0)] =-0851n0.85 - 0.151n0.15 = 0.423
and that conditional on yesterday being wet is:
®|xly=1]=E[-InP(z]y =1)] =-0.61n0.6 — 0.41n0.4 = 0.673

Now it is true that the information that yesterday was a wet day increased the entropy from
0.5 (without any information) to 0.673. This happened because the probabilities of the two states,
which initially were 0.8 vs. 0.2, far from the equiprobability (0.5) in which the entropy is
maximized, have now approached each other (0.6 vs. 0.4) and thus the entropy increased.

But this happens for that particular value, y = 1. If we consider all values (in our case two),

on the average the (global) conditional entropy is
E [cp [£|y” =0.423 x 0.8 + 0.673 x 0.2 = 0.473 < 0.500

In other words, the reply to the question in the above title is: Yes, information decreases entropy,
but we must be attentive about the correct use of the probabilistic concepts.

2.14 Many variables

All above theoretical analyses can be easily extended to more than two stochastic
variables. For instance, the distribution function of the n stochastic variables x;, ..., x, is

Eeprotn (X1 s Xn) 5= P{Xy S X4, X < X} (2.96)

and is related to the n-dimensional probability density function by

Foooe (1o ) = f f fo (£ €206, - dEy (2.97)

The variables x4, ..., x,, are independent if:
Fgl,...,gn (x1; ey xn) = Fgl (xl) an (xn) (298)

A useful rule to mention is the so-called chain rule, which allows expressing joint
densities as products of conditional densities:
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f(xp '"ixn) = f(xnlxn—lﬂ ""xl) f(x2|x1)f(x1) (299)

where for notational brevity we have omitted the subscripts of functions f (), as these are
identical to the arguments of the functions. A direct consequence for the evaluation of
entropy is

D21, s 2] = E[O[tnl2nos, s 1]+ + E[@[1:]21]] + @[x1] (2.100)

The expected values and moments are defined in a similar manner as in the case of
two variables, and all properties discussed in section 2.12 are likewise generalized for
functions of many variables.

If we integrate f (x4, ..., x,) with respect to some of the variables, we obtain the joint
density of the remaining variables. For example

e xs) = f f £ (a2, X3 24) dxpdxy (2.101)

and since
f (X, %2, x3,%4) = f(xq,X3|%2, %4) f (2, X4) (2.102)

we obtain
£ xs) = f f £ e, %510, x0) £ (a0 x4) dipdy (2.103)

which can also be written as an expected value, i.e.,
f(xy,x3) = E[f(x1:x3|£2'£4)] (2.104)
where the conditioning variables x,,x, are taken as stochastic variables and the
conditioned ones are taken as values.
2.15 Linear combinations of stochastic variables
A consequence of the definition of the expected value is the relationship
E[c191(x1,%2) + €292 (%1, %2)| = c1E[ g1 (x40, %2)] + 2E[ g2 (21, x2)] (2.105)

where c¢; and c, are any constants, and g; and g, are any functions. This property can be
extended to any number of functions g;. Applying it for the weighted sum of two variables
we obtain

E[algl + azgz] = alE[@] + azE[&] (2.106)

Likewise, we can calculate the variance of the weighted sum. After some algebraic
operations we get

var[a,x; + a,x,| = a?var|x;| + ajvar[x;] + 2a,a;cov[xy, x, | (2.107)
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It is much more difficult to calculate the probability distribution function of such
combinations. As an example, for the simplest case, the sum z =x; +x, of two
independent variables x; and x, has density:

f(2) = f fo. 2 = x) fi, (x2)ds (2.108)

The right-hand side is known as the convolution integral of f, (x) and f,,(x). For

nonnegative variables it takes the form:

f:(2) = f fe, @ = x3) fi,(x2)dx,, 2> 0 (2.109)
0

2.16 Variance-based correlation and the climacogram

While covariance and its equivalent standardized form, i.e., correlation, have been the
most customary tools to characterize dependence, they are neither the only nor the most
effective ones. Assuming two stochastic variables x; and x, (possibly representing
different physical quantities) with means y; (i = 1,2), standard deviations g;, covariance
01, and correlation coefficient r;,, we may form a different type of a correlation coefficient
and covariance by examining a weighted sum of the two variables. Namely, we examine
the average of the variables x; after standardizing them with their standard deviations o,
which is necessary if they represent different physical quantities, in order to make them
compatible for addition. From (2.107) we obtain that the variance of this average is:

1 /% {2)] 1 1 [x1 x2] 1 <x1 — M X2 e )2
= 4= ==+ — =, —|==E||= 2.110
var [2 (01 * 0, 2 * 2 cov o1 0,1 4 01 * 0y ( )

where we can recognize in the middle term the correlation coefficient r;,. Defining

1x1 X 1 |oy 01
P12 = var [E <0—1 + 0—2)] ) V12 i= 0102012 = Var |5 0_151 + 0_252 (2.111)

we find from (2.110) that
1+, 010, + 01,
P12 = 5 V12 = - 5
Obviously, the same information as in ry, is contained in p,,, which lies in the interval
[0, 1] with the values 0, 1/2, 1 representing fully anti-correlated, uncorrelated and fully
correlated variables, respectively. Consequently, y;, lies in the interval [0, o, 0, ] with the
values 0, 0,0, /2, 0,0, representing fully anti-correlated, uncorrelated and fully correlated

variables, respectively.

The power of the notion of p;, and y,, is the fact that, unlike r;,, they can be readily
expanded to many variables to provide a macroscopic (or bulk) measure of correlation
among all of them. Considering a number x > 0 of stochastic variables, in the customary

(2.112)

case where all have identical variances y; = 02, we write:
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Xic] _ Ve [X_K]
= | =—, = —| = , X = + -4 2.113
Py = var [m v Ve =Var|== =Vipe, X=X Xy ( )
Clearly, y, is the climacogram, already defined in Chapter 1, and p,. is a dimensionless
(standardized) climacogram. They range in the intervals (0,y;) and (0, 1), respectively,
with the highest value representing full correlation (x; + -+ x, = kx; + ¢, where cis a
constant) and the lowest representing deterministic linear dependence, i.e. the condition

that x; + --- + x,, = c). In case of independence, ¥, := y;/k and p,, == 1/k.

2.17 Limiting distributions and the central limit theorem

As we have seen in section 2.15, it is rather difficult to calculate the distribution function
of the sum of two stochastic variables from the distributions of the constituents. This
difficulty increases as the number of constituents increases. However, if this number
becomes quite large, paradoxically the problem becomes easier—this is the ease of
macroscopization. Central role in resolving this paradox plays the central limit theorem®,
one of the most important in probability theory. It concerns the limiting distribution
function of a sum of stochastic variables-constituents, which, under some conditions but
irrespectively of the distribution functions of the constituents, is always the same, the
celebrated normal distribution. This is the most commonly used distribution in probability
theory as well as in all scientific disciplines and, as we have seen in section 2.10, it is also
derived from the principle of maximum entropy.

Letx; (i = 1, ...,n) be stochastic variables whose sum z,, := x; + --- + x,, has mean y,
and variance ¢2. The central limit theorem states that, under some general conditions (see
below), as n tends to infinity, the distribution of z will tend to the normal distribution
(also known as Gauss or Gaussian distribution and denoted as N(u,, 0,)), i.e.,

z

i @ = [ —e B
im Z) = e Oz 2.114
N—oo gn() O_Zm ( )

—00

and in addition, if x; are continuous variables, the density function of z, has also a limit,

- 2
e_%(z afz)

lim f,,(2) = —== (2.115)

We observe in (2.114) and (2.115) that the limits of the functions F;, (z) and £, (z) do
not depend on the distribution functions of x;, that is, the result is always the same. Thus,
provided that the conditions for the applicability of the theorem hold, (a) we can know
the macroscopic behaviour (the distribution function of the sum) without knowing details

of the constituents, and (b) precisely the same distribution describes any variable that is
a sum of a large number of components. Here lies the great importance of the normal

* The term was most likely introduced by Pélya in 1920. A first version of the theorem was formulated and
proved by Laplace in 1810 while at about the same time Gauss studied the normal distribution in
characterizing measurement or model errors. Earlier, in 1733, de Moivre had introduced the normal
distribution as an approximation of the binomial distribution (Fischer, 2010).
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distribution in all sciences (mathematical, physical, social, economic, etc., as well as
stochastics per se). Additionally, we recall (Digression 2.H and Table 2.4) that the normal
distribution also emerges from the principle of maximum entropy: for constant
(Lebesgue) background density and for domain (- oo, o), it yields the maximum entropy
among all distributions with specified (constrained) mean and standard deviation.

In practice, the convergence for n — o can be regarded as an approximation if n is
sufficiently large. But how large should n be so that the approximation be satisfactory?
Generally, the literature suggests that a value n = 30 is satisfactory. However, this varies
depending on the (joint) distribution of the constituents x;. Figure 2.6 gives a graphical
illustration of the convergence to the normal distribution of the sum of n independent
variables. Clearly, if the distribution of x; is symmetric (left panel, with uniform
distribution of x;), the convergence is rapid (even for n = 3) but if it is asymmetric (right
panel, with exponential distribution of x;) a value higher that 32 (the highest n shown in
the plot) is needed for a satisfactory convergence. In case of dependent x; with positive
correlation, the convergence is slower and a much larger n is needed.

1 1
fle) "l S
08 ------------- n=2
n=3
——-n=4
0.6

Figure 2.6 Convergence of the sum of independent identically distributed stochastic variables to
the normal distribution (thick line). The thin continuous lines represent the probability density of
the constituent variables x;, which have mean 0 and standard deviation 1. On the left panel the

density is uniform on the interval (—/3,v3) with f(x) = 1/(2v3) and on the right panel
exponential, f(x) = e*"1,x > —1 (the parameters are chosen so as to have mean 0 and standard
deviation 1). The dotted lines represent the densities of the sums z,, := (x; + **- + x,,)/v/n for the

values of n indicated in the legend. (The division of the sum by v/n helps for a better presentation
of the curves, as all z,, have the same mean and variance, 0 and 1, respectively, and does not affect
the essentials of the central limit theorem. Equations (2.11) and (2.108) were used to produce the

graph.)

The conditions for the validity of the central limit theorem are general enough, so that
they are met in many practical situations. Some sets of conditions (e.g. Papoulis, 1990, p.
215) with particular interest are the following:

(a) thevariables x; are independent identically distributed with finite third moment;



LIMITING DISTRIBUTIONS AND THE CENTRAL LIMIT THEOREM 75

(b) the variables x; are bounded from above and below with nonzero variance;
(c) the variables x; are independent with finite third moment and the variance of z,
tends to infinity as n tends to infinity.

The theorem has been extended for variables x; that are interdependent, but each one
is effectively dependent on a finite number of other variables. Gnedenko and Kolmogorov
(1949) proved an extended version of the theorem, according to which the sum of n
stochastic variables with heavy tailed distributions with upper-tail index ¢ > 1/2,
therefore having infinite variance, will tend to the so-called Lévy alpha-stable
distribution, as n — oo. If £ < 1/2, the standard central limit theorem holds, i.e., the sum
converges to the Gaussian distribution, which is a special case of the Lévy alpha-stable
distribution. In the field of hydroclimatic processes, the standard theorem suffices
because we can justifiably assume that those processes have finite variance: an infinite
variance would presuppose infinite energy to materialize, which is absurd.

Most hydroclimatic processes (particularly rainfall and streamflow) have skewed
distributions at fine time scales, and therefore the normal distribution is not a suitable
model at these scales. However, the normal distribution describes with satisfactory
accuracy variables that refer to longer time scales such as annual. Thus, the annual rainfall
depth in an area with wet climate is the sum of many (e.g., 50-100) rainfall events during
the year; this, however, is not valid for rainfall in dry areas. Likewise, the annual runoff
volume passing through a river section can be regarded as the sum of 365 daily volumes.
These are not independent, but the central limit theorem can be applicable again.

Nonetheless, it should be stressed that the convergence to the normal distribution
concerns the body of the distribution. For example, what is depicted in Figure 2.6 is about
the body of the distribution. What happens with the upper tail behaviour, i.e., the
extremes? Apparently, once the theoretical conditions of validity are satisfied, the
theoretical result should hold true. However, this may not be of any help in practice as the
convergence in the tail is much slower. Figure 2.7 (left) shows that the convergence in the
tail is indeed slow for the exponential distribution, much slower than that of the body of
the same distribution shown in Figure 2.6 (right). The coefficient of skewness for the sum
of 32 x; israther small (0.35) indicating a rather satisfactory approximation by the normal
distribution. However, Figure 2.7 (left) shows that for F = 0.001 the distribution of the
sum of 32 x; is by an order of magnitude larger than that of the normal distribution.

For heavy tailed distributions, there are differences of several orders of magnitude as
shown for the Pareto distribution in Figure 2.7 (right). The upper-tail index of this Pareto
distribution is 1/4, which means that the moments below the fourth order exist and
therefore the necessary conditions for the central limit theorem are satisfied. Despite that,
the approximation of the distribution upper tail is unsatisfactory. Actually, it can be easily
understood that, as the moments for order > 4 of x; are infinite, the same will hold for the
sum of any finite number of x;, while the limiting normal distribution has all its moments
finite. This conflict, along with the fact that the behaviour of extremes is closely connected
to the high order moments of a distribution (see Chapter 6) suggests that we must be very
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attentive in the application of the theorem in hydroclimatic processes, particularly
because these processes seem to exhibit heavy tails and long-range dependence.

0.1 0.1

1-F(z) 1-F(z)
0.01 0.01 -

0.001 0.001

0.0001 0.0001

0.00001 0.00001

2 4 6 8 10 2 4 6 8 10
z z

Figure 2.7 Convergence of the sum of independent identically distributed stochastic variables to
the normal distribution (thick line) with focus on the upper tail. The thin continuous lines
represent the exceedance probability of the constituent variables x;, which have mean 0 and
standard deviation 1. On the left panel the distribution is exponential with density f(x) =
e *1,x > —1 as in the right panel of Figure 2.6) and on the right panel Pareto with upper-tail

index 1/4 and exceedance probability F(x) = (4/3 + xx/f/3) 4, x > — 1/4/2 (the parameters are
chosen so that the mean is 0 and standard deviation 1). The dotted lines represent the exceedance
probability of the sums z, = (x; + *-- + x,,)/v/n for the values of n indicated in the legend. Their
curly shape in the right panel is due to the numerical (Monte Carlo) method used to construct
them as analytical integration is impossible beyond n = 2. (Equations (2.11) and (2.108) were
used to produce the graph.)

2.18 Limiting extreme value distributions

By analogy with the central limit theorem referring to the sum or the average of many
variables, limiting distributions may also arise, as n — oo, for the maximum of these
variables, y,, = max(gl, ...,gn), whose exact distribution function for independent and

identically distributed x,, is:

B,(y) = (Fg(y))n (2.116)

The relevant theory was developed in the 20t century. Historically, it was Fréchet
(1927) the first to identify one of the asymptotic distributions of maxima, which bears his
name. Fisher and Tippett (1928) showed that there are only three possible limiting
distributions for extremes, while von Mises (1936) identified sufficient conditions for
convergence to the three limiting laws. Gnedenko (1943) set the solid foundations of the
asymptotic theory of extremes providing the precise conditions for the weak convergence
to the limiting laws. It is worth noting in this respect the celebrated book by Gumbel
(1958), who was one of the pioneers promoting and applying the formal theory into
engineering practice. The theory is concisely presented in a review paper by Davison and
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Huser (2015). Assuming that x; are independent and identically distributed, there exist a
real number ¢ and sequences of real numbers A, > 0 and &, such that the rescaled
maximum y, = max(gl, ...,gn) /Ay — &, has limiting distribution, as n — oo:

-1/
H(y) := FX;,(}’) = exp (— (1 +¢ (% - e)) > sy =& (e — %) (2.117)

Here A > 0 is a scale parameter, ¢ is a dimensionless location parameter and ¢ is a shape
parameter, identical to the upper-tail index.

The parameter ¢ has a unique value, which is precisely the same with the upper-tail
index of the parent distribution, but the parameters A and ¢ are not unique. They can be
chosen as convenient (different choices will lead to appropriate modification of the
sequences 4, and &,). A natural choice is e = 0,A = 1. Amore customary option is to choose
a large n for which convergence has been achieved at a satisfactory degree, for that n set
An =1land &, = 1 (so thaty; =y, = max(x;, ..., x, ) without any rescaling) and calculate

A and ¢ from equation (2.117). To this aim (and given that, for finite n, (2.117) is an
approximation and not an exact relationship) we choose two points x; and x, and equate
F(x)™ with H(x) at these points. For mathematical convenience we can choose the two
points so that —x; /A + & =0,—x,/1+ & =—1,0or x; = 1¢,x, = Ae + A. Hence, F(1e)" =

el F(de + )" = e~ 1+, Solving for A and & we find:

1
- P (o)
- (e‘ (1+;)1/en> e (e— %), fm— (2.118)

where for §- 0, (1 + £)"'/¢ — 1/e. This is usually made unconsciously, for example when
we study annual maxima of daily values and fit H(y) of equation (2.117) on the annual
maxima directly, without even deriving it from F, (x).

Depending on the value of ¢, the limiting distribution in equation (2.117), known as
the generalized extreme value (GEV) distribution, is a compact expression including three
cases with different behaviours:

e For ¢ = 0, GEV takes the following form, known as the Gumbel distribution or
extreme value type [ (EV1) distribution:

H(y) = exp(—exp(—y/A +¢)) (2.119)

This is a light-tailed distribution without an upper or lower bound.

e For &> 0, the distribution is known as Fréchet or extreme value type I (EV2) and
has a lower bound at A — A1/&. This is a heavy-tailed distribution with upper-tail
index ¢&.

e In case that £ < 0 the distribution is known as the reverse Weibull or the extreme
value type III (EV3) distribution. This has an upper bound for y at Ay — A /¢.

The GEV has the property to be max-stable, meaning that maxima from this
distribution, after linear transformation, have the same distribution. More formally,
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Fréchet’s necessary condition for max-stability is this: For any n € Nand y € R, there exist
real numbers a,, > 0 and b,, such that:

(H(any + bp))" = H(y) (2.120)

In fact, GEV is the only distribution satisfying this condition.

A specific parent distribution F(x) belongs to the so-called (max-)domain of
attraction of one of the three limiting laws, in the sense that the distribution of rescaled
maxima from this parent distribution is this particular limiting law. Formal mathematical
conditions determining a parent distribution’s domain of attraction were formulated by
von Mises (1936) and Gnedenko (1943). The practical result is that heavy-tailed
distributions with upper-tail index ¢ > 0 (e.g., Pareto, Pareto-Burr-Feller, Student and its
extensions, generalized log-gamma and generalized beta prime) belong to the domain of
attraction of EV2. Light-tailed distributions (e.g. exponential, gamma, Weibull, normal and
their generalizations) as well as heavy-tailed distributions with upper-tail index £ =0 (e.g.
lognormal) belong to the domain of attraction of EV1. In the domain of attraction of EV3
belong distributions bounded from above (e.g. uniform).

Because of its upper bound, EV3 is not an appropriate model for hydroclimatic
extremes, for nature has no upper limits (unless dictated by a conservation law). The
values of ¢ which we expect to see in hydroclimatic processes are in the range (0, 1/2) so
that the variance be finite, as already discussed in section 2.17. The exact value of the
upper-tail index is important to specify in engineering design. The major question in this
regard is how the value of an extreme quantity y grows as the probability of exceedance
H(y) decreases tending to zero. To put it the reverse way, at which rate does y tend to
infinity as the probability of exceedance tends to zero? The Gumbel distribution
represents the mathematically proven lower limit to the rate of this growth. The
alternative is the Fréchet law which represents a higher rate of growth. The two options
may lead to substantial differences in design quantities for high return periods. As already
discussed, the Fréchet law which has a positive upper-tail index is a more realistic option.

When we are interested about minima, we can follow the same procedure observing
that 2z, = min(gl, ...,gn) = — max(—gl, s —gn). Consequently, P{gn < Z} =1-

P{max(—xy, ..., —x,) < —z} and hence the limiting distribution is

—1/¢
G(Z)::Fgéo(}’)z1—eXp<—<1+E(—%_S)> />' gzgg‘/l(%—s) (2.121)

Again, we have three cases: (a) £ = 0, corresponding to the Gumbel (EV1) distribution of
minima, i.e.,

G(z) =1—exp(—exp(z/A+¢€)) (2.122)

(b) ¢ > 0, corresponding to the reverse Fréchet distribution, which has upper bound
A(1/§ —¢) and a heavy lower tail, and (c), € <0, corresponding to the Weibull
distribution, which has lower bound A(1/¢ — ¢€) and a light upper tail.

While most of the above mathematical developments have assumed independent
stochastic variables, the results can be approximately valid even in case of variables
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dependent in time. Specifically, Leadbetter (1983) demonstrated that, under mild
conditions, maxima of dependent series follow the same form of distributional limit laws
as those of independent series. However, the dependence changes the location and scale
parameters (Davison and Huser, 2015) in such a manner as if H(y) was replaced by

(H(y))g, where 0 € (0,1] is the so-called extremal index. It can be seen that this
replacement is equivalent with a change of the parameters A and ¢, while ¢ remains the
same. Also, the rate of convergence to the limit becomes slower in case of dependence.
Phenomenologically, time dependence of a process causes clustering or grouping of
extreme events. The unfortunate fact that dependence in time is quite often misinter-
preted as nonstationarity, may explain the lately growing body of publications detecting
nonstationarity in extremes (cf. Koutsoyiannis and Montanari, 2015).

Here it should be stressed that, if compared to the central limit theorem, which is
characterized by a fast convergence to the limit (except in the extremes, as seen in Figure
2.7), the convergence to the max-stable distribution may be much slower at cases. The
rate of convergence to the limit of distributions belonging to the domain of attraction of
EV2 is generally satisfactory. However, for those belonging to the domain of attraction of
EV1, such as the normal and lognormal distribution, the rate is desperately slow. The
meaning of a slow convergence in real-world applications, where n is finite and often
small, is that the approximation of EV1 to the actual distribution of maxima is not
satisfactory. Thus, it may be preferable to approximate the actual distribution of maxima
of variables with distributions belonging to the domain of attraction of EV1 by the EV2
distribution, as illustrated in Digression 2.L.

Digression 2.L: How well do limiting distributions approximate the exact
distributions?

For independent identically distributed variables, the exact distribution of maxima is F(x)"
(equation (2.116)). To approximate the exact distribution by the GEV we use equation (2.118). As
an example, for the maxima from the standard normal distribution approximated by the EV1 we
get:

1
1 1 Fﬁl(e “)
/1=F1\71(e en)—FI\Il(e n), g=——"

As a second example, for the Pareto distribution, F(x) = 1 — (1 + x)~/¢, approximated by the
EV2 we get:

1\ ¢
1 \7¢ e (1—e‘ﬁ) -1
A= <l—e ”(1+f)1/5> — (l—e_ﬁ) ’ €= i

We have applied this approximation for n = 10, 100 and 1000 for the normal and the Pareto
distributions which belong to the domain of attraction of EV1 and EV2, respectively. The results
are shown graphically in Figure 2.8, along with the case n = 1, i.e., the parent distribution per se
for the sake of comparison.

The results are very good for the Pareto distribution and very bad for the normal distribution.
Even for n = 1000, the EV1 severely overestimates the actual probability of exceedance. One may
think of using the EV3 instead of EV1 for the approximation of the normal distribution. However,
this is not advisable because the EV3, despite giving a better approximation, entails an upper
bound to extremes which distorts a fundamental characteristic of the modelled phenomenon.
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Figure 2.8 Approximation of the true distribution of the maximum of n independent identically distributed
variables (continuous lines) by the limiting extreme value distribution (dashed lines). (left) The parent
distribution is the standard normal, N(0,1), and the approximating distribution is the EV1. (right) The
parent distribution is the Pareto, F(x) = 1 — (1 + x)~/%, with £ = 0.25 and the approximating distribution
is the EV2 with the same &.

Likewise, Figure 2.9 provides similar information for the lognormal distribution with mean
and standard deviation of In x equal to 0 and 1, respectively (denoted LN(0,1)). Like the normal,
it belongs to the domain of attraction of EV1. Here the approximation is even worse than in the
normal case but now the EV1 underestimates the exact probability of exceedance. For that reason,
we could use EV2 as a better approximation (without having the problem of artificially inducing
an upper bound). As seen in the right panel of Figure 2.9 this latter approximation is quite
satisfactory.
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Figure 2.9 Approximation of the true distribution of the maximum of n independent variables with
lognormal distribution LN(0,1) (continuous lines) by the limiting extreme value distribution (dashed lines),
which is (left) EV1 and (right) EV2 with & = 0.3/n°%%7, which was found after a numerical investigation and
fitting a power function of n by minimizing the fitting error.

2.19 Relationship of parent and extreme value distribution

Because of problems originating from the slow rate of convergence of the actual
distribution to GEV (particularly EV1), it may be a good idea not to use the limiting
distributions in practical applications but, instead, to model the tails of the parent
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distribution or even the entire parent distribution. Yet the theory of max-stable

distributions retains its usefulness to infer the tail behaviour of the parent distribution.
Specifically, the upper tail behaviour of the parent distribution is described by the

conditional distribution function:

F(x) — F(u)

F(xlx>u) = Plx <xlx>u} = 1—F(u)

(2.123)

for a value of the threshold u that is sufficiently large. Now, assuming that the
parameterization of H(x) with regard to A and ¢ has been made with reference to a specific
large n, as described for the derivation of (2.118), we choose u so that the exceedance
probability 1 - F(u) equals 1/n. (This is a very common choice as will be discussed in

Digression 2.M). Thus, F(x|£ > u) =n(F(x)—1)+ 1or:
1-F(x|x>u)=n(1-Fx)) (2.124)
On the other hand, we can write for F(x) approaching 1,

—InH(x) = —In(F(x))" = —nInF(x) =~ n(1 - F(x)) (2.125)

because InF(x) =In(1—(1-F(x))=—(1—-F(x)) - (1 - F(x))2 — - and for F(x)
approaching 1 we can keep the first term only. Hence, combining (2.124) and (2.125) we
find:

-1/¢
F(x|§>/’l£)=1+lnH(x)=1—<1+€<;—e)> , x = Ae (2.126)

where we equated u with Ae for consistency (i.e. to make F(u|£ > u) = 0). This is the
Pareto distribution for ¢ > 0 while for £ = 0 we get the exponential form:

X
F(x|§>le)=1+lnH(x)=1—exp<z—e), x = Ae (2.127)

Furthermore, for values of x large enough to make H(x) approach 1, we can use the
same logic to get In H(x) = H(x) — 1 and hence

F(x|x > 2¢) = H(x) (2.128)

This approximation error does not exceed ~1% for H(x) > 0.99 and ~5% for H(x) > 0.9.

We can generalize the above analysis for different values of the threshold &. In this
case the resulting functional form remains the same, with the same upper-tail index, but
the location and scale parameters differ, i.e. (Davison and Huser, 2015):

¢
Flxlx>u) =1— <1 +¢ (Ai _ gu>> (2.129)

where

Ay =AU+ E@w/A—¢), & =ufly (2.130)
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It is readily confirmed that if we set u = A¢ in (2.129) and (2.130) we recover (2.126).
However, this equation is valid only for large values of u (unless the unconditional F(x)
is Pareto, in which case it is valid for any u).

A final note that may be relevant in some analyses is this. If the value of n in y, =

max(gl, ...,gn), is not constant but a stochastic variable with Poisson distribution with
mean v, while x; are independent, then the conditional distribution of y, on specified n

n
remains F, (y|n) = (Fz(y)) but for unspecified n the unconditional distribution

becomes (Todorovic and Zelenhasic, 1970):

Fz(y) = exp (—v(l — F(y))) (2.131)

This resembles (2.125) with the difference that it is now exact rather than approximate.

As already discussed above and in section 2.18, because of the problems of the
limiting extreme value distributions, it is preferable to focus the studies of extremes on
the parent distributions and primarily their upper tails. From the above theoretical
discussion, we have reasons to expect a parent distribution upper tail of Pareto type, or
at least exponential, but this should be verified each time based on observations.
Nowadays there is abundance of hydrometeorological data on daily and subdaily scales
and there is no need to extract annual or seasonal maxima. Instead, we should use the
entire observational record or at least the values over some threshold. If the available
observations are originally given in terms of time-block (e.g., annual) maxima, it may look
pertinent to refer to extreme value distribution. However, again it is possible to use model
the parent process, estimating its parameter from time-block maxima. The method of
doing this, which is based on the concept of knowable moment to be introduced in Chapter
6, will be studied in section 6.21. Advantages of studying the distribution of the parent
variable rather than the distribution of maxima are discussed in Digression 2.M

Digression 2.M: Block maxima vs. values over threshold vs. complete record

Traditionally, hydrometeorological records are analysed in either of two ways. The most frequent
is to choose the highest of all recorded values for a given time period or “block” (typically year)
and form a statistical sample (commonly referred to as “block maxima”) with size equal to the
number of blocks (typically years) of the record. The other is to form a sample of values over a
threshold (here abbreviated as VOT but sometimes referred to as “peaks-over-threshold”—POT)
with all recorded values over a certain threshold irrespective of the time they occurred. Usually,
the threshold is chosen high enough, so that the sample size is again equal to the number of years
of the record. This however is not necessary: it can well be set equal to zero, so that all recorded
values are included in the sample (the complete sample). However, a high threshold simplifies the
study and helps focus the attention on the distribution upper tail. In addition, this choice
simplifies the mathematical expression (compare equations (2.126) and (2.129)), leading to
identity of distributional parameters of the distributions of block-maxima and values over
threshold.

Additionally, studying the complete series of observations has the advantage of respecting
the motto “Save hydrological observations!” (Volpi et al., 2019). Indeed, extracting maxima over
some period results in waste of information because other extreme observations should also be
informative about extremes. Such information (e.g., the second-largest value of a period, which
can be higher than another period’s largest value) is retained even if we use the values over
threshold instead of the entire series of observations.
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Furthermore, the design quantities should naturally correspond to the parent distribution,
rather than the artificially induced maxima over an arbitrarily defined time period. This favours
the use of the parent distribution. As we have seen (equation (2.128) the two are almost equal for
very large design values, but for lower ones there are differences. Thus, even if our analyses are
based in time-block extremes (H(y)), the results should eventually be converted to the parent
distribution (F(x)) before they are used for design. The above discourse provides the necessary
mathematical support for such conversion.

The most important reason favouring the study of the complete record over that of block
maxima and VOT is that only the former provides faithful information about time dependence of
the underlying process. As we have already seen in Chapter 1, such dependence may be marked
and possibly of long-range type. As we will see in Chapter 6, neglecting dependence results in
underestimation of extremes. On the other hand, the procedure of extracting block maxima leads
to severe distortion of the dependence structure (Iliopoulou and Koutsoyiannis, 2019), whereas
the concept of taking values over threshold relies on a tacit assumption of time independence,
which may be inappropriate, particularly for the streamflow process (Lombardo et al., 2019).






Chapter 3. Stochastic processes and quantification of change

3.1 Definitions

A deterministic worldview is founded on a concept of sharp exactness. A deterministic
mathematical description of a system uses common variables (e.g. x) which are
represented as numbers. The change of the system state is represented as a trajectory
x(t), which is the sequence of a system’s states x as time t changes. Changes in time are
studied using the concept of a dynamical system with certain system dynamics. The latter
term denotes a transformation S; which maps its initial state x(0) in the trajectory of a
dynamical system (at time 0) to its current state x(t) (at time t), that is, x(t) = St(x(O))
(Lasota and Mackey 1994).

In an indeterministic worldview there is uncertainty or randomness, where the latter
term simply means unpredictability or intrinsic uncertainty. In turn, to study the change
according to this approach we use the notion of a stochastic process. This is defined to be
an arbitrarily (usually infinitely) large family of stochastic variables x(t) (Papoulis, 1991).
To each one of them there corresponds an index t, which takes values from an index set T,
most often referring to time. The time ¢t can be either discrete (when T'is the set of integers,
Z) or continuous (when T is the set of real numbers, R); thus, we have respectively a
discrete-time or a continuous-time stochastic process. As natural time runs continuously,
the faithful representation of a natural process needs a model formulated for continuous
time to avoid the risk of making artificial constructs. Nonetheless, the discrete-time
representation is certainly necessary in simulation. Typically, the discrete time
representation x, is derived from the continuous time representation x(t) as the
temporal average:

1 D
=3 | xed 3.1)
(t—1)D

where 7 € Z represents the continuous-time interval [(z — 1) D, D] and D is the time step;
notice that we use different notation in the continuous and discrete time representation,
in the latter case denoting time as a subscript. Each of the stochastic variables x(t) or x,
can be either discrete (e.g. the wet or dry state of a day) or continuous (e.g. the rainfall
depth); thus, we have respectively a discrete-state or a continuous-state stochastic
process.

The index set can also be a vector space, rather than the real line or the set of integers;
this is the case for instance when we assign a stochastic variable (e.g. rainfall depth) to
each geographical location (a two dimensional vector space) or to each location and time
instance (a three-dimensional vector space). Stochastic processes with multidimensional
index sets are also known as stochastic (or random) fields.

A realization x(t) of a stochastic process x(t), which is a common (numerical)
function of the time t, is known as a sample function. Typically, a realization can be known
(simulated) at countable time instances, i.e. in discrete time (not in continuous time, even
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in a continuous-time process). Likewise, observation of a natural process is also made in
discrete time. A sequence of simulated or observed values is called a time series. Clearly
then, a time series is a finite sequence of numbers, whereas a stochastic process is a family
of stochastic variables, infinitely many for discrete time processes and uncountably
infinitely many for continuous time processes. A large body in literature does not make
this distinction and confuses stochastic processes with time series (see Digression 3.E).

3.2 Distribution function and moments

The distribution function of the stochastic variable x(t) i.e.,

F(x;t) = P{x(t) < x} (3.2)
is called first-order distribution function of the process. Likewise, the second-order
distribution function is:

F(xy, %25 t1,t3) = P{E(h) < x1,x(t) < xz} (3.3)
and the nth order distribution function is:
F (1,22, o) X3 ty, by s tn) = P{x(ty) < xp,x(t3) < xg, o, x(8) < xn} (3.4)

A stochastic process is completely determined if we know the nth order distribution
function for any n. The nth order probability density function of the process is derived by
taking the derivatives of the distribution function with respect to all x;.

The moments are defined in the same manner as in sections 2.12 and 2.14. Of particular
interest are the following:

1. The process mean, i.e. the expected value of the variable x(t):

[ee]

p© = Blx@] = [ xfCoodx 3:5)

— 00

2. The process variance, i.e. the variance of the variable x(t):

oo

Yo(t) = var[x(D)] = f (x = u(®)’F O ) dx (3.6)

3. The process autocovariance, i.e. the covariance of the stochastic variables
x(t) and x(t + h):
c(t; h) = covlx(®), x(t + W)] = E|(x(®) — u(®) (x(t + W) —pt + )| 3.7)

where c(t; 0) = y,(t).
4. The process autocorrelation, i.e.,, the correlation coefficient of the stochastic
variables x(t) and x(t + h)):

c(t; h)
V¥e®yo(t + h)

r(t; h) = corr[g(t),g(t + h)] = (3.8)
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Additional characteristics will be given in section 3.5.

3.3 Stationarity

The term process has been introduced in the scientific vocabulary as synonymous to
change, as evident in Kolmogorov’s (1931) pioneering paper, in which he introduced the
term stochastic process. This paper starts stating “A physical process [is] a change of a
certain physical system”.

It is very common in science to try to identify invariant properties within change
(Koutsoyiannis 2011a). For example, in the absence of an external force, the position of a
body in motion changes in time but the velocity is unchanged (Newton’s first law). If a
constant force is present, then the velocity changes but the acceleration is constant
(Newton’s second law). If the force changes, e.g. the gravitational force with changing
distance in planetary motion, the acceleration is no longer constant, but other invariant
properties emerge, e.g. the angular momentum (Newton’s law of gravitation; see also
Koutsoyiannis 2011a).

Evidently, the notion of a stochastic process was invented to describe the irregular
changes in natural systems more complex than the above, which are impossible to model
deterministically or predict their future evolution in full detail and with precision. Here,
the great scientific achievement is the invention of macroscopic descriptions instead of
modelling the details. This is essentially done using stochastics. Here lies the essence and
usefulness of the stationarity concept, which seeks invariant properties in complex
systems (Koutsoyiannis, 2011a, 2014a; Koutsoyiannis and Montanari, 2015). Following
Kolmogorov (1931, 1938) and Khintchine (1934), a process is stationary if its statistical
properties are invariant to a shift of time origin, i.e. x(t) and x(t") have the same
(multivariate) distribution for any t and t". Furthermore, following Kolmogorov (1947), a
process is called wide-sense stationary if its mean is constant and its autocovariance
depends only on time differences, i.e.:

E[x(t)] = u (= constant),  cov|[x(t),x(t + h)] = c(h) (3.9)

A strict-sense stationary process is also wide-sense stationary, but the inverse is not true.

A process that is not stationary is called nonstationary. In a nonstationary process
one or more statistical properties depend on time, that is, they are deterministic functions
of time. A typical case of a nonstationary process is a cumulative process whose mean is
proportional to time. For instance, let us assume that the rainfall intensity at a
geographical location and time of the year is modelled as a stationary process x(t), with
mean . Let us further denote X(t) the rainfall depth collected in a large container (a
cumulative raingauge) at time t and assume that at the time origin, t = 0, the container is
empty, so that X(t) = fot x(s)ds. It is easy then to understand that E[K(t)] = ut. Thisisa
deterministic (linear) function of time t and thus X(t) is a nonstationary process.

We should stress that stationarity and nonstationarity are properties of a process, not

of a sample function or time series. There is some confusion in the literature about this,
as a lot of studies assume that a time series is stationary or not, or can reveal whether the
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process is stationary or not. As a general rule, to characterize a process nonstationary, it
suffices to show that a specific statistical property is a deterministic function of time (as
in the above example of the raingauge), but this cannot be straightforwardly inferred
merely from a time series. A time series formed from observations of a natural process
cannot be stationary, nor nonstationary.

Stochastic processes describing periodic phenomena, such as those affected by the
annual cycle of Earth, are nonstationary. For instance, the daily temperature at a mid-
latitude location could not be regarded as a stationary process. It could be modelled as a
special kind of a nonstationary process with characteristics depending on time in a
periodical manner (are periodic functions of time). Such processes are called
cyclostationary processes.

3.4 Ergodicity

Stationarity is also related to another important stochastic concept, ergodicity.” Its
importance derives from the fact that ergodicity is a prerequisite to make inference from
data, that is, induction—the Aristotelian émaywyn (epagoge). This is a type of inference
weaker than deduction—the Aristotelian amodeiéic (apodeixis) —albeit very useful when
deduction is not possible.

In dynamical systems, by definition (e.g. Mackey, 2003, p. 48), ergodicity is the
property of a system whose all invariant sets under the dynamic transformation are trivial
(have zero probability). In other words, in an ergodic transformation starting from any
point, the trajectory of the system state will visit all other points, without being trapped
to a certain subset. The ergodic theorem (Birkhoff, 1931; Khintchine, 1933; see also
Mackey, 2003, p. 54), allows redefining ergodicity within the stochastics domain
(Papoulis, 1991, p. 427; Koutsoyiannis 2010) in the following manner: A stochastic

process x(t) is ergodic if the time average of any (integrable) function g (g(t)), as time

tends to infinity, equals the true (ensemble) expectation, i.e.:

17 1%
iz [ 9(x0)de =Blg@@), iz > o) =Flg@@)]  (:10)
0 =0

for a process in continuous or in discrete time, respectively.

The right-hand side in the above equations represents the true average, also known
as ensemble average, whereas the left-hand side represents the time average, for the
limiting case of infinite time. The left-hand side in each of equations (3.10) is a stochastic
variable (as a sum or integral of stochastic variables) and is not a function of the time t.
Hence, the right-hand side should not be a function of the time ¢, i.e. the process should be
stationary. Furthermore, the right-hand side is a number, not a stochastic variable.

* The concept of ergodicity was first conceived by Boltzmann (1884/85) who coined the terms ergode and
isodic, both of which are etymologized from Greek words but which ones exactly is uncertain. Most
probably, ergodic comes from the Greek épyov (ergon = work) and 06d¢ (hodos = pathway). According to
another interpretation, the second noun is £i~60(; (eidos = form, kind, nature), or the whole word is a
transliteration of the Greek adjective épywdnc¢ (ergodes = laborious, troublesome; see Mathieu 1988).
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Equating a number with a stochastic variable implies that the stochastic variable has zero
variance. This is precisely the condition that makes a process ergodic. And this allows the
estimation (i.e. approximate calculation) of the true but unknown property E[g(x(t))]
from the time average of g(x(t)), that is, from the available data. Without ergodicity
inference from data would not be possible.

A stochastic process for which it can be shown that the property (3.10) holds true for

the particular case that g (g(t)) = x(t), whose expectation is the mean (E[g(t)] =), is

called mean-ergodic. The property could be extended for the multivariate functions, e.g.
g(x(t),y(t)), and thus we can speak about covariance-ergodic processes. Further

information, including conditions that should hold for ergodicity can be found in Papoulis
(1991).

Now, if the system that is modelled in a stochastic framework has deterministic
dynamics (meaning that a system input will give a single system response, as happens for
example in most hydrological models), then a theorem applies (Mackey 2003, theorem
4.5 p. 52), according to which a dynamical system with dynamics S;(x) has a stationary
probability density if and only if it is ergodic. Therefore, a stationary system is also ergodic
and vice versa, and a nonstationary system is also non-ergodic and vice versa. Here we
note that even if a system has deterministic dynamics, again it is legitimate to use a
stochastic description, replacing the study of the evolution of system states S;(x) with the
evolution of probability densities of states f(x;t). One reason to prefer the stochastic
description over the pure deterministic description is that the former includes
quantification of uncertainty, whereas the deterministic dynamics does not eliminate
uncertainty (Koutsoyiannis 2010). Furthermore, we clarify that the deterministic
description through the transformation S;(x) is fully compatible with a stochastic
description that is stationary and ergodic, according to the theorem stated above: while
the system state is changing in time t according to the transformation S;(x), its statistical
properties (and the probability density f (x; t)) can be constant in time (i.e. f (x)).

If the system dynamics is stochastic (a single input could result in multiple outputs),
then ergodicity and stationarity do not necessarily coincide. However, recalling that a
stochastic process is a model and not part of the real world, we can always conveniently
devise a stochastic process that is ergodic, provided that we have excluded
nonstationarity. In conclusion, from a practical point of view ergodicity can generally be
assumed when there is stationarity and the variance of the time averaged process tends
to zero as the time of average tends to infinity, while this assumption if fully justified by
the theory if the system dynamics is deterministic. Conversely, if nonstationarity is
assumed, then ergodicity cannot hold, which forbids inference from data. This contradicts
the basic premise in geosciences, including hydrology and climatology, where data are the
only reliable information in building models and making inference and prediction.

Digression 3.A: Misuses of stationarity and ergodicity

Despite having a central role in stochastics, the concepts of stationarity and ergodicity have been
widely misunderstood and broadly misused (Montanari and Koutsoyiannis, 2014; Koutsoyiannis
and Montanari, 2015). In an attempt to find trends everywhere, according to the popular motto
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“stationarity is dead” (Milly et al. 2008), trend analysis of hydroclimatic processes is more
fashionable today than ever before (Iliopoulou and Koutsoyiannis, 2020). The notion of a trend,
as a fundamental constituent of time series, is very old, but it is fundamentally problematic
(Koutsoyiannis, 2020a), despite its popularity.

Ironically, most of these studies use time series data to estimate statistical properties, as if
the process were ergodic, while at the same time their cursory estimates falsify the ergodicity
hypothesis. The correct tactic, even when dealing with provably nonstationary and nonergodic
processes and our study is based on data, is to convert the process to a stationary and ergodic one
before trying to make any inference from the data.

As an example, assuming that we deal with the cumulative rainfall process X(t), used as an
example of a nonstationary process in section 3.3, we convert the process into a stationary one in
discrete time by x; := X(zD) — X((t — 1)D), where D is a time step, and perform the same
transformation to the time series data. Then we can use the x; data to make inferences.

As a second example related to trends, let us examine a statement such as: “By analysing the
time series x; (Where T denotes discrete time), we concluded that it is nonstationary, and we
identified an increasing trend with slope b.” This is an incorrect statement and can be corrected
in the following manner: “We analysed the time series x; based on the modelling assumption that
the stochastic process x; - bt is stationary and ergodic, which enabled the estimation of the slope
b.” The latter statement respects the fact that we always need stationarity and ergodicity to make
inference from data. It also avoids using the vague term “trend”, which, despite being trendy, has
no scientific definition. Finally, it reveals the fact that the entire setting is just a modelling
assumption—not anything objective, related to physical reality.

3.5 Second-order characteristics of stochastic processes

Along with the definition of a stochastic process (section 3.1), we have already provided
that of the autocovariance function, an important characteristic of the second-order
distribution function of a stochastic process. However, there are other second-order
characteristics that are useful to study, as they have certain properties that help
understand and simulate stochastic processes.

Before defining them, starting from the process of interest x(t) we will better explain
the concepts of the cumulative process X(t) and the discrete-time process x;, which have
already been introduced. As graphically shown in Figure 3.1, the cumulative process is
defined as:

t
X(©) = [ xdu (3.11)
0
where obviously X(0) = 0. If x(t) aims to represent a natural process, then X(t) should
necessarily be nonstationary. However, by time averaging (dividing the cumulative
process by time) and differencing, we may construct a stationary process over any time
scale D, provided that x(t) is stationary. With the help of the cumulative process, the
discrete-time representation of the process (equation (3.1)) can be written as:
D
1
=7 [ xeodu-
(t—-1)D

X(D) — X((r - 1)D)
D

(3.12)
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The argument (D) in x,(D) denotes the time step of discretization; in cases that we use a
single discretization step and there is no ambiguity we will omit it, writing x,. We can also
define discrete-time processes on multiples of D, say kD, where k is an integer:

TKD
1 X(tkD) — X((t — 1)xD
x? = xe (kD) = — f x(u)du = 2P ;f; D) (3.13)
(t—-1)kD

Obviously, the discrete-time process gﬁ") is the time average (at scale k = kD), of the

discrete-time process x; (at scale equal to the time step D):

TK

1
X =~ z X (3.14)
j=(t-1DK+1
t) (instant ) — (t
x(t) (instantaneous O fo x(w)du

A continuous-time process) (cumulative, nonstationary)

1 D
x;(D) = —f x(u)du
- D Je—1yp~

v, | \]\
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Figure 3.1 Explanatory sketch for a stochastic process in continuous time and its representation
in discrete time. Note that the graphs display a realization of the process (it is impossible to
display the process per se) while the notation is for the process per se.

The variance of X(t) attime ¢, i.e.:
rd) = Var[)_((t)] (3.15)

is known as cumulative climacogram. The variance of the time averaged process X(k)/k
at a time scale k, as a function of time scale k, is the continuous-time variant of the
climacogram, already discussed in sections 1.3 and 2.16:

X k)
k| k2

y(k) == var I (3.16)

The autocovariance function c(h) of the continuous-time process x(t) for time lag h,
already defined in equation (3.7), is related to the climacogram by (Koutsoyiannis 2016):



92 CHAPTER 3 - STOCHASTIC PROCESSES AND QUANTIFICATION OF CHANGE

1 d?r(h)
c(h) = cov[x(t),x(t + h)] = 2 " dh?

If we deal with two processes x(t) and y(t) we can define the cross-covariance:

(3.17)

Cxy(h) = cov [g(t),z(t + h)] (3.18)

This is a continuous-time metric. If we wish to also involve the time scale k of the averaged
process, we can define the cross-climacogram (Koutsoyiannis, 2019b):

X(k)  Y((n+1)k) —Y(nk)
+
ko, ko,

Yay (ks 1) = 0x0y, Varl (3.19)
where Y (k) := fok y(t)dt and 7 is lag.

The structure function (also known as semivariogram or variogram), v(h), is another
second-order tool, defined as:

v(h) = %Var[g(t) —x(t +h)] = c(0) — c(h) (3.20)

The power spectrum (also known as spectral density), s(w), where w denotes
frequency is defined as the Fourier transform of the autocovariance function, i.e.:

oo

s(w) = 4] c(h) cos(2nwh) dh (3.21)
0

The power spectrum should necessarily be nonnegative at all w (s(w) = 0), and this
entails that the autocovariance c(h) should be a positive definite function. Also, the
climacogram y (k) should be a positive definite function (Koutsoyiannis, 2017).

The power spectrum has some analogies with another stochastic tool, the so-called
climacospectrum (Koutsoyiannis, 2017), which is directly given in terms of the
climacogram. Specifically, it is proportional to the difference of the variances of the
averaged process at time scales k and 2k:

k(y(k) —y(2K)) (3.22)
In2

Y(k) =

The climacospectrum is also written in an alternative manner in terms of frequency w =
1/k:

y(1/w) —y(2/w)
(In2)w

P(w) =yp(1/w) = (3.23)

It is useful to note that the entire area under the power spectrum s(w), as well as that
under the curve 1(w), are precisely equal to each other and to the variance y,.

All definitions of second-order characteristics in continuous time are gathered
together in Table 3.1. Once any one of these characteristics is known in the continuous-
time representation, we can calculate all others in continuous time as well as those in
discrete time, as shown in Table 3.2.
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Table 3.1 Summary of notation and second-order characteristics of a stationary stochastic
process in continuous time.

Name Symbol and definition Remarks Eqn. no.
Stochastic process of interest  x(t) Assumed stationary
Time, continuous t Dimensional
t
Cumulative process X() = f x(&)dé Nonstationary (3.11)
0
Variance, instantaneous Yo = var[x(t)] Constant (not a function of t) (3.6)
Cumulative climacogram r(e) = var[X(t)] A function of t; I'(0) = 0 (3.15)
X(k)|  Ik) A function of time scale
Climacogram y(k) = var [_ ] = ’ 3.16
8 G Y = o (3:16)
Time scale, continuous k Units of time
Climacospectrum Y(k) = M
n
Autocovariance function c(h) = cov[x(t), x(t + h)] c(0) = v, (3.17)
Time lag, continuous h Units of time
Structure function 1
=— — h) =y, —c(h 3.20

(semivariogram, variogram) v(h) 2 var[x(t) — x(t + h)] v(h) =y, —c(h) (3.20)
Power spectrum (spectral

i s(w) =4 | c(h) cos(2nwh) dh s(w)dw =y, (3.21)
density)

0

0

Frequency, continuous

w = 1/k

Units of inverse time

Table 3.2 Summary of notation and second-order characteristics of a stationary stochastic

process in discrete time.

Name Symbol and definition Remarks Eqn. no.
D
S.tochastic process, discrete ¥, = 1 f e )du = X(D) - X((r — 1)D) (312)
time - D - D
(t-1)D
Length of ti
Discretization time step D e?ng orame .
window of averaging
Time, discrete T:=t/D Dimensionless
TK
Averaged .stochast.ic E;x) _ l X (3.14)
process, discrete time K
j=(t-1k+1
Time scale, discrete xk=k/D Dimensionless (3.24)
I'(xD
Climacogram Yy = var[ék)] =y(xD) = (’ED)Z) y1=varlx, | = y(D)  (3.25)
Climacospectrum Y, = P(k) = w
n
Autocovariance function ¢, = cov[&,gﬁn] co=yD)=v,
Time lag, discrete n=h/D Dimensionless (3.26)
Structure function Uy =V1— G (3.27)
1w w+j
Power spectrum sq(w) = D Z s( 5 ]> sinc?(n(w + ) (3.28)
j=—o
Frequency, discrete w=wD=1/k Dimensionless (3.29)

Note: In time-related quantities, Latin letters denote dimensional quantities and Greek letters
dimensionless ones, as specified above.
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The reverse is not true, i.e,, from a model formulated in discrete time we cannot
precisely infer the characteristics of the continuous-time representation. It may be seen
in Table 3.2 that the expressions of the discrete time characteristics may differ
substantially from those in continuous time, and thus attention is needed to avoid
confusion and misuse.

The rule that continuous- and discrete-time characteristics are different has
exceptions: The climacogram and the climacospectrum are not affected by discretization
(they admit the same expressions for both continuous and discrete time). They also have
some additional advantages, such as simplicity, close relationship to entropy (see below),
and more stable behaviour (Dimitriadis and Koutsoyiannis, 2015a; Koutsoyiannis, 2016;
2017). These make them the preferable tool in stochastic modelling—even though they
are less popular than other tools. All these tools are transformations of one another, as
listed in Table 3.3.

Table 3.3 Relationships between second-order characteristics of a stochastic process.

Related . .. Symbol and definition Inverse relationship Eqn.
characteristics no.
1
1 d?(h?y(h
y(k) och)  yk) =2 j(1 — Yc(xk)dy c(h) = 3 (dTyz()) (3.30)
0
s(w) e c(h)  sw) = 4f c(h) cos(2nwh) dh c(h) = f s(w) cos(2mwh) dw (3.31)
0 0
y(k) o s(w) yk) = f s(w) sinc?(nwk) dw s(w) =2 f %cos@nwh) dh (3.32)
0 0
v(h) o c(h)  v(h) =y, —c(h) c(h) = v(e) —v(h) with v(0) =y, (3.33)
o Y2k
y(k) = anle(zik )
i=0
k) oy®) k) = k(o) —y(2k)) - (334
In2 —(0) —1 Zzlp(z k)
- Y( ) n - Z_ik
k-1
1 n I'(kD)
Ve = E(CO +2) (1-3) Cﬂ) = D)2 1 (I(In+1ID) + I'(ly = 11D)
- = =2 2
Ye =V(KD) © B o,
c where I'(0) = 0, I'(D) = c,D* and, (3.35)
K recursively, - I"(|77|D))
I'(kD) =
2r((x —1)D) — I'((x — 2)D) + 2¢j_, D?
© 1/2
¢y © sq(w) sq(w) = 2¢y + 42 ¢y cos(2mnw) ¢, = f sq(w) cos(2mwn) dw (3.36)
n=1 0

vy © Cp v, = y(D) — Cy Cp = y(D) — Uy (3.37)
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Digression 3.B: What is dependence in time?

Dependence of a stochastic process in time (also known as intertemporal dependence or simply
time dependence) is typically expressed by the autocovariance or the autocorrelation function. In
turn, its typical (mis)interpretation is memory. This has been so common than in many texts the
term memory has replaced the term dependence—even in the titles of several publications, papers
and books. Perhaps the scientist who was most influential in establishing this interpretation was
Mandelbrot (for example, Mandelbrot and Wallis, 1968, speak about short and long memory, both
of which they contrast to independence), even though other scientists had used the term before
(e.g. Krumbein, 1968). Clearly, in stochastics the term memory is metaphorical, while in other
disciplines (neuropsychology, computer science) it is literal. In science there is no reason to use a
metaphorical term when we have a literal term, particularly when the metaphorical term has
another scientific meaning.

Perhaps the metaphorical term memory distracts, rather than helps, intuition and
understanding of time dependence in a stochastic process. In particular, its variant long memory
is totally inappropriate as it stimulates people to imagine a mechanism inducing long memory
(e.g. hundreds of years) and of course it is difficult to conceptualize such a mechanism. A better
interpretation is a mechanism producing change, rather that recalling information (as is the
meaning of memory). And indeed, changes produce dependence—not the other way round.
Furthermore, dependence and change need not be interpreted as nonstationarity as many think.

But before discussing how change produces time dependence in a process that is stationary,
we will discuss how dependence manifests itself into a time series. In one word, this manifestation
is through patterns. In pure randomness, without time dependence (like in a sequence of dice
outcomes or in the sequence of digits of 1) no patterns appear. To better illustrate such patterns,
we examine several time series with a small length, n = 16. For convenience we make these time
series two-valued, with values -1 and 1 and with average of the 16 values equal to zero, which
means that eight values will be -1 and eight 1. The estimates of the variance, the lag-one
autocovariance and the lag-one autocorrelation coefficient will thus be, respectively:

16 16 .
A 1 2 n 1 A C1 A
V1=E xr =1, C1=E XeX14+1 ) 7‘1=]7_=C1
=1 =1 E

where we set x;7 = x; in order to have 16 terms in the sum for ¢; and thus make possible values
up to +1 (noting, though, that this practice is not suggested to follow in analyses of time series).
The formal meaning of the term estimate is clarified in section 4.3.

Some instances of such time series are shown in Figure 3.2. In the upper left panel, all eight
ones are grouped togetherso that Y18, x,x,,4, =7+ 7 — 2 = 12and #, = 0.75. This is the highest
possible value that a particular arrangement of 16 items, each being +1, can give. Obviously, there
are 16 possible arrangements that will give #; = 0.75. If our time series had length of N, the
highest #; would be (N —4)/N =1—4/N and would approach the value +1 for large N.
Consequently, a large autocorrelation is caused by grouping together of similar (in our example
same) values, and this grouping has been termed persistence. If the grouping appears but is not
that “perfect”, such as in the lower left panel, then again, the autocorrelation will be positive but
lower (#; = 0.5 in this example).

In contrast, if the patterns appear to be of alternating, rather than grouping, type, then the
autocorrelation coefficient is negative. Thus, in the “perfect” alternating shape of the upper middle

panel of Figure 3.2 wehave Y18 x,x,,; = —16 and # = —1. In the lower middle panel
alternation is not perfect and #; = —0.75. Finally, the upper right panel is free of patterns and #; =
0.

Now, the effect of change is illustrated in Figure 3.3, where we plot a time series generated
from the normal distribution without time dependence. We now assume that the process is
affected by a mechanism producing change, namely shifts up and down, at random points in time.
As illustrated in Figure 3.3 and detailed in the figure caption, in this case patterns are produced
and (positive) autocorrelation is induced.
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Figure 3.2 Examples of arrangements of eight ones and eight minus ones in the form of time series with
length 16, mean zero and unit variance, along with the resulting estimate of the lag-one autocorrelation
coefficients r. In addition to the original time series (scale 1; continuous line), time-averaged time series are
also shown at scales 2 (dashed lines) and 4 (dotted lines). In the bottom right panel, the frequency
distribution of r for all 16!/(8!)? = 12 870 possible cases (permutations) are shown.
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Figure 3.3 Illustration of the fact that change causes autocorrelation using a time series of length 20,
generated from the normal distribution N(0,1) without time dependence; the estimates of the statistical
characteristics from the time series, plotted as full points connected with continuous lines, are j =
—0.05,7, = 0.9%,7;, = 0.05. By shifting a time segment up (by +1, items 8-14) and another segment down
(by -1, items 15-20) we obtain a new time series (empty points connected with dashed lines) in which the

autocorrelation has become 7, = 0.59.



ASYMPTOTIC POWER LAWS AND THE LOG-LOG DERIVATIVE 97

Had such change been describable in deterministic terms, as a deterministic function of time,
that is, had it been precisely predictable in terms of location of times where it occurs and in terms
of magnitude of state shifts, we would speak about nonstationarity. But since, as we said, the
points of change are random points in time, they resist a deterministic description and the entire
process with the change producing mechanism is a stationary stochastic process with dependence.
Unfortunately, this simple truth is not widely understood and therefore the inconsistent
interpretations of change as nonstationarity abound in hydroclimatic literature.

3.6 Asymptotic power laws and the log-log derivative

It is quite common that nonnegative functions f(t) defined in [0, o0), are associated with
asymptotic power laws as t = 0 and oo (Koutsoyiannis, 2014b, 2017). Power laws are
functions of the form

Ft) « t? (3.38)

A power law is visualized on a graph of f(t) plotted against t with logarithmic axes, so
that the plot forms a straight line with slope b. Formally, the slope b is expressed by the
log-log derivative (LLD):

d(nf(©) _ tf'(®
dne)  f@©

We notice that f#(t) is a dimensionless quantity, irrespective of the dimensions of f(t). If

i) = (3.39)

the power law holds for the entire domain, then f#(t) = b = constant. In this case we
speak about a simple scaling behaviour. Most often, however, f#(t) is not constant. Of
particular interest are the asymptotic values for t - 0 and o, symbolically f#(0) and
f#(), which define two asymptotic power laws. We note that, if 0 < f(0) < oo, then
£#(0) = 0, which means that £(0) has to be either 0 or o in order for f#(0) # 0. Basic
properties of LLD are given in Table 3.4.

Table 3.4 Basic properties of LLD (from Koutsoyiannis, 2017).

Description Mathematical formula
Multiplication and addition by constants (4 f(t) + w)* = f#(t)

Sum of two functions (f1 ®+f (t))# = h (t)]}j Eg : 2 ngZ#(t)
Product of two functions (fL(Of (t))# = ) + £ ()

Quotient of two functions (f1 ®/fs (t))# - f1#(t) _ fz#(t)

Raise to a power (f(t)’l)# = Af*(0)

Function composition ((f o g)(t))# = (f(g(t))# — f#(g(t)) g*®

In particular, the asymptotic properties of the second-order characteristics of a
stochastic process for t — 0, where now t denotes time, characterize the local behaviour
of a process, while those for t — oo characterize the global behaviour. We will discuss
these properties in section 3.8, after introducing the related concept of entropy
production in section 3.7.
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3.7 Entropy production in stochastic processes

In a stochastic process the change of uncertainty in time can be quantified by the entropy
production, i.e. the time derivative of the entropy ®[X(¢)] of the cumulative process X(t)
(Koutsoyiannis, 2011b):

do[x(6)]
dt

A more convenient (and dimensionless) measure is the entropy production in logarithmic
time (EPLT):

?'[X®)] = (3.40)

do[X ()]

T (3.41)

() = p[X(O)] = @' [X(D)]t =

For a Gaussian process, the entropy depends on its variance I'(t) only (see Table 2.4) and
is given as:

o[x(0)] = 3In(2nep?r(®)) (3.42)

where f is the background measure density, assumed to be constant (Lebesgue). The
EPLT of a Gaussian process is thus easily shown to be:
reme - yYoe rfe o v*©

o - Ty 2 T2

o(t) (3.43)

That is, EPLT is visualized and estimated by the slope of a log-log plot of the climacogram.
We note that if, because of using the cumulative process, the background measure was
taken St insteaf of §, the result would be practically the same (plus a constant 1).

When the past and the present are observed, instead of the unconditional variance
y(t) we should use a variance y¢(t) conditional on the known past and present. This can
be expressed in terms of the differenced climacogram (Koutsoyiannis, 2017):

1

_ 3.44
1 — 2v#() ( )

ve(k) = e(y (k) -y(2k)), €=

We can subsequently define the conditional entropy production in logarithmic time
(CEPLT) in a manner analogous to (3.43). By also considering the definition of the
climacospectrum in (3.22) and (3.23), CEPLT can be written as:

yl® _1+y*@) _1-9*1/0 (3.45)
2 2 2

Thus, for a Gaussian process the conditional entropy production is given in terms of log-

log slope of the process climacospectrum. We will use the same result as an

approximation for non-Gaussian processes too, even though in a non-Gaussian process

pc(t) =1+

the entropy expression becomes more complicated than (3.42) with other terms
additional to variance.
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3.8 Asymptotic scaling of second-order properties

EPLT and the CEPLT are related to LLDs of second-order tools such as climacogram,
climacospectrum, power spectrum, etc. With a few exceptions, these slopes are nonzero
asymptotically, hence entailing asymptotic scaling or asymptotic power laws with the
LLDs being the scaling exponents. It is intuitive to expect that an emerging asymptotic
scaling law would provide a good approximation of the true law for a range of scales.

If the scaling law was appropriate for the entire range of scales, then we would have
a simple scaling law. Such simple scaling sounds attractive from a mathematical point of
view, but it turns out to be impossible in physical processes (Koutsoyiannis, 2017;
Koutsoyiannis et al., 2018; see also below). It is thus physically more realistic to expect
two different types of asymptotic scaling laws, one in each of the ends of the continuum
of scales. The respective scaling exponents are given in terms of two parameters, M (to
give credit to Mandelbrot) and H (to give credit to Hurst) according to the following
relationships:

e The parameter M characterizes the local scaling or smoothness or fractal behaviour,
when k — 0 or w — oo:

ve©@ _v*(0) 90 -1 _ —s*(w) -1 (3.46)

M:=¢@c0)—-1= > > > >

e The parameter H characterizes the global scaling or persistence or Hurst-
Kolmogorov behaviour, when k = o or w = 0:

#OO #oo #OO #OO
H:=(pc(oo)=1+yC( )=1+Y( )=1+c( ) _Pi(o) +1
boo 2 2 2 (3.47)
=S 0)+1
=

These scaling behaviours have emerged from maximum entropy considerations, and
this may provide the theoretical background in modelling complex natural processes by
such scaling laws. Generally, scaling laws are a mathematical necessity and could be
constructed for virtually any continuous function defined in [0, ). In other words, there
is no magic in power laws, except that they are, logically and mathematically, a necessity
(Koutsoyiannis, 2014b).

3.9 Bounds of scaling

Both parameters M and H take on values in the interval (0,1) (with the limiting cases M =
1and H = 0 being possible). This fact, combined with equations (3.46) and (3.47), defines
limits of the possible scaling laws in natural processes. The limits are not quite well
known, and several studies have reported values out of the limits (see Digression 3.C for
an example about how to avoid such a mistaken result).

For the global behaviour, it has been shown (Koutsoyiannis et al., 2018) that a process
with —s#(0) > 1 is nonergodic. As already explained, inference from data is only possible
when the process is ergodic and thus, claiming that —s*(0) > 1 based on data is self-
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contradictory. Steep slopes (—s*(w) > 1) are mathematically and physically possible for
medium and large w and indeed they are quite frequent in geophysical and other
processes. Because of the equality of slopes of power spectrum and climacospectrum, the
ergodicity limitation holds also for the slope of the climacospectrum, i.e., ¥¥(o) =
—1#(0) < 1. On the other hand, too steep negative asymptotic slopes of the
climacospectrum are also impossible. Indeed (because of (52)), Y#(k) = —*(1/k) <
—1 would entail ¢¢(k) < 0 and I (k) < 0 (Koutsoyiannis, 2017). This means that the
variance of the cumulative process would be a decreasing function of time, which is
absurd. This holds both for the global case (k — oo, in which the conditional variance I (o)
equals the unconditional I'(o0)) and the local case (k = 0, for the conditional variance
I(0)).

For the local behaviour, there is another severe limitation imposed by physical
reasoning. The case Y#(0) = —s*(00) < 1 would entail infinite variance. Infinite variance
would require infinite energy to emerge, which is physically inconsistent (see also section
2.17). Therefore, the physical lower limit for 1#(0) = —s#(o0) is 1. A final—and quite
severe—limitation is an upper bound of the local scaling exponent, which is 3 for 1)#(0) =
—s%(o0) (Koutsoyiannis, 2017). The problem if this limitation is violated is that the
resulting autocovariance function is not positive definite or, equivalently, that the
resulting power spectrum is not always (for any frequency w) positive but takes on
negative values for some w. Likewise, the Fourier transform of the climacogram takes on
negative values for some w. Proof is provided in Koutsoyiannis (2017).

The above limits define the “green square” of admissible values of ¢¢, M and H in
Figure 3.4, which is also depicted in terms of admissible values of slopes # and s# (noting
that s* can, by exception, take on values out of the square when ¢.(0) = 2 or ¢(o0) = 0).
The reasons why a process out of the square would be impossible or inconsistent, as
discussed above, are also marked in the figure.

The centre of the square, with coordinates ¢-(0) = 3/2, ¢.() = 1/2 represents a
neutral process, whose typical representative is the Markov process (to be examined in
section 3.11). Larger values of ¢-(0) (where M > 1/2) indicate a smooth process and
smaller ones (where M < 1/2) a rough process. Also, larger values of ¢, (o) (where H >
1/2) indicate a persistent process and smaller ones (where H < 1/2) an antipersistent
process.

A useful observation in Figure 3.4 is that the entire “green square” lies below the
equality line, which means that the same scaling exponent is not possible for both local
and global behaviour, or else, it is impossible to have a physically realistic simple scaling
process. There is one exception, the upper-left corner of the “green square”, which
corresponds to the so-called “pink noise” or “1/f noise” and will be discussed further in
Digression 3.G.

On the left of the “green square” in Figure 3.4 another square is formed, which
represents processes that are mathematically feasible but physically unrealistic, because
they entail infinite variance. In particular, the centre of this square represents the white
noise, characterized by independence in time, which is discussed in section 3.10. One of
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the diagonals of this square represents the Hurst-Kolmogorov process, discussed in
section 3.12.
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Figure 3.4 Bounds of asymptotic values of CEPLT, ¢.(0) and ¢, (), and corresponding bounds
of the log-log slopes of power spectrum and climacospectrum. The “green square” represents the
admissible region; note that s* can, by exception, take on values out of the square when ¢(0) =
2(M=1) or ¢c(0) =0 (H =0). The reasons why a process out of the square would be
impossible or inconsistent are also marked. The lines ¢c(0) =3/2 (M =1/2)and @;() =
1/2 (H = 1/2) define neutrality (which is represented by a Markov process) and support the
classification of stochastic processes into the indicated four categories (smaller squares within
the “green square”). (Source: Koutsoyiannis, 2017.)

Digression 3.C: Misuses of stationarity and ergodicity (2)

Continuing the examples on misuse of the concepts of stationarity and ergodicity in Digression
3.A, we refer here to another example, whose standard formulation could be: “From the time
series x;, we calculated the power spectrum and found that its slope for low frequencies is steeper
than -1, which means that the process is nonstationary.” We note that a large number of studies
exploring several data sets have reported steep constant slopes of power spectrum, i.e. § < -1,
which are thought to confirm the nonstationarity of the process. The fact is, however, that this
entire line of thought is theoretically inconsistent and such reported numerical results are
artefacts due to insufficient data or inadequate estimation algorithms. Once we make the power
spectrum of a process as a function of frequency, we have tacitly assumed a stationary process. In
a nonstationary process, both the autocovariance and the spectral density, i.e. the Fourier
transform of the autocovariance, are functions of two variables, one being related to “absolute”
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time (see e.g. Dechant and Lutz, 2015). Thus, there is no meaning in using a stationary
representation (setting the power spectrum as a function of frequency only) and, at the same time,
claiming nonstationarity. Furthermore, once we use the power spectrum of a process for
inference, as we always do, we should be aware that inference from data is only possible when
the process is ergodic. As shown in Koutsoyiannis et al. (2018), in an ergodic process, the
asymptotic slope on the lower tail of the power spectrum cannot be steeper than -1. Thus, there
is no meaning in reporting slopes in empirical power spectra < —1 and at the same time making
any claim about the process properties (e.g. of nonstationarity) based on the power spectrum.
Actually, such a steep slope, when emerging from processing of data, does not suggest that a
process is non-ergodic; it rather signifies inconsistent estimation. Nonetheless, we should be
aware, that steep slopes (< —1) are mathematically and physically possible for medium and large
frequencies, as was already discussed.

Consequently, possible remedies for the above inconsistent statement could be the following:

e We cursorily interpreted a slope steeper than -1 in the power spectrum as evidence of
nonstationarity, while a simple explanation would be that the frequencies on which our data
enable calculation of the power spectrum values are too high.

e  We cursorily applied the concept of the power spectrum of a stationary stochastic process,
forgetting that the empirical power spectrum of a stationary stochastic process is a
(nonstationary) stochastic process per se (see section 4.10). The high variability of the latter
(or the inconsistent numerical algorithm we used) resulted in a slope for low frequencies
steeper than -1, which is absurd. Such a slope would suggest a non-ergodic process while our
calculations were based on the hypothesis of a stationary and ergodic process.

e  We cursorily applied the concept of the power spectrum of a stationary stochastic process
using a time series which is realization of a nonstationary stochastic process, and we found
an inconsistent result; therefore, we will repeat the calculations recognizing that the power
spectrum of a nonstationary stochastic process is a function of two variables, frequency and
“absolute” time.

3.10 White noise: how natural and how white is it?

We are all familiar with the notion of independent events at discrete time, such as coin,
dice and roulette wheel experiments. If such an experiment is performed sequentially in
time, we can model it as a stochastic process v;,7 = 1,2 ... with mean u and variance y;.
For convenience we subtract its mean, defining the process v, := v; — u for which:

%, n=0
E[w.] =0, var[n| =E[vZ]|=0% ¢, =cov[r, vpy] = {0 Z Lo (348)
It is easy to show that the time-averaged process:
1 TK
vy =~ Z v (3.49)
i=(t-Dk

has the following properties:
2 2
o — =
E[p®] =0, 1 =var|p?] =—, 9 = cov[r?p| =15 770 350)
0, n+0
Is it legitimate to say that the discrete-time process v, originates from a continuous
time process v(t)? And if yes, what are the properties of the latter? The mathematical
answer to the former question is positive. To materialize the continuous-time variant it
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suffices to generalize the climacogram in (3.50) changing the time scale from an integer k
to areal number k := kD:
%D
y(k) = var[g(t)] =5 (3.51)
It is easily seen that if k — 0, the process variance tends to infinity. Thus, to express the

properties of the continuous-time process, we need to involve the Dirac delta function
0(t), whose properties are:

b
8(t) = {(O,° izg, f&(t)dt =1 (3.52)

a
where [a, b] is any interval that contains the 0. To connect the discrete-time process v; to
the continuous-time process v(t), we assume that the former is the time-average of the
latter on the time interval of length D, as in equation (3.12). If we define v(t) as a

stationary stochastic process which has the following properties:

Elv@®)] =0,  cov[v(@®),v(t")] = E[v(©v(t)] = oD 8(t — t') (3.53)
then it results in a discrete-time process with the properties of equation (3.50). Indeed,
the variance of v, will be:

2

D D

D
1 1
Var[gr] = Var[gl] =E|| = [ v()dt = —ZE[ v(t)du | v(s)ds
4w - o] o

0 0

1 D D " D D
=ﬁij[2(t)g(s)] dtds =ﬁffazD5(t_s) dtds (3.54)
00 0 0
D
2D ,
=Dz lds =0

0

The power spectrum of process v(t) is found (from equation (3.21)) to be constant:
s(w) = %D (3.55)

Because all frequencies w are present in the power spectrum with equal density (¢2D),
the process v(t) has been called white noise. This name has been given by analogy to white
light, which is a mixture of all visible frequencies. We note though that this is a misnomer
as the power spectrum of the white light is far different from flat.

While mathematically the white noise is a well-founded concept and useful for many
theoretical analyses, it may not be physically realistic for several reasons, such as the
following:

e Its variance is infinite: var[y(t)]zE[(y(t))z]zazD 8(0) = c0. If this

represented a natural process, this process would have infinity energy.
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e Its autocorrelation for lags however small is zero. In a natural process, the
autocorrelation should be close to 1 for lags close to zero.
e Its spectral density is nonzero as frequency tends to infinity.

These problems are remedied by applying some kind of filtering to the process v(t). An
example is to set an upper limit w, to the frequency, beyond which the spectral density
becomes zero (a so-called low-pass or high-cut filter). The second-order characteristics of
the thus obtained stochastic process ¥(t) are:

2
gD'WS% (3.56)

Vo = 02D w,, é(h) = 02D w, sinc(2ntw.h), s(w) = { ' W W,

It may be readily seen that the above three inconsistencies have been remedied. On the
other hand, the process 7(t) does not precisely yield the process v; in discrete time.
However, if we choose w, > 1/D, we can obtain a good approximation.

Digression 3.D: Random walk, Wiener process and Brownian motion

Assuming that the discrete-time white noise process v; is two-valued, e.g. taking on the values +1
and -1 with equal probabilities p = 0.5 (so that E[gr] = 0), the cumulative process V; = Y.7_; v;,
which takes on values in the interval [—7, 7], is called a random walk. This is a nonstationary
process with its variance being proportional (actually equal in this simple case) to the time 7 that
has passed from the beginning of the walk, i.e. Var[yr] = 7. Its mean is zero at all times.

If both the time t and the state v(t) of the white noise are continuous, then the resulting

cumulative process V(t) = fo v(s)ds is called the Wiener process. This is again a nonstationary

process with mean zero and variance proportional to the time ¢, i.e. var[Z(t)] = ¢2t, where o
has been defined above.

The quantity 62 /2 is known as the diffusion constant. The Wiener process is used to model
diffusion phenomena and the Brownian motion under free conditions, i.e., when there are no
bounds in the motion, nor a restoring force (e.g. gravity in atmospheric motion). However, in real
world systems the motion is not free (these conditions do not hold true) and the Brownian motion
is bound. In such systems the resulting process is not Wiener but a stationary process.

More information on these processes can be found in Papoulis (1991).

3.11 The linear Markov process

We will now discuss a more interesting case of filtering of the white noise by means of a
stochastic version of a linear differential equation. To establish such an equation, we use
a simple hydrological system, a linear reservoir with inflow v(t) and outfow x(t). The
reservoir state is characterised by its storage S(t) and the change in outflow (reservoir
spill) is assumed (as an approximation) to be proportional to the change in storage, dx =
dS/a, where a > 0 is a constant with units of time. The continuity equation is dS/dt = v —
x and if we make the substitution dS = adx we find that the system dynamics is the first-
order linear differential equation (for a nonlinear version see Digression 9.A):
dx(t)

a7+x(t) = v(t) (3.57)

Now, let us assume that the inflow is a stochastic process and specifically a white
noise process. For convenience we subtract its mean so that v(t) has the characteristics
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given in equation (3.53). The output x(t) will be a stochastic process as well. Thus, we can
write the stochastic version of equation (3.57) as:
dx(t)
dt
As simple as may it seem, the transition from the deterministic version in equation (3.57)

to the stochastic version in equation (3.58) involves mathematical troubles. In fact, the
process x(t) is hardly differentiable and the derivative dx(t)/dt does not generally exist.

a +x(t) = v(t) (3.58)

Thus, stochastic differential equations require their own rules of calculus. Here we use
the following simple rule: We solve the differential equation as if it were deterministic
with well-defined derivative. Naturally, the mathematical expression of the solution will
not contain derivatives. In that expression we replace the deterministic functions with
stochastic processes. Thus, the differentiability problem is bypassed.
In this manner, the linear differential equation (3.58) is easily solved to give:

t

jg(u)e”/“du (3.59)

0

—t/a

x(t) = x(0)et/% +

We observe in equation (3.59) that:

1. The two additive terms on the right-hand side are independent as the outflow of
the present, x(0), cannot depend on the future inflows v(u),0 < u < t.

2. The outflow does depend on the outflow of the present, x(0), but not on other x(t)
of the past (t < 0).

A stochastic process that has the latter property is called a Markov process. More
generally, a Markov process is one in which the future does not depend on the past once
the present is known; symbolically:

P{x(t) < x|x(s) = x(s),s < 0 < t} = P{x(t) < c|x(0) = x(0)} (3.60)

The particular Markov process x(t) of equation (3.59) can be called the linear Markov
process and it is also known as Ornstein-Uhlenbeck process, while the stochastic
differential equation (3.58) is known as the Langevin equation (Papoulis, 1991). The mean
of the process is:

E[x(®)] = E[x(0)]e™"/* (3.61)

Subtracting equation (3.61) from (3.59), squaring and taking expected values we get:
t
-2 a*D -2 2
var[x(t)] = var[x(0)] e72t/* +—e t/“fe w/aqy
a

5 (3.62)
2 %D

oD —2t/a
=t <var[z(0)] —g>e 2t/

From (3.61) and (3.62) we conclude that E[g(t)] and Var[g(t)] tend fast (exponentially)
to 0 and A2 := 02D /2a, respectively, regardless of the values E[E(O)] and Var[g(O)]. In
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particular, if E[E(O)] =0 and var[g(O)] = ¥, = A%, then the process has constant mean
(0) and variance (A?) at all times.
It is easily seen that the following equation is a consequence of (3.59):
t+h
f v(w)e*/*du (3.63)

t

—-h/a
x(t+h) = x(t)e ™™ +

Multiplying this equation by x(t) and taking expected values we get:
c(t,h) = E[x(t + W)x(0)] = E[x(t)?]e = (3.64)
and in the case (E[x(0)] = 0, var[x(0)] = A?) this becomes:
c(h) = A2e M« (3.65)

In other words, the autocovariance is a function of the lag h only and the process is wide-
sense stationary. The other second-order characteristics of the process in continuous and
discrete time, derived through the generic equations contained in Table 3.3, are
summarized in Table 3.5 and illustrated in Figure 3.5.

The celebrated linear Markov process is nothing more than filtered white noise
through a linear differential equation. The filtering eliminates the problems related to the
appearance of infinities discussed in section 3.10 and, thus, it is physically consistent.
Furthermore, the simplicity of the equations of its second-order properties makes it
attractive and easy to use. On the other hand, its Markovian property, i.e. the
independence of the future from the past, once the present is known, may contradict our
perception that history does always influence the future developments. We may thus
regard it as too simplistic a model of natural reality. Furthermore, the fact that it
minimizes entropy production for large times (t — o) (Koutsoyiannis, 2011b; see also
Digression 3.G) may be another obstacle in accepting it as a good model to represent
natural processes.

Table 3.5 Second-order characteristics of the Markov process at continuous and discrete time.

Property Formula Eqn. no.
Variance
Continuous-time process
=v(0) = ¢c(0) = 22 3.66
(instantaneous) Vo =y(0) =0 ( )
Av.eraged process at scale k V (k) = 222 1— 1—e ke (3.67)
(climacogram) k/a k/a
Autocovariance function
Continuous-time, lag h c(h) = A2eIMl/a (3.65)
Di ime, lagn = h/D 2= ins 3.68
= = = -(n- a
iscrete time, lag n /D ¢y =y(D), ¢y = W e~ ) n=>1 (3.68)
Power spectrum
Continuous time, 4a?
= 3.69
frequency w sw) 1+ (2maw)? (3.69)
Di te ti sinh(D/« 1 —cos(2Ttw
iscrete time, sq(w) = 4a2?(1- (D/a) ( ) (3.70)
frequency w = wD D/a  cosh(D/a) — cos(2mw)
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A discretized Markov process at time step D tends to be uncorrelated in time as D
increases. Therefore, at large time scales the Markov model is indistinguishable from
white noise: indeed, from equation (3.67) we conclude that for large k (or small a) the
variance is inversely proportional to the time scale, as in the white noise. Thus, even
though sometimes it is said that the Markov model reflects short-term persistence, it is
better not to use the term persistence in this case. Certainly, it entails short-range
dependence in time. However, its asymptotic properties (cf. equations (3.46) and (3.47))
are (Koutsoyiannis, 2017):

M=2 0@ =3, y*(0) = c*(0) = 0, YH(0) = 2, s*(e0) = 2
(3.71)

1 1
H=35 ¢clo) =, y#(0) = =1, c*(00) = —oo, P*(0) = s¥(0) =0

Thus, according to the classification of section 3.9, the process is neutral: neither
antipersistent nor persistent and neither rough nor smooth.
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Figure 3.5 Second-order characteristics of a linear Markov process with parameters A = 1,a =
20 and discretization time step D = 1. The climacogram and climacospectrum are precisely the
same for the continuous- and discrete-time representations. The autocovariance and the power
spectrum have some differences between the two representations, which are invisible in the
former case and visible in the latter.

While the linear differential equation, on which the introduction of the Markov model
has been based, has some physical basis, the assumption that the inflow is white noise is
physically problematic, as we clarified in section 3.10. This is another reason making the
simple Markov model inappropriate for natural systems. This problem, even though
rarely noticed, is also met in most of the cases of stochastic differential equations, which
are deterministic equations perturbed by white noise.

Related to the Markov process in continuous time is the discrete-time process:
Xe = ax;1 + v + by (3.72)

commonly known as ARMA(1,1), which stands for autoregressive - moving-average
process of orders (1,1). Here v, is discrete-time white noise with variance ¢, and a and b
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are parameters. It can be easily shown (homework) that its second-order characteristics
are interrelated by:

a+ b)?
Co = (1 + %) a2, c; = acy + ba?, cp=a"l¢e, =1 (3.73)

By comparison with equation (3.68) we see that the ARMA(1,1) process is identical to the
discrete-time representation of the Markov process if we choose:

- _ 2
—e /e =y = 222 (| 1-ere o = 2(1—e/) (3.74)
’ 7" D/a D/« ’ ! (D/a)?

Alternatively, if we know the first three terms of the autocovariance function in discrete
time, then, without referring to the continuous time formulation, the parameter a can be
found as the ratio

a

a=c,/c (3.75)

The remaining parameters b and ¢ can be found from the first two equations in (3.73) in
terms of ¢y, = y; and c¢; (a rather involved but explicit solution can also be found—
homework).
The special case in which:
b=0sc/co=a (3.76)

is known as the AR(1) process, standing for autoregressive process of order 1. This is the
limiting case as D/a — 0. It can also appear in a discrete-time representation of the
Markov process for finite time step D, if we use instantaneous quantities, rather than time
averages—the so-called sampled process, defined in discrete time as:
x; = x(7D) (3.77)

(compare this with (3.12)). The AR(1) process is thus:

Xp =AXe 1+ Uy (3.78)
and its second-order characteristics are:

2 K
__% _ g o A (g _2a0=dY
Co = T a2’ ¢y = a'lcy, y = (=) 1—a - (3.79)

Additional information about discrete time processes of this type is given in Digression
3.E.
Digression 3.E: The Time Series School and its processes

The AR(1) and ARMA(1,1) processes discussed in section 3.11 are representatives of bigger
families of models developed within the Time Series School. It is worth mentioning one more
process from these families, the AR(2) process, which is:

Xr = AqXe—q T QX2+ V; (3.80)
It can be easily shown (homework) that its second-order characteristics are interrelated by:

Co = ay¢1 + aycy + 02, €4 = aqCg + aycq, Cp = Q1Cp_1 T axCp_p, N 21 (3.81)
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Once the covariances cy, ¢1, ¢; are known (estimated from data or derived theoretically) the three
parameters a,, a,, o2 can be easily found as the system of equations is linear. These equations are
called Yule - Walker equations as they were introduced by Yule (1927) and Walker (1931), both
British statisticians who, starting from an analysis of sunspot numbers, studied autoregressive
processes and in particular their periodogram and autocorrelation properties.

Obviously, higher order AR and ARMA models can be formulated, and actually are in common
use, along with additional families such as ARIMA(p,d,q) (standing for autoregressive integrated
moving average models) and ARFIMA(p,d,q) (with the additional ‘F’ standing for fractional).
However, we will not refer to them, preferring to base our analyses on the Stochastic School,
pioneered by A. Kolmogorov, which offers more solid grounds, both for foundation and
application, than the Time Series School. As will be seen in Chapter 7, useful tasks such as
application of stochastics in simulation can be undertaken in a generic and simple manner
without any reference to the non-parsimonious models of the Time Series School.

We should note, however, that the Time Series School and its models are way more popular
than the Stochastic School in many disciplines, including hydrology and climatology. It appears
that the former was initiated by the American economist W.M. Persons. In studying the problem
“When to buy or sell’, Persons (1919) introduced the study of time series, which he called
statistical series, and asserted that they “result from the combination of four elements: secular trend,
seasonal variation, cyclical fluctuation, and a residual factor.” He also proposed methods for
“Eliminating secular trends” and “Eliminating seasonal variation”. Interestingly, the Ukrainian/
Russian/Soviet mathematical statistician and economist Slutsky (1927) demonstrated that what
Persons (and other economists) regarded as cyclical component is only a statistical artefact with
no essential meaning (see e.g. Kyun and Kim 2006; Barnett, 2006). Subsequently, the notion of a
cyclical component was abandoned but the decomposition of a time series into the remaining
three components, trends, seasonal variation and residuals is popular even today.

Perhaps the first definition of a time series was given by the American statistician Bailey
(1929):

A time series is a series of observations taken at different times and recorded with the time at
which they were taken.

The biggest progress in the Time Series School was made in Uppsala by the Norwegian-born
(with career in Sweden) econometrician and statistician H.0.A. Wold and the New-Zealand-born
mathematician and statistician P. Whittle, who in their doctoral theses provided the stochastic
foundation of time series analysis. Wold (1938, 1948) proved that a stochastic process (even
though he referred to it as a time series) can be decomposed into a regular process (i.e., a process
linearly equivalent to a white noise process) and a predictable process (i.e., a process that can be
expressed in terms of its past values). This has been known as Wold’s decomposition. Whittle
(1951, 1952, 1953) laid the mathematical foundation of autoregressive and moving average
models in univariate and multivariate setting. Later, in their influential book, Box and Jenkins
(1970) named these models with the above acronyms and they became popular with these names
and also with the name Box - Jenkins models (cf. Stigler’s law of eponymy, which states that no
scientific discovery is named after its original discoverer; Stigler, 2002).

Despite the wider influence of the Time Series School over the Stochastic School, there are
several problems with the former. First, the term time series is ambiguous, sometimes denoting a
series of observations as in the original definition of Bailey (1929) (or, equivalently, a realization
of a stochastic process), and other times denoting the stochastic process per se (as in the
aforementioned use by Wold). As we have already emphasized, here the term time series is used
with the first meaning, a series of numbers, while for a series of stochastic variables we use the
term stochastic process. Second, with the exception of the simplest models of these families, such
as the AR(1) and ARMA(1,1), time series models are too artificial because, being complicated
discrete-time models, they do not necessarily correspond to a continuous time process, while
natural processes typically evolve in continuous time. Furthermore, their identification, typically
based on the estimation of the autocorrelation function from data, usually neglects estimation



110 CHAPTER 3 - STOCHASTIC PROCESSES AND QUANTIFICATION OF CHANGE

bias and uncertainly, which in stochastic processes (as opposed to purely random processes) are
often tremendous (Lombardo et al., 2014).

Indeed, from their onset (Whittle, 1952), time series models have been tightly associated
with a large number of parameters and they usually become over-parameterized and thus not
parsimonious. These parameters are estimated from data, which usually are too few to support a
reliable estimation. The decomposition of a time series to components, trends, seasonal variation
and residuals, is fundamentally problematic, despite being popular. Remarkably, a meaningful
definition of a trend has never been given. Also, it may be hard to conceive how time per se could
be regarded as an explanatory variable in a complex process and what the logical basis is in
expressing the statistics of a physical process as a deterministic function of time. Accumulation of
data series with long time spans (cf. Chapter 1) has shown that, what have been regarded as
trends, are mostly parts of long-term fluctuations (and in accord to Slutsky’s work, they could also
be regarded as statistical artefacts). Finally, “deseasonalization”—in Persons’s original
terminology “Eliminating seasonal variation”—is a delusion; we can hardly remove seasonality in
the multivariate distribution of a stochastic process; what we typically do is in the marginal
distribution—and thus there is no elimination.

3.12 The Hurst-Kolmogorov process

The Hurst-Kolmogorov (HK) process has been already introduced in section 1.3 and its
discrete-time version was given in equation (1.6). Its continuous-time version is quite
similar:

2-2H

y() =22 (%) (3.82)

This equation can serve as the definition of the HK process. By setting H = 1/2 we recover
equation (3.51), which means that the HK process is a generalization of the white noise.
Its other second-order characteristics are given in Table 3.6 and illustrated in Figure 3.6.
Their LLDs are constant for all time lags and scales and all frequencies:

o(k) = pc(k) =H, y*(k) =c*(h) =2H -2, Y*(k) = -s*(w)=2H—-1 (3.83)
including their asymptotic values at 0 and oo. Accordingly, M = H-1.
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Figure 3.6 Second-order characteristics of a Hurst-Kolmogorov process with parameters 4 =
1, = 20, H = 0.8 and discretization time step D = 1. The climacogram and climacospectrum are
precisely the same for the continuous- and discrete-time representations. The autocovariance and
the power spectrum have some differences between the two representations, which are visible in
both cases.
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Table 3.6 Second-order characteristics of the Hurst-Kolmogorov process at continuous and
discrete time.

Eqn.
Property Formula o
Variance
Continuous-time process
=y(0) =c(0) = 3.84
(instantaneous) Vo =y(0) =) = +eo ( )
Averaged process at scale k _
k) = 22(a/k)?2H 3.82
(climacogram) v(k) (a/k) ( )
Autocovariance function
) a~2-2H
2H(2H — 1) (E) , H>1/2
h
Continuous-time, lag h c(h)y=:2%6 (—), H=1/2 (3.85)
a
, a~2-2H (R
2 H(ZH—1)(Z) +5 (E) H<1/2
= 1P+ ]+ 1P
¢y = A2(a/D)*2H (" i |j|2H)
Discrete time, lagn = h/D 2 (3.86)
(forn >2, ¢, ~ H(2H — 1)j*""%y,, y; = 2*(a/D)**")
Power spectrum?
' ' 2aA? T'(2H + 1)sin (nH
Continuous time, s(w) = ( 221_1 (H) (3.87)
frequency w (2maw)

1 The power spectrum of the discrete-time (averaged) process exists (it is finite for w > 0) but it does not
have a closed expression. However, for small frequencies (w = wD < 0.1), the continuous-time expression
is a very good approximation for the discrete-time process, i.e. sq(w) = s(w/D).

The Gaussian version of the process is also known as fractional Gaussian noise (FGN)
due to Mandelbrot and van Ness (1968), although these authors used a more complicated
approach to define it. Here we do not use the term FGN as the adjective fractional is not
quite informative (there cannot be a non-fractional process; note that the white noise, in
which H = 0.5 is fractional too), the adjective Gaussian is too restrictive (we will implement
non-Gaussian HK) and the noun noise is too negative and perhaps misleading when we
try to describe Nature’s processes. As already mentioned, a variant of that mathematical
process had been earlier proposed by Kolmogorov (1940), while Hurst (1951) pioneered
the detection in geophysical time series of the behaviour described by this process; hence
the name HK we use for this process.

Because this process has infinite instantaneous variance, the sampled process in
discrete time is not meaningful (many characteristics take infinite values). However, the
averaged process is well behaving with all of its characteristics (including its variance)
finite, which makes it quite useful in applications, if we exclude the very small scales.

The HK process is almost equally simple and parsimonious with the Markov process;
again, it contains only one parameter, H, in addition to those describing its marginal
distribution. Notice that the process variance is controlled by the product A2 a?-2¥, so that
Aand a, are not in fact separate parameters. Despite that, we prefer the formulation shown
in Table 3.6 with three nominal parameters for dimensional consistency: @ and A are scale
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parameters with dimensions [t] and [x], respectively, while H, the Hurst coefficient, is
dimensionless in the interval (0, 1).

For H = 1/2 the process reduces to pure white noise. For 1/2 < H < 1 the process is
persistent and for 0 < H < 1/2 antipersistent. Most of the expressions shown in Table
3.6 hold in all three cases. However, the autocovariance c(h) has different expressions in
the three cases, as shown in Table 3.6. Specifically, for H < 1/2, the autocovariance c(h) is
negative for any lag h > 0, tending to -oco as h = 0. However, at h = 0,¢c(0) = +oo,
because this is the variance of the process which cannot be negative; thus, there is an
infinite discontinuity at h = 0. Consequently, the averaged process has positive variance
and all covariances negative. Such a process is not physically realistic because real-world
events at near times are always positively correlated, which means that for small A, c(h)
should be positive. Also, the infinite variance cannot appear in nature. Thus, the HK
process can describe natural phenomena only for 1/2 < H < 1 and for time scales not too
small. Furthermore, values H > 1 that sometimes are being reported in the literature are
mathematically invalid (Koutsoyiannis, 2014b, 2017; Koutsoyiannis et al. 2018; see also
Figure 3.4) and are results of inconsistent algorithms. In terms of entropy production, the
process maximizes it for large times (¢t — o0) but minimizes it for small times (¢t — 0).

Digression 3.F: Developments in stochastic modelling in hydrology before
and after Hurst

Hurst’s (1951) discovery of the natural behaviour named after him was triggered by a real-world
problem of engineering hydrology, the design of reservoirs. This gave hydrology a central role in
understanding this behaviour and subsequently in the dissemination process to other disciplines.
It is a further mark of distinction that the large-scale “export” from hydrology to other fields has
characterized Hurst’s research, as hydrology is most often an importer of stochastic methods from
other fields (O’Connell et al., 2016).

The understanding that hydrological processes cannot be effectively modelled by
deterministic techniques preceded Hurst’s research. Techniques that could be classified as
applications of the Monte Carlo method had appeared in the hydrological literature much earlier
than the “official start” of the Monte Carlo method in 1949 and of Hurst's (1951) paper. Hazen
(1914) made a pioneering study in which he introduced the reservoir storage-yield-reliability
relationship, a concept that would remain unexploited in the western hydrological literature yet
constituting the scientific basis of modern reservoir design (Klemes, 1987). In that study he
proposed an empirical simulation technique and formed a synthetic time series by combining
historical flow records of different rivers ‘spliced’ sequentially together. Sudler (1927) extended
the work of Hazen by resampling from a sequence of historical river flows using cards, which he
shuffled to form new sequences of data. Obviously, this method heavily distorts the time
dependence of river flows whose importance was not known at that time.

For it was Hurst (1951) who understood that importance along with the omnipresence in
natural processes of a clustering behaviour of similar events in time, a behaviour that is now
understood as (long-term) persistence, long-range dependence (LRD) or Hurst-Kolmogorov
dynamics. In his attempt to compare natural and random events, Hurst performed physical
experiments to generate random numbers. Specifically, he tossed 10 coins (sixpences)
simultaneously and repeated this 1025 times (note that 10 binary digits are equivalent to about
3 decimal digits). As he notes, his rate was 100 random numbers per 35 min (while that would be
of the order of a microsecond in modern computer environments, even slow ones). He also used
another method, shuffling and cutting a pack of 52 cards, in which he improved the rate to 100
random numbers per 20 min.
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The behaviour discovered by Hurst is now known to many disciplines, most prominently in
information sciences, biological and medical sciences, economics and finance, and geophysical
sciences—excepting climate science where it is rather unknown. Even within the hydrological
community it took decades before assimilating Hurst’s discovery of persistence (O’Connell et al.
2016). Thus, the initial studies implementing primitive variants of stochastic simulation did not
reproduce LRD. Barnes (1954), in designing a reservoir in Australia, used a table of random
numbers from normal distribution to generate a 1000-year sequence of synthetic annual data.
Thomas and Fiering (1962) generated flows correlated in time, but using only the lag-one
autocorrelation, obviously neglecting LRD. Beard (1965) and Matalas (1967) generated
concurrent flows at several sites. Chow (1969), and Chow and Kareliotis (1970) systematized the
use of time series models (in particular—and using their terminology—moving average models,
sum of harmonics models and autoregression models) and highlighted their value in the economic
planning of water supply and irrigation projects. It is evident from the above pioneering studies,
as well as of subsequent myriads of studies, that hydrologists have followed (and today still do)
the Time Series School rather than the more rigorous Stochastic School.

3.13 The Filtered Hurst-Kolmogorov process

The HK process should not be regarded as a model of general validity, but one that it is
valid for large scales—and we will indeed use it as more physically plausible than
processes with exponential decrease of autocovariance (e.g. the Markov process). To this
aim, we can appropriately filter HK to make it a physically consistent process for all scales.
This is the same with what we did to the white noise to make it physically consistent by
removing infinities.

Similar to the white noise process, if we filter an input v(t) that is now an HK process,
either by a moving average filter or by a linear differential equation system, then it is easy
to see that the filtered output is a physically realistic process with finite variance y(0),
practically unaffected climacogram y(k) at large scales, with y#(o) = 2H — 2 (as in the
original HK process) but highly modified climacogram at small scales, thus having a valid
structure with M = ¢:(0) — 1 = (¢*(0) — 1)/2 = H.

However, to enrich the process we can make the parameter M independent of H, thus
making it more flexible to model real world data. For the model application it is not
necessary to specify the linear filter needed to convert the HK process into a filtered
Hurst-Kolmogorov (FHK) process (in some cases this would be too involved). It suffices
to specify a convenient expression of the climacogram. Below we provide three such
expressions (from Koutsoyiannis, 2017). All expressions contain the dimensionless
parameters M and H with the meaning and values discussed in section 3.8.

1. The generalized Cauchy-type (FHK-C) climacogram:
H-1

y(k) = 22(1 + (k/a)?M) ™ (3.88)
2. The generalized Dagum-type (FHK-D) climacogram:

y(k) = 22 (1 -(1+ (k/a)z(H‘l))%) (3.89)

3. The composite Cauchy-Dagum-type (FHK-CD) climacogram, derived by summing
an FHK-C with M = 1 and an FHK-D with H = 0:
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y(&) =231+ (/a1 + 231 - (1 + (k/az)™)™) (3.90)

4. Asecond form of FHK-CD (FHK-CD2), derived by summing an FHK-C with M =1/2
and an FHK-D with H=1/2:

— 12 2H-2 2 -2M
y(k) =211 +k/a;y) +25(1 — A+ ay/k)==") (3.91)
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Figure 3.7 (upper) Climacograms and (lower) EPLT (¢(t)) and CEPLT (¢c(t)) of the three
indicated example processes for neutral smoothness (M = 0.5). At time scale D = 1 all three

processes have the same variance y(1) = 1 and the same autocovariance for lag 1, C§1) = 0.5. Their
parameters are: for the linear Markov process a = 0.8686, A = 1.4176; for the HK process a =
0.0013539, A = 15.5032, H = 0.7925 (equivalently, a = A = 1 but the former parameter set was
preferred in order to be comparable to the FHK); for the FHK process a = 0.0013539, A= 15.5093,
M = 0.5, H=0.7925. In the lower graph conditional and unconditional HK coincide (adapted from
Koutsoyiannis, 2016).

FHK-CD in either of the variants (3.90) and (3.91), is most convenient, as the first
additive term determines merely the persistence of the process and the second one the
smoothness of the process. In addition, it is more flexible and richer than its constituents,
as it contains two couples of scale parameters; however, if parsimony is sought, then it

can take the same number of parameters as each of the constituents by setting a; = a, =



THE FILTERED HURST-KOLMOGOROV PROCESS 115

a and 4; = A, = A (note that, for dimensional consistency, A and a are minimal parameter
requirements).
In the special case M = 1 — H both FHK-C and FHK-D result in the same expression:
12

V) = Ty (3.92)
For large k/a the FHK process tends to the HK one. This is illustrated in Figure 3.7, where,
in addition, the linear Markov model (for the same value of the lag-one autocovariance) is
plotted for comparison. We notice that, as time tends to zero, the Markov and the FHK
models have the same entropy production while the HK model is associated with minimal
entropy production. For intermediate times the Markov model gives higher entropy
production than the other two models, but this is done at the “expense” of giving too low
entropy production at large time scales, at which both the HK and the FHK give precisely
the same high entropy production.

Digression 3.G: Entropy production and time series patterns

The different patterns in time series generated by different M and H (specifically for the Cauchy-
type climacogram) are illustrated in the plots of Figure 3.8, also in comparison with two other
models, the white noise (panel (a)) and the linear Markov model (panel (b)). These two serve as
useful benchmark models for comparisons: the former is free of patterns as it reflects pure
randomness, and the latter is fully neutral (neither rough nor smooth as ¢¢(0) = 3/2, and neither
antipersistent nor persistent as @¢() = 1/2).

The time series plotted in Figure 3.8 were generated by the symmetric moving average (SMA)
scheme which will be described in Chapter 7, with 1024 coefficients (weights) a. In all cases the
discretization time scale is D = 1, the characteristic time scale &« = 10, and the characteristic
variance scale A is chosen so that for time scale D, y(D) = 1. The mean is 0 in all cases and the
marginal distribution is normal. The FHK is implemented using the Cauchy-type climacogram.
Each of the panels shows the first fifty terms of time series produced by each of the model
implementations at time scales k = 1 and 20. In addition, each panel contains a “stamp” of the
specific model represented by the plot of CEPLT, ¢c(k). In this way the time series patterns can
be connected to the entropy production of the generating mechanism.

In panel (c) the CEPLT is close to the absolute maximum both for small and large scales (H =
M = 0.97 so as to obtain ¢¢(0) = 1.97 = 2 and @c¢() = 0.97 = 1); notable is the very smooth shape
at scale 1 and the large departures from the mean (which is 0) at scale 20. On the contrary, in
panel (d) the CEPLT is close to the absolute minimum for all scales (H = M = 0.05, so as to obtain
@c(0) = 1.05 = 1 and ¢¢(o0) = 0.05 ~ 0—for better visualization it was preferred not to use values
of H and M < 0.05). Furthermore, in panel (e) the CEPLT is close to the absolute maximum for
large scales (H = ¢c(o) = 0.99 = 1) and close to the absolute minimum for small scales (M = 0.01
resulting in ¢¢(0) = 1.01 = 1). Finally, in panel (f) the conditions are opposite to those in (e) i.e.,
the CEPLT is equal to the absolute minimum for large scales (H = ¢c(o0) = 0.01 = 0) and to the
absolute maximum for small scales (M = 0.99 resulting in ¢¢(0) = 1.99 = 2).

The particular case of panel (e) is close to what is usually called “pink noise” or “1/f noise”,
as the power spectrum has almost constant slope -1 for the entire frequency domain (which is
the same in the climacospectrum). This means that using the FHK model we can theoretically
represent and practically produce even “pink noise” in a consistent stationary setting without
linking it to a nonstationary process (Keshner, 1982; Wornell, 1993), which involves several
theoretical inconsistencies. Indeed, the small change of slope from 0.99 to 1.01 is not actually
visible, especially considering the very rough shape of the empirical periodogram, which certainly
cannot support differentiation between 0.99 and 1. The FHK model can be used also in other ways
to produce “pink noise”, that is, by selecting a very large (small) parameter a so as to expel from
our field of vision the asymptotic behaviour on large (small) scales. And we can imagine that in
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several cases of empirical explorations using observations of natural processes, the observation
resolution and length, compared to characteristic scale(s) of the process, are such as to hide the
asymptotic behaviour of the process. We can use this as a trick to obtain virtually constant power
spectrum slopes much steeper than -1. Specifically, we can use a large a that does not allow
viewing the asymptotic behaviour at low frequencies or large scales and the slope (see example
in Koutsoyiannis, 2017). But this should not mislead us to interpret the steep slopes as indicators
of nonstationarity (see Digression 3.C).
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Figure 3.8 The first fifty terms at time scales k= 1 and 20 of time series produced by various models, along
with “stamps” of the models (thick lines plotted with respect to the right vertical axes) represented by the
CEPLT, ¢c(k). The different models are (a) white noise; (b) Markov; (c¢) FHK, with CEPLT close to the
absolute maximum (H = M = 0.97); (d) FHK, with CEPLT close to the absolute minimum (H = M = 0.05; notice
the slow convergence of @c(k) to the limiting values 0 and 1); (e) FHK, with CEPLT close to the absolute
maximum for large scales (H = 0.99) and close to the absolute minimum for small scales (M = 0.01); (f) FHK
with CEPLT close to the absolute minimum for large scales (H = 0.01) and to the absolute maximum (M =
0.99) for small scales.

3.14 Dependence and behaviour of extremes

When we study extremes, we are usually satisfied by specifying the marginal distribution.
As analysed in Chapter 2, this is generally sufficient for design purposes, where the design
is based upon the concept of return period. In this respect, the dependence structure of
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the process of interest may not affect the design procedure per se. However, the
dependence in a stochastic process alters substantially the temporal distribution of
extremes. In a process with dependence there are patterns, and specifically periods with
clustered extremes and periods with absence or infrequent occurrence of extremes. We
should thus adapt our perception of the behaviour of extremes to become consistent with
this reality; without such adaptation our perception is typically guided by the “roulette-
wheel” paradigm, in which there are no patterns.

There is an additional, more severe, consequence of the presence of dependence.
Hydroclimatic studies necessarily rely on data to make inference. Data records are
typically insufficient and actually become even more so in the presence of extremes. The
latter problem also affects the specification of the marginal distribution. This is illustrated
by a simulation experiment in Digression 3.H. Quantification of the consequences will be
given in Chapter 4 and a way to take into account the dependence in specifying the
marginal distribution from data will be discussed in Chapter 6.

Digression 3.H: Relationship of persistence and distribution upper tail

To illustrate whether or not (and how) the persistence (or long-range dependence or just change)
affects the estimation of the marginal distribution of a discrete-time stationary process x; we
perform a simulation experiment. We assume that the marginal distribution of x; is exponential:
f.(x|1) = 1 e=**, Further, we make two alternative assumptions:

(a) that the parameter A is constant, A = 5, and
(b) that A is slowly varying with mean p; = 5and standard gamma distribution, f;(4) =

A5~te=2/r(Q) with{ = py; = 5.

To simulate a slowly varying A we initially generate a time series of a stochastic process A’
with same distribution as A from the HK process with a high H = 0.95. Then we form a time series
of A with the rule A; = 1; with probability 1/100, otherwise A; = A;_,. The latter rule assures that
each value 4; lasts for 100 time units on the average. The HK process used for A; assures that there
is change on all scales, not just at scale 100. Koutsoyiannis (2004a) has shown that the
unconditional distribution of x in this case is Pareto rather than exponential, i.e. f,(x) =
{(1+x)51,

In either of the two alternatives, once A is known at time step 7, we generate x; from the
exponential distribution independently of previous and next x;. In alternative (a), the resulting
process will be white noise. However, in alternative (b), the change of the parameter induces
dependence, while the process x; remains stationary (because the change is stochastic, resisting
a deterministic description).

Figure 3.9 (upper row) depicts two time series x, each with length 10 000, generated with
alternatives (a) (left panel) and (b) (right panel). Moving averages for a time scale of 500, also
plotted in the two panels, indicate the absence of patterns (pure randomness, white noise) in
alternative (a) and the long-range dependence (not nonstationarity) in alternative (b).

Now let us assume that this time series represents a hypothetical hydroclimatic process on
annual scale. Let us further assume that a researcher has a record of fewer than 100 observations.
Most probably all these refer to the same value of the parameter 4;. Consequently, the researcher
would diagnose that:

e the process behaves like white noise—and indeed, the slope of the climacogram (Figure 3.9,
lower right) for scales < 10 (one tenth of the sample size) is -1;

¢ the marginal distribution is exponential —because it indeed is exponential conditionally on a
single value of A.
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The two distributions for constant and varying A (cases (a) and (b)) are shown in the bottom-
left panel of Figure 3.9, along with the distribution of A in case (b), as empirically derived from the
simulations. The adoption of the former underestimates the design quantities for large return
periods. Furthermore, the bottom-right panel shows the dramatic differences in climacograms of
the two cases. The climacogram in case (b) starts with a slope -1 for scales < 10, but for large
scales this becomes -0.33, suggesting H = 0.84. The varying slope is consistent with the findings
of Markonis and Koutsoyiannis (2016) for the rainfall process. Overall, this simulation experiment

shows two things.

e Long series are needed to diagnose natural behaviours and in particular the multi-scale

change in natural processes.

¢ The mechanisms producing change may also lead to thickening of the distribution upper tail
and thus enhancing the occurrence probability or the intensity of extremes.

These effects are particularly important when we study maxima, neglecting the small values
(below a high threshold), a practice that tends to hide the existence of long-range dependence
even in long records (see Iliopoulou and Koutsoyiannis, 2019).
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Figure 3.9 Graphs for the hypothetical example studied in Digression 3.H: (upper left) for constant A;
(upper right) for varying A; (lower left) plots of distribution functions; (lower right) plots of

climacograms (see text for further explanation).



Chapter 4. Fundamental concepts of statistics and their adaptation to
stochastic processes

4.1 Introductory comments

The first aim of this chapter is to serve as a synopsis (rather than a systematic and
complete presentation) of fundamental statistical concepts. It is well known that the aim
of statistics per se is to provide a methodology for drawing conclusions based on
observations. The conclusions are only inferences based on induction, not deductive
mathematical proofs (see Digression 4.A); however, if the associated probabilities
approach 1, they become almost certainties.

The classical statistical theory is entirely based on the assumption that observations
are from a sample, a concept (formally defined in section 4.2) whose very definition relies
on independence of observations. However, when we deal with hydroclimatic processes
there cannot be independence. Instead of samples we have time series and there is
dependence in time. Even when we are interested on the spatial behaviour of processes,
again we have to deal with dependence in space. Hence, the second aim of this chapter is
to adapt and extend the classical statistical concepts and methodologies to make them
applicable to a universe in which there is dependence.

Two major tasks in statistics are estimation and hypothesis testing. Statistical
estimation can be distinguished in parameter estimation and prediction and can be
performed either on a point basis (resulting in a single value, typically the expectation; cf.
the Aristotelian mesotes), or on an interval basis (resulting in an interval in which the
quantity sought lies, associated with a certain probability or confidence). The results of
an estimation procedure are called estimates. Uses of statistical estimation in
hydroclimatic applications include the estimation of parameters of marginal probability
distributions or of the stochastic model describing the dependence in time, and of
distributions quantiles. All these concepts are briefly discussed both at a theoretical level,
to clarify the concepts and avoid misuses, and at a more practical level to illustrate the
application of the concepts.

Statistical hypothesis testing is also an important tool that constitutes the basis of
decision theory. In hydroclimatic studies, it is useful not only in decision making, but also
in exploratory tasks, such as in detecting relationships among different processes.
Hypothesis testing is typically performed by the classical framework known as statistical
significance (related to a null hypothesis) or, alternatively, within a Bayesian framework.
These topics have been mostly developed at the basis of (independent) samples and,
therefore, are not covered in this text. On the other hand, we put emphasis on the concept
of order statistics (section 4.12), which is much more important when dealing with
extremes.

Digression 4.A: Deduction and induction

The theory of probability has provided solid scientific grounds for philosophical concepts such as
indeterminism and causality. In typical scientific and technological applications, probability has
provided the tools to quantify uncertainty, rationalize decisions under uncertainty, and make
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predictions of future events under uncertainty, in lieu of unsuccessful deterministic predictions
(see Koutsoyiannis, 2010).

Quite importantly, probability has also provided the basis for extending the typical
mathematical logic, offering the mathematical foundation of induction. Thus, probability made it
possible to incorporate into mathematics the entire Aristotelian logic, which in addition to
deductive reasoning or deduction (the Aristotelian apodeixis) also includes induction (the
Aristotelian epagoge).

In classical mathematical logic, determinism can be paralleled to the premise that all truth
can be revealed by deductive reasoning. This type of reasoning consists of repeated application
of strong syllogisms concerning the logical propositions A and B, such as:

(Premise) If A is true, then B is true; If 4 is true, then B is true;
(Evidence) A is true; B is false;
(Conclusion) Bis true. A is false.

Deduction uses a set of axioms to prove propositions known as theorems, which, given the
premises (based on axioms), are irrefutable, absolutely true statements. It is also irrefutable that
deduction is the preferred route to truth; the question is, however, whether or not it has any
limits.

David Hilbert’s famous aphorism (later inscribed in his tombstone at Gottingen) “Wir miissen
wissen, wir werden wissen” (“We must know, we will know”), expressed his belief that there were
no limits in deduction. According to this belief, more formally known as completeness, any
mathematical statement could be proved or disproved by deduction from axioms. However,
developments in mathematical logic, and particularly Gédel’s incompleteness theorem, challenged
the omnipotence of deduction suggesting the usefulness and necessity of induction.

Induction uses weaker inference rules of the type:

(Premise) If A is true, then B is true; If A is true, then B is true;
(Evidence) Bis true; A is false;
(Conclusion) A becomes more plausible. B becomes less plausible.

Induction does not offer a proof that a proposition is true or false and may lead to errors. However,
it is very useful in decision making, when deduction is not possible, which is the case quite
frequently in the real world and in everyday life (see Jaynes, 2003).

The important achievement of probability is that it quantifies (expresses in the form of a
number between 0 and 1) the degree of plausibility of a certain proposition or statement. The
formal probability framework uses both deduction, for proving theorems, and induction, for
inference with incomplete information or data. For the latter we use the branch of stochastics
called statistics.

4.2 Samples versus time series

Loosely speaking, statistics draws conclusions for a population, based on a sample.
Although the content of population is not strictly defined in the statistical literature, the
term describes any collection of objects whose measurable attributes are of interest. The
population can refer to the real world and be finite (e.g., the inhabitants of Europe, the
mean annual flows of year 2000 at the outlets of all river basins on Earth with size greater
than 100 km?2). It can also be an abstraction of a real-world entity referring to the possible
(typically infinite) outcomes of a real or a hypothetical experiment (e.g., the population of
all possible annual flows in a river cross-section). Here we deal with populations of the
latter type and, because of this, it is not necessary to use the term population at all—and
hence to define it. Rather, the notions of a stochastic variable and a stochastic process
suffice. Therefore, we will not use terms like population mean to distinguish from the
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sample mean. Instead, we will refer to the former concept with the terms like true mean,
ensemble mean or simply mean, where the term ensemble suggests all possible outcomes
of repeated experiments.

On the contrary, the term sample has a clear definition. Specifically, a sample of size
(or length) n of a stochastic variable x , defined on a basic set (2, with probability
distribution function F(x), is a sequence of n independent identically distributed (IID)
stochastic variables (x;,x,, ..., x,) defined on the sample space 2,, = 2 X --- X (2, each
having distribution F(x) (adapted from Papoulis, 1990, p. 238). After observation of the
variables x;, to each variable there corresponds one numerical value. Consequently, we
will have a numerical sequence x4, x5, ..., x,, called the observed sample. It is clear from
this definition that a sample is not a subset of the population, as some may think, but a
concept related to the Cartesian product of the population.

The concept of a sample is, thus, related to sequences of two types: an abstract
sequence of stochastic variables and the corresponding sequence of their numerical
values. It has been a common practice to use the term sample indistinguishably for both
sequences, omitting the term observed from the latter. However, the two concepts are
fundamentally different and we should be attentive to distinguish each time in which of
the two cases the term sample refers to.

The above definition (and in particular the IID specification) suggests that the
construction of a sample of size n, or the sampling, is done by performing n repetitions of
an experiment. The repetitions should be independent to each other and be performed
under virtually the same conditions. However, in dealing with natural phenomena (out of
the laboratory) it is not possible to repeat the same experiment, and thus literally there
cannot be sampling. Instead, what is actually done is measurement of the natural process
at different times. As a consequence, it is not possible to ensure that independence and
same conditions hold. Actually, in most cases we can be sure of the opposite. Then the use
of classical statistics may become dangerous as the estimates and inferences may be
completely wrong.

Still, however, we can do our job in a reliable manner if, instead of using classical
statistics, we rely on stochastics. Actually, there is the following correspondence between
classical statistical concepts the stochastic concepts:

Classical statistics (independence) — Statistics within stochastics (dependence)
Sample - Stochastic process (discrete or discretized)
Observed sample = Time series

Typically, the use of stochastics assuming dependence makes the mathematical
derivations and calculations more complicated, while the resulting uncertainty is greater
when there is dependence.

4.3 Expectation and its estimation

As we have stressed in Chapter 2, functions of stochastic variables, e.g. z := g(x) are
stochastic variables and expected values of stochastic variables are common variables; for
example E[g] and E[g (g)] are constants—neither functions of x nor of x—i.e.:
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Elx] = f xf(dx =, E[g(x)] = f g)f ()dx, (41
where f(x) is the probability density function. It should be stressed that these
expectations are not time averages. Sometimes to make it clearer we call them true or
ensemble means, variances, covariances, etc. For an ergodic process, true expectations
are related to time averages through the following asymptotic relationship (section 3.4):

X 1
6 = lim 1 [ 9 (x(0) de = Elga(©)) = G (4:2)

We notice that the left-hand side, G(* , is a stochastic variable while the right-hand side,
G, is a common variable; their equality implies that the variance of G(* is zero.

When dealing with data from a process x(t) with a joint distribution function that is
unknown, neither the left- nor the right-hand side of (4.2) can be known a priori.

Assuming that we have a time series, at a time step D, with observations
x; = (1/D) f(ril)Dx(u)du,T =1, ...,n (see equation (3.1)) we can approximate the left-

hand side by:

G = %Z 90x0) (43)

The common variable G is called an estimate of the true expectation G. Replacing in
equation (4.3) the values x; with the stochastic variables x, we define:

[o))

NgE

= % g(ﬁ‘r) (4.4)

Il
[

T
The stochastic variable G is called an estimator of the true expectation G. In classical
statistics G is also called a statistic, where the latter term denotes a (scalar) function of

the sample vector x := [&, X2, ee) gn]T.

While the above procedure to form an estimator G of the true expectation G is useful
in many cases, we should have in mind that many different estimators can be formulated
for a certain parameter G. An estimator is typically biased (with some exceptions, the most
notable being the estimator of the mean; see below), meaning that:

E[G]#G (4.5)
A formal definition of bias is:
An estimator is also characterized by its variance and its mean square error, i.e.
Ve = var[Q], ec =E [(Q - G)Z] =Yc+ b? (4.7)

An estimator is called:
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e unbiasedifb = 0.

e consistent if, with probability 1, Q —G->0asn - oo
e Destif e; is minimum.

e most efficient if it is unbiased and best.

The main takeaway and central point of the above discussion is this. When dealing
with quantification of uncertainty, for each parameter there are four different concepts,
with slightly different names but very different meaning and content. These are often
confounded in the literature and the same symbol and name are used for all, which causes
confusion and may result in wrong conclusions. Table 4.1 clarifies the four different
concepts using the variance as an example.

Table 4.1 Different variants of the variance of a stationary process in discrete time, x;, as an
example for clarifying the four different concepts.

Name Symbol and definition Type of variable Type of determination
) g } Theoretical calculation
Variance 2 Common variable
y= | (x —wfr (x)dx i from model (by
(true) =t (not depending on 1) . i
“o integration)
n
1 . .
7= _Z(XT — )2 Estimation from data—
, pr but model is also
Variance :
, where: Common variable necessary (e.g. to
estimate . }
1 calculate the estimation
= ;Z Xt bias and uncertainty)
=1
=13 (e i)
= — X, —
)4 nl X — H
Variance =1 ) . Theoretical calculation
_ where: Stochastic variable
estimator n from model
1
h=g)
=1
T -
5 _ 1 (o)) 2 q Stochastic variable,
. yo=1mr (E(t) = ) " which for an ergodic
Variance 0 . .
. process has zero Theoretical calculation
estimator where .
variance and from model

limit T
becomes a common
variable, equal to y

From Table 4.1 we may notice that the data can be used only with one of the variance
variants, namely the variance estimate, while a theoretical model is necessary to
determine any of them. Even for the variance estimate, a model is necessary to estimate
the estimation bias and uncertainty (in classical statistics, that model is the IID
assumption). And before specifying that model, it is fundamentally necessary to ensure
that the assumptions of stationarity and ergodicity are valid for the process and the data
we are dealing with. If they are valid, then the four concepts become three because the
variance estimator limit becomes identical to the true variance. But if stationarity and
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ergodicity do not hold, then one may again use the data, do the calculations and find a
result. However, this result is meaningless and cannot be called the variance estimate.
4.4 Moment estimators

The estimator of the noncentral moment (moment about the origin) of order q, ug, of a
stochastic variable x, formed according to the method described in section /, is:

L _IN
= EZ X (4.8)
i=1
It can be proved (Kendall and Stewart, 1963, p. 229) that:
E ] = u; (4.9)

Consequently, the noncentral moment estimators are unbiased. If x; is a (IID) sample of
size n then the variance of the estimator is:

1
var |1y | = ~ (o — 1§ (4.10)

It can be observed that if the moments are finite, then the variance tends to zero as n —
oo; therefore, the estimator is consistent. However, if x; is a stochastic process (with time
dependence) then (4.10) does not hold, even for q as low as 1.

The estimator of the central moment Ug, is:

n

g = %z = ;_z)q (4.11)

=1
where fi = fi; is the estimator of the mean. This is a biased estimator for any g > 1. Even

for relatively low q (e.g. 2-4), the bias can be substantial, in the case that the process
exhibits long-range dependence (see section 4.6 about the variance). In the case of (IID)
samples and low g, the bias is much smaller and can be easily quantified (see e.g.
Koutsoyiannis, 1997). For higher g the estimation of moments becomes almost
impossible; this applies not only to the biased estimators of central moments, but also to
the unbiased estimators of noncentral moments. The reasons are the high variance and
the extraordinarily high skewness of the estimators, which means that their expectation
can be different from the mode (the most probable value) by orders of magnitude.
Because of that, classical moments have been called unknowable (see Digression 4.B) and
their estimation from data is not recommended. In Chapter 6 we will study a new type of
moments, the knowable moments (K-moments), which can be reliably estimated for high
orders and are particularly useful in analyses of extremes.

In the framework developed and followed in this text, we avoid estimation of classical
moments of order higher than 2. For this reason, in the following sections we will only
study the estimators of classical moments of orders 1 and 2.
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Digression 4.B: Are classical moments knowable?

The estimators of the noncentral moments /i, (or even the central ones if y is known a priori,

which however is almost never the case) are in theory unbiased, but it is impractical to use them
in estimation if g > 2 (cf. Lombardo et al. 2014).
It is well known that for large g and positive x; the following relationship holds as an

approximation:
n 1/q
q
X; ~ max (x;
<Z l) 1SiSn( l)

i=1

This is related to the well-known mathematical fact that the maximum norm is the limit of the g-
norm as q — oo. This result can be generalized for x; that are not necessarily positive but satisfy
the condition max;<;<,(x;) > |min;<;<,(x;)|. A numerical illustration of how fast the
convergence of the left-hand side to the right-hand side of the above equation is provided in Table
4.2.

Table 4.2 Illustration of the fact that raising to a power and adding converges fast to the maximum value.

Linear,q =1 Pythagorean, g = 2 Cubic,g=3 High order, g =8
3+4=7 32 4+ 42 =52 33443 =453 38 4+ 48 ~ 48
3+4+12=19 32 4+ 4% +12%2 =132 33443 +123=12.23 38 448 + 128 ~ 128

Therefore, for relatively large q the estimate of u, will be:

n

1 1
Ao q ~ .
Hq = nz ¥y (1??5)%0(‘))

i=1

q

(Note that for large g the term (1/n) in the right-hand side can be omitted with a negligible error).
Thus, for an unbounded variable x and for large g, we can conclude that E&, while theoretically is

an unbiased estimator of pg, in practice it is more an estimator of an extreme quantity than an
estimator of ;. (As we will see in section 4.12, the estimated quantity is the nth order statistic
raised to power q). This happens because the convergence of fi; to yg is very slow, while the

convergence to the maximum value is fast.

This is further illustrated in Figure 4.1 for the eighth moment of a process specified in the
figure caption. Even for n as large as 64 000 the sample moment estimate continues to be smaller,
by several orders of magnitude, than the theoretical value. However, the proximity of the moment
estimate to the maximum value is evident even for n as small as 10. The jagged shapes of the
curves are a clear indication of the dominance of maxima in the moment estimation: the steps
occur when a new higher maximum value enters the sample, while the gradual decreases before
those are due to the increase of the sample size without a higher maximum value. The ensemble
simulation results in the right panel show that the 99% prediction limits (see their definition in
section 4.11) from 1000 simulations are unable to even envelop the true value.

As a result, unless q is very small, y; is not a knowable quantity: we cannot infer its value
from a sample. This is the case even if n is very large as in Figure 4.1. Also, the various EQI are not

independent to each other as they only differ on the power to which the maximum value is raised.
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Figure 4.1 [llustration of the slow convergence of the sample estimate of the eighth noncentral moment to
its true value, which is depicted as a thick horizontal line and corresponds to a lognormal distribution
LN(0,1) where the process is an exponentiated Hurst-Kolmogorov process with Hurst parameter H = 0.9.
(left) The sample moments are estimated from a single simulation of that process with length 64 000,
where parts of this time series with sample size n from 10 to 64 000 are used for the estimation. Subsetting
of the time series to sample size n was done either from the beginning to the end (thicker lines) or from the

end to the beginning (finer lines). Continuous lines in the two cases represent the eighth moment estimates,

™, x? /n, and dashed lines represent maximum values, (max15 isn(xl-))s/n. (right) Sampling distribution
of the eighth moment estimator Y, x? /n estimated from 1000 simulated series of length 1000 each and
visualized by the 99% prediction limits (percentiles), the median and the average, plotted as ratios to the
true value. Theoretically, the ratio should be 1, but it is smaller by many orders of magnitude, and the

convergence to 1 is very slow. The ratio to (max15 isn(x,-))g/n, also plotted, is close to 1. (Source:
Koutsoyiannis, 2019a.)

4.5 Sample mean estimator and effective sample size

According to equation (4.12), the estimator of the true mean u = y; is:

=
Sk

n
X (4.12)
=1

l

Another common notation of the mean estimator is x. The estimator is unbiased (E [ﬁ] =

E[x]| = w). Its numerical value /i := (1/n) ¥, x;, else denoted as X, is called the observed
mean or the average. If x; is a (IID) sample of size n then the variance of the estimator is:

var [p] = %M = % (4.13)

regardless of the distribution function of x. However, if x; is a stochastic process (with
dependence) then combining (3.12) and (4.12) we conclude that:

f=x™ = X(nD) (4.14)

Z1 nD
where the superscript in parenthesis indicates that the discretization scale is nD (see

equation (3.14)). Consequently:

var [E] = var F;TII)D)] =y(nD) =y, (4.15)
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Both equations (4.13) and (4.15) suggest that the estimator is consistent (assuming
ergodicity). However, equations (4.13) and (4.15) may result in quite different values of
the variance. By means of these two equations we can define the notion of the
“equivalent” (or “effective”) sample size n’ in the classical statistics (IID) sense
(Koutsoyiannis and Montanari, 2007). This is the sample size of a hypothetical IID sample
of a variable x with variance y; whose variance of the mean equals y,,; symbolically:

Vi P 41
==V n =—

7 4.16
n " (4.16)

As an example, in an HK process, in which y,, = 12(a/nD)? %! (equation (3.82)), we will
have:

n' =n?72H (4.17)
In white noise (H = 0.5), clearly n’ = n. However, if H = 0.9 and n = 1000 thenn’' = 4 (a
big difference from 1000!). Thus, a time series of 1000 terms of that HK process is
equivalent to a (classical, [ID) sample of only 4 terms. This example shows the dramatic
increase of uncertainty in case of dependence.

4.6 Climacogram estimator and its bias

The typical variance estimator:

n
fr=pi=0 Y (x-p) (4.18)
=

is well known to be biased. It is also well known from elementary classical statistics books
that the replacement of n with n — 1 in the denominator of the right-hand side makes the
estimator unbiased. Thus, the classical variance estimator is:

Y (i) =1 (4.19)
1

Z1::n—1 n—1=

This is also known as sample variance or unbiased variance estimator. However, the latter
term is incorrect: In stochastic processes describing natural phenomena, this slight
change does not make the estimator unbiased. Here we use the term typical when we
divide the sum by n (equation (4.18)) and classical when we divide by n — 1 (equation
(4.19)). We will use the same terminology for covariances below and we will explain the
reasons that we prefer the typical over the classical.

In stochastic processes the bias can be determined analytically in terms of the
climacogram as follows (see also Koutsoyiannis 2003, 2011a, 2016):

IR
=%ELZ}&‘“)1-2% (1) Y )

(4.20)

+E[ ™ ]
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Since Z?=1(xr u) = n( (n) ,u) we find after the algebraic manipulations:

E [21] =YV1 W= (1 - _> V1= (1 - %) V1 (4.21)
and

L] A-w/r)__(A-1/n)
E[Zl]=m(yl—yn)= 1_1/n1 L

Likewise, for the climacogram at scale k = kD, if the observation period is L = nk, the
estimators become:

(4.22)

o=@ =y (2P -n) gm0 = ) (4.23)

—-1-

and their expectations are:

E[p(0)] = vt ~y@) = (1 - %) v, E|pGo) =

The above equations show that there is no gain in using the classical estimator (dividing
by n — 1) of variance ¥ (or ¥*(k)). The equations are simpler if we use the typical

1-y(L)/y(k)
1—k/L

y(k) (4.24)

estimator ¥, (or ¥(k)) (dividing by n). As we will see below, the typical estimator is also

preferable in fitting distributional parameters. Whatever estimator we use, there is
estimation bias which should be taken into account in model fitting.
4.7 Covariance and autocovariance estimators

The typical and classical estimators of covariance:

n

I Ry [ - ==ni1;(&—g)(&—g) (4:25)

=1

Lgﬁ)

respectively, are both biased if x; and y, are stochastic processes non identical to white

noise. For example, if they are HK processes with common Hurst parameter H, then the
expectation of ¢, is (Koutsoyiannis, 2003):

1 1
E[éey] = (1 - nzﬁ) Cay = (1 - ;) Cxy (4.26)

In the case of autocovariance estimation, it is common knowledge that there is
downward bias (Wallis and O’Connell, 1972; Salas, 1993, p. 19.10). The typical estimator
of the lag n autocovariance is:

S
3|'—‘

Z Koty — E) (4.27)
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and it has been a common practice to prefer it over the classical estimator (with division
by n —1 or n —n), particularly when we use autocovariance to estimate the power
spectrum. The expectation of ¢, is (see also Koutsoyiannis, 2003):

E[z,] =% Z((x D C )) ((&m ) — (=" - ))
==%E zz(zf—id(zﬂﬂ-u) (4.28)

1 2
- ; E &in) Z (xr .u) + (x1'+17 .u) +E [ (m ]

Since Yo (x; —u) = (n— 77)( (n=m) y), assuming that 7 is small in comparison with

n so that we can interchange n-7 and n, and also extend the corresponding sums, we
obtain after the algebraic manipulations:

A Yn Yn 1
flod~ == (1= (12 )= (1) (429)

For positive lag-n cross-correlation (0 <7, < 1), the relative bias (—1/m;n’) is higher
than that of the climacogram y, (i.e. —1/n’). An exact equation has been derived in

Dimitriadis and Koutsoyiannis (2015a; Table 2).
If we estimate the autocorrelation coefficient by:

N
T, = - 430
o=, (4.30)
then this will be biased again. An approximately unbiased estimator would be:
&y + V1 + 7 1 1
il = R (431)
VitV  Vitha n n

Itis stressed that the use of autocovariance and (even more so) of the autocorrelation
estimates should be avoided in the identification and fitting phases of a stochastic model.
Identification and fitting are better served by the climacogram (see Digression 4.C).

Digression 4.C: The climacogram and the climacogram-based metrics
compared to standard metrics

The most popular procedure in time series modelling, is to construct the empirical
autocorrelogram of the time series using equation (4.27) and assess which stochastic process
(e.g., of AR or ARMA type) is suitable and how many autocorrelation terms should be preserved.
It is rather easy to illustrate that this technique can completely distort the underlying process.
Figure 4.2(a) depicts the autocorrelogram of a time series with length 100, which does not seem
to have any relationship with the theoretical autocorrelation function of the model from which it
was constructed. Namely, the model is the FHK with parameters as in the caption of Figure 3.7.
Clearly, the empirical autocorrelation does not give any hint that the time series stems from a
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process with persistence. With that autocorrelogram one would conclude that an AR(1) model
with a lag-1 autocorrelation of about 0.4 would be appropriate.

The reasons for the failure of the autocorrelogram to capture the real behaviour of the
process are two. First is the bias, as analysed in section 4.7. Second, from equation (3.30) it is seen
that the autocorrelation is by nature the second derivative of the climacogram standardized by
variance. Estimation of the second derivative from data is too uncertain and makes a very rough
graph.

The alternative of using the periodogram (the estimate of the power spectrum, which is the
Fourier transform of the autocovariance; see section 4.10) is even worse as it entails an even
rougher shape and more uncertain estimation than in the autocovariance (see also section 4.10
and Dimitriadis and Koutsoyiannis, 2015a).

It is, thus, much preferable to directly use the climacogram instead of the autocorrelogram
for model identification. For our example time series, this is illustrated in Figure 4.2(b), which
indicates that the long-term persistence is well captured by the empirical climacogram, and the
parameter H is correctly estimated (H = 0.79, based on the method presented in Koutsoyiannis,
2003, and Tyralis and Koutsoyiannis, 2011). Additional advantages of the climacogram are (a) its
intactness on discretization, (b) its close relationship with entropy production and (c) its
expandability to high-order moments.
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Figure 4.2 (left) Autocorrelogram and (right) climacogram of a time series of 100 terms generated from
the FHK model with parameters as in the caption of Figure 3.7. (Source: Koutsoyiannis, 2016.)

4.8 Parameter estimation of distribution functions - The method of
moments

Assuming a stochastic variable x with known distribution function but with unknown
parameters 0 := [04,60,, ...,0,,]7, we can denote the probability density function of x as a
function f(x, @). Here, we will examine the problem of the estimation of these parameters

based on a sample vector x := [51,52, ...,gn]T. In this section, we present one of the two
most popular methods in statistics, namely the method of moments. The other popular
method, the maximum likelihood method, we present in section 4.9. Several other general
methods have been developed in statistics for parameter estimation, e.g. the maximum
entropy method (e.g. Singh and Rajagopal, 1986) and the L-moments method (Hosking et
al., 1985a,b; Hosking, 1990). Moreover, in practical applications, other types of methods
like graphical, tabulated, empirical and semi-empirical, have been devised. As will be seen
in later chapters, here we prefer a different approach based on K-moments, over all above
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methods, particularly when we do not have information about the true model for the
marginal distribution function.

The method of moments is based on equating the theoretical moments of x with the
corresponding sample estimates of noncentral moments. Thus, as m is the number of the
unknown parameters of the distribution, we can write m equations of the form

Ug = fig, q=1,..,m (4.32)

where the theoretical moments p, are functions of the unknown parameters given by:

(0]

Hg = f x? f(x,0)dx (4.33)
Thus, the solution of the resulting system of the m equations gives the unknown
parameters (64, 0,, ..., 0,,). In general, the system of equations may not be linear and may
not have an analytical solution. In the latter case the system of equations will be solved
numerically.

This method is easy to apply. However, for distributions involving more than two
parameters, the problem of knowability of moments intervenes and makes the method
unreliable. Furthermore, when dealing with extremes we must have in mind that they are
closely linked to high-order moments and thus, relying on the lowest-order moments is
not the best practice (see section 6.20).

Digression 4.D: Illustration of the method of moments

As an example of the implementation of the method of moments, we will determine the
parameters of the normal distribution. The probability density function:

1 (x — n)?
flx,u,0) = EEXP (_T>

has two parameters, ¢ and o. Thus, we need two equations. Based on Table 2.3, these equations
are:

p=p ot +p’ =+ % =0 =0
where we have used the identity u, = u, + u?. Consequently, the final estimates are

n

1
ST s R

n
i=1 =1

1
H=-
n

This estimation y is unbiased but that of ¢ (and o) is biased even in IID statistics (notice in
the latter equation that the result contains the typical, rather the classical estimate).

As we have seen in this example, the application of the method of moments is very simple
and this extends to many distribution functions.

4.9 Parameter estimation of distribution functions - The maximum
likelihood method

While the method of moments is an ad hoc method and has several weaknesses described
in section 4.8, the method of maximum likelihood has a strong logical background. We will
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initially present the method in a Bayesian framework and then we will see that it stands
also out of that framework.

The problem that we have to resolve is to find the parameter vector @ from the known
observations x = x. Since the observations x are known while the parameters 8 are
unknown, we can regard the latter as stochastic variables 8. This allows us to assign 8 a
probability density function fg(@) and also express conditional densities by the Bayes

theorem (equation (2.14)). This can be written in terms of densities as:

_ f£|g(x|0)
fox(0]x) = RGO fo(0) (4.34)

where we have replaced the events A and B with the vectors x and 8, respectively. The
terminology used in the Bayesian framework is:

e Prior (before observation) probability density for f5(8)

 Posterior (after observation) probability density for fg,(8]x)

e Likelihood for the conditional density fy ¢ (x|0); this is the hypothesized model (i.e.

distribution for x) given the parameters 6.
According to this terminology, we can write (4.34) in the following form:
Posterior « Likelihood x Prior (4.35)

Since we have to assign @ a single value 8, the most rational choice for that value is
the mode of its distribution conditional on x = x, i.e,, the value that maximizes the
posterior fp,(8]x). To find the mode we equate the derivative of the conditional density
to 0, i.e.:

. L /dfae(x]0) dfe(6)
=0 (e )+ i) i) =0

(4.36)

Since we know nothing about the prior fy(8), we can choose a so-called noninformative

prior, which does not change with 0, i.e. dfy(8)/d@ = 0. In this case from (4.36) we
obtain:

dfyo(x10)

e

which demands that also the likelihood be at maximum. In other words, we find 8,
demanding that the density fy9(x|@) have a value as high as possible at the point x = x.

(4.37)

If the vector x is part of a stochastic process, determination of fyo(x|6) can be

laborious. However, in IID statistics, x is a sample vector with independent items and thus
the joint probability density function is:

fuao@10) = | | fuoCl®) (4:38)

Thus, we seek a solution of:
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d[Ti=1 frje(x:160) “o

0 (4.39)
We can also convert the product to a sum by taking the logarithm of f4(x|0):
n
L(x]8) = In fy 1o (x]8) = Z In fy(x:10) (4.40)
i=1

The function L( ) is called the log-likelihood function. In this case, the condition of
maximum is:

dL(x|) = 1 dfye(xi]6)
== ; = - (4.41)

Both (4.39) and (4.41) are vector equations equivalent to m scalar equations. Solving
either of them we obtain the values of the m unknown parameters.

Digression 4.E: Illustration of the maximum likelihood method

We will determine the parameters of the normal distribution from a sample using the maximum
likelihood method. The probability density function of the normal distribution is:

1 ( @—mv
exp | ———
V21no . 202
The likelihood function is:

1 1 v
f(x|u,0) = WGXP <_ﬁ;(xi —H)2>

The log-likelihood function is:

f(x|u,0) =

n 1 - ;
L(x|u,0) = —Eln(ZH) —nlno — ﬁZ(xi )
i=1

Taking the derivatives with respect of the unknown parameters ¢ and o and equating them to 0
we find

n

L 1x oL n 1 ,
Sty e S

A o2
u o - do o -
and solving the system we obtain the final parameter estimates:
n n
_12 —p z_lz( )2 = )
#_n. Xi =W G_n, Xi —H)” = Uz
=1 =1

The results are precisely identical with those of Digression 4.D, despite the fact that the two
methods are fundamentally different. The application of the maximum likelihood method is more
complex than that of the method of moments. The coincidence of results found here is not the rule
for all distribution functions. On the contrary, in most cases the two methods yield different
results.



134 CHAPTER 4 - FUNDAMENTAL CONCEPTS OF STATISTICS AND THEIR ADAPTATION TO STOCHASTIC PROCESSES

4.10 The estimation of power spectrum and the periodogram

We assume that a stochastic process x(t) is observed on a time-average basis at
equidistant times tD,7 = 0, ...,n — 1, where D is a time step (a total observation time L =
nD). We have thus a time series with a finite number, n, of observations x; of the discrete-
time process x;. If we study the process on the frequency domain, we have the following
characteristic frequencies, dimensional (w) or dimensionless (w = wD):

Sampling frequency wp =1/D =n/L wp =wpD =1
Nyquist frequency wy =1/2D =n/2L wy =wyD =05
Frequency resolution w; =1/L=wp/n w,=wD=D/L=1/n

Half frequency resolution w, =1/2L =wp/2n w, = w,D =D/2L =1/2n

As we will see, the Nyquist frequency (wy = 0.5) is the maximum frequency on which we
can make estimates as beyond that the resulting spectrum estimates are repeated in a
cyclic manner.

We are interested in estimators of the power spectrum of the discrete-time process
x;. A first estimator can be established by utilizing the relationship between the power
spectrum and the autocovariance function (equation (3.36)). From n observations we can
estimate from equation (4.27) up to n autocovariance terms, ¢y, ¢y, ..., £,—1 (noting that
most of them will not be reliably estimated). Then, by truncating equation (3.36) to a finite
number of terms we can formulate an estimator of the spectrum in the form:
-1
S4(w) =260 +4 ) &,cos(2mnw) + 2¢, cos(2mnw) (4.42)
1

3

=
1l

where we have put a last term for ¢, with a weight 2 (instead of 4), which, as we will see
facilitates and accelerates calculations. If we have n data values x;, then ¢, = 0, but the
calculation should stand in cases where we use a fewer number of autocorrelations or in
cases where we process true values rather than estimates (in the latter case, ¢, # 0).
While from first glance we can use this equation to estimate $4(w) for any w, the resulting
values are not always consistent and therefore it is advisable to make estimates for a finite
number of discrete frequencies w; = jw,, where wj is either w; or w, with j taking integer
values as we will specify below.

The inversion of the formula to find the autocovariance estimates from the power
spectrum estimates is possible through the equation:

Ey = wo 5@+ (—21)"§d(0.5) + Z ﬁd(wj) cos(Znnw]-) (4.43)

0<(JJ]'<0.5

The estimation of §4(w) is streamlined and accelerated if we use the discrete Fourier
transform (DFT) and particularly its variant named fast Fourier transform (FFT), for which
the required software exists on all computational environments. For a sequence of
numbers x;,7 =0, ..., N — 1, the DFT is defined as a sequence u;,j=0,..,N—1, where:
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N—
Z e"Zm/N  j=0  N—1 (4.44)

er—‘

The sequence x; is recovered from the sequence u; by the inverse DFT, which is:
N-1
X; = Z we?WT/N 1 =0,..,N-1 (4.45)
j=0

The FFT is the DFT made by a fast computational algorithm; the fastest case is when n is
a power of 2.
To utilize DFT and FFT in determining §4(w) we write equation (4.42) as:

n _
Sq(w) = Z 2¢, cos(2mw) + Z 2¢, cos(2mnw) (4.46)
n=0 n=1

Setting j = 7 for the first sum and j = 2n — 7 for the second sum we have:

2n—1

Sq(w) = ZZC] cos(2mjw) + Z 26opm-j cos(2m(2n — jw) (4.47)

j=n+1

If w is an integer multiple of w, = 1/N where N := 2n, then 2nw will be an integer and
thus cos(2m(2n — j)w) = cos(2mjw). By setting:

. 2¢j, 0<j<n (4.48)
= 26m-j, n<j<N-1 '
we can simplify (4.47) to:
N-1
Sq(w) = Z u;j cos(2mjw) (4.49)
j=0

Considering that the imaginary part of u; is zero, setting w, = 7/N, and comparing
equations (4.45) and (4.49), we conclude that $4(w,) is the inverse DFT of u;. If we have
taken care to choose n a power of 2, N will also be a power of 2 and thus we can use the
inverse FFT to calculate estimates $4(w,) from estimates ¢, for frequencies w ranging

from O to 0.5 with a resolution w, = 1/N = 1/2n. The inverse of (4.49) is:

1
uj = 2¢; = NZ $a(wy) cos@mjw,), 0<j<n (450)

There is an alternative way to produce another estimator of the power spectrum
using the DFT on the discrete-time process per se, rather than on its autocovariance.
Specifically, the DFT of x; is:
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n-—1

uj = x,e"12mei/m j=0,.,n—1 (4.51)

Sl

=0
Assuming that x;,7=0,..,n—1, are real-valued stochastic variables, their
transformation u,j=0,..,n—-1, will be complex valued stochastic variables, i.e. u; =
g? +i g}-, where g? and g}- are real-valued. The inverse DFT of u; recovers the real-valued
x;. The sequence of the absolute values of u; multiplied by 2n:

S; = 2nfw|" = 2n (@) + ()°) (4.52)

is real valued and, as a function of w; = j/n, is known as the periodogram of x;. It is
another estimator of sq(w) with a resolution w; = 1/n (while in the estimator (4.49) this

is w, = 1/2n). The two alternatives of estimating the power spectrum are schematically
presented in Figure 4.3.

Stochastic process G e Time series
(Model) eneration (Realization of the process)

Standard
estimator

Theoretical autocovariance Empirical autocovariance or
or autocorrelation function autocorrelation function

Finite FT

Inverse

Theoretical power spectrum Periodogram

Figure 4.3 Schematic of the different paths to estimate the power spectrum.

For real-valued x; the stochastic variables u; and S; have the following properties of
symmetry:

— R _ n I _
U =Uy =i U =0

R R I I (4.53)
Un-j = Yj, Up-j = ~Uj Sn—j =S, 1<j<n-1

In other words, the real component ofgj and §; are symmetric with respect to n/2, while
the imaginary component is antisymmetric. Consequently, if n is even, then ul 2 =0.
Because of the symmetries, starting with n real numbers x; we end up with n/2 pairs of
real numbers g? and g}, and n/2 real numbers §;. The values of §; for frequencies w =

j/n < 0.5 provide all extractable information while larger frequencies do not add
anything of value.
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Other interesting properties of the periodogram and the related quantities are:
n-1 n-1 n—-1 n—-1

1 2 ~ 1 AZ 2 1 S/
2=l = (w-a) =Dl =2 Y 5-22 @se

=0 j=0 T=0 j=1 1<j<n/2
where if n is odd, the last term Sy, ; is set to zero. The latter equation allows decomposing

. . ~ s . 2 . .
the variance estimate ¥; into partial components |uj| , each corresponding to a particular
frequency, which ranges from w; = w;D = 1/n to wy = wyD = 0.5. The frequency 0
corresponds to the estimate of the mean and is not related to the variance. Any

prominence (peak) in one or more |g]- |2 over the other is very often regarded as evidence
of a periodic behaviour of the process with a frequency j/n (period n/j).

However, claims of periodicities without a deterministic explanation are usually
meaningless. As evident from the notation in the entire section, all related concepts,
including the periodogram, are estimators, i.e. stochastic variables, which produce
estimates. Considered as a sequence of stochastic variables, the periodogram §; is a
nonstationary stochastic process indexed by j = 1, ..., [n/2]. The same happens with the
estimator ﬁd(wj), which is a nonstationary stochastic process indexed by j = 1, ...,n, as
well as with the covariance estimator ¢,. The produced shapes in graphs of estimates
indicate high variability and roughness, and thus possible peaks are most probably
random effects. Note that by increasing the number of observations, the variability and

roughness do not necessarily decrease (cf. (4.52), where |gj |2 is multiplied by 2n).

An illustration is given in Figure 4.4 for a time series generated from the discrete-time
HK process, where several peaks appear, all of which are random effects. A simple
technique to see that these are random effects is to split the time series into two halves,
three thirds, etc. and inspect whether the peaks appear systematically in all cases
(Koutsoyiannis and Georgakakos, 2006). Splitting the time series and taking the average
of the different parts for the same frequency is a method of smoothing the periodogram
(for details and other smoothing methods see Papoulis, 1991). The least square trend
(power law) of the spectrum estimates from autocovariance is also shown in the log-log
spectrum plot of Figure 4.4 (bottom-right). The slope is —1.24, an inconsistent value as
theoretically the slope cannot be steeper than —1 (the slope of the theoretical curve, also
shown in the figure, is 1 — 2H = —0.6 > —1). This inconsistency is not expected to be
resolved by the aforementioned smoothing of the power spectrum. For these reasons, the
use of the climacospectrum, instead of the power spectrum, is recommended for
estimation of slopes (Koutsoyiannis, 2017).

4.11 Interval estimation and confidence intervals

An interval estimate of a parameter A of a distribution function is an interval of the form
(64, 6,), where 8, and 6, are functions of the observed sample vector x, i.e., 8; = g,(x)
and 6, = g,(x). If we replace the observed sample with the sample (or the part of a
stochastic process), then the interval’s limits become stochastic variables, 8; = g,(x) and
6, = g,(x). The interval (6, 6,) is an interval estimator of the parameter A.
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Figure 4.4 (upper) A plot of a time series with n = 512 terms generated from the Gaussian HK
model with H = 0.8, = 100, y; = 400. (middle) The autocovariance and power spectrum of the
generating stochastic process and their estimates. (lower) Same as middle but with logarithmic
axes. The least square trend (power law) of the estimates from autocovariance, with slope =
—1.24 is also plotted in the spectrum panel.

We say that the interval (84, 8,) is a C-confidence interval of the parameter A if:
P{6, <1<8,} =C (4.55)

where C is a given constant (0 < C < 1) called the confidence coefficient, and the limits
01,6, are called C-confidence limits. Usually, we choose values of C near 1 (e.g. 0.9, 0.95,
0.99, so that the probability in (4.55) become near certainty). In practice the term
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confidence limits is often (loosely) used to describe the numerical values of the statistics
6;, 0,, whereas the same happens for the term confidence interval.

In order to provide a method for the calculation of a confidence interval, we will
assume that the statistic8 = g(x) is a point estimator of the parameter A with distribution
function Fy(6). Based on this distribution function it is possible to calculate two positive
numbers ¢1 and &2, so that the estimation error 8 — A4 lie in the interval (-1, §2) with
probability C, i.e.:

PA-§&<8<21+&)=cC (4.56)

and at the same time the interval (-£1, £&2) be as small as possible. If the distribution of 8 is
symmetric then the interval (-¢&1, &) has minimum length for &1 = &. For asymmetric
distributions, it is difficult to calculate the minimum interval, thus we simplify the
problem by splitting (4.56) into two equations, namely, P{§ <A1 —¢&}=P{6 > 1+
&} = (1 - C)/ 2.Equation (4.56) can be written as:

Plo-&<A<0+&)=cC (4.57)

Consequently, the confidence limits we are seekingare 8; = 8 — ¢, and 6, = 6 — ¢;.

Although equations (4.56) and (4.57) are equivalent, their statistical interpretations
differ. The former is a prediction, i.e., it gives the prediction interval* of the stochastic
variable 6. The latter is an interval parameter estimator, i.e., it gives the confidence limits
of the unknown parameter A, which is not a stochastic variable.

Classical statistical texts provide expressions for interval estimators of some common
parameters, such as the mean and variance of the normal distribution of IID samples.
However, in most real-world cases we deal with problems much more demanding than
such idealized cases. The distributions may be non-normal, the parameter of interest may
not be the mean or the variance, and instead of a sample we may have a stochastic process.
Then analytical calculation of confidence limits becomes impossible. Naturally, the
method of choice for such (that is, most) cases is the Monte Carlo simulation. General
methodologies for tackling the problem have been proposed by Tyralis et al. (2013) and
Tyralis and Koutsoyiannis (2014).

4.12 Order statistics

Let x be a stochastic variable and x;, x5, ..., x, be IID copies of it, forming a sample. We can
arrange them in increasing order of magnitude such that x;.,,) be the ith smallest of the n,
Le.

X@1:n) =< X(2:n) <= X(n:mn) (4'58)
The stochastic variable x;.,) is termed the ith order statistic. It may seem puzzling that

stochastic variables can be ordered, as they are not numbers (but see also Digression 2.B).

* The terms confidence limits, confidence interval, confidence coefficient etc. are also used for this
prediction form of the equation.
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To clarify this, we observe that given the numbers x;, x,, ..., x,, we can define the ith
smallest of them as a deterministic function, g(xy, x5, ..., X,):

X(im) = g (X1, X2, ..., Xp) = min (x]| Z;}:ll{xkzxj} > i) (4.59)

1<jsn
where I, is the indicator function (with value equal to 1 when condition A is satisfied or 0
otherwise). Now if we substitute the stochastic variables x4, x5, ..., x;, for the numbers
X1, X3, i) X, WE g€t Xy = g(%1, %y, ..., Xn), Which, as we have seen, is a stochastic
variable. Additional (and more rigorous) insights on stochastic ordering and its

application to order statistics are provided by Shaked and Shanthikumar (2007).
The minimum and maximum order statistics are, respectively,

X(amy = Min(Xy, Xp, o, Xn) Xy = Xny = Max(xy, X5, ..., Xp) (4.60)

and represent special cases of the order statistics, the lowest and the highest.
For a continuous variable x, if f(x) and F(x) are respectively its density and its
distribution function, then the density function of y := x;., is (Papoulis 1990):

f0) = fumO =@-i+D (") (FO) T (1-F»)" ) (4.61)

Now if we define the stochastic variable u := F (y) = F(X(i:n)), then according to (2.11):

f(F W) no () L
= —= — 1 1 . -1 1— n-t — 4.62
R0 ="y = oD ( Dy A = g ()
This is the density of the Beta distribution function and hence:
Brpn(i,n—i+1)
Fim () = Pl < %} = Pu < F(x)} = =2 (4.63)

B(i,n—i+1)
For the special cases of the minimum and maximum we have, respectively,

Br(1,1n)
B(1,n)

BF(X) (n; 1

Fimy(x) = =1-(1=F(x))", Fpeny(x) = B(n1) ) _ (F(x)" (469

As we will see in Chapter 5 and Chapter 6, the order statistics are quite important for
studying extremes.

4.13 Samples vs. time series and forecast-oriented estimation

As we have seen, in classical statistics, samples are by definition sets of IID stochastic
variables. Classical statistical estimations make use of the entire vector of available
observations. But what if instead of a sample we have a stochastic process with time
dependence and instead of an observed sample we have a time series? Apparently, things
can be quite different and generally we should avoid uncritical use of classical statistics.
To illustrate the difference, we consider the following problem: How many past terms will
we use to estimate an average that is representative of the future mean for a period of
length k? This is not necessarily the “global” average estimated by the entire time series
of observations.
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The statistic sought is the “local” mean of the future period of length k conditional on
the present and past, i.e.:

1
poe = E [E (El 4o g &c)lﬁo'ﬁ—l' ] (4.65)

Let us assume that we have a large number n of observations of the present and past but
we choose to use v < n of them for the estimation:

1
fy == (0 +xa+ o Xy) (4.66)

To answer the question, it suffices to find that v which minimizes the mean square error

2
A(k,v) ==E [(EV - EK) ] This error can be written as:

2
A(k,v) = E [(%(zl + ot x) _%(Ko +xg 4+ x-m)) ]

(4.67)
X X, X X 2
:E[(_—_l ..... —_V+—V+1+...+—V+K) ]
v v K K
As demonstrated in Appendix 4-1, this is expressed in terms of the climacogram as:
1 1
A, v) = (E + ;) (ky() +vy(v) — v+ k) y(v+k)) (4.68)

Now we will discuss a few examples. First is the Hurst-Kolmogorov process, for which
y(x) = 22(x/a)?'72. As explained in Appendix 4-I, the value of v that minimizes 4 is:

K
V= (max(0, 2.5H — 1.5))25

(4.69)

If H < 0.6, this yields v = oo, which means that the future mean estimate is the average of
the entire set of n observations, the global mean. However, if H > 0.6, thenitcanbev <n
and, hence, we should use a local mean with fewer terms than n to estimate the future
mean. As H = 1, v — 1, too. A graphical illustration of equation (4.69) is given in Figure
4.5 (left).

We recall, though, that the Hurst-Kolmogorov process entails infinite instantaneous
variance and thus it is not an ideal model for real-world processes. The second example
is a filtered Hurst-Kolmogorov process in its simplest Cauchy form (FHK-C) with M =1/2,
i.e, () = 22(1 + k/a)?~2. This has finite instantaneous variance, equal to A2. Studying
this process and in particular considering the specific values A(k, 1), A(k, 2), as given by
(4.68), and A(k, ©) = y(k), we will see that there are cases where:

A(x,1) < min(A(x, 2), A(k, ©)) (4.70)

In such cases the resulting optimal v equals one, which means that only the present value
should count for the future mean. A systematic numerical investigation on equation (4.70)
suggested that v = 1 is optimal when:

Kk <k, ~23(@+1)H*-1 (4.71)
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Combining the above results, we find that an approximate general solution for the above
FHK-C model is:

K — Kq k—23(a+1)H? -1
vzmax( >=max 1

" max(0,25H — 15))7° " (max(0,2.5H — 1.5))2-5> (4.72)

Characteristic results are given graphically in Figure 4.5 (right). It can be seen that the
result v = 1 is not uncommon as it appears for many parameter combinations. More
generally, finite values of v of the order of k or somewhat larger are common for k < 10
(for example for H = 0.75 and a = 10, the optimal vis 1 for k = 10 and increases to v = 20
for k=15). The case H = 0.5 is virtually equivalent to a Markov process. As shown in Figure
4.5 (right) for this case (particularly for a = 10), the plot is a vertical line at k = k1 and this
means the optimal value is either v =1 (for k < k1) or v = n (for k > k1). In order for this to
happen, k1 must be = 1, which happens when a = 2.5 (otherwise, v = n for any «).

Note that here we considered the question: Which of the local past averages is most
representative as an estimate of the future average? We did not consider weighted
averages of past values, even though this could reduce estimation variance. Therefore, the
case where the resulting optimal value is v=1 does not suggest that the process is a
martingale®. This analysis aims to show the differences of global and local time averages
and the fact that the latter may provide better prediction for the future