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Theoretical framework and four applications 
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A reason for pursuing the truth…  

 

καὶ γνώσεσθε τὴν ἀλήθειαν, καὶ ἡ ἀλήθεια ἐλευθερώσει ὑμᾶς (κατὰ Ἰωάννην 8:32) 

et cognoscetis veritatem, et veritas liberabit vos (Ioannes 8:32) 

e conoscerete la verità, e la verità vi farà liberi (Giovanni 8:32) 

Then you will know the truth, and the truth will set you free (John 8:32) 
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Theoretical framework:  
From classical moments to K-moments 

To be followed by four applications 

1. Monitoring and characterization of the hydroclimatic evolution 
2. Fitting of probabilistic models 
3. Full stochastic modelling of rainfall (construction of an ombrian model) 
4. Stochastic (Monte Carlo) simulation 

The applications are based on data from Bologna and Athens 
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In the beginning was the … sum 
What is the result of raising to a power and adding, i.e. ∑ 𝑥𝑖

𝑝𝑛
𝑖=1 ? 

Linear, p = 1 Pythagorean, p = 2 Fermatian of high order, e.g., p = 8 

3 + 4 = 7 32 + 42 = 52 38 + 48 = ?8 

   

3 + 4 +12 = 19 32 + 42 + 122 = 132 38 + 48 + 128 = ?8 
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 The easy solution of the enigma 
 What is the result of raising to a power and adding, i.e. ∑ 𝑥𝑖

𝑝𝑛
𝑖=1 ? 

Linear, p = 1 Pythagorean, p = 2 Fermatian of high order, p = 8 

3 + 4 = 7 32 + 42 = 52 38 + 48 ≈ 48 

3 + 4 +12 = 19 32 + 42 + 122 = 132 38 + 48 + 128 ≈ 128 

 Symbolically, for large (or even modest) p the result is*: 

∑ 𝑥𝑖
𝑝𝑛

𝑖=1 ≈ (max1≤ 𝑖≤𝑛(𝑥𝑖))
𝑝  

 We recall that this sum, if divided by n,† is the estimate of the (noncentral 
probabilistic) moment, 𝜇𝑝

′ . Hence: 

𝜇̂𝑝
′ =

1

𝑛
∑ 𝑥𝑖

𝑝𝑛
𝑖=1 ≈

1

𝑛
(max1≤ 𝑖≤𝑛(𝑥𝑖))

𝑝  

 Thus, for an unbounded variable and for large p, we conclude that 𝜇̂𝑝
′  is more an 

estimator of an extreme quantity, than an estimator of the moment 𝝁𝒑
′ . 

 Thus, unless p is very small, 𝝁𝒑
′  is unknowable (Koutsoyiannis, 2019a): we cannot infer 

its value from data. This is the case even if n is extraordinarily large! 
 Also, the various 𝜇̂𝑝

′  for different orders p are in fact deformed copies of the same 

thing: they only differ on the power to which the maximum value is raised. 

                                           
* This is precise if xi are positive. 
† Note that for large p the term (1/n) could be omitted with a negligible error. 
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Moments and statistical inference  
 We recall that for a stochastic variable* 𝑥 the noncentral (or raw) and central moments 

of order p are defined as the expectations:  

𝜇𝑝
′ ≔ E[𝑥𝑝] = ∫ 𝑥𝑝𝑓(𝑥)d𝑥

∞

−∞
,     𝜇𝑝 ≔ E[(𝑥 − 𝜇)

𝑝
] = ∫ (𝑥 − 𝜇)

𝑝
𝑓(𝑥)d𝑥

∞

−∞
  

respectively, where 𝑓(𝑥) is the probability density function and 𝜇 ≔ 𝜇1
′ = E[𝑥] is the mean.  

 Indeed their standard estimators from a sample 𝑥𝑖, i = 1, …, n, are: 

𝜇̂𝑝
′ =

1

𝑛
∑ 𝑥𝑖

𝑝𝑛
𝑖=1 ,        𝜇̂𝑝 =

𝑏(𝑛,𝑝)

𝑛
∑ (𝑥𝑖 − 𝜇̂)

𝑝𝑛
𝑖=1   

where b(n, p) is a bias correction factor (e.g. for the variance μ2 ≕ σ2, b(n, 2) = n/(n – 1)).  
 Statistical inference, which is the formal probabilistic induction (the modern version of 

the Aristotelian epagoge / επαγωγή) is based on expectations, and in particular, 
moments, which are estimated from samples by virtue of stationarity and ergodicity. 

 In theory the ergodic theorem enables estimation of moments from data as n → ∞, 
irrespective of the order p. But as we have seen for finite n and even modest p they are 
unknowable. 

 In typical hydrological records it is practically impossible to use the estimators for p > 2: 

cf. Lombardo et al. (2014), “Just two moments”.  

 But high-order moments are important to characterize a process—particularly its 
behaviour in extremes. 

                                           
* Stochastic variables, also known as random variables are denoted here by underlined symbols. 
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A first parenthesis: Stationarity and ergodicity are rigorous 
scientific concepts—not political ideas  

Stationarity and ergodicity constitute the 
scientific foundation in making inference 
from data; they enable translation of 
empirical knowledge into the mathematical 
language of probability and stochastics.  

They are tightly connected to each other.  

Without stationarity there cannot be 
ergodicity. 

Without ergodicity inference from data 
would not be possible. 

Ironically, several studies use time series to 
estimate statistical properties, as if the 
process was ergodic, while at the same time 
what they (cursorily) estimate may falsify 
the ergodicity hypothesis. 

Important mathematical concepts need to 
be understood (even if that is not so 
easy…). Not to be killed (which actually is 
impossible as they are immortal!) 
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Our humble contribution: Seeking theoretical consistency in 
analysis of geophysical data (Using stochastics) 

Book in preparation (if the frame of this project): 

D. Koutsoyiannis, 2020. Stochastics of Hydroclimatic Extremes – A Cool Look at Risk. 

Note: Much of the content of this presentation will be included in the book. 
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The founders of the concepts of stationarity and ergodicity 

    

Ludwig Boltzmann 

(1844 –1906, Universities of 
Graz and Vienna, Austria, and 
Munich, Germany) 

George D. Birkhoff  

(1884 – 1944; 
Princeton, Harvard, 
USA)  

Aleksandr Khinchin 

(1894 – 1959; Moscow 
State University, 
Russia/Soviet Union) 

Andrey N. Kolmogorov  

(1903 – 1987; Moscow State 
University, Russia/Soviet Union) 

1877 Explanation of the 
concept of entropy in 
probability theoretic context.  

1884/85 Introduction of the 
term “ergode” and the notion 
of ergodic* systems which 
however he called “isodic”  

* The term is etymologized from 
Greek words but which ones 
exactly is uncertain (options: (a) 
έργον + οδός; (b) έργον + είδος; 
(c) εργώδης; see Mathieu, 1988). 

1931 Discovery of 
the ergodic 
(Birkhoff–
Khinchin) theorem 

1933 Purely measure-
theoretic proof of the 
ergodic (Birkhoff–
Khinchin) theorem 

1934 Definition of 
stationary stochastic 
processes and 
probabilistic setting of 
the Wiener-Khinchin 
theorem relating 
autocovariance and 
power spectrum  

1931 Introduction of the terms 
process to describe change of a 
certain system and stationary to 
describe a probability density 
function that is unchanged in time 

1933 Definition of the concepts of 
probability & random variable 

1937-1938 Probabilistic 
exposition of the ergodic 
(Birkhoff–Khinchin) theorem 
and stationarity  

1947 Definition of wide sense 
stationarity 
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Illustration of slow convergence of moment estimators 

  

Convergence of the sample estimate of the eighth 
non-central moment to its true value (thick 
horizontal line) corresponding to a lognormal 
distribution LN(0,1) where the process is an 
exponentiated Hurst-Kolmogorov process with 
Hurst parameter H = 0.9. The sample moments 
(∑ 𝑥𝑖

𝑝𝑛
𝑖=1 /𝑛 with p = 8; continuous lines), are 

estimated from a single simulation of length 
64 000, subset to sample size n from 10 to 64 000, 
with the subsetting being done either from the 
beginning to the end or from the end to the 
beginning. Dashed lines represent maximum 
values (max1≤ 𝑖≤𝑛(𝑥𝑖))

𝑝/𝑛. 

As in the example on the left but for 200 
simulated series of length 1000 each. The 
sampling distribution of the eighth moment 
estimator ∑ 𝑥𝑖

8𝑛
𝑖=1 /𝑛 is visualized by the 

percentiles, the median and the average, 
plotted as ratios to the true value. 
Theoretically, the ratio should be 1, but it is 
smaller by many orders of magnitude, and the 
convergence to 1 is very slow. (The 
convergence of the average could also be 
achieved if we used millions of simulated 
series instead of 200). In contrast, the ratio to 
(max1≤ 𝑖≤𝑛(𝑥𝑖))

8/𝑛 is ≈1.  
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From classical (but unknowable) moments to knowable 
moments 
To derive knowable moments for high orders p, in the expectation defining the pth moment:  

𝜇𝑝
′ ≔ E[𝑥𝑝] 

we raise 𝑥 to a smaller power 𝑞 < 𝑝 (e.g. 𝑞 = 1, 𝑞 = 2) and for the remaining (𝑝 − 𝑞) terms in the 

multiplication 𝑥𝑝 = 𝑥…𝑥⏟  
𝑝

 we replace 𝑥 with the distribution function 𝐹(𝑥):  

𝑥𝑝 → (𝐹(𝑥))
𝑝−𝑞

 𝑥𝑞 

We multiply the latter quantity by (𝑝 − 𝑞 + 1) and take its expected value. This leads to the following 
definition of noncentral knowable moment: 

𝐾𝑝𝑞
′ ≔ (𝑝 − 𝑞 + 1)E [(𝐹(𝑥))

𝑝−𝑞
𝑥𝑞] , 𝑝 ≥ 𝑞 

Likewise, we can define central and hypercentral knowable moments by the following 
substitutions: 

(𝑥 − 𝜇)
𝑝
→ (𝐹(𝑥))

𝑝−𝑞

(𝑥 − 𝜇)
𝑞

 or  (𝑥 − 𝜇)
𝑝
→ (2𝐹(𝑥) − 1)

𝑝−𝑞
(𝑥 − 𝜇)

𝑞
 

Knowable moments or K-moments, introduced by Koutsoyiannis (2019a, 2020), contain as special 
cases (or are one-to-one connected to) classical moments, Probability Weighted Moments and L-
moments, and are tightly connected to expectations of order statistics.  
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Formal definition of K-moments 

Noncentral knowable moment of order (p, 1) [analogous to Probability Weighted Moments] 

𝐾𝑝
′ ≔ 𝑝E [(𝐹(𝑥))

𝑝−1
𝑥] , 𝑝 ≥ 1 

Noncentral knowable moment (or noncentral K-moment) of order (p, q) [recovering classical 
noncentral moments for p = q]:  

𝐾𝑝𝑞
′ ≔ (𝑝 − 𝑞 + 1)E [(𝐹(𝑥))

𝑝−𝑞
𝑥𝑞] , 𝑝 ≥ 𝑞 

Central knowable moment of order (p, q) [recovering classical central moments for p = q] 

𝐾𝑝𝑞 ≔ (𝑝 − 𝑞 + 1)E [(𝐹(𝑥))
𝑝−𝑞
(𝑥 − 𝜇)

𝑞
] , 𝑝 ≥ 𝑞 

where μ is the mean of 𝑥, i.e., 𝜇 ≔ E[𝑥(𝑝)] ≡ 𝐾1
′.  

Hypercentral knowable moment (or central K-moment) of order (p, q) [analogous to L-moments] 

𝐾𝑝𝑞
+ ≔ (𝑝 − 𝑞 + 1)E[(2𝐹(𝑥) − 1)

𝑝−𝑞
(𝑥 − 𝜇)

𝑞
], 𝑝 ≥ 𝑞 
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K-moments and order statistics 
A sample of a stochastic variable 𝑥 is by definition a set {𝑥1, 𝑥2, … , 𝑥𝑛} of independent copies of 𝑥. We 

may arrange the sample in increasing order of magnitude such that 𝑥(𝑖:𝑛) be the ith smallest of the n, 

i.e.: 

𝑥(1:𝑛) ≤ 𝑥(2:𝑛) ≤ ⋯ ≤ 𝑥(𝑛:𝑛) 

The stochastic variable 𝑥(𝑖:𝑛) is termed the ith order statistic. The minimum and maximum are, 

respectively, 

𝑥(1:𝑛) = min(𝑥1, 𝑥2, … , 𝑥𝑛) , 𝑥(𝑛) ≔ 𝑥(𝑛:𝑛) = max(𝑥1, 𝑥2, … , 𝑥𝑛)  

and represent special cases of the order statistics, the lowest and the highest.  

The distribution of the order statistic 𝑥(𝑖:𝑛) is given in terms of the Beta distribution function as: 

𝐹(𝑖:𝑛)(𝑥) = 𝑃{𝑥(𝑖:𝑛) ≤ 𝑥} = 𝑃{𝑢 ≤ 𝐹(𝑥)} =
B𝐹(𝑥)(𝑖, 𝑛 − 𝑖 + 1)

B(𝑖, 𝑛 − 𝑖 + 1)
 

For the special cases of the minimum and maximum we have, respectively, 

𝐹(1:𝑛)(𝑥) =
B𝐹(𝑥)(1, 𝑛)

B(1, 𝑛)
= 1 − (1 − 𝐹(𝑥))

𝑛
, 𝐹(𝑛:𝑛)(𝑥) =

B𝐹(𝑥)(𝑛, 1)

B(𝑛, 1)
= (𝐹(𝑥))

𝑛
 

It is shown that the expectation of the order statistic 𝑥(𝑖:𝑛) is related to the noncentral K-moments by: 

E[𝑥(𝑖:𝑛)
𝑞
]

𝑖
= (
𝑛
𝑖
) ∑(

𝑛 − 𝑖
𝑗
) (−1)𝑗

𝑛−𝑖

𝑗=0

𝐾𝑖+𝑗−1+𝑞,𝑞
′

𝑖 + 𝑗
, (

𝑛
𝑝 − 𝑞 + 1)𝐾𝑝𝑞

′ = ∑ (
𝑖 − 1
𝑝 − 𝑞

)E[𝑥(𝑖:𝑛)
𝑞
]

𝑛

𝑖=𝑝−𝑞+1
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K-moments and expectation of extremes 
Based on the definition of K-moments it is readily seen that  

𝐾𝑝
′ = E[𝑥(𝑝)] = E[max(𝑥1, 𝑥2, … , 𝑥𝑝)] 

More generally, K-moments of all categories represent expected values of extremes. Thus, for odd q 
or for nonnegative 𝑥 (so that 𝑥1

𝑞
 be monotonic function of 𝑥): 

𝐾𝑝𝑞
′ = E[max(𝑥1

𝑞
, 𝑥2
𝑞
 , … , 𝑥𝑝−𝑞+1

𝑞
 )] = E [𝑥(𝑝−𝑞+1)

𝑞
] 

Furthermore, for odd q we have, 

𝐾𝑝𝑞 = E [max((𝑥1 − 𝜇)
𝑞
, (𝑥2 − 𝜇)

𝑞
 , … , (𝑥𝑝−𝑞+1 − 𝜇)

𝑞
 )] 

which means that the central K-moment 𝐾𝑝𝑞  of 𝑥 is identical to the expected maximum of order 

𝑝 − 𝑞 + 1 of 𝑧 = (𝑥 − 𝜇)
𝑞

.  

The above properties also hold asymptotically, for large p, also for even q in any case of positively 
skewed distribution.  

For a symmetric distribution, an analogous property holds for the hypercentral moments with even 
q: 

𝐾𝑝𝑞
+ = E [max((𝑥1 − 𝜇)

𝑞
, (𝑥2 − 𝜇)

𝑞
 , … , (𝑥𝑝−𝑞+1 − 𝜇)

𝑞
 )] 

which means that the hypercentral K-moment 𝐾𝑝𝑞
+  of a stochastic variable 𝑥 with symmetrical 

distribution for q even is identical to the expected maximum of order 𝑝 − 𝑞 + 1 of 𝑧. In contrast, for q 
odd, the hypercentral K-moment 𝐾𝑝𝑞

+  will obviously be zero. 
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Are those high-order K-moments knowable? 
Yes, because we can construct estimators with good properties such as unbiasedness, small variance 
and fast convergence to the true value. 

The unbiased estimator of the noncentral moment 𝐾𝑝1
′  and its extension for q > 1 are (Koutsoyiannis, 

2020): 

𝐾̂𝑝
′ =∑𝑏𝑖𝑛𝑝 𝑥(𝑖:𝑛)

𝑛

𝑖=1

, 𝐾̂𝑝𝑞
′ =∑𝑏𝑖,𝑛,𝑝−𝑞+1 𝑥(𝑖:𝑛)

𝑞

𝑛

𝑖=1

 

where for any positive number p (usually, but not necessarily, integer):  

𝑏𝑖𝑛𝑝 = {

0, 𝑖 < 𝑝

𝑝

𝑛
 
Γ(𝑛 − 𝑝 + 1)

Γ(𝑛)
 

Γ(𝑖)

Γ(𝑖 − 𝑝 + 1)
, 𝑖 ≥ 𝑝 ≥ 0

 

It can be verified that  
∑ 𝑏𝑖𝑛𝑝
𝑛
𝑖=1 = 1  

which is a necessary condition for unbiasedness. Furthermore, for p = 1, 𝑏𝑖𝑛1 = 1/𝑛 and thus we 

recover the estimator of the mean. For p = 2, the quantity (𝑛/2)𝑏𝑖𝑛2 is the estimator 𝐹̂(𝑥(𝑖)), i.e., 

𝐹̂(𝑥(𝑖)) =
𝑖 − 1

𝑛 − 1
 

Because 𝑏𝑖𝑛𝑝 = 0 for i < p, as the moment order increases, progressively, fewer data values 

determine the moment estimate, until it remains only one, the maximum, when p = n, with 𝑏𝑛𝑛𝑛 = 1. 
Furthermore, if p > n then 𝑏𝑖𝑛𝑝 = 0 for all i, 1 ≤ i ≤ n, and therefore estimation becomes impossible.  
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Justification of the notion of unknowable vs. knowable 

  

 
Note: Sample sizes are ten times higher than the maximum p shown in graphs, i.e., 1000. 
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These are supposed to 
describe the same thing. 
Do they? 

even 
 

odd 
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What happens if instead of a sample we have a stochastic 
process? Are the estimators still unbiased? 

A first important distinction: 

Real world Theories and models 

A second important distinction, regarding models: 

Classical statistics (independence) Statistics within stochastics (dependence) 

Sample: identical and independent 
copies of a random variable  

Stochastic process (discrete or discretized): 
families of dependent random variables 

Observed sample: observations of the 
variables that constitute the sample  

Time series: observations  of the same 
process in consecutive times 

In geophysics (including hydroclimatic processes) we cannot make samples.  

We have always to deal with time series. 

In geophysical time series, time dependence and persistence are marked. 

Unbiased estimators of classical statistics are no longer unbiased in stochastics 
(with the exception of mean—and of noncentral moments, which however suffer from 
unknowability); thus, they need to be adapted. 
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A second parenthesis: Kolmogorov, Hurst and the Nilometer  
 

H.E. Hurst 
(Courtesy J. Sutcliffe, 2013) 

“Although in random 
events groups of high or 
low values do occur, their 
tendency to occur in 
natural events is greater. 
This is the main difference 
between natural and 
random events.” 

Kolmogorov proposed a 
mathematical (stochastic) 
process that describes a 
behaviour unknown at that 
time. It was discovered a 
decade later in geophysics 
by Hurst. A.N Kolmogorov 

1951 
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The Roda Nilometer and the longest instrumental record on Earth 

The Roda Nilometer, near Cairo. Water entered through three tunnels and filled the Nilometer 
chamber up to river level. The measurements were taken on the marble octagonal column (with a 
Corinthian crown) standing in the centre of the chamber; the column is graded and divided into 19 
cubits (each slightly more than 0.5 m) and could measure floods up to about 9.2 m. A maximum level 
below the 16th mark could portend drought and famine and a level above the 19th mark meant 
catastrophic flood. 

Photos by Loai Samen and 
Mohamd Mubarak; Google 
maps, 
https://goo.gl/maps/T8NU
goDAorK2 and 
https://goo.gl/maps/dsdJ
HJYVv572). 
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The climacogram: A simple statistical tool to quantify change 
across time scales 
• Take the Nilometer time series, x1, x2, ..., x849, and calculate the sample estimate of 

variance γ(1), where the argument (1) indicates time scale (1 year) 

• Form a time series at time scale 2 (years):  

𝑥1
(2)
≔
𝑥1  +  𝑥2
2

, 𝑥2
(2) ∶=

𝑥3 + 𝑥4
2

, . . . , 𝑥424
(2) ∶=

𝑥847 + 𝑥848
2

 

and calculate the sample estimate of the variance γ(2). 

• Repeat the same procedure and form a time series at time scale 3, 4, … (years), up to 
scale 84 (1/10 of the record length) and calculate the variances γ(3), γ(4),… γ(84). 

• The climacogram is the variance γ (κ) as a function of scale κ; it is visualized as a double 
logarithmic plot of γ (κ) vs. κ. 

• If the time series 𝑥𝜏 represented a pure random process, the climacogram would be a 
straight line with slope –1 (the proof is very easy). 

• In real world processes, the slope is different from –1, designated as 2H – 2, where H is 
the so-called Hurst coefficient (0 < H < 1). 

• The scaling law γ(κ) = γ(1) / κ2 – 2H defines the Hurst-Kolmogorov (HK) process. 

• High values of H (> 0.5) indicate enhanced change at large scales, else known as 
(long-term) persistence, or strong clustering (grouping) of similar values. 
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The climacogram of the Nilometer time series 
• The Hurst-Kolmogorov process 

seems consistent with reality. 

• The Hurst coefficient is H = 0.87 
(Similar H values are estimated 
from the simultaneous record of 
maximum water levels and from 
the modern, 131-year, flow 
record of the Nile flows at 
Aswan). 

• The Hurst-Kolmogorov 
behaviour, seen in the 
climacogram, indicates that:  

(a) long-term changes are 
more frequent and intense 
than commonly perceived, and 

(b) future states are much 
more uncertain and 
unpredictable on long time 
horizons than implied by pure 
randomness. 
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Effect of persistence on K-moment estimates 
A K-moment is a characteristic of the marginal, first 
order, distribution of a process and therefore it is not 
affected by the dependence structure. However, its 
estimator is: time dependence induces bias to 
estimators of K-moments. Thus, the unbiasedness 
ceases to hold in stochastic processes.  

For a Markov process the effect of autocorrelation is 
negligible, unless n is low and r high (e.g. > 0.90). 

However, for an HK process, as shown in 
Koutsoyiannis (2020), the effect can be substantial:  

𝛩(𝑛,𝐻) =
𝛫𝑝
d − 𝐾𝑝

𝐾𝑝
≈
2𝐻(1 − 𝐻)

 𝑛 − 1
−

1

2(𝑛 − 1)2−2𝐻
 

𝐾𝑝′ = 𝐾𝑝
d = (1 + 𝛩)𝐾𝑝, 𝑝

′ ≈ 2𝛩 + (1 − 2𝛩)𝑝((1+𝛩)
2) 

Illustration of the performance of the adaptation of K-
moment estimation for an HK process with Hurst parameter 
0.9 and lognormal marginal distribution (LN(0,1)). Shown 
are noncentral and central moments, for q = 1 . The 
estimates are averages of 200 simulations each with n = 
2000 and are almost indistinguishable from the theoretical 
values. The 95% prediction limits (PL) are also shown. The 
maximum p = 2000 reduces 𝑝′ ≈ 500, i.e. to one fourth, with 
an analogous reduction to the return period. 
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K-moments and classical moments 
Not only are K-moments knowable but they can also predict the value that a classical moment 
estimator will give, through equation: 

𝜇̂𝑝
′ ≈  

(𝐾𝑚𝑛,1
′ )

𝑝

𝐾𝑚𝑛+𝑝−1,𝑝
′ 𝜇𝑝

′  

where n is the sample size and m is the number of samples for the case where more than one sample 
are available to make the estimate.  

(Left) Comparison of 
the estimates of 
classical noncentral 
moments from 1 and 
1000 independent 
samples from the 
exponential 
distribution to (a) the 
theoretical moments 
and (b) to the values 
determined by the 
above equation 
(adapted theoretical). 
(Right) Additional 
information of the 
terms appearing in the 
above equation. 
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K-moments and L-moments 
Hypercentral K-moments are virtually equivalent to L-moments for small orders. In 
addition, the framework of K-moments provides alternative options to define summary 
statistical characteristics of the distribution, including the classical ones, as in the table 
below. (Which option is preferable depends on the statistical behaviour, and in particular, 
the mean, mode and variance, of the estimator.) 

Characteristic Order p Option 1 Option 2 Option 3* 

Location 1 𝐾11
′ = 𝜇 (the classical mean) 

Variability 2 𝐾21
+ = 2𝐾21 = 2(𝐾21

′ − 𝜇)
= 2𝜆2 

𝐾22
+ = 𝐾22 = 𝜇2 = 𝜎

2  
(the classical variance) 

Skewness 
(dimensionless) 

3 𝐾31
+

𝐾21
+ = 2

𝐾31
𝐾21

− 3 =
𝜆3
𝜆2

 
𝐾32
+

𝐾22
+ = 2

𝐾32
𝐾22

− 2 
𝐾33

𝐾22
3/2
 
=
𝜇3
𝜎3

 

Kurtosis 
(dimensionless) 

4 𝐾41
+

𝐾21
+ = 4

𝐾41
𝐾21

− 8
𝐾31
𝐾21

+ 6

=
4

5

𝜆4
𝜆2
+
6

5
 

𝐾42
+

𝐾22
+ = 4

𝐾42
𝐾22

− 6
𝐾32
𝐾22

+ 3 
𝐾44

𝐾22
2  
=
𝜇4
𝜎4

 

However, the real power of K-Moments is in their determination and use for very high 
orders p, up to the sample size. 
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Assigning return periods to K-moments of any order 

 The non-central K-moment for q = 1 is 𝐾𝑝
′ = 𝑝E [(𝐹(𝑥))

𝑝−1
𝑥] 

 By definition, it represents the expected value of the maximum of p copies of 𝑥.  
 To determine the theoretical return period 𝑇(𝐾𝑝

′) we introduce the ratio 𝛬𝑝 which happens to 
vary only slightly with p; assuming a time unit D we have:  

𝑇(𝐾𝑝1
′ ) =

𝐷

1 − 𝐹(𝐾𝑝1
′ )
, 𝛬𝑝 ≔

𝑇(𝐾𝑝1
′ )

𝐷 𝑝
=

1

𝑝 (1 − 𝐹(𝐾𝑝1
′ ))

 

 Any symmetric distribution will give exactly 𝛬1= 2 because 𝛫1
′ is the mean, which equals the 

median and thus has a return period of 2D. Thus, a rough approximation is the rule of thumb: 

𝛬𝑝 ≈ 2 

 Generally, the exact value 𝛬1 is easy to determine, as it is the return period of the mean: 

𝛬1 =
1

1 − 𝐹(𝜇)
=
𝑇(𝜇)

𝐷
 

 The exact value of 𝛬∞ depends only on the tail index ξ of the distribution: 

𝛬∞ = {𝛤(1 − 𝜉)
1
𝜉 , 𝜉 ≠ 0

eγ, 𝜉 = 0
 

where γ = 0.577 is the Euler’s constant. 
 These enable the simple approximation of 𝛬𝑝 and hence of the return period: 

𝛬𝑝 ≈ 𝛬∞ + (𝛬1 − 𝛬∞)(1 𝑝⁄ ), 𝑇(𝐾𝑝
′) 𝐷⁄ = 𝑝𝛬𝑝 ≈ 𝛬∞𝑝 + (𝛬1 − 𝛬∞) 
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Better approximation of the relationship between p and T 
 An almost perfect approximation of 𝛬𝑝 for any distribution function is: 

𝛬𝑝 ≈ 𝛬∞ + (𝛬1 − 𝛬∞ − 𝐵 ln (1 +
𝛽

2𝛽 − 1
))
1

𝑝
+ 𝐵 ln (1 +

𝛽

(𝑝 + 1)𝛽 − 1
) 

 This involves two 
constants β and B, 
which depend on the 
distribution function. 

 For example, in the 
Pareto distribution, 
𝛽 = 1 and  

𝐵 =
(3 − 𝜉)𝛬∞ − 2𝛬1
2(1 − ln 2)

 

 For parameters of other 
distributions see 
Koutsoyiannis (2020). 

 The graph indicates the 
perfect agreement of 
the approximation to 
the exact values for 
several distributions. 
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Assigning return periods to order statistics (plotting positions) 
The classical formula for assigning a return period to 𝑥(𝑖:𝑛), i.e., the ith smallest value in a sample of 

size n is:  
𝑇(𝑖:𝑛)

𝐷
=

𝑛 + 𝐵

𝑛 − 𝑖 + 𝐴
 

where A and B are constants. For an unbiased estimate of the distribution quantile these constants 
are 𝐴 = 1 𝛬∞⁄ , 𝐵 = 𝛬1 𝛬∞⁄ − 1 (Koutsoyiannis, 2020) and thus: 

𝑇(𝑖:𝑛)

𝐷
=
𝛬∞(𝑛 − 1) + 𝛬1
𝛬∞(𝑛 − 𝑖) + 1

 

For the highest value 𝑥(𝑛) ≡ 𝑥(𝑛:𝑛) both approaches, K-moments and order statistics, result in 

precisely the same value, 𝑇(𝐾𝑛
′ ) 𝐷⁄ = 𝑇(𝑛:𝑛) 𝐷⁄ = 𝛬∞𝑝 + (𝛬1 − 𝛬∞). 

For smaller i, the pth K-moment should be equivalent, in terms of the corresponding return period, if  

𝑝 =
𝑛 − (𝛬1 − 𝛬∞)(𝑛 − 𝑖)

𝛬∞(𝑛 − 𝑖) + 1
 

This means that: 

(a) 𝑥(𝑖:𝑛) can be used as a quick-and-dirty (QAD) estimate of 𝐾𝑝
′ , provided that p is given as a 

function of i from the above equation. 
(b) The return period estimate based on the typical estimator 𝐾̂𝑝

′ = ∑ 𝑏𝑖𝑛𝑝 𝑥(𝑖:𝑛)
𝑛
𝑖=1  is better than 

that based on a single 𝑥(𝑖:𝑛) because it is derived from many data points (except for the 

maximum value, when 𝑖 = 𝑛, where the two approaches are precisely identical). 
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Comparison of return periods assigned by the two approaches 
We assume a Pareto distribution with 𝜉 = 0.15, in which 𝛬∞ = 2.035 and 𝛬1 = 2.955, and a sample 
of n = 100. We will have the following values of T and p for the highest and the second highest values: 

i 𝑇(𝑖:𝑛) p 

100 204.4 100 
99 67.4 32.6 

Hence the estimate of the 𝑥 quantile corresponding to a return period of 67.4, will be equal to: 

 𝑥(99:100) according to the order-statistics approach (the estimate is based on one data point); 

 𝐾̂32.6
′  according to the K-moments approach (the estimate is based on 68 data points and will be 

a weighted average of 𝑥(𝑖:100) for 𝑖 = 33 to 𝑖 = 100). 

Simulation results of empirical return periods assigned to 
Pareto quantiles (for tail index ξ = 0.15, scale parameter λ = 
1 and lower bound zero). Averages and prediction limits 
(PL) were calculated from 200 simulations each with n = 
100. The curves of averages for both the order statistics and 
the K-moment approaches are indistinguishable from the 
theoretical curves. The return periods were assigned for the 
unbiased quantile option. The correspondence between the 
K-moment of order p and the return period T is also shown 
through the upper horizontal axis. The plots of a single 
realization are also shown (but for part of the empirical 
points to avoid an overcrowded graph). 0.1
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Very high order K-moments relationships between p and T 
From the relationship:  

𝑝 =
𝑇

𝛬∞𝐷
−
𝛬1
𝛬∞
+ 1, 

we can easily find the K-moment order p corresponding to the return period T. An example is given 
in the following table: 

 

Example of the K-moment order p corresponding 
to the specified return period for the Pareto 
distribution with shape parameter ξ = 0.15. 

 D = 10 min D= 1 h D = 1 d 

T = 2 months 4 307 717 29 

T = 1 year 25 842 4 307 179 

T = 2 years 51 684 8 614 358 

T = 100 years 2 584 212 430 702 17 945  

In a stochastic process with dependence, what is given in the table is the adapted moment order 𝑝′ 
while p should be estimated from 𝑝′ based on the relationship in p. 22.  

Alternatively, the more accurate approximation of p. 26 or even the exact relationships could be used 
but the resulting p will not differ substantially from the above values. 

K-moments of such high order are reliably estimated.  
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Application 1:  
Monitoring and characterization of the 
hydroclimatic evolution 
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A third parenthesis: What is climate? 
Aristotle in his Meteorologica describes the climates on Earth in connection with latitude but he 
does not use the term climate. Instead, he uses the term crasis (κρᾶσις, literally meaning mixing, 
blending of things which form a compound, temperament). 

The term climate (κλίμα, plural κλίματα) was coined as a geographical term by the astronomer 
Hipparchus (190 –120 BC; founder of trigonometry but most famous for his discovery of precession 
of the equinoxes by averaging measurements on several stars). It originates from the verb κλίνειν, 
meaning ‘to incline’ and denoted the angle of inclination of the celestial sphere and the terrestrial 
latitude characterized by this angle. 

A modern definition by the American Meteorological Society is*: 

Climate – The slowly varying aspects of the atmosphere–hydrosphere–land surface system. It is typically 
characterized in terms of suitable averages of the climate system over periods of a month or 
more, taking into consideration the variability in time of these averaged quantities. 

In turn, the climate system is defined as: 

The system, consisting of the atmosphere, hydrosphere, lithosphere, and biosphere, determining the 
earth's climate as the result of mutual interactions and responses to external influences (forcing). 

In this presentation the term hydroclimatic refers to  

multiscale stochastic characterization of meteorological and hydrological processes 

As the averages are not sufficient in monitoring and understanding climate, the high-order K-
moments offer a convenient means to characterize its variability. 

                                           
* http://glossary.ametsoc.org/wiki/Climate 
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Data for illustration 1: Daily temperature in Bologna 
Bologna, Italy (44.50°N, 
11.35°E, +53.0 m). 

Average daily 
temperature, available 
online in the frame of the 
European Climate 
Assessment & Dataset.*  

Uninterrupted for the 
period 1814-2003, 190 
years in total.  

For the most recent 
period, 2004-2018, daily 
data are provided by the 
online data repository 
Dext3r.† With the 
additional data, the record length becomes 205 years.  

                                           
* ECAD; Klein Tank et al., 2002; data retrieved on 2019-02-17 from https://climexp.knmi.nl/ecatemp.cgi?WMO=169. 
† http://www.smr.arpa.emr.it/dext3r/. In particular, the average daily temperature values of the station Bologna Urbana 
(44.500754°N, 11.328789°E, +78.0 m) were used. The data at Bologna Urbana were adjusted by adding a constant 
temperature difference of 0.19 °C to become consistent with those of the ECAD station. To find this adjustment, as there is 
no common period of observation between the ECAD station and Bologna Urbana, a third station whose observations have 
common periods with both, namely the Bologna Meteo station (44.501223°N, 11.328197°E, +80.0 m) was used. 
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Climate monitoring in Bologna: A diagnostic analysis of the 
evolution of temperature climatic extremes 
In addition to the plot of 
daily values, the graph 
contains the climatic 
evolution in terms of 10-
year averages and 
extremes.  

For the extremes, the 10-
year high and low values 
are calculated using a 
sliding window of 10 years. 
They correspond to the 
second highest and second 
lowest value out of 3652 
daily values in the 10-year 
period, estimated both with 
the K-moments (KM) and 
the order statistics (OS) 
approaches (see next page about the value of p and the corresponding return period). 

Main observation: There exist upward and downward fluctuations. The climatic range, 
measured as the difference of the high and low extremes, had its highest value 42.3 °C in 1860s 
(arguably, the worst conditions), deceased to 33.8 °C in 1978, and increased to 39.0 °C in 2018. 
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Assessment of return periods of each of high and low values 
Assuming normal distribution, in which 𝛬∞ = 1.781, 𝛬1 = 2, the return period of the second highest 
value in ten years (3652 days) is: 

𝑇(3651:3652)

1 d
=

𝛬∞(3652−1)+𝛬1

𝛬∞(3652−3651)+1
= 2339 ⇒ 𝑇 = 6.4 years  

This corresponds to K-moment order: 

𝑝 =
𝑛−(𝛬1−𝛬∞)(𝑛−𝑖)

𝛬∞(𝑛−𝑖)+1
= 1313  

However, the time series suggests Hurst-Kolmogorov behaviour, with Hurst parameter 𝐻 = 0.94 for 
the annual average (even excluding the 21st century data). 
For large n the equation on p. 22 can be written as:  

𝛩HK(𝑛, 𝐻) ≈ −
1

2𝑛2−2𝐻
= −

1

2𝑛′
= −

1

2

𝛾𝑛
𝛾1

 

where 𝑛′ is the effective sample size; for the Bologna daily 
temperature and n = 3652 (the number of days for 10 
years), 𝑛′ = 73.5 1.3⁄ = 56 and 𝛩 = −0.018.  

In turn, this results in 𝑝′ ≈ 2𝛩 + (1 − 2𝛩)𝑝((1+𝛩)
2) = 1176 

and 𝑇 ≈ 𝛬∞𝑝 + (𝛬1 − 𝛬∞) = 2095 d = 5.7 years.  

This is a rough approximation as the climacograms are of 
HK type only asymptotically (for large k); stochastic 
simulation is required for a better approximation.  

Climacogram of annual average temperature in Bologna. 
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Data for illustration 2: Daily precipitation in Bologna 
Bologna, Italy 
(44.50°N, 11.35°E, 
+53.0 m).  

Available from the 
Global Historical 
Climatology 
Network (GHCN) – 
Daily. 

Uninterrupted for 
the period 1813-
2007: 195 years.  

For the period 
2008-2018, daily 
data are provided 
by the repository 
Dext3r of ARPA 
Emilia Romagna. 

Total record 
length: 206 years. 
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Climate monitoring in Bologna: A diagnostic analysis of the 
evolution of precipitation climatic extremes 
Here instead of the 
minimum climatic 
value (= zero) we 
plot the probability 
that a day is wet. 

Main 
observations:  
All 10-year climatic 
indices have varied 
substantially and 
irregularly: 

The average by a 
factor of 2 (from 
1.2 to 2.4 mm); 

The probability 
wet by a factor >2 
(from 0.15 to 
0.33);  

The high daily precipitation by a factor 2.5 (from 44 to 110 mm/d). 
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Data for illustration 3: Hourly precipitation in Bologna 
Hourly rainfall data 
of the Bologna 
station for the 
period 1990-2013 
are also available, 
provided by the 
Dext3r repository. 

23 years full 
coverage, while the 
entire 2008 is 
missing (retrieved 
and processed by 
Lombardo et al., 
2019). 

Main 
observation:  
Again we have 
fluctuations with 
upward and 
downward 
segments. However, 23 years are too few (and the 5-year window used too small) to monitor 
climatic variation of hourly rainfall. 
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Application 2:  
Fitting of probabilistic models 
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Illustration that high-order K-moments are preferable to 
low-order moments  
For the sake of illustration, for the daily rainfall in Bologna, we intentionally choose the simplest and 
blatantly unsuitable model, the 1-parameter exponential distribution, 𝐹(𝑥) = 1 − e−𝑥/𝜆. 

One moment suffices to estimate the single (scale) parameter λ—but which moment to choose? 

The exact K-moments are: 𝐾𝑝1 = (𝐻𝑝 − 1)𝜆, 𝐾𝑝2 = ((𝐻𝑝 − 1 − 1)
2
+ 𝐻𝑝 − 1

(2)
) 𝜆2, 𝐾𝑝𝑝 = 𝜇𝑝 = (! 𝑝)𝜆

𝑝, 

where 𝐻𝑝 is the pth harmonic number and 𝐻𝑝
(2)

 is the pth harmonic number of order 2. 
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The moment order 
p affects the fitting 
dramatically. 

The scale parameter 
λ increases with 
increasing p, q.  

If we wish to model 
maxima, it is better 
to fit based on the 
1000th K-moment 
than on the 1st! 
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Better fitting on K-moments for orders p from ~100 to 10 000 
(T = ~2 to 200 years) 
We assume Pareto distribution with zero lower 
bound (for physical consistency): 

𝐹(𝑥) = 1 − (1 + 𝜉 𝑥 𝜆⁄ )
−
1

𝜉 or  
𝑇(𝑥)

𝐷
= (1 + 𝜉 𝑥 𝜆⁄ )

1
𝜉  

The exact relationship of K-moments with 
return period is: 

𝑇̂(𝐾̂𝑝
′)

𝐷
= 𝑝𝛬𝑝 = ((𝑝 + 1 − 𝜉) Β(1 − 𝜉, 𝑝 + 1))

1
𝜉 

We estimate the parameters by minimizing the 
mean square error of the logarithms of the 

empirical 𝑇̂(𝐾̂𝑝
′) from the theoretical 𝑇(𝐾̂𝑝

′). We 

calculate the error for a range of T from 2 to 200 years. We utilize as many data as possible (cf. Volpi 
et al., 2019: “Save hydrological observations”). The fitted parameters are ξ = 0.096, λ = 8.37 mm/d. 

The graph shows a perfect fit of theoretical and empirical curves for T > 1 year (the two curves are 
indistinguishable).  

For comparison, empirical curves for order statistics are also plotted (Weibull plotting positions).  

Note: Minimizing the error of 𝐾̂𝑝
′  with respect to 𝐾𝑝

′ , without reference to T, is another possibility but presupposes 

exact relationships for 𝐾𝑝
′ , which in other distributions may be infeasible to derive.  
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Slight improvement for a global fitting 
By adding one parameter to the 
theoretical distribution function we 
can get a model applicable for the 
entire range of rainfall depth. 

Namely, we use the Pareto-Burr-
Fuller (PBF) distribution with zero 
lower bound (for physical 
consistency for rainfall): 

𝐹(𝑥) = 1 − (1 + 𝜅(𝑥 𝜆⁄ )𝜁  )
−
1
𝜁𝜉  

We use the same estimation 
procedure as above but calculate the 
error on the entire range of values.  

The estimated parameters are: ξ = 
0.096, ζ= 0.883, λ = 5.04 mm/d. 

A perfect fit of the model (green 
continuous line) and empirical curve (blue dashed line) is seen for the entire range. 

For comparison, empirical curves for order statistics are also plotted (Weibull plotting positions) but 
not used at any step. 
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Application 3:  
Full stochastic modelling of rainfall 
(construction of an ombrian model) 
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Ombrian model: Marginal distribution of rainfall intensity 
An ombrian model (from the Greek ombros, meaning rainfall) describes the stochastic properties of 
the distribution of rainfall of any order, or equivalently, at any time scale. 

From an ombrian model that is simple enough, the ombrian relationships, also known with the 
misnomer rainfall intensity – duration [meaning time scale] – frequency [meaning return period] 
curves are directly extracted. The assumptions of the proposed ombrian model follow. 

1. Pareto distribution with discontinuity at the origin for small time scales: 

𝐹(𝑘)(𝑥) = 1 − 𝑃1
(𝑘)
(1 + 𝜉

𝑥

𝜆(𝑘)
)
−1 𝜉⁄

 

It is shown by theoretical reasoning (Koutsoyiannis, 2020) that the tail index ξ should be constant, 

while the probability wet, 𝑃1
(𝑘)

, and the state scale parameter, 𝜆(𝑘), are functions of the time scale k. 
Here we sacrifice the exactness of the PBF distribution (see previous page) in order to get simpler 
ombrian relationships for small scales. 

2. Continuous PBF distribution with possible discontinuity at zero for large time scales, i.e.: 

𝐹(𝑘)(𝑥) = 1 − 𝑃1
(𝑘)
(1 + 𝜉 (

𝑥

𝜆(𝑘)
)
𝜁(𝑘)

)

−1 𝜉⁄

 

In this case a new parameter 𝜁(𝑘) is introduced, which is again a function of time scale. The Pareto 
distribution is a special case of PFB for 𝜁(𝑘) = 1. In contrast to the Pareto distribution, whose 
density is a decreasing function of 𝑥, the PBF tends to be bell-shaped for increasing 𝜁(𝑘). Here we 
sacrifice the constancy of tail index (= 𝜉/𝜁(𝑘)) to assure simplicity and ergodicity. 
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Ombrian model: Mean and climacogram 
3. Constant mean of the time averaged 
process:  

Ε[𝑥(𝑘)] = 𝜇 

4. Climacogram of Filtered Hurst-Kolmogorov 
– Cauchy (FHK-C) type, i.e.: 

var[𝑥(𝑘)] = 𝛾(𝑘) = 𝜆1 (1 + (
𝑘

𝛼
)
2𝑀

)

𝐻−1
𝑀

 

or of Filtered Hurst-Kolmogorov – Cauchy-
Dagum (FHK-CD) type; in the latter case, to 
avoid an overparametrized model (and as we 
expect 𝐻 > 0.5 and 𝑀 < 0.5 due to roughness), 
we set 𝑀 = 1 − 𝐻 and thus we get:  

𝛾(𝑘) = 𝜆1 (1 +
𝑘

𝛼1
)
2𝐻−2

+ 𝜆2 (1 − (1 +
𝛼2
𝑘
)
2𝐻−2

) 

Clearly, in both cases, 𝛾(𝑘) → 0, as 𝑘 → ∞, 
which makes the process ergodic; for 𝑘 = 0, 
𝛾(0) = 𝛾0 = 𝜆 in the FHK-C case and 
𝛾(0) = 𝛾0 = 𝜆1 + 𝜆2 in the FHK-CD case. In 
both cases 𝛾(0) is finite and the number of 
parameters is four. 
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The ombrian model: Probability wet/dry 
5. Probability wet and dry, 𝑃1

(𝑘)
= 1 − 𝑃0

(𝑘)
, varying with time scale according to: 

ln 𝑃0
(𝑘)
= ln𝑃0

(𝑘∗) (𝑘/𝑘∗)𝜃 , 𝑘 ≥ 𝑘∗ 

where 𝑘∗ is the transition time scale from Pareto to PBF distribution, for which 𝑃0
(𝑘∗)

> 0 and 
𝜁(𝑘∗) = 1 (for continuity in the transition point), and θ is a parameter (0 ≤ 𝜃 ≤ 1). This equation has 
been derived in 
Koutsoyiannis (2006) 
based on maximum 
entropy considerations. 

In the Pareto case, since 
𝜁(𝑘) = 1, the probability 
wet is fully determined 
from the other 
parameters: 

𝑃1
(𝑘)
=
1 − 𝜉

1/2 − 𝜉

𝜇2

𝛾(𝑘) + 𝜇2
 

 

Fitting of the ombrian 
model to the empirical 
estimates of probability 
wet (𝑃1) or dry (1 − 𝑃1). 
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Mathematical relationships of the ombrian model 
Quantity Small scales, 𝑘 ≤ 𝑘∗ (Pareto) Large scales, 𝑘 ≥ 𝑘∗ (PBF)1 

Ε[𝑥(𝑘)] 𝜇 

𝛾(𝑘) 𝜆1(1 + (𝑘/𝛼)
2𝑀)

𝐻−1
𝑀    or   𝜆1 (1 +

𝑘

𝛼
)
2𝐻−2

+ 𝜆2 (1 − (1 +
𝛼

𝑘
)
2𝐻−2

) 

𝑃1
(𝑘)

 
1 − 𝜉

1/2 − 𝜉

𝜇2

𝛾(𝑘) + 𝜇2
 1 − (1 − 𝑃1

(𝑘∗)
)
(𝑘/𝑘∗)𝜃

 

1

𝜁(𝑘)
 1 √(1 − 2𝜉) (𝑃1

(𝑘) 𝛾(𝑘) + 𝜇
2

𝜇2
− 1) 

1

𝜆(𝑘)
 

𝜇

(1/2 − 𝜉)(𝛾(𝑘) + 𝜇2)
 (1 +

1

(1 − 𝜉)(𝜁(𝑘))
2 −

1

(𝜁(𝑘))
√2
)
𝑃1
(𝑘)

𝜇
 

𝑥 for 𝜉 > 0 𝜆(𝑘)
( 𝑃1

(𝑘)
𝑇(𝑘) 𝑘⁄ )

𝜉
− 1

𝜉
 𝜆(𝑘)(

( 𝑃1
(𝑘)
𝑇(𝑘) 𝑘⁄ )

𝜉
− 1

𝜉
)

1
𝜁(𝑘)

 

𝑥 for 𝜉 = 0 𝑥 = 𝜆(𝑘) ln ( 𝑃1
(𝑘)
𝑇(𝑘) 𝑘⁄ ) 𝑥 = 𝜆(𝑘) (ln ( 𝑃1

(𝑘)
𝑇(𝑘) 𝑘⁄ ))

1
𝜁(𝑘) 

The ombrian curves per se are given in the last two rows. The transition time scale 𝑘∗ has a default value of ~100 h.  
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Parameters of the ombrian model 
Parameter Meaning of parameter Related tool 

μ Mean intensity Mean, μ 

𝜆 (or 𝜆1, 𝜆2) Variance scale parameters1  Climacogram, 𝛾(𝑘) 

𝛼 Time scale parameter Climacogram, 𝛾(𝑘) 

M Fractal (smoothness) parameter2 Climacogram, 𝛾(𝑘) 

H Hurst parameter Climacogram, 𝛾(𝑘) 

ξ Tail index Probability distribution, 𝐹(𝑥) 

θ Exponent of the expression of probability dry  Probability wet, 𝑃1
(𝑘)

 
1  One or two parameters for the two cases depending on the choice of the climacogram expression. 
2  The fractal (roughness/smoothness) parameter M is an independent parameter if we have chosen a 

climacogram expression with one 𝜆; otherwise it is assumed 𝑀 = 1 − 𝐻. 
3  The transition time scale 𝑘∗ but this is not regarded a parameter but a modelling choice. 

With these seven parameters, the ombrian model achieves:  

(a) mathematical and physical consistency; 
(b) coverage of all time scales (from zero to infinity); 
(c) good respresentation on the very fine time scales, through the fractal parameter M; 
(d) good respresentation on very large time scales, through the Hurst parameter H and the 

preserved mean μ whose effect becomes important as time scale increases; 
(e) simultaneous treatment and preservation of the climacogram; and 
(f) simultaneous treatment and preservation of the probability dry/wet. 
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Ombrian curves for Bologna: Comparison of model to  
K-moment estimates of return period 
Ombrian curves as resulted 
from the ombrian model for 
Bologna for time scales 
spanning 5 orders of 
magnitude (1 h to 16 years = 
140 256 h). The empirical 
points are estimated from K-
moments. The effect of 
persistence was taken into 
account; the model was 
plotted with bias-adapted 
variance in order to be 
comparable with empirical 
plots. 

Parameter values 
μ 0.0773 mm/h 
λ1 0.00103 mm2/h2 
λ2 1.978 mm2/h2 
α 9.704 mm 
Η 0.95 
ξ 0.120 
θ 0.849 
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Ombrian curves for Bologna: Comparison of model to  
order-statistics estimates of return period 
Ombrian curves as resulted 
from the ombrian model for 
Bologna for time scales 
spanning 5 orders of 
magnitude (1 h to 16 years 
= 140256 h). The empirical 
points are estimated from 
order statistics. The effect 
of persistence was taken 
into account; the model 
was plotted with bias-
adapted variance in order 
to be comparable with 
empirical plots. 

Parameter values as in previous 
page. 

 
 
  0.01

0.1

1

10

100

0.01 0.1 1 10 100 1000

P
re

ci
p

it
at

io
n

 in
te

n
si

ty
, x

(m
m

/h
)

Return period, T (years)

Empirical from hourly series

Empirical from daily series

Ombrian model

1 h
2 h
4 h
6 h
12 h
1 d

2 d

4 d

8 d

32 d
64 d
128 d
0.5 y
1 y

2 y
4 y

8 y
16 y

1 y



  D. Koutsoyiannis, Knowable moments for high-order characterization of hydrological processes  50 

 

Application 4:  
Stochastic (Monte Carlo) simulation 
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A fourth parenthesis: The Athens drought and the 
importance of decent stochastic simulation 
During the 7-year 
period 1988-95, a 
severe drought hit 
Greece, including 
the Athens area.  

The graph of the 
discharge of one of 
the rivers supplying 
Athens (Boeoticos 
Kephisos) shows a 
clustering of low 
flow values for time 
scales of 1 to 10 
years (see legend), with the 10-year average becoming 1/2 to 1/3 of earlier decadal means.  

A stochastic generation method respecting the Hurst-Kolmogorov dynamics was developed and used 
for the system management. 

Despite the drought severity and duration, the management, assisted by stochastic simulation, was 
effective and we recovered from the crisis without even a day of failure of the water supply system. 

The stochastic simulation method has ever been improving since then and what follows is the most 
recent development (Koutsoyiannis, 2019b).   
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Reminder of second-order stochastic tools  
 Climacogram, 𝛾(𝑘) for time scale k (variance of the averaged process as a function k): 

𝛾(𝑘) ≔ var [
𝑋(𝑘)

𝑘
] , 𝑋(𝑡) ≔ ∫𝑥(𝜉)d𝜉

𝑡

0

 

 Autocovariance function, c(h) for time lag h, defined as: 

𝑐(ℎ):=  cov[𝑥(𝑡), 𝑥(𝑡 +  ℎ)] =
1

2
 
d2(ℎ2𝛾(ℎ))

dℎ2
 

 Power spectrum (also known as spectral density), s(w) for frequency w, defined as the Fourier 
transform of the autocovariance function, i.e.: 

𝑠(𝑤) ≔ 4∫ 𝑐(ℎ) cos(2π𝑤ℎ) dℎ

∞

0

, 𝑐(ℎ) = ∫ 𝑠(𝑤) cos(2π𝑤ℎ) d𝑤

∞

0

, 𝛾(𝑘) = ∫ 𝑠(𝑤) sinc2(π𝑤𝑘) d𝑤

∞

0

 

 Structure function (also known as semivariogram or variogram), 

𝑣(ℎ) ≔
1

2
var[𝑥(𝑡) − 𝑥(𝑡 + ℎ)] = 𝛾0 − 𝑐(ℎ) 

 Climacospectrum, ζ(k), for time scale k: 

𝜁(𝑘) ≔
𝑘(𝛾(𝑘) − 𝛾(2𝑘))

ln 2
=
𝑘 𝛾C(𝑘)

𝜀 ln 2
 

This resembles the power spectrum and combines the asymptotic behaviours of the climacogram 
and the structure function. 



  D. Koutsoyiannis, Knowable moments for high-order characterization of hydrological processes  53 

The generic generator 
 Any stationary stochastic process 𝑥𝜏 can be generated by the moving average scheme 

(Koutsoyiannis 2000): 

𝑥𝜏 = ∑ 𝑎𝑗𝑣𝜏−𝑗

𝐽

𝑗=−𝐽

 

where 𝑎𝑗  are weights to be calculated from the autocovariance function, 𝑣𝑗  is white noise 

averaged in discrete-time and J is a large integer (theoretically, 𝐽 = ∞). 

 The autocovariance is given by the convolution expression:  

𝑐𝜂 = ∑ 𝑎𝑗𝑎𝜂+𝑗

𝐽

𝑗=−𝐽

 

 Given the stochastic model, the weights 𝑎𝜂 can be calculated from its second-order characteristics 

by the following explicit relationship (Koutsoyiannis, 2019b):  

𝑎𝜂 = ∫ √2e2πi(𝜃(𝜔)−𝜂𝜔)√𝑠d(𝜔)

1/2

−1/2

d𝜔 

where ω denotes frequency, 𝑠d(𝜔) is the power spectrum of the discrete-time representation of 
the process (see below) and 𝜃(𝜔) is any arbitrary odd real function.  

☺ Notice the appearance of 2,±1/2, √2, e, π, i (imaginary unit) in last equation. 



  D. Koutsoyiannis, Knowable moments for high-order characterization of hydrological processes  54 

The generic generator (2) 
 The equations: 

𝑥𝜏 = ∑ 𝑎𝑗𝑣𝜏−𝑗

𝐽

𝑗=−𝐽

,    𝑎𝜂 = ∫ √2e2πi(𝜃(𝜔)−𝜂𝜔)√𝑠d(𝜔)

1/2

−1/2

d𝜔 

define the asymmetric moving average (AMA) scheme, which can be used in any problem of 
stochastic simulation of time irreversible and reversible processes.  

 The sequence of 𝑎𝜂 given by the above equation:  

 consists of real numbers, despite the expression involving complex numbers;  
 reproduces precisely the required autocovariance function; and  
 is easy and fast to calculate using the fast Fourier transform (FFT). 

 The above equation gives not a single solution, but a variety of infinitely many ones, all of which 
preserve exactly the second-order characteristics of the process. 
 A particular solution is characterized by the chosen function 𝜃(𝜔).  
 Even assuming 𝜃(𝜔) = 𝜃0 = constant, again there are infinitely many solutions. 
 This enables preservation of additional statistics, e.g. those related to time asymmetry.  

 In addition, we always have several options related to the distribution of the white noise 𝑣𝜏 

(which in general is not Gaussian), thus enabling preservation of moments of any order 
(Koutsoyiannis, 2019a; Dimitriadis and Koutsoyiannis, 2018). 

 In particular, moments of order > 2, are dealt with by preserving the cumulants 𝑣𝜏 (𝜅𝑝
(𝑣)
), which 

are related to those of 𝑥𝜏 (𝜅𝑝), by 𝜅𝑝 = ∑ 𝑎𝑗
𝑝
 𝜅𝑝
(𝑣)𝐽

𝑙=−𝐽 . Cumulants are determined by theoretical 

calculations on the distribution function fitted on the basis of empirical K-moments. 



  D. Koutsoyiannis, Knowable moments for high-order characterization of hydrological processes  55 

Computational algorithm  
1. From the continuous-time stochastic model, expressed through its climacogram 𝛾(𝑘), we 

calculate its autocovariance function in discrete time (assuming time step D): 

𝑐𝑗 =
(𝑗+1)2𝛾(|𝑗+1|𝐷)+(𝑗−1)2𝛾((|𝑗−1|𝐷)

2
− 𝑗2𝛾(|𝑗|𝐷)  

(This step is obviously omitted if the model is already expressed in discrete time through its autocovariance function.) 

2. We choose an appropriate number of coefficients J that is a power of 2 and use the inverse FFT to 
calculate the discrete-time power spectrum and the frequency function 𝐴R(𝜔) for an array of 
𝜔𝑗 = 𝑗 𝑤1, 𝑗 = 0,1, … , 𝐽, 𝑤1 ≔ 1 𝐽𝐷⁄ : 

𝑠d(𝜔𝑗) = 2𝑐0 + 4∑𝑐𝜂

𝐽

𝜂=1

cos(2π𝜂𝜔𝑗),   𝐴
R(𝜔𝑗) = √2𝑠d(𝜔𝑗) 

3. We choose 𝜃(𝜔) and form the arrays (vectors) 𝑨R and 𝑨I, both of size 2J indexed as 0, … , 2𝐽 –  1, 
with the superscripts R and I standing for a real and an imaginary vector, respectively:  

[𝑨R]𝑗 = {
𝐴R(𝜔𝑗) cos (2π𝜃(𝜔𝑗)) /2, 𝑗 = 0,… , 𝐽

[𝑨R]2𝐽−𝑗 , 𝑗 = 𝐽 + 1,… ,2𝐽 − 1
 

[𝑨I]𝑗 = {

−𝐴R(𝜔𝑗) sin (2π𝜃(𝜔𝑗)) /2, 𝑗 = 0,… , 𝐽 − 1

0 𝑗 = 𝐽

−[𝑨I]2𝐽−𝑗 . 𝑗 = 𝐽 + 1,… ,2𝐽 − 1

 

4. We perform FFT on vectors 𝑨R and 𝑨I, and get the real part of the result for 𝑗 = 0,… , 𝐽, which is 
precisely the sequence of 𝑎𝜂 .   
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Conclusions 
 In a stationary and ergodic framework, the newly introduced knowable moments (K-

moments) are powerful tools that unify other statistical moments (classical, L-, 
probability weighted) and order statistics, offering several advantages. 

 In particular, they offer a sound basis for distribution fitting with emphasis on 
extremes, as well as for climate monitoring, again with emphasis on extremes. 

 For independent identically distributed variables, K-moments offer unbiased, 
reliable and workable estimators for low and high orders p, up to order equal to the 
sample size n. 

 Time dependence influences the estimates, yet K-moments offer a basis to assess 
that influence and properly adapt the estimates.  

 Rainfall extremes can be effectively modelled by a rather simple ombrian model, 
which, in addition to modelling extremes, provides a good representation the 
climacogram of the rainfall process and its intermittence. 

 Stochastic simulation of non-Gaussian processes is also assisted by the K-moments, 
through their unbiased estimators, from which the high-order properties are assessed 
and then preserved, by combining K-moments with cumulants.  
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