European Geosciences Union General Assembly, Online, 4-8 May 2020 HS2.2.1: Models and Data: Understanding and representing spatio-temporal dynamics of hydrological processes

Distributed hydrological modelling using spatiotemporally varying velocities

Konstantina Risva, Dionysis Nikolopoulos, and Andreas Efstratiadis

Department of Water Resources & Environmental Engineering National Technical University of Athens, Greece

Presentation available online: www.itia.ntua.gr/2026/

Hydrological models

Parameterization approaches

Hybrid modelling approach

Too detailed models: need to hypothesize distributed data, which is unavailable at this specific scale

Too simple models: risk of losing useful information by aggregating data to coarser scales

River segment layer → Semi-distributed

Innovation: use of different heterogenous detail levels of available data

Aquifer layer \rightarrow Lumped

Distributed approach

Surface Layer

Effective rainfall

Revised method for CN assessment *(Savvidou et al., 2018)*

 $CN = 10 + 9 \times i_{PERM} + 6 \times i_{VEG} + 3 \times i_{SLOPE}$

 $i_{\text{PERM}} \rightarrow \text{Permeability (soil, geology)}$ $i_{\text{VEG}} \rightarrow \text{Land use/ cover(vegetation)}$ $i_{\text{SLOPE}} \rightarrow \text{Drainage capacity (slope, structures)}$

Simulation model for rainfall event → **Distributed** approach

Semi-distributed approach

Calculation of overland velocity

$V_o = k J^{1/2}$

J: terrain slope k: coefficient associated with land use/cover characteristics

Land cover type	k (ft/s)	k (m/s)
Dense underbrush	0.7	0.2
Light underbrush	1.4	0.4
Heavy ground litter	2.5	0.8
Bermuda grass	1.0	0.3
Dense grass	1.5	0.5
Short grass	2.1	0.6
Short grass pasture	7.0	2.1
Conventional tillage with residue	1.2	0.4
Conventional tillage no residue	2.2	0.7
Agricultural, cultivated, straight row	9.1	2.8
Agricultural, cultivated, contour or strip cropped	4.6	1.4
Agricultural, trash fallow	4.5	1.4
Rangeland	1.3	0.4
Alluvial fans	10.3	3.1
Grassed waterway	15.7	4.8
Small upland gullies	23.5	7.2
Paved area	20.8	6.3
Paved gutter	46.3	14.1

Recommended k values per land cover type (adapted from McCuen, 1997)

+ Correction formula of steep slopes (Grimaldi *et al.*, 2012):

 $J' = 0.05247 + 0.06363J - 0.182 e^{-62.38J}$

Estimation of channel velocities

- Velocity: hydraulic quantity
- Depending on:
 - River geometry
 - Hydraulic properties
 - Discharge
- Spatially & temporally varying

1.7 m/s 1.7 m/s1.7

Assignment of varying velocities across the river network of Nedontas, for two flood events

1.4 m/s

1.6 m/s

7.5 m/s

.5 m/

9mls 2.4 mls

.0 mls

0.9 m/s

Most of known literature approaches → oversimplified assumption of a spatially and temporally constant value of velocity

Spatial variability of velocity \rightarrow different *V* for each segment of the river network

Time variability \rightarrow different concentration times for each event \rightarrow different velocities in the river

Estimation of channel velocities

Lumped approach

Standard value for initial abstraction ratio λ according to SCS: 0.20 Standard values in small catchments with steep slopes: ≤ 0.05

Need for adjustment

Enhanced model version

- Subsurface flow → Dominating component of a flood hydrograph
- Need for separation?

K

■ **Empirical model** → subsurface flow simulation

Water balance model through a linear reservoir

Y

S

W

G

$$W_{t} = W_{t-1} + I_{t} - Y_{t} - G_{t}$$
$$K = W_{0} + S_{0}$$
$$S_{t} = K - W_{t-1}$$
$$Y_{t} = \kappa W_{t}$$
$$G_{t} = \mu W_{t}$$

Formulas of the routing component 0

$$Q_t = \varphi X_t$$
$$X_t = X_{t-1} + H_{et} - Q_t$$
$$R_t = Y_{t-\delta} + Q_{t-\tau}$$

Study area- Nedontas river basin

- Western Peloponnese, crosses the city of Kalamata (food prone area)
- River basin properties:
 - *A* = 119.3 km²
 - $z_{\min} = 93 \text{ m}$
 - *z*_{max} = 1715 m

Manning's coefficient values across stream segments

DEM of study area

- Major tributaries: Nedousa, Alagonia, Karveliotis
- Estimation of Manning's coefficients macroscopically by means of satellite imagery interpretation

•
$$t_0 = 3.1 \text{ h}, \beta = 0.193$$

Study area- Nedontas river basin

Results of lumped model – Event A

Metric	Value
NSE	0.946
PEV	-22.1%
PEPF	+10.6%
ΔT_{PF}	+45 min

Results of distributed surface model- Event A

Results of surface model- Event A

Results of surface model- Event A

Results of surface model- Event A

Isochrones of Event A

Mean travel time: 5.70 h

Isochrones of Event A, complete model

Mean travel time: 5.34 h

Results of lumped model – Event B

• Nash-Sutcliffe Efficiency Metric • $PEV = 100 \left \frac{V_0 - V_M}{V_0} \right $ • $PEPE = 100 \left \frac{Q_0(PEAK) - Q_M(PEAK)}{V_0} \right $	NSE PFV	0.957
• $PEV = 100 \left \frac{V_0}{V_0} \right $ • $DEPE = 100 \left \frac{Q_0(PEAK) - Q_M(PEAK)}{V_0} \right $	PFV	0.240/
$\bullet DUDU = 100 [- (200) - (200)]$		-0.34%
$PEKF = 100 \left \frac{Q_{0(PEAK)}}{Q_{0(PEAK)}} \right $	PEPF	+7.76%
$\Delta I_{PF} = I peak_{obs} - I peak_{sim} $	ΔT_{PF}	+105 min

Results of distributed surface model- Event B

Isochrones of Event B

Mean travel time: 6.15 h

Mean travel time: 5.84 h

Conclusions

Incorporating multiple and modern **innovations** into a framework:

- **GIS- based approach** for automatic mapping of the so-called **reference CN**.
- Adjusting the CN to **any antecedent soil moisture conditions** and **any initial abstraction ration**.
- **Varying time** of concentration within runoff routing.
- Possibility for routing procedure with satisfactory accuracy **without employing a hydraulic model.**
- Representation of the **subsurface flow** through a soil moisture accounting tank and the **time varying maximum potential retention**.
- Parsimonious formulation, few parameters.
- Coupling various computational and programming tools, open source code, useful for the modern hydraulic engineer for various uses.
- Development of a software with augmented capabilities in data handling, data preprocessing, geo-spatial analysis, hydrological simulation, optimization and visualization of results.

Proposals for future research

- Comparison results with commercial hydraulic packages.
- Coupling a distributed rainfall runoff model with a hydraulic one.
- Calculating discharge in every node of the river network.
- Dynamic adjustment of the time of concentration within the simulated event.
- Multiple flood events.
- Multiple basins with different characteristics.

Article under review:

Risva *et al.*, Lumped vs. distributed, conceptual vs. physically-based, event-based vs. continuous: Antithesis or synthesis?, Water (2020, submitted)

Special Issue: *Hydrologic, Hydraulic and Geomorphic Modeling for Small and Ungauged Basins*

References

Beven, J. K., *Rainfall–Runoff Modelling: The Primer*, Wiley – Blackwell, doi:10.1002/ldr.630, 2012.

Grimaldi, S., A. Petroselli, A., and F. Nardi, A parsimonious geomorphological unit hydrograph for rainfall–runoff modelling in small ungauged basins, *Hydrological Sciences Journal*, 57(1), 73–83, doi:10.1080/02626667.2011.636045, 2012.

McCuen, R. H., *Hydrologic Analysis and Design*, 2nd edition, Prentice Hall, Upper Saddle River, New Jersey, 1997.

Michailidi, E., S. Antoniadi, A. Koukouvinos, B. Bacchi, and A. Efstratiadis, Timing the time of concentration: shedding light on a paradox, *Hydrological Sciences Journal*, 63(5), 721–740, doi:10.1080/02626667.2018.1450985, 2018.

Savvidou, E., A. Efstratiadis, A. D. Koussis, A. Koukouvinos, and D. Skarlatos, The curve number concept as a driver for delineating hydrological response units, *Water*, 10(2), 194, doi:10.3390/w10020194, 2018.