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Setting the wind energy forecasting problem

❑ As made for almost all renewable energy sources, aeolic energy is driven by highly 
uncertain and thus unpredictable wind processes.

❑ Since the generation of aeolic energy is nonlinear transformation of wind speed 
through the power curve of the turbine, the errors in meteorological predictions 
have different impacts on wind power forecasts.

❑ For quite a large range of wind speed values, the wind power production is either 
zero or constant, thus independent of the individual wind velocity value.

❑ Taking advantage of this interesting feature, the methodology being developed aims 
to assess the performance of wind forecasting models, with focus to output 
accuracy, i.e. energy production, instead of input, i.e. wind speed.

❑ In particular, the methodology consists of four key stages:

▪ Statistical and stochastic assessment of wind process;

▪ Quantification of wind forecasting uncertainty using typical error metrics;

▪ Contrasting of errors in wind forecasting with errors to derived energy 
production (transformation of input to output errors);

▪ Development of overall performance measure accounting for the economic 
footprint of wind errors to energy predictions.

❑ For our analyses we consider the operation a commercial 900 MW wind turbine in 
Ikaria island, Aegean sea, Greece, driven with hourly wind speed data (7 years).
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Our methodology in a nutshell

Input data: Hourly time series of wind speed, commercial 
wind turbine with given power curve

Statistical analysis for various time scales and simulation 
of wind energy production

Wind speed forecasting using simple models with a priori 
known uncertainties and evaluation of wind and energy 

errors via a number of typical statistical metrics

Pseudo-economic evaluation of forecasting models 
through a newly developed empirical index

Combination of different approaches towards establishing 
a generic protocol for assessing wind forecasting 

models both in terms of power production and economic 
efficiency (preliminary outcomes shown here).
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Brief overview of wind energy production

❑ Aeolic (wind) energy is renewable, as 
driven by the kinetic energy of wind.

❑ The efficiency of an ideal wind turbine is 
bounded to a theoretical upper value 
(Betz limit), which equals 16/27.

❑ The actual efficiency of a real-world 
turbine is expressed by the power curve, 
which is provided by the manufacturer.

❑ Wind turbines operate within a range of 
feasible wind speed values, typically 
from 3.5 to 25.0 m/s (cut-off limit is set 
for safety); for relatively large wind speed 
values, the turbine produces an almost 
constant energy, i.e. the nominal power.

Wind Power Capacity Statistics (year 2018)

Worldwide: 600 GW (53.9 GW added in 2018)

China: 221 GW

EU-28: 189 GW (sharing 14% of electricity demand)

Greece: 2.84 GW (9% of demand)

Highest share: Denmark (41%)

Wind energy is nonlinear transformation of 
wind speed, through the power curve of each 
specific turbine.
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From wind process peculiarities to forecasting challenges

❑ Τhe wind speed process is governed by irregular fluctuations across all scales, and 
the common peculiarities of all hydrometeorological processes (non-Gaussian 
behavior, strong asymmetries at fine time scales, long-term persistence, auto-
dependencies, etc.);

❑ Additional feature is its double periodicity, as result of deterministic intra-daily 
and seasonal cycles.

❑ While wind forecasting is by definition a very challenging task, even more 
challenging is the investigation of its effects to energy forecasts, induced by the 
nonlinear transformation through the power curve of wind turbines. 

❑ Are the existing evaluation measures for wind forecasting representative 
enough in terms of energy? 
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s)The double periodicity of wind 
processes, indicated by contrasting 
average hourly speed data from 
Ikaria island across the daily time 
scale (24 values), and across seasons 
(two characteristic months are 
shown, i.e. August and December)
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Case study data

❑ Raw ten-minute timeseries 
from Ikaria island, from 2012 
to 2019; 

❑ Aggregation of 10-min data to 
hourly time scale;

❑ Wind turbine VESTAS 900 kW, 
with known power curve;

❑ Adjustment of wind speed 
data to the elevation of the 
hub (logarithmic law);

Empirical cdf for 
the full sample
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Statistical analysis of hourly wind data

Hourly values, 
August (full 

sample)

Hourly values, 
December (full 

sample)

Hourly values, 
August, time

14:00 pm

Hourly values, 
August, time

3:00 am
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Wind forecasting models (for testing purposes only!)

❑ For the purpose of developing and testing the empirical performance metrics, we 
employed simple wind forecasting models that enable us to know in advance the 
structure of the error and the uncertainty they contain.

❑ The models used are:

▪ Last-known-value forecasting model, that considers the previous hourly 
observation as predictor of the wind speed value of the current time step 
(hour t = 0);

▪ First-order autoregressive stochastic model AR(1), employed with lead 
times one and two hours (the model accuracy is expected to decrease with 
time lag, following the autocorrelation structure of wind);

▪ Whatever model, simply derived by adding to actual (observed) data a 
normal (version A) and a uniform (version B) error, with known statistical 
properties, e.g. m=0, s=1;

❑ By aware that none of the above approaches are operational. Ongoing research will 
provide further analyses using more sophisticated forecasting schemes (stochastic, 
copulas, machine learning, analogues, etc.).

➢ The last-known-value forecasting model model will be next used as benchmark 
for the evaluation approach using the proposed performance index
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Predictive capacity in wind and energy terms (1)
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Predictive capacity in wind and energy terms (2)



Pettas et al., Empirical metric for uncertainty assessment of wind forecasting models in terms of power production and economic efficiency 11

Further challenges induced by the power curve

❑ Our analyses so far reveal that even for good wind forecasts there are significant 
errors in power forecasts, especially in the range of high wind speed values. 

❑ This feature is easily interpreted if we consider the irregular shape of the wind 
turbine power curve, which can be classified into four characteristic zones: 

▪ Zone 0: low wind speed → no power production;

▪ Zone 1: medium wind speed → nonlinear transformation of wind velocity;

▪ Zone 2: high wind speed → constant power production;

▪ Zone 3: extreme wind speed → wind turbines stop operating;

❑ The most uncertain area is 
near the cut-off point, 
where a minor deviation in 
wind speed may result in 
grand losses in energy 
production. In this respect, 
a slight error in wind 
forecasting will 
dramatically effect in 
power forecasting (all or 
nothing!).

Zone 0 Zone 1 Zone 2 Zone 3



From wind value forecasting to power-zone forecasting
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How does the zone 
classification impact 

forecasting outcomes?

❑ Provided that for zones 0, 2 and 3 the wind power production is either zero or 
constant, thus independent of the individual wind velocity value, a relatively 
small error in wind forecast may ensure a perfect forecast of power production. 

❑ In this respect, it suffices to predict the power zone, and not the wind value.

❑ Regarding zone 2, the power production is a non-linear transformation of the wind 
velocity, therefore the forecasting accuracy depends on the applied model.

❑ The classification of the power curve into four zones allows for expressing the 
forecasting problem in discrete terms, thus assessing the transition probabilities 
across all combinations of zones (4×4 matrix).



Transition probabilities
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ZONE 0 1 2 3

0 80,90% 19,10% 0,00% 0,00%

1 11,95% 86,56% 1,44% 0,05%

2 0,00% 24,27% 63,89% 11,84%

3 0,00% 1,21% 12,71% 86,08%

BENCHMARK TRANSITION PROBABILITIES

ZONE 0 1 2 3

0 80,90% 19,10% 0,00% 0,00%

1 11,95% 86,56% 1,44% 0,05%

2 0,00% 24,27% 63,89% 11,84%

3 0,00% 1,21% 12,71% 86,08%

HISTORICAL DATA TRANSITION PROBABILITIES

ZONE 0 1 2 3

0 73,27% 26,70% 0,02% 0,01%

1 17,82% 80,61% 1,52% 0,05%

2 0,05% 26,04% 61,77% 12,14%

3 0,06% 1,65% 13,17% 85,13%

AR1[Lead Time 1] TRANSITION PROBABILITIES

ZONE 0 1 2 3

0 77,13% 22,87% 0,00% 0,00%

1 10,82% 87,78% 1,35% 0,05%

2 0,05% 24,38% 63,27% 12,31%

3 0,00% 1,29% 12,56% 86,15%

RN Model TRANSITION PROBABILITIES

ZONE 0 1 2 3

0 78,44% 21,50% 0,05% 0,01%

1 15,20% 83,66% 1,01% 0,13%

2 0,31% 18,53% 72,36% 8,80%

3 0,07% 2,02% 12,28% 85,63%

AR1 [Lead Time 2] Model TRANSITION PROBABILITIES

ZONE 0 1 2 3

0 73,12% 26,87% 0,01% 0,00%

1 17,17% 81,21% 1,56% 0,06%

2 0,10% 26,29% 60,16% 13,46%

3 0,00% 1,40% 14,12% 84,48%

WN Model TRANSITION PROBABILITIESWhatever/A  TRANSITION PROBABILITIES Whatever/B  TRANSITION PROBABILITIES



Transition probabilities
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ZONE 0 1 2 3

0 80,90% 19,10% 0,00% 0,00%

1 11,95% 86,56% 1,44% 0,05%

2 0,00% 24,27% 63,89% 11,84%

3 0,00% 1,21% 12,71% 86,08%

BENCHMARK TRANSITION PROBABILITIES

ZONE 0 1 2 3

0 80,90% 19,10% 0,00% 0,00%

1 11,95% 86,56% 1,44% 0,05%

2 0,00% 24,27% 63,89% 11,84%

3 0,00% 1,21% 12,71% 86,08%

HISTORICAL DATA TRANSITION PROBABILITIES

ZONE 0 1 2 3

0 73,27% 26,70% 0,02% 0,01%

1 17,82% 80,61% 1,52% 0,05%

2 0,05% 26,04% 61,77% 12,14%

3 0,06% 1,65% 13,17% 85,13%

AR1[Lead Time 1] TRANSITION PROBABILITIES

ZONE 0 1 2 3

0 77,13% 22,87% 0,00% 0,00%

1 10,82% 87,78% 1,35% 0,05%

2 0,05% 24,38% 63,27% 12,31%

3 0,00% 1,29% 12,56% 86,15%

RN Model TRANSITION PROBABILITIES

ZONE 0 1 2 3

0 78,44% 21,50% 0,05% 0,01%

1 15,20% 83,66% 1,01% 0,13%

2 0,31% 18,53% 72,36% 8,80%

3 0,07% 2,02% 12,28% 85,63%

AR1 [Lead Time 2] Model TRANSITION PROBABILITIES
Identical transition probabilities ... 
though, 84% accurate zone 
prediction and 51% accurate power!



Transition probabilities
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ZONE 0 1 2 3

0 80,90% 19,10% 0,00% 0,00%

1 11,95% 86,56% 1,44% 0,05%

2 0,00% 24,27% 63,89% 11,84%

3 0,00% 1,21% 12,71% 86,08%

HISTORICAL DATA TRANSITION PROBABILITIES

ZONE 0 1 2 3

0 73,27% 26,70% 0,02% 0,01%

1 17,82% 80,61% 1,52% 0,05%

2 0,05% 26,04% 61,77% 12,14%

3 0,06% 1,65% 13,17% 85,13%

AR1[Lead Time 1] TRANSITION PROBABILITIES

ZONE 0 1 2 3

0 77,13% 22,87% 0,00% 0,00%

1 10,82% 87,78% 1,35% 0,05%

2 0,05% 24,38% 63,27% 12,31%

3 0,00% 1,29% 12,56% 86,15%

RN Model TRANSITION PROBABILITIES

Increased transition probability 
from Zone 2 to Zone 3, leading to 
significant deviations in the 
forecasting output. 



Impacts of power curve to forecasting outputs
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Key research idea: Taking advantage of the shape of power curve in Zones 0 and 2 
and by accounting for the fluctuations between Zones 2 and 3, we can provide a 
robust forecasting model evaluation approach in terms of energy production 
and economic efficiency.

❑ The wind power curve’s shape in Zones “0” and “2” offers a considerable advantage 
in terms of forecasting accuracy for a significant range of wind speed values. 

❑ On the other hand, the fluctuations between Zones “2” and “3” introduced 
pronounced predictive uncertainty, thus resulting to energy deficits and/or 
surpluses during prosperous periods of high wind speed.

Statistical
Evaluation

Empirical 
Indicators

Optimization



Statistical evaluation of forecasting models using everyday 
goodness-of-fitting metrics (there are too many ….)
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❑ In order to evaluate the forecasting models, several statistical measures were 
applied in both wind and power production outputs for each model. 

❑ Particularly, 13 typical goodness-of-fitting metrics that are generally employed 
within hydrological evaluations were applied to investigate the performance of 
each model in terms of accuracy and sensitivity.

nRMSE BIAS pBIAS rSR rSD NSE mNSE rNSE d md cp Pr R2

Benchmark 14,51 0,00 0,00 0,55 1,00 0,69 0,69 0,69 0,92 1,00 0,00 0,85 0,72

AR1 -1 14,38 0,01 -12,27 0,55 0,99 0,70 0,68 0,70 0,92 1,00 0,02 0,85 0,72

AR1-2 18,97 0,03 -2,64 0,72 0,98 0,48 0,54 0,48 0,85 0,99 -0,71 0,73 0,54

Whatever/A 6,86 -0,01 2,75 0,26 1,00 0,93 0,86 0,93 0,98 1,01 0,78 0,97 0,93

Whatever/B 5,47 -0,11 10,79 0,21 1,02 0,96 0,90 0,96 0,99 1,04 0,86 0,98 0,96

Power Forecasting Statistical Performance Measures

nRMSE BIAS pBIAS rSR rSD NSE mNSE rNSE d md cp Pr R2

Benchmark 3,72 0,00 0,00 0,29 1,00 0,92 0,71 0,92 0,98 1,00 0,00 0,96 0,92

AR1 -1 4,10 0,02 -2,25 0,32 0,97 0,90 0,66 0,90 0,97 0,99 -0,22 0,95 0,90

AR1-2 5,65 0,06 -6,39 0,44 0,93 0,80 0,53 0,80 0,95 0,96 -1,31 0,90 0,81

Whatever/A 1,83 -0,01 1,07 0,14 1,00 0,98 0,82 0,98 0,99 1,01 0,76 0,99 0,98

Whatever/B 1,11 -0,09 9,33 0,09 1,00 0,99 0,88 0,99 1,00 1,06 0,91 1,00 1,00

Wind Forecasting Statistical Performance Measures



And now what?
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• Different evaluation outcomes 
depending on the applied measure…

• Many different metrics may result to 
confusing and contrasting conclusions.

• Forecasting accuracy always leads to 
desired power and economic 
efficiency...? No, if we don’t take into 
account the power curve impact to 
the forecasting output.



Empirical pseudo-economic index for wind power
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❑ When we deal with wind energy production, instead of evaluating the wind and 
energy forecast by applying statistical comparison measures, it is proposed to 
analyze the simulated energy data per se, relying on empirical indicators.

❑ In this respect, we propose an overall index that derives from a simple yet effective 
pricing procedure, inspired from hydroelectric energy assessment. 

❑ Key assumption is to consider actual energy as demand and assign economical 
goals based on comparisons with predicted energy.

❑ For each time step, the forecasted energy is evaluated depending on whether the 
energy pseudo-demand is met or not. In particular: 

▪ Each time step takes a unit score, for each kWh meeting the demand.  

▪ For each kWh of surplus, the score increases by 30%. 

▪ For each kWh of deficit, the score decreases by 800%.

❑ In order to express a dimensionless index, the outcome 
score is compared to a reference score of a benchmark 
model or to the absolute score of historical data.

❑ This unique and representative performance metric 
can be used for direct evaluation of any forecast in terms 
of energy production and economic efficiency.

Results for Ikaria

Model Index

Benchmark -0,82166

AR1-1 -0,89353

AR1-2 -1,65102

Whatever/A 0,047456

Whatever/B 0,0106



Ideas for further research
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❑ Accounting for the pseudo-economical index a sensitivity analysis regarding the 
score values is necessary, as well as for the selection of the benchmark model.

❑ More indexes can be produced combining statistical and empirical methods for a 
broader investigation of the forecasting performance.

❑ Such indexes may be combined in the forecasting modelling process, thus 
developing  an optimized approach of the wind speed forecasting in terms of 
power production and economic efficiency.

❑ Application in various case studies will provide further data for the optimization 
of the proposed indexes and methodologies.


