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ΕΤΥΑΡΙΣΙΕ 

Η κεηαπηπρηαθή απηή εξγαζία εθπνλήζεθε ζηα πιαίζηα ηεο νινθιήξσζεο ησλ 

κεηαπηπρηαθώλ κνπ ζπνπδώλ ζην δηαηκεκαηηθό κεηαπηπρηαθό πξόγξακκα: “Δπηζηήκε θαη 

Σερλνινγία Τδαηηθώλ Πόξσλ”.   

Θα ήζεια λα επραξηζηήζσ ζεξκά ηνλ Γ. Κνπηζνγηάλλε γηα ηελ επθαηξία πνπ κνπ έδσζε λα 

αλαιάβσ έλα ηόζν ελδηαθέξνλ ζέκα αιιά θαη γηα ηε δηαξθή ηνπ ππνζηήξημε θαζ‟όιε ηε 

δηάξθεηα ηεο εθπόλεζεο ηεο εξγαζίαο. Σν κάζεκα ηνπ αιιά θαη ε κεηαπηπρηαθή εξγαζία κε 

έθαλαλ λα αιιάμσ ηειείσο ηνλ ηξόπν πνπ βιέπσ ηελ επηζηήκε ηεο Τδξνινγίαο. 

Παξάιιεια ζα ήζεια λα επραξηζηήζσ ηελ Θ. Ηιηνπνύινπ πνπ παξείρε δηαξθή ππνζηήξημε 

θαη θαζνδήγεζε ζε όια ηα ζηάδηα ηεο εξγαζίαο. Με ηηο ζπκβνπιέο ηεο είρε πνιύ θαζνξηζηηθή 

ζπκβνιή ζηελ νινθιήξσζε ηεο εξγαζίαο. 

Δπηπιένλ ζα ήζεια λα επραξηζηήζσ ηνλ Π. Γεκεηξηάδε γηα ηηο δηαιέμεηο ηνπ κνπ πξνθάιεζαλ 

ην ελδηαθέξνλ γηα ην αληηθείκελν ησλ ζηνραζηηθώλ θαη επίζεο γηα ηηο επηζεκάλζεηο ηνπ ζε 

θαίξηα δεηήκαηα ηεο κεηαπηπρηαθήο εξγαζίαο.  

Σέινο ζα ήζεια λα επραξηζηήζσ ην Νίθν θαη ηελ Άλλα πνπ ζπλέβαιαλ κε ηνλ ηξόπν ηνπο 

ζηελ νινθιήξσζε ηεο εξγαζίαο αιιά θαη όιν ην δηδαθηηθό πξνζσπηθό ηνπ κεηαπηπρηαθνύ γηα 

ηηο πνιύηηκεο γλώζεηο πνπ κνπ κεηέδσζαλ. 
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ABSTRACT 

 

We investigate the impact of time‟s arrow on hydrological processes. The role of stochastic 

simulation and uncertainty is first investigated. Uncertainty is a major factor in physical 

sciences and engineering. The probabilistic behavior of an engineering system is essential 

considering that uncertainty issues are important and must be managed. The true distribution 

for the system response is subject to parameter uncertainty and is in most of the times difficult 

or even impossible to calculate. This is due to the complexity of the hydrosystems. In such 

cases, stochastic simulation else known as Monte Carlo simulation is a viable tool to provide 

numerical estimations of the stochastic features of the system response. Long range 

dependence is a feature connected to uncertainty and is very important in hydrology. It is 

being discussed through relevant literature and models. Time‟s arrow or temporal asymmetry 

is also related to uncertainty and randomness and has an important role in science. It has been 

implemented in stochastics for some time but it has recently attracted attention in relevant 

publications in hydrology. Studies have shown that the temporal asymmetry of the streamflow 

process is marked for scales up to several days and this highlights the need to reproduce it in 

flood simulations. After a review of the relevant literature, an analytical method based on an 

asymmetric moving average (AMA) scheme is being used to simulate time series with 

temporal asymmetry. The temporal asymmetry of real world streamflow time series is being 

investigated at hourly scale from the large USGS database. Finally a modification of the 

method that can simulate time asymmetry at two time scales simultaneously is proposed. The 

method is successfully tested in the physical world through a case study.  
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ΠΕΡΙΛΗΦΗ 

 

Γηεξεπλνύκε ηελ επηξξνή ηνπ βέινπο ηνπ ρξόλνπ ζηηο πδξνινγηθέο δηεξγαζίεο. ηελ αξρή 

παξνπζηάδεηαη ν ξόινο ηεο ζηνραζηηθήο πξνζνκνίσζεο θαη ηεο αβεβαηόηεηαο. Η αβεβαηόηεηα 

είλαη έλαο ζεκαληηθόο παξάγνληαο ζηηο θπζηθέο επηζηήκεο θαη ζηελ επηζηήκε ηνπ κεραληθνύ. 

Η κειέηε ηεο πηζαλνηηθήο ζπκπεξηθνξάο ελόο ζπζηήκαηνο είλαη απαξαίηεηε ιακβάλνληαο 

ππόςηλ όηη ην ζέκα ηεο αβεβαηόηεηαο είλαη ζεκαληηθό θαη πξέπεη ην ηα δηαρεηξηζηνύκε. ε 

ηέηνηεο πεξηπηώζεηο, ε ζηνραζηηθή πξνζνκνίσζε ή αιιηώο πξνζνκνίσζε Monte Carlo είλαη 

έλα ρξήζηκν εξγαιείν γηα ηελ παξνρή αξηζκεηηθώλ εθηηκήζεσλ ησλ ζηνραζηηθώλ 

ραξαθηεξηζηηθώλ ηεο απόθξηζεο ηνπ ζπζηήκαηνο. H καθξνπξόζεζκε ρξνληθή εμάξηεζε ή 

εκκνλή είλαη ζηελά ζπλδεδεκέλε κε ηελ αβεβαηόηεηα θαη είλαη ζεκαληηθή γηα ηελ πδξνινγία. 

Μειεηάηαη κέζσ ζρεηηθήο βηβιηνγξαθίαο θαη κνληέισλ. Σν βέινο ηνπ ρξόλνπ ζπλδέεηαη 

επίζεο ζηελά κε ηελ ηπραηόηεηα θαη ηελ αβεβαηόηεηα θαη έρεη ζεκαληηθό ξόιν ζηελ επηζηήκε. 

Έρεη εθαξκνζηεί ζηηο ζηνραζηηθέο κεζόδνπο γηα θάπνην ρξνληθό δηάζηεκα, αιιά έρεη 

πξνζειθύζεη πξόζθαηα ηελ πξνζνρή ζε δεκνζηεύζεηο ζρεηηθέο κε ηελ πδξνινγία. Έξεπλεο 

θαηέιεμαλ ζην ζπκπέξαζκα όηη ε ρξνληθή αζπκκεηξία ηεο θπζηθήο δηεξγαζίαο ηεο απνξξνήο 

ππάξρεη γηα ηελ θιίκαθα κεξηθώλ εκεξώλ θαη απηό ππνγξακκίδεη ηελ αλάγθε αλαπαξαγσγήο 

ηεο ζε πξνζνκνηώζεηο πιεκκπξώλ. Μεηά από κία αλαζθόπεζε ηεο ζρεηηθήο βηβιηνγξαθίαο 

ρξεζηκνπνηείηαη κηα αλαιπηηθή κέζνδνο βαζηζκέλε ζε έλα ζρήκα αζύκκεηξνπ θηλεηνύ κέζνπ 

(AMA) γηα ηελ παξαγσγή ζπλζεηηθώλ ρξνλνζεηξώλ κε ρξνληθή αζπκκεηξία. Απηή ε εξγαζία 

πξνηείλεη κηα ηξνπνπνίεζε ηεο κεζόδνπ γηα ηελ πξνζνκνίσζε ηεο αζπκκεηξίαο ηνπ ρξόλνπ 

ζε δύν θιίκαθεο ηαπηόρξνλα. Γηα λα δνθηκαζηεί ε απνηειεζκαηηθόηεηα απηήο ηεο κεζόδνπ 

ζηνλ θπζηθό θόζκν, γίλεηαη κηα κειέηε κε πξαγκαηηθά δεδνκέλα. Γηεξεπλάηαη ε ρξνληθή 

αζπκκεηξία ησλ ρξνλνζεηξώλ απνξξνήο, από ηε κεγάιε βάζε δεδνκέλσλ ηνπ USGS, ζε 

σξηαία θιίκαθα.  

  



iv 

ΕΚΣΕΝΗ ΠΕΡΙΛΗΦΗ 

Ειζαγυγή 

Αληηθείκελν απηήο ηεο κεηαπηπρηαθήο δηπισκαηηθήο εξγαζίαο είλαη ε κειέηε ηεο επίδξαζεο 

ηνπ βέινπο ηνπ ρξόλνπ ζηα ζηνραζηηθά κνληέια κηθξήο ρξνληθήο θιίκαθαο.  

Η εξγαζία απηή έρεη επεξεαζηεί απν ηελ πξόζθαηε κειέηε ηνπ Γ. Κνπηζνγηάλλε (2019): «Σν 

βέινο ηνπ ρξόλνπ ζην ζηνραζηηθό ραξαθηεξηζκό θαη ηελ πξνζνκνίσζε ησλ αηκνζθαηξηθώλ 

θαη πδξνινγηθώλ δηεξγαζηώλ». ηελ αξρή ηεο δηπισκαηηθήο γίλεηαη κηα πξνζπάζεηα 

παξνπζίαζεο κέξνπο ηνπ επηζηεκνληθνύ πιαηζίνπ πνπ απνηειεί ηε βάζε ηεο πξόζθαηεο 

κειέηεο. πγρξόλσο ζπδεηείηαη θαη άιιε ζρεηηθή βηβιηνγξαθία. Απηό γίλεηαη γηα λα 

επηζεκαλζεί ε ζεκαζία θαη ε ρξεζηκόηεηα ησλ κεηέπεηηα απνηειεζκάησλ 

Πξαγκαηηθέο ρξνλνζεηξέο από κεγάιε βάζε δεδνκέλσλ ρξεζηκνπνηνύληαη γηα ηε δηεξεύλεζε 

ηεο κε αληηζηξεςηκόηεηαο ζε σξηαία θιίκαθα. Υξεζηκνπνηνύληαη ρξνλνζεηξέο απνξξνήο 

κέρξη θαη ηελ εθαηνζηή ζπλαζξνηζκέλε θιίκαθα.  

ε απηή ηε κειέηε γίλεηαη κηα ηξνπνπνίεζε ηεο ππάξρνπζαο κεζόδνπ, ε νπνία δηαηεξεί ηε κε 

αληηζηξεςηκόηεηα κόλν ζηελ πξώηε θιίκαθα θαη ηελ θαζηζηά ηθαλή λα δηαηεξεί ηελ κε 

αληηζηξεςηκόηεηα ζηελ πξώηε θαη ζηε δεύηεξε θιίκαθα ηαπηόρξνλα. ην ηέινο, ε βαζηθή 

κέζνδνο θαη ε ηξνπνπνηεκέλε επαιεζεύνληαη από θπζηθά δεδνκέλα.  

 

Αβεβαιόηηηα, αξιοπιζηία και μέθοδοι Monte Carlo ζηα ςδποζςζηήμαηα 

ην πιαίζην ηεο παξαγσγήο πδξνινγηθώλ κνληέισλ, ε αβεβαηόηεηα είλαη έλαο ηεξάζηηνο 

παξάγνληαο. Γύξσ από απηόλ ηνλ όξν ππάξρνπλ πνιιέο παξαλνήζεηο. Δπίζεο πνιιέο θνξέο 

δελ ιακβάλεηαη ππόςηλ θαη ην απνηέιεζκα είλαη δαπαλεξό. 

ηελ πξαγκαηηθόηεηα νη ληεηεξκηληζηηθνί λόκνη θαη ε ηπραηόηεηα ζπλππάξρνπλ θαη πξέπεη λα 

αληηκεησπίδνληαη θαη λα κνληεινπνηνύληαη κε νιηζηηθό ηξόπν. Σν αλ κηα δηεξγαζία είλαη πην 

ζηνραζηηθή ή ληεηεξκηληζηηθή είλαη κόλν δήηεκα ρξνληθνύ νξίδνληα. 

Η πεγέο ηεο αβεβαηόηεηαο ζηα πδξνζπζηήκαηα κπνξεί λα είλαη (Μαθξόπνπινο θαη 

Δπζηξαηηάδεο, 2018): 

1. Απιντθέο παξαδνρέο κνληέινπ γηα θξίζηκεο δηεξγαζίεο ηνπ ζπζηήκαηνο (ζθάικαηα 

δνκηθώλ κνληέισλ - δνκηθή αβεβαηόηεηα). Απηό ζπκβαίλεη όηαλ ιακβάλνπκε ππόςε 

ιηγόηεξνπο θαλόλεο από όηη ζηελ πξαγκαηηθόηεηα ππάξρνπλ. 

2. Δπαηζζεζία ζηηο αξρηθέο θαη νξηαθέο ζπλζήθεο (ρανηηθά ζπζηήκαηα). Όπσο θαη ζην 

πξνεγνύκελν ζρήκα. 

3. Αλεπαξθήο γλώζε ησλ θξίζηκσλ παξακέηξσλ ηνπ ζπζηήκαηνο. 

4. ηνραζηηθή θύζε θαη ρσξνρξνληθή κεηαβιεηόηεηα ησλ πδξνκεηεσξνινγηθώλ δηαδηθαζηώλ 

(π.ρ. βξνρή, εμάηκηζε, απνξξνή, άλεκνο). 

5. θάικαηα κέηξεζεο θαη αλαθξίβεηεο. 
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6. Αιιαγή ζπζηήκαηνο κε ηελ πάξνδν ηνπ ρξόλνπ (ιόγσ εμσηεξηθώλ παξαγόλησλ). 

7. Αιιαγέο ζηηο απνθάζεηο / πνιηηηθέο θαη σο εθ ηνύηνπ ζηα κέηξα απόδνζεο. 

Ο βαζηθόο ζηόρνο ηεο αλάιπζεο αβεβαηόηεηαο είλαη λα πξνζδηνξηζηνύλ ηα ραξαθηεξηζηηθά 

αβεβαηόηεηαο ηεο εμόδνπ ηνπ ζπζηήκαηνο σο ζπλάξηεζε ησλ αβεβαηνηήησλ πνπ ζρεηίδνληαη 

κε ην ίδην ην κνληέιν ζπζηήκαηνο θαη ηηο ζηνραζηηθέο παξακέηξνπο ηνπ. Η αλάιπζε 

αβεβαηόηεηαο παξέρεη κηα επίζεκε θαη κεζνδηθή δνκή γηα ηε κέηξεζε ηεο αβεβαηόηεηαο ηνπ 

ζπζηήκαηνο. Δπηπιένλ, παξέρεη πιεξνθνξίεο γηα ηε ζπκβνιή θάζε ζηνραζηηθήο βαζηθήο 

παξακέηξνπ ζηε ζπλνιηθή αβεβαηόηεηα ησλ εμόδσλ ηνπ ζπζηήκαηνο. Οη πιεξνθνξίεο απηέο 

είλαη απαξαίηεηεο θαη κπνξνύλ λα νδεγήζνπλ ζηνλ εληνπηζκό ησλ παξακέηξσλ πνπ παίδνπλ 

ζεκαληηθόηεξν ξόιν ζηελ αβεβαηόηεηα. Η εθηίκεζή ηνπο ζα νδεγήζεη ζηε κείσζε ηεο 

ζπλνιηθήο αβεβαηόηεηαο ηνπ ζπζηήκαηνο (Tung and Yen, 2005). 

ηε ζπλέρεηα γίλεηαη κία εηζαγσγή ζηηο πηζαλόηεηεο θαη ηε ζηαηηζηηθή. Γίλνληαη ηα βαζηθά 

αμηώκαηα θαη νξηζκνί.  

Ο νξηζκόο κηαο ζηνραζηηθήο αλέιημεο  *𝑋(𝑡), 𝑡 ∈  𝑇+ είλαη όηη είλαη "κηα νηθνγέλεηα ηπραίσλ 

κεηαβιεηώλ" (Κνπηζνγηάλλεο, 1997). Γειαδή, γηα θάζε 𝑡 ∈  𝑇, 𝑋(𝑡) είλαη κηα ηπραία 

κεηαβιεηή. Αλαθεξόκαζηε ζην 𝑋(𝑡) σο ηελ θαηάζηαζε ηεο αλέιημεο θαηά ην ρξόλν 𝑡 εάλ ν 

δείθηεο 𝑡 παξηζηάλεη ην ρξόλν. Οη ζηνραζηηθέο αλειίμεηο κπνξνύλ λα ρξεζηκνπνηεζνύλ γηα λα 

πεξηγξάςνπλ ηε ρξνληθή εμέιημε ή ηηο ρσξηθέο ζρέζεηο ηπραίσλ κεηαβιεηώλ 

Οη πδξνινγηθέο κεηαβιεηέο κπνξνύλ λα ζεσξεζνύλ ζηνραζηηθέο αλειίμεηο (Κνπηζνγηάλλεο, 

1997). Σν γεγνλόο όηη κηα θπζηθή δηεξγαζία ζεσξείηαη ζηνραζηηθή αλέιημε δελ ζεκαίλεη όηη 

δελ έρεη θαζνξηζηηθό ξόιν. Δίλαη γλσζηό όηη πνιιέο πδξνινγηθέο δηεξγαζίεο παξνπζηάδνπλ 

εηήζηα ληεηεξκηληζηηθή κεηαβιεηόηεηα π.ρ. απνξξνήο. Απηή ε κεηαβιεηόηεηα κπνξεί λα 

ζεσξεζεί σο ηπραία κεηαβιεηόηεηα πνπ ζπκβαίλεη ζε δηάθνξεο ρξνληθέο θιίκαθεο. Σν 

ζηνραζηηθό κέξνο ηεο δηαδηθαζίαο δελ είλαη εληειώο ηπραίν, έρεη ζηνραζηηθή δνκή ή 

ζηνραζηηθή κλήκε. 

ηε ζπλερεηα αλαπηύζζεηαη ε έλλνηα ησλ πδξνζπζηεκάησλ θαζώο θαη ζέκαηα δηαρείξεζεο 

ηνπο θαη πνζνηηθνπνίεζεο ηεο αμηνπηζηίαο. 

Έλα πδξνζύζηεκα είλαη έλα ζύζηεκα πνπ απνηειείηαη από θπζηθά πδάηηλα ζώκαηα θαη 

ηερληθά έξγα πνπ ζπλεξγάδνληαη γηα ηελ εμππεξέηεζε ελόο ή πεξηζζνηέξσλ ζθνπώλ, ηα 

νπνία αλαθέξνληαη ηόζν ζηελ εθκεηάιιεπζε ηνπ λεξνύ σο θπζηθνύ πόξνπ όζν θαη ζηελ 

πξνζηαζία από ηελ θαηαζηξνθηθή ηνπ δξάζε σο θπζηθό θίλδπλν (Κνπηζνγηάλλεο θαη 

Ξαλζόπνπινο, 2014). 

Η δηαθηλδύλεπζε νξίδεηαη σο ε πηζαλόηεηα αδπλακίαο επίηεπμεο ηνπ ζηόρνπ. Η αμηνπηζηία 

νξίδεηαη καζεκαηηθά σο ζπκπιήξσκα ηεο δηαθηλδύλεπζεο. Η καζεκαηηθή αλάιπζε ηεο 

δηαθηλδύλεπζεο θαη ηεο αμηνπηζηίαο νξίδεηαη σο αλάιπζε αμηνπηζηίαο. 

Δάλ ην 𝛸 αληηπξνζσπεύεη ηε κέγηζηε ηηκή ηεο θπζηθήο δηεξγαζίαο ζε εηήζηα βάζε (π.ρ. 

κέγηζηε εηήζηα πιεκκύξα) θαη 𝑛 είλαη ε δηάξθεηα δσήο ηνπ έξγνπ, ηόηε ην γεγνλόο *𝐿 ≤  𝐶+ 
ηζνύηαη κε ηηο δηαδνρηθέο εκθαλίζεηο ηνπ ζπκβάληνο *𝑋 ≤  𝐶+. Πξνθεηκέλνπ λα κελ ππεξβεί 

ε ηηκή 𝑐 θαζ 'όιε ηε δηάξθεηα ηνπ έξγνπ, δελ ζα πξέπεη λα ππάξρεη ππέξβαζε ζε όια ηα έηε 

ηεο δηάξθεηαο απηήο. Θεσξώληαο όηη νη πιεκκύξεο δηαδνρηθώλ εηώλ είλαη ζηνραζηηθά 

αλεμάξηεηεο, ε δηαθηλδύλεπζε δίλεηαη από  (Κνπηζνγηάλλεο, 1997): 

 𝑅 = 1 − ,𝑃(𝑋 ≤ 𝐶)- = 1 − ,𝐹 (𝐶)-
  (ΔΠ.1) 
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Η ζηνραζηηθή ζπκπεξηθνξά ελόο κεραληθνύ ζπζηήκαηνο είλαη απαξαίηεηε εάλ απνδερηνύκε 

όηη ηα ζέκαηα αβεβαηόηεηαο είλαη ζεκαληηθά θαη πξέπεη λα ηα δηαρεηξηζηνύκε. Η πξαγκαηηθή 

θαηαλνκή ηεο απόθξηζεο ηνπ ζπζηήκαηνο πνπ ππόθεηηαη ζηελ αβεβαηόηεηα ησλ παξακέηξσλ 

είλαη πνιιέο θνξέο δύζθνιε ή θαη αδύλαηε λα ππνινγηζηεί. Απηό νθείιεηαη ζηελ 

πνιππινθόηεηα ησλ πδξνζπζηεκάησλ. ε ηέηνηεο πεξηπηώζεηο, ε πξνζνκνίσζε Monte Carlo 

είλαη έλα ρξήζηκν εξγαιείν γηα ηελ παξνρή αξηζκεηηθώλ εθηηκήζεσλ ησλ ζηνραζηηθώλ 

ραξαθηεξηζηηθώλ ηεο απόθξηζεο ηνπ ζπζηήκαηνο (Tung and Yen, 2005). 

ηοσαζηικά επγαλεία και μακποππόθεζμη σπονική εξάπηηζη 

Δδώ εηζάγνληαη θάπνηα εξγαιεία πνπ βνεζνύλ ζηε δηεξεύλεζε ηεο ζηνραζηηθήο δνκήο 

πξαγκαηηθώλ ε ζπλζεηηθώλ ρξνλνζεηξώλ. 

Σν θιηκαθόγξακκα νξίδεηαη σο ε δηαζπνξά ηνπ ζπλαζξνηζκέλνπ κέζνπ ηεο δηεξγαζίαο 𝑥(t)  

ζε θιηκαθα ζπλάζξνηζεο  𝑘 θαη ζπκβνιίδεηαη 𝛾(𝑘). Οξίδνπκε ηε δηεξγαζία 𝑥( ) ζε θάζε 

θιίκαθα 𝑘 ≥ 1 σο: 

 

𝑥 
( ) ≔

1

𝑘
∑ 𝑥 

  

  (   )   

 (ΔΠ.2) 

Σν θάζκα ηζρύνο 𝑠(𝜔)  ηεο ζηνραζηηθήο αλέιημεο ζε δηαθξηην ρξόλν 𝑡 = 0,1,…, κε 

ζπλάξηεζε απηνζπλδηαζπνξάο 𝛾 = 𝐶𝑜𝑣,𝑥 , 𝑥   -,𝑚 = 0,±1,…, είλαη ν αληηζηξνθνο 

κεηαζρεκαηηζκόο Fourier ηεο ζπλάξηεζεο απηνζπλδηαζπνξάο κε 𝜔 ζην δηάζηεκα ,0,1/2- . Η 

επόκελε ζρέζε ηζρύεη  (Κνπηζνγηάλλεο, 2013): 

 
𝑠(𝜔) = 2𝛾 + 4 ∑ 𝛾 𝑐𝑜𝑠(2𝜋𝑚𝜔)

 

   

 (ΔΠ.3) 

Σν θιηκαθνθάζκα είλαη έλα λενεηζαρζέλ ζηνραζηηθό εξγαιείν. Οξίδεηαη απν ηνλ 

Κνπηζνγηάλλε (2017): 

 
𝜁(𝑘):=

𝑘(𝛾(𝑘) − 𝛾(2𝑘))

𝑙𝑛2
 (ΔΠ.4) 

 

Έλαο άιινο ζεκαληηθόο παξάγνληαο πνπ πξέπεη λα ιακβάλεηαη ππόςε θαηά ηελ πξνζπάζεηα 

θαηαλόεζεο ησλ πδξνινγηθώλ δηεξγαζηώλ είλαη ε καθξνρξόληα ρξνληθή εμάξηεζε ή ε 

εκκνλή. ηελ πδξνινγία ν όξνο απηόο είλαη ηζνδύλακνο κε ηνλ όξν "θαηλόκελν Hurst". Η 

καθξνπξόζεζκε ρξνληθή εμάξηεζε νξίδεηαη από ηνπο Everitt θαη Skrondal (2010) σο: 

"Μηθξέο αιιά αξγά θζίλνπζεο ζπζρεηίζεηο ζε κηα ζηνραζηηθή αλειημε. Σέηνηεο ζπζρεηίζεηο 

ζπρλά δελ αληρλεύνληαη κε ηππνπνηεκέλα ζηαηηζηηθά ηεζη, αιιά ην απνηέιεζκά ηνπο κπνξεί 

λα είλαη αξθεηά ζεκαληηθό. " ηελ πδξνινγία απηό παξαηεξήζεθε αξρηθά από ηνλ Hurst. 

Δίλαη νπζηαζηηθά ε ηάζε ησλ πγξώλ εηώλ λα ζπζζσξεύνληαη θαη λα ζρεκαηίδνπλ 

κεγαιύηεξεο πγξέο πεξηόδνπο θαη ηα μεξά ρξόληα ζρεκαηίδνληαο παξνκνίσο πεξηόδνπο 

μεξαζίαο. 

Σν κνληέιν Filtered Hurst Kolmogorov (Κνπηζνγηάλλεο, 2015) είλαη έλα κνληέιν πνπ κπνξεί 
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λα πξνζνκνηώζεη θπζηθά θαηλόκελα κε καθξνρξόληα εκκνλή.  

To θιηκαθόγξακκα ηεο αλέιημεο δίλεηαη απν ηνλ παξαθάησ ηύπν: 

 

𝛾(𝛥) = 𝜆 (1 + (
𝛥

𝛼
)
  

)

   
 

 (ΔΠ.5) 

Σν 𝛼 θαη 𝜆 είλαη παξάκεηξνη θιίκαθαο κε κνλάδεο  ,𝑡- and ,𝑥- , αληηζηνίρσο, 𝐻 είλαη ε 

παξάκεηξνο Hurst, ζην δηάζηεκα (0,1), θαη 𝑀 κηά δεύηεξε παξάκεηξνο ζην δηάζηεκα (0,1). 

To 𝐻 θαζνξίδεη ηηο θαζνιηθέο ηδηόηεηεο ηηο αλέιημεο θαζώο (𝑡 →  ∞) θαη ην 𝑀 θαζνξίδεη ηηο 

ηνπηθέο ηδηόηεηεο θαζώο ( 𝑡 →  0).  

Βέλορ ηος σπόνος και ζηοσαζηικέρ ανελίξειρ 

Ο όξνο "βέινο ηνπ ρξόλνπ" αλαπηύρζεθε αξρηθά από ηνλ Eddington (1928) γηα λα πεξηγξάςεη 

ηελ θαηεύζπλζε ρξόλνπ, ε νπνία κπνξεί λα πξνζδηνξηζηεί κε ηε κειέηε ηεο νξγάλσζεο 

αηόκσλ, κνξίσλ θαη ζσκάησλ. Η δηαηζζεηηθή αληίιεςή καο γηα ηνλ ρξόλν νηη θπιάεη κόλν 

πξνο ηα εκπξόο ρξόλν κπνξεί λα απνξξηθζεί σο απιώο ππνθεηκεληθή. 

Η θαηεύζπλζε ηνπ ρξόλνπ κπνξεί λα νξηζηεί από κηα θαηεγνξία δηαδηθαζηώλ πνπ 

θαηαζηξέθνπλ πιεξνθνξίεο θαη δεκηνπξγνύλ ράνο. Οη κε αλαζηξέςηκεο δηεξγαζίεο πνπ 

θαηαζηξέθνπλ ηελ καθξνζθνπηθή  πιεξνθνξία είλαη εθδειώζεηο ηνπ δεύηεξνπ λόκνπ ηεο 

ζεξκνδπλακηθήο. Από ηελ άιιε πιεπξά, ππάξρνπλ πνιιέο δηεξγαζίεο πνπ είλαη κε 

αλαζηξέςηκεο θαη είλαη αληηδηακεηξηθά αληίζεηεο. Όιεο απηέο νη δηεξγαζίεο έρνπλ θάηη θνηλό 

παξάγνπλ ηάμε ή πιεξνθνξία. Δθηξέπνπλ έλα ζύζηεκα από κία απιή θαηάζηαζε ζε πην 

ζύλζεηε. 

Ο Weiss (1975) νξίδεη κία ζηνραζηηθή αλέιημε 𝑥(𝑡), ζε ζπλερή ρξόλν 𝑡, κε 𝑛ηνζηήο 

ηάμεο ζπλάξηεζε θαηαλνκήο. 

 𝐹(𝑥 , 𝑥 , … , 𝑥 ; 𝑡 , 𝑡 , … , 𝑡 ) ≔ 𝑃{ 𝑥(𝑡 ) ≤ 𝑥 , 𝑥(𝑡 ) ≤ 𝑥 , … 𝑥(𝑡 ) ≤ 𝑥 } (ΔΠ.6) 

 

σο ζπκκεηξηθή ζην ρξόλν αλ ε θνηλή θαηαλνκή δελ αιιάδεη κεηά απν αληηζηξνθή ηνπ ρξόλνπ 

γύξσ απν ηελ αξρή ησλ αμόλσλ, δειαδή αλ γηα θάζε 𝑛, 𝑡 ;  𝑡 ;  . . . ;  𝑡   ;  𝑡 , 

 𝐹(𝑥 , 𝑥 , … , 𝑥 ; 𝑡 , 𝑡 , … , 𝑡 ) = 𝐹(𝑥 , 𝑥 , … , 𝑥 ; −𝑡 , −𝑡 , … ,−𝑡 ) (ΔΠ.7) 

Η πξόζθαηε κειέηε από ηνλ Κνπηζνγηάλλε (2019) παξέρεη κία κεζνδνινγία αλαπαξαγσγήο 

ηεο αληηζηξεςηκόηεηαο ζε ζπλζεηηθέο ρξνλνζεηξέο. Ο δείθηεο αληηζηξεςηκόηεηαο νξίδεηαη σο 

ν ιόγνο ηεο αζπκκεηξίαο ηεο δηαθνξηθήο δηεξγαζίαο πξνο ηελ αζπκκεηξία ηεο αξρηθήο 

δηεξγαζίαο.  

Η κειέηε ηεο κε αλαζηξεςηκόηεηαο απν ηνλ Κνπηζνγηάλλε (2019) δειώλεη όηη ε αζπκκεηξία 

απαηηεί ηε κειέηε ηεο ηξίηεο ξνπήο θαη ηνπ ζπληειεζηή αζπκκεηξίαο ηεο δηεξγαζίαο, ηεο 

αξρηθήο αιιά θαη ηεο δηαθνξνπνηεκέλεο. Η πξώηε ξνπήο (κέζνο όξνο) ηεο δηαθνξηθήο 

δηεξγαζίαο είλαη πάληα κεδεληθή ελώ ε δεύηεξε (δηαθύκαλζε) είλαη πάληα ζεηηθή θαη έηζη 

θαηαιήγεη ζην ζπκπέξαζκα όηη δελ παξέρνπλ ελδείμεηο ζρεηηθά κε ηελ αζπκκεηξία ηνπ 
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ρξόλνπ. Ωο εθ ηνύηνπ, ε ξνπή ειάρηζηεο ηάμεο πνπ κπνξεί λα ρξεζηκνπνηεζεί γηα ηελ 

αλίρλεπζε ηεο αληηζηξεςηκόηεηαο είλαη ε ηξίηε. 

Η αζπκκεηξία ζηηο ζηνραζηηθέο αλειίμεηο είλαη ζπλώλπκε κε απόηνκνπο αλνδηθνύο θιάδνπο 

θαη νκαιόηεξνπο θαζνδηθνύο θιάδνπο ζηηο δεηγκαηνζπλαξηήζεηο. Σν ίδην ζπκβαίλεη θαη ζε 

έλα πδξνγξάθεκα όηαλ εμεηάδνπκε παξνρέο κηθξήο ρξνληθήο θιίκαθαο. Απηή ε ζπκπεξηθνξά 

γίλεηαη πξνζπάζεηα λα αλαπαξαρζεί κε ηελ έλλνηα ηεο ρξνληθήο αζπκκεηξίαο. 

 

Σν κνληέιν (MA) (Κνπηζνγηάλλεο, 2000), 

 
𝑥 = ∑ 𝑎 𝑣   

 

    

 (ΔΠ.8) 

έρεη ηελ παξαθάησ ιύζε 

 

𝑎 = ∫ 𝑒   ( ( )   )𝐴 (𝜔)𝑑𝜔

 / 

  / 

 (ΔΠ.9) 

   

Όπνπ 𝑖 είλαη ε θαληαζηηθή κνλάδα, 𝜃(𝜔) είλαη νπνηαδήπνηε πεξηηηή πξαγκαηηθή ζπλάξηεζε 

(ζεκαίλεη πσο 𝜃(−𝜔)  =  −𝜃(𝜔)) θαη 

 𝐴 (𝜔) ≔ √2𝑠 (𝜔) (ΔΠ.10) 

Σποποποίηζη αλγοπίθμος για πεπαιηέπυ διαηήπηζη σπονικήρ αζςμμεηπίαρ 

ηελ παξνύζα κειέηε γίλεηαη πξνζπάζεηα ηξνπνπνίεζεο ηνπ αιγνξίζκνπ πνπ πξόηεηλε ν 

Κνπηζνγηάλλεο (2019). Ο ζηόρνο είλαη λα πξνζνκνησζνύλ νη ρξνλνζεηξέο πνπ δηαηεξνύλ ηε 

ρξνληθή αζπκκεηξία ζε κεγαιύηεξεο θιίκαθεο ζπλάζξνηζεο ηεο δηεξγαζίαο. 

 

Γηα κήθνο πξνζνκνίσζεο 𝑖, ην AMA κνληέιν ζα κπνξνύζε λα γξαθηεί επίζεο σο: 

 

𝛸 = ∑ 𝑎      𝑉     

    

   

= 𝑎    𝑉 +⋯+ 𝑎 𝑉       (ΔΠ.11) 

Η δεύηεξε ξνπή ηεο αξρηθήο αθνινπζίαο ζε δεύηεξε θιίκαθα ππνινγίδεηαη σο: 

 

𝑀    .
( ) (   )

= ∑
(𝑎      + 𝑎      )

4

 

+
𝑎    
4

 
    

   

 (ΔΠ.12) 

Η δεύηεξε ξνπή ηεο δηαθνξηθήο αθνινπζίαο ζε δεύηεξε θιίκαθα ππνινγίδεηαη σο: 
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𝑀      .
( ) (   )

= ∑ [+
(𝑎      + 𝑎    −𝑎      − 𝑎      )

 

4
]

    

   

+
(𝑎  + 𝑎    − 𝑎    )

 

4
+
(𝑎  + 𝑎    )

4

 

+
𝑎    
4

 

 

(ΔΠ.13) 

Η ηξίηε ξνπή ηεο αξρηθήο αθνινπζίαο ζε δεύηεξε θιίκαθα ππνινγίδεηαη σο: 

 

𝑀    .
( ) (   )

= ∑
(𝑎      + 𝑎      )

8

 

+
𝑎    
8

 
    

   

 (ΔΠ.14) 

Η ηξίηε ξνπή ηεο δηαθνξηθήο αθνινπζίαο ζε δεύηεξε θιίκαθα ππνινγίδεηαη σο: 

 

𝑀      .
( ) (   )

= ∑ [−
(𝑎      + 𝑎    −𝑎      − 𝑎      )

 

8
]

    

   

−
(𝑎  + 𝑎    − 𝑎    )

 

8
−
(𝑎  + 𝑎    )

8

 

−
𝑎    
8

 

 

(ΔΠ.15) 

Μεηά ηνλ ππνινγηζκό ησλ ξνπώλ δεηγκαηνο, ηα ππνινγηζηηθά εξγαιεία πξέπεη λα εμηζώζνπλ 

ηηο ξνπεο ηνπ δείγκαηνο (εκπεηξηθέο) θαη ηηο αθνινπζίαο (ζεσξεηηθέο) έηζη ώζηε λα βξεζνύλ 

νη παξάκεηξνη ηνπ κνληέινπ. Σα εξγαιεία βειηηζηνπνίεζεο ρξεζηκνπνηνύληαη γηα ηελ εύξεζε 

ησλ απαξαίηεησλ παξακέηξσλ. Η παξακεηξνπνίεζε αθνινπζεί ηελ ίδηα κεζνδνινγία όπσο 

ζηνλ Κνπηζνγηάλλε (2019): έλαο νξηζκόο ηνπ 𝜃 (𝜔) σο ην νκαιό ειάρηζην ησλ δύν 

ππεξβνιηθώλ ζπλαξηήζεσλ ηεο ζπρλόηεηαο, δειαδή : 

 
𝜃(𝜔) =

1

𝜁
ln.𝑒   ( ) + 𝑒   (

 
 ⁄   )/ , 𝜃 (𝜔) ≔

𝐶 , 𝜔

𝐶 , +𝜔
+ 𝐶 ,  (ΔΠ.16) 

Αποηελέζμαηα για ηη μελέηη ηηρ πεπίπηυζηρ ηος ποηαμού Monacacy 

ε απηό ην θεθάιαην εθαξκόδεηαη έλαο ηξνπνπνηεκέλνο αιγνξίζκνο πνπ πεξηγξάθεηαη ζην 

πξνεγνύκελν θεθάιαην κε πξαγκαηηθά δεδνκέλα. Αλαιύεηαη ε πεξίπησζε ηνπ πνηακνύ 

Monocacy απν ηε βάζε δεδνκέλσλ USGS. ηελ πξώηε πεξίπησζε γίλνληαη πξνζνκνηώζεηο 

κε δηαηήξεζε ηεο ρξνληθήο αζπκκεηξίαο ζηελ πξώηε θιίκαθα (ρήκα 8). ηε δεύηεξε 

πεξίπησζε γίλνληαη πξνζνκνηώζεηο κε δηαηήξεζε ζηηο δύν πξώηεο θιίκαθεο (ρήκα 9). 

Σα αξρηθά δεδνκέλα πξνέξρνληαλ από 15ιεπηεο κεηξήζεηο αιιά ζπλαζξνίζηεθαλ ζε σξηαία 

θιίκαθα. Μεηά από απηό, ζεσξήζεθε ζεκαληηθό λα πξαγκαηνπνηεζεί ε ζηαζηκνπνίεζε ηεο 

ρνλνζεηξάο θαη έγηλε ην ηεζη αληηζηξεςηκόηεηαο (ρήκα 1). Γηα ηελ πξνζαξκνγή ηνπ 

κνληέινπ Filtered Hurst Kolmogorov ηαπηόρξνλα ρξεζηκνπνηήζεθαλ θαη ην θιηκαθόθαζκα 

(ρήκα 3) κε έκθαζε κηθξέο θιίκαθεο θαη ζην θιηκαθόγξακκα (ρήκα 2) ζηηο κεγαιύηεξεο 

θιίκαθεο. Γηα ην ζθνπό απηνλ έγηλε πξώηα κνληκνπνίεζε. Οη παξάκεηξνη ππνινγίζηεθαλ: 𝑎 =
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19.399, 𝐻 = 0.628, 𝑀 = 0.724. ηελ ζπλέρεηα κέζσ ππνινγηζκώλ πνπ πεξηέρνπλ ην θάζκα 

ηζρύνο (ρήκα 4) ππνινγίδνληαη νη ζπληειεζηέο 𝛼  ηνπ AMA γηα ηελ πξώηε θαη δεύηεξε 

πεξίπησζε (ρήκα 5 θαη 7). Γηα ηε δεύηεξε πεξίπησζε ππνινγίδνληαη επίζεο θαη νη 

ζπληειεζηέο 𝜃(𝜔) (ρήκα 6). 

 

 

Σχήμα 1 Σεζη ανηιζηπετιμόηηηαρ. 

 

Σχήμα 2 Πποζαπμογή δεδομένυν με κλιμακόγπαμμα  .  
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Σχήμα 3 Πποζαπμογή δεδομένυν με κλιμακόθαζμα. 

 

Σχήμα 4 Γιακπιηό θάζμα ιζσύορ. 

 

Σχήμα 5 𝒂𝜼 ακολοςθία απο ηην ππώηη πεπίπηυζη με ζηαθεπό 𝜽. 
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Σχήμα 6 𝜽 ακολοςθία για ηη δεύηεπη πεπίπυζη διαηήπηζηρ ηηρ αζςμμεηπίαρ και ζηιρ δύο κλίμακερ 

 

Σχήμα 7 𝒂𝜼 ακολοςθία απο ηην δεύηεπη πεπίπηυζη με μεηαβληηό 𝜽. 

 

Σχήμα 8 100 πποζομοιώζειρ με 10000 μήκορ, διαηηπώνηαρ ηη σπονική ανηιζηπετιμόηηηα μόνο ζηη ππώηη 
κλίμακα. 



xiii 

 

Σχήμα 9 100 πποζομοιώζειρ με 10000 μήκορ, διαηηπώνηαρ ηη σπονική ανηιζηπετιμόηηηα ηαςηόσπονα και ζηιρ δύο 
κλίμακερ (ππώηη και δεύηεπη) 

 

Αποηελέζμαηα απο ηη διεπεύνςζη ηηρ ανηιζηπετιμόηηηαρ ζηη βάζη δεδομένυν 

ηος USGS 

ε απηή ηελ ελόηεηα επηρεηξείηαη ε πνζνηηθνπνίεζε ηεο κε αλαζηξέςηκόηεηαο ζηηο πξώηεο 

100 θιίκαθεο από κηά κεγάιε βάζε δεδνκέλσλ απνξξνήο. Ο ζηόρνο είλαη λα κειεηεζνύλ 

πνιινί ζηαζκνί θαη λα βξεζεί ε κέζε ηηκή ηνπ δείθηε αζπκκεηξίαο γηα θάζε θιίκαθα. Η 

πξώηε πεξίπησζε είλαη ε πνιηηεία ηνπ Maryland πνπ απνηειείηαη από 222 ζηαζκνύο (ρήκα 

10). Η δεύηεξε πεξίπησζε είλαη έλα αθόκε κεγαιύηεξν ζύλνιν δεδνκέλσλ πνπ απνηειείηαη 

από 762 ζηαζκνύο ζηηο ΗΠΑ (ρήκα 11). Γηα ηε ζπιινγή θαη επεμεξγαζία ησλ πξσηνγελώλ 

δεδνκέλσλ ρξεζηκνπνηήζεθαλ θσδηθέο python θαη ζπγθεθξηκέλα ην παθέην climata 

(www.pypi.org/project/climata/) θαη ελσ ήηαλ ζε 15ιεπηε θιίκαθα κεηαηξάπεθαλ ζε σξηαία 

δεδνκέλα. Όιεο νη ρξνλνζεηξέο έρνπλ ζηαζηκνπνηεζεί κε ηνλ ίδην ηξόπν όπσο ζηε κειέηε 

πεξίπησζεο. ην ηέινο ππνινγίζηεθε ε δηαζπνξά ζε θάζε θιίκαθα γηα ηε δεύηεξε πεξίπησζε 

(ρήκα 12). 
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Σχήμα 10 Ανηιζηπετιμόηηηα για ολο ηο Μέπιλανη, Η.Π.Α., 222 ζηαθμοί 

 

Σχήμα 11 Ανηιζηπετιμόηηηα για 762 ζηαθμούρ ζηιρ Η.Π.Α 
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Σχήμα 12 Γιαζποπά ηος κπιηηπίος ανηιζηπετιμόηηηαρ για ηη δεύηεπη πεπίπηυζη. 

 

ςμπεπάζμαηα 

Η αβεβαηόηεηα είλαη έλαο ζεκαληηθόο παξάγνληαο ζηηο θπζηθέο επηζηήκεο θαη ζηελ επηζηήκε 

ηνπ κεραληθνύ. Η πηζαλνηηθή ζπκπεξηθνξά ελόο κεραληθνύ ζπζηήκαηνο είλαη απαξαίηεην λα 

κειεηάηαη, δεδνκέλνπ όηη ηα δεηήκαηα αβεβαηόηεηαο είλαη ζεκαληηθά θαη πξέπεη λα 

αληηκεησπηζηνύλ. Η ζηνραζηηθή πξνζνκνίσζε είλαη έλα ρξήζηκν εξγαιείν γηα ηελ παξνρή 

αξηζκεηηθώλ εθηηκήζεσλ ησλ ζηνραζηηθώλ ραξαθηεξηζηηθώλ ηεο απόθξηζεο ηνπ ζπζηήκαηνο. 

Σν βέινο ηνπ ρξόλνπ έρεη ζεκαληηθό ξόιν ζηελ επηζηήκε θαη ζρεηίδεηαη ζηελά κε ηελ 

ηπραηόηεηα θαη ηελ αβεβαηόηεηα. Η ρξνληθή αζπκκεηξία ηεο απνξξνήο ζεκεηώλεηαη γηα 

θιίκαθεο αξθεηώλ εκεξώλ θαη απηό ππνγξακκίδεη ηελ αλάγθε αλαπαξαγσγήο ζε 

πξνζνκνηώζεηο πιεκκύξαο. 

Η αζπκκεηξία ζηηο ζηνραζηηθέο αλειίμεηο είλαη ζπλώλπκε κε απόηνκνπο αλνδηθνύο θιάδνπο 

θαη νκαιόηεξνπο θαζνδηθνύο θιάδνπο ζηηο δεηγκαηνζπλαξηήζεηο. Σν ίδην ζπκβαίλεη θαη ζε 

έλα πδξνγξάθεκα όηαλ εμεηάδνπκε παξνρέο κηθξήο ρξνληθήο θιίκαθαο. Απηή ε ζπκπεξηθνξά 

γίλεηαη πξνζπάζεηα λα αλαπαξαρζεί κε ηελ έλλνηα ηεο ρξνληθήο αζπκκεηξίαο. 

Πξαγκαηηθέο ρξνλνζεηξέο από κεγάιε βάζε δεδνκέλσλ ρξεζηκνπνηνύληαη γηα ηε δηεξεύλεζε 

ηεο κε αληηζηξεςηκόηεηαο ζε σξηαία θιίκαθα. Υξεζηκνπνηνύληαη ρξνλνζεηξέο απνξξνήο 

κέρξη θαη ηελ εθαηνζηή ζπλαζξνηζκέλε θιίκαθα. Η ρξνληθή αζπκκεηξία ηεο απνξξνήο ζηηο 

ΗΠΑ ηνπιάρηζηνλ, έρεη αλακελόκελε ηηκή γηά ην θξηηήξην αληηζηξεςηκόηεηαο ζηελ πξώηε 

θιίκαθα γύξσ ζην 2,5 θαη ζηε δεύηεξε θιίκαθα γύξσ ζην 1,9. Ωζηόζν, απηό ην απνηέιεζκα 

έρεη κηα πνιύ κεγάιε δηαθύκαλζε ζηελ πξώηε θιίκαθα, ε νπνία ηείλεη λα κεηώλεηαη όζν 

απμάλνληαη νη θιίκαθεο. 

Η κειέηε απηή πξνηείλεη κηα ηξνπνπνίεζε ηεο ππάξρνπζαο κεζόδνπ από ηνλ Κνπηζνγηάλλε 

(2019) πνπ δηαηεξεί ηελ κε αληηζηξεςηκόηεηα κόλν ζηελ πξώηε θιίκαθα θαη ηελ θαζηζηά 

ηθαλή λα δηαηεξεί ηελ κε αληηζηξεςηκόηεηα  ηαπηόρξνλα ζηελ πξώηε θαη ζηε δεύηεξε 

θιίκαθα. Γηα λα ειέγμνπκε ηε κέζνδν, ρξεζηκνπνηνύκε πξαγκαηηθά δεδνκέλα. Σα 

απνηειέζκαηα επαιεζεύνπλ ηε κέζνδν κε επηηπρία 
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1. Introduction 

1.1 Study scope 

The aim of this master thesis is to study the influence of time‟s arrow on small scale stochastic 

models. This work is inspired and heavily influenced by the recent study by Koutsoyiannis 

(2019): “Time‟s arrow in stochastic characterization and simulation of atmospheric and 

hydrological processes” that is part of a broader stochastics framework. At the beginning of 

the thesis there is an attempt to cover part of the framework that is the basis for the recent 

study. At the same time other relevant literature is discussed. The reason behind that is to 

highlight the importance and the usefulness of the results. 

 Later, real world data are being used to investigate the irreversibility of hourly scale 

stremaflow time series at scales up to one hundred. The aim is to find out the importance of 

the irreversibility in small scale streamflow data and at which degree it should affect its 

modeling. 

The last aim of this study is to modify the existing method by Koutsoyiannis (2019) that 

conserves irreversibility at the first scale only and make it capable of preserving the 

irreversibility simultaneously at the first and second scale. For example if there is hourly 

streamflow data, the irreversibility quantification method that is used should give the desired 

result after aggregation at the 2-hour scale. In the end the basic method and the modified are 

to be verified by real world data. 

1.2 Work structure 

In the first chapter an introduction to the thesis is made. The aims of the thesis are being 

presented. In the second chapter, the sometimes controversial concept of uncertainty is being 

discussed because it is the reason behind stochastic simulation. Also relevant terms such as 

uncertainty analysis are being defined and presented. In the third chapter there is an 

introduction to probability and statistics as it is the basis behind stochastics. Some basic 

principles and axioms are given in order set the foundation behind the concept of a stochastic 

process. Later, at chapter four the subject of reliability in Hydrosystems is being discussed 

and relevant literature is provided. Proper definitions are being given for all terms and the 

important subject of Monte Carlo simulation is being theoretically backed up. At chapter five 

some stochastic tools are being presented with their advantages/disadvantages and the 

methods of using them. They are all relevant to the later study and most of them are used. The 

chapter six presents information on the subject of long range dependence in hydrology. It 

essentially provides a basis for the modeling framework and in the end describes the model 

used in the study: the Filtered Hurst Kolmogorov process. In chapter six the concept of time‟s 

arrow is being discussed and the final method by Koutsoyiannis (2019) is presented. In the 

same chapter the model is modified. In the eighth chapter the case study is being shown as an 

application of the method modification. In the ninth chapter the streamflow reversibility at 

small time scales is being investigated through a large database. In the end at chapter ten the 
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conclusions are presented.  
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2. Dealing with Uncertainty in Hydrosystems 

2.1 Introduction 

In the frame of hydrological modeling, uncertainty is a huge factor. Around this term there is a 

lot of misconceptions. A lot of times it is not taken into account and the result is costly.  

Uncertainty can be defined as the manifestation of events that are beyond one‟s control (Mays 

and Tung 1992). Natural phenomena are commonly separated into two divisions regarding 

uncertainty and randomness, random (or stochastic) and deterministic. Koutsoyiannis (2010) 

argues that this view should be reconsidered. 

Deterministic laws and randomness coexist and should be modeled and represented in a 

holistic way. Whether a process is more random or deterministic is only a matter of time 

horizon. Uncertainty does not only exist in nature (Figure 2.1) but also in deterministic 

models. One can easily observe this by using a deterministic non-linear model that is complex 

enough and realize that a small change in the initial values can cause high uncertainty at the 

end of the simulation. This can be seen at Figure 2.2. 

Papoulis (1991) writing about causality and randomness states: “We conclude with a brief 

comment on the apparent controversy between causality and randomness. There is no conflict 

between causality and randomness or between determinism and probability if we agree, as we 

must, that scientific theories are not discoveries of the laws of nature but rather inventions of 

the human mind. Their consequences are presented in deterministic form if we examine the 

results of a single trial; they are presented as probabilistic statements if we are interested in 

averages of many trials. In both cases, all statements are qualified. In the first case, 

uncertainties are of the form “with certain errors and in certain ranges of the relevant 

parameters”: in the second “with a high degree of uncertainty if the number of trials is large 

enough”.” 

The causes of uncertainty can be due to either the fundamental stochastic nature of the process 

or to limited knowledge or resources to model it perfectly.  

 

Figure 2.1 Annual maximum rainfall series of different durations (1947–1990) at Hong Kong Observatory, Hong 
Kong (Tung and Yen, 2005) 
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Figure 2.2 A simulation with 1% uncertainty in initial conditions Koutsoyiannis (2010) 

2.2 Sources of uncertainty 

The source of uncertainty in hydrosystems can be (Makropoulos and Efstratiadis, 2018): 

1. Simplistic model assumptions for critical system processes (structural model errors - 

structural uncertainty). It happens when we take into consideration fewer rules than 

there actually are.  

2. Sensitivity to initial and boundary conditions (chaotic systems). As in the previous 

figure. 

3. Inadequate knowledge of critical system parameters.  

4. Stochastic nature and spatio-temporal variability of hydrometeorology processes (e.g. 

rain, evaporation, runoff, wind). 

5. Measurement errors and inaccuracies.  

6. System change over time (due to external factors). 

7. Changes in decisions / policies and hence in performance measures. 

2.3 Purpose of uncertainty analysis 

The main purpose of uncertainty analysis is to quantify the uncertainty by estimating 

statistical properties of the system outputs that are affected by the stochastic nature of the 

natural process or sensitivity in the initial conditions. Design quantities and system outputs 

are dependent on several system parameters that cannot always be accurately evaluated. 

The task of uncertainty analysis is to determine the uncertainty features of the system output 

as a function of uncertainties associated with the system model itself and its stochastic 

parameters. Uncertainty analysis provides a formal and methodical structure to measure the 

uncertainty of the system. In addition, it offers information into the contribution of each 

stochastic basic parameter to the overall uncertainty of system outputs. This information is 
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essential and can lead to the identification of the parameters that play a more important role in 

the uncertainty. Their assessment will result to the reduction of the overall uncertainty of the 

system output (Tung and Yen, 2005). 

2.4 Measures of uncertainty 

There are some expressions used to show the measure of uncertainty. In general, the 

uncertainty linked with a parameter, a function, a model, or a system, results from the 

combined effects of the uncertainties of these contributing parameters. 

The statistical moments, associated with a quantity subject to uncertainty, are a simple way to 

assess uncertainty. The second-order moment called variance is a measure of the dispersion of 

a random variable and can be used. At the instance of comparing or combining uncertainties 

of different variables, the coefficient of variation can be used. It is the ratio of standard 

deviation to the mean, offers a normalized measure of uncertainty. 

The most complete and ideal description of the uncertainty features of a quantity can be given 

by the probability density function (PDF). However it is more difficult to find (Tung and Yen, 

2005). 

Informational entropy can be a measure of uncertainty as discussed in the chapter 6. 
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3. Basic Theory: Probability and Statistics 

3.1 Fundamentals of probability 

In 1933 Kolmogorov published the axiomatic basis of modern probability theory. The modern 

approach to probability theory is based on set theory. It is built on three fundamental concepts 

and three axioms. The fundamental concepts are the following (Koutsoyiannis, 1997): 

 The sample space is defined as the set Ω, the elements of which correspond to the 

possible outcomes of an experiment. 

For example for the throw of a dice the sample space is: 𝛺 =  *1,2,3,4,5,6+  

 The subsets of 𝐹 subsets are called events: We say that event A happens when the 

outcome σ of the experiment is an element of 𝐴. 

 The probability measure is a function 𝑃 on F.  In each event A we assign a number 

𝑃(𝐴) that says the probability of event 𝐴. 

 

The three elements (𝛺, 𝐹, 𝑃) define what is called a probability space. The function P must 

satisfy the following axioms of probability theory: 

1. 𝑃(𝐴)  ≥ 0          (3.1) 

2. 𝑃(𝛺) = 1          (3.2) 

3. 𝑃(𝐴⋃𝐵) = 𝑃(𝐴) + 𝑃(𝐵), if also 𝛢 ⋂ 𝐵 =  Ø     (3.3) 

4. 𝑃(⋃ 𝐴 
 
   ) = ∑ 𝑃(𝐴 )

 
   , if also 𝐴 ∩ 𝐴 = ∅, 𝑖 ≠ 𝑗     (3.4) 

3.2 Random variable and probability distributions 

Each event σ is associated with a number 𝑋(𝜔) according to some predefined rule through a 

function 𝑋. This function is defined on a sample space 𝛺 and is called “random variable”. The 

outcome σ may be a number and the predefined rule a mathematical function (Koutsoyiannis, 

1997). Usually we omit the element σ and simply write 𝑋. For the random variable itself we 

use capital letters while for the value of the random variable we use small letters. For instance 

we write *𝑋 ≤  𝑥+ meaning to show the event that is composed of all events σ such that the 

values 𝑋(𝜔) are less than or equal to the number x. The probability of this event is expressed 

as 𝑃(*𝑋(𝜔)  ≤  𝑥+) or for simplicity 𝑃(𝑋 ≤  𝑥) (Koutsoyiannis, 1997). 

3.3 Distribution function 

The distribution function 𝐹(𝑥) is a function of 𝑥 defined by the following equation 

(Koutsoyiannis, 1997): 
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 𝐹 (𝑥)  =  𝑃(𝑋 ≤  𝑥), 𝑥 ∈  𝑅, 𝐹  ∈  ,0,1- (3.5) 

It must be stated that 𝐹  is not a function of the random variable 𝑋 but just connected to it. It 

is obviously a function of 𝑥. Also the domain of F is not identical to the range of X (σ) but is 

always (−∞,+∞). F follows the inequality:      

 0 =  𝐹  (−∞)  ≤  𝐹  (𝑥)  ≤  𝐹  (+∞)  =  1 (3.6) 

𝐹  is also called cumulative distribution function or non-exceedance probability. If 𝐹  (x) is 

continuous for all x, then the random variable X (σ) is also continuous. In this case the sample 

space Ω is an infinite and uncountable set. On the other hand if 𝐹  (x) is a step function, then 

the random variable X(σ) is called discrete. In this case the sample space Ω is a finite set or 

an infinite and countable set. It is important to note however that even for discrete random 

variables, the cumulative distribution function is always defined for all x ∈ R. For continuous 

random variables, the derivative of the cumulative distribution function is called probability 

density function: 

 
𝑓 (𝑥) ≔

𝑑𝐹(𝑥)

𝑑𝑥
 (3.7) 

The distribution function can be calculated through the inverse of the above equation: 

 
𝐹 (𝑥) = ∫ 𝑓 (𝜉)𝑑𝜉

 

  

 (3.8) 

3.4 Non-disjoint events 

For two non-disjoint events A and B it is shown that: 

 𝑃(𝐴 ⋃ 𝐵)  =  𝑃(𝐴) +  𝑃(𝐵) –  𝑃(𝐴 ⋂ 𝐵) (3.9) 

3.5 Conditional probabilities 

The conditional probability of an event is the probability of its occurrence given that another 

event has occurred. The conditional probability is denoted and defined as 

 
𝑃(𝐴 | 𝐵)  =  

𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 (3.10) 

3.6 Independent events 

According to Ross (2004) two events are said to be independent if the knowledge that one 
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event has occurred has no effect on the probability of occurrence of the other. In mathematical 

terms: 

 𝑃(𝐴 𝐵)  =  𝑃(𝐴) 𝑃(𝐵) (3.11) 

This also implies:          

 𝑃(𝐴|𝐵)  =  𝑃(𝐴) (3.12) 

Two events A and B that are not independent are said to be dependent.  

 

3.7 Expected value 

The expected value of a random variable 𝑋, generally denoted as 𝐸(𝑋). If the variable is 

discrete with probability distribution, 𝑃(𝑋 = 𝑥), then 𝐸(𝑋) = ∑ 𝑥𝑃(𝑋 = 𝑥) . If the variable 

is continuous the summation is replaced by an integral. The expected value of a function of a 

random variable, 𝑓(𝑥), is defined : 

 
𝐸(𝑓(𝑥)) = ∫ 𝑓(𝑢)𝑔(𝑢)𝑑𝑢

 

 (3.13) 

 

where 𝑔(𝑥) is the probability distribution of 𝑥 

3.8 Stochastic processes 

The definition of a stochastic process  *𝑋(𝑡), 𝑡 ∈  𝑇+ is that it is “a family of random 

variables” (Koutsoyiannis, 1997). That is, for each 𝑡 ∈  𝑇, 𝑋(𝑡) is a random variable. We refer 

to 𝑋(𝑡) as the state of the process at time 𝑡 if the index t is represents time. Stochastic 

processes can be used to describe the temporal evolution or the spatial relations of random 

variables. The set T is called the index set of the process. The stochastic process is said to be a 

discrete-time process. If T is an interval of the real line, the stochastic process is a continuous-

time process. For example, *𝑋𝑛, 𝑛 =  0, 1, . . . + is a discrete-time stochastic process indexed 

by the nonnegative integers; while *𝑋(𝑡), 𝑡 ≥  0+ is a continuous-time stochastic process 

indexed by the nonnegative real numbers. The state space of a stochastic process is defined as 

the set of all possible values that the random variables 𝑋(𝑡) can assume. Thus, a stochastic 

process is a family of random variables that describes the evolution through time of some 

(physical) process. 

A stochastic process *𝑋(𝑡), 𝑡  0+ is said to be a stationary process if for all 𝑛, 𝑠, 𝑡 , . . . , 𝑡  the 

random vectors 𝑋(𝑡 ), . . . , 𝑋(𝑡 ) and 𝑋(𝑡  +  𝑠), . . . , 𝑋(𝑡  +  𝑠) have the same joint 

distribution. In other words, a process is stationary if, in choosing any fixed point s as the 

origin, the ensuing process has the same probability law (Ross, 2004).  
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Hydrologic variables can be considered stochastic processes (Koutsoyiannis, 1997). The fact 

that a physical process is considered a stochastic process does not mean that it has no 

deterministic part. It is well known that a lot of hydrologic processes show annual 

deterministic variability e.g. streamflow. This variability is seen sometimes as a trend or a 

jump by some authors. Koutsoyiannis (1997) prefers to envisage it as random variability that 

happens at various time scales. More specifically: The stochastic part of the process is not 

completely random, it has a stochastic structure or stochastic memory. That means that there 

is stochastic dependence at contiguous time moments and a larger factor of autocovariance of 

the process.  

3.9 Fundamentals of statistics 

 

Statistics is the applied branch of probability theory that deals with samples and populations. 

The most important objective of statistics is to estimate and to forecast. When the sample, that 

is represented by a random variable is known, the calculation of parameters is needed e.g. of a 

distribution, an estimation is made. Contrariwise when the parameters are known, and the 

random variable is needed, a forecast is made. 

 The definition of a statistical function and an estimator are provided by (Koutsoyiannis, 

1997): 

“By statistical function we mean any function of random variables of the sample in the 

form 𝛩 =  𝑔 (𝑋 , … , 𝑋 ). From the sample observations we can directly calculate the value 

𝜃 =  𝑔 (𝑥 , … , 𝑥 ) of the statistical function” 

 “Statistical functions are used for estimating parameters of population. For every parameter ε 

the population one or more statistical functions can be found, of the form 𝜃 =  𝑔 (𝑋 , … , 𝑋 ), 
suitable for estimating this parameter. In in this case we say that 𝜃 =  𝑔 (𝑋 , … , 𝑋 ) is the 

estimator of parameter 𝜂 and that the arithmetic value of 𝜃 =  𝑔 (𝑥 , … , 𝑥 ) is an assessment 

of 𝜂.” 

Probably the most usual statistical function is the sample mean, which is an average value 

estimator and is defined by the relationship. 

 
�̅� =

1

𝑛
∑𝑋 

 

   

 (3.13) 

The unbiased (and consistent) estimator of dispersion is the following, known as sample 

dispersion: 

 
𝑆 

  =
∑ (𝑋 − �̅�)
 
   

𝑛 − 1
 (3.14) 

The estimator of the sample’s standard deviation is the square root of the above equation 

which is biased. 

The unbiased estimator of the third central moment is given by the following equation: 
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𝑀 
 ( )

=
𝑛∑ (𝑋 − �̅�)

 
   

(𝑛 − 1)(𝑛 − 2)
 (3.15) 

For estimating the skewness coefficient 𝐶   of the sample the following biased estimator is 

used: 

 
𝐶  =

𝑀 
( )

𝑆 
  (3.16) 

There are some equations that limit the bias but not an unbiased one. 

The unbiased (and consistent) estimator of covariance is the following known as the sample 

covariance: 

 
𝑆  
 =

∑ (𝑋 − �̅�)(𝑌 − �̅�) 
 
   

(𝑛 − 1)
 (3.17) 

The estimator of the coefficient of correlation 𝜌   is known as sample correlation coefficient 

is considered approximately unbiased and is given by the following formula: 

 
𝑅  =

∑ (𝑋 − �̅�)(𝑌 − �̅�) 
 
   

√∑ (𝑋 − �̅�) ∑ (𝑌 − �̅�)
 
     

   

 
(3.18) 
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4. Hydrosystems’ Management and Reliability  

4.1 Definitions 

As a system is defined a set of independent elements, which are characterized by (Mays & 

Tung, 1992): 

1. A boundary that determines whether the element belongs to the system or the 

environment 

2. Interactions with environment (entry and exit) 

3. Relationships between elements of and inputs and outputs  

 

The first mention of a hydrosystem was given by Chow (1988). He considered hydrologic 

phenomena extremely complex and believed that they may never be completely understood 

thereat the “systems” concept was introduced. A hydrosystem is a system consisting of natural 

water bodies and technical projects that work together to serve one or more purposes, both of 

which refer to the exploitation of water as a natural resource, and the protection against its 

destructive action as a natural hazard (Koutsoyiannis and Xanthopoulos, 2014). 

4.2 Reliability, Risk and Failure  

 

The following definitions are provided by Mays and Tung (1992). Risk is defined as the 

probability of failure to reach the goal. Reliability is defined mathematically as the 

complement of the risk. The mathematical analysis of risk and reliability is defined as 

reliability analysis. 

If 𝑋 represents the maximum value of the physical process on a yearly basis (e.g. maximum 

annual flood) and 𝑛 is n lifetime of the project, then the event *𝐿 ≤  𝐶+ equals n successively 

occurrences of the event *𝑋 ≤  𝐶+. In order not to exceed the value 𝑐 throughout the lifetime 

of the project there should not be an exceeding in all 𝑛 years of this duration. Considering that 

the floods of successive years are stochastically independent, risk is given by (Koutsoyiannis, 

1997): 

 𝑅 = 1 − ,𝑃(𝑋 ≤ 𝐶)- = 1 − ,𝐹 (𝐶)-
  (4.1) 

Failure of a hydrosystem can be defined as a situation in which the load L (demands) on the 

system exceeds the resistance C (capacity, or supply) of the system. L depends on the 

variability of the physical process as well as the time the project will be exposed to physical 

danger. This is called project life time. The reliability ps of an hydrosystem is defined as the 

probability of nonfailure in which the resistance of the system exceeds the load; that is, 

 𝑝 = 𝑃(𝐿 ≤ 𝐶) (4.2) 
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In the above equation P (·) denotes probability. Conversely, the risk is the probability of 

failure when the load is larger than the resistance. Thus the failure probability (risk) pf can be 

expressed mathematically as: 

 𝑝 = 𝑃(𝐿 > 𝐶) = 1 − 𝑝  (4.3) 

There are two types of failure: structural failure and functional failure. Structural failure 

involves damage or change of the structure or facility, resulting in inability to function as 

desired. Contrarily, performance failure does not always involve structural damage. 

Nevertheless, manifestation of undesirable results in performance and elsewhere, occur. 

Generally, the two types of failure are related. Some structures, such as dams, levees, and, are 

designed on the concept of structural failure, whereas others, such as sewers, water supply 

systems are designed on the basis of performance failure (Mays and Tung, 1992). 

In Figure 4.1 is shown the effect of hydraulic uncertainty on the overall failure probability. 

The assumption is that both random load and resistance are independent log-normal random 

variables. COV stands for coefficient of variation, a measure of uncertainty. Considering that 

there is an uncertainty not only in load but also in resistance, it is shown that the annual 

failure probability is significantly underestimated. It must be stated that the inherent natural 

randomness of hydrologic processes is not enough to estimate the total uncertainty. This 

figure clearly demonstrates a reason why the conventional frequency-analysis approach in 

reliability assessment of hydrosystems is deficient. 

 

Figure 4.1 Effect of resistance uncertainty on failure probability under COV(L) = 0.1 (COV stands for coefficient of 
variation that can be used as a measure of uncertainty as stated before). (Mays and Tung, 1992). 

 

The return period, T, of a given value of 𝑥 variable 𝑋 (which actually represents one 

stochastic process) is defined as the average number of time intervals (in these case, 

hydrological years) between two successive years of occurrence of the random variable of a 

value greater than or equal to that the given value 𝑥. Each occurrence must be stochastically 

independent of the previous and the random variable must be continuous. The Return Period 

can be given by the following equations, where R represents the risk, (Koutsoyiannis, 1997): 

 
𝑇 =

1

𝑃(𝑋 ≥ 𝑥)
 (4.4) 
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𝑇 =

1

1 − (1 − 𝑅)
 
 ⁄

 (4.5) 

 

Another reason conventional frequency-analysis approach in reliability assessment of 

hydrosystems is deficient is that there is a sometimes a long-range dependence, raising 

uncertainty. In other words the stochastic nature of the system is partially ignored. 

4.3 Monte Carlo Methods  

Monte Carlo methods are used nowadays used in hydrosystems for the many advantages and 

are a great way to deal with uncertainty. Monte Carlo methods are defined as: “Methods for 

finding solutions to mathematical and statistical problems by simulation. Used when the 

analytic solution of the problem is either intractable or time consuming.” (Everitt and 

Skrondal, 2010). 

The probabilistic behavior of an engineering system is essential if we accept that uncertainty 

issues are important and must be managed. The true distribution for the system response 

subject to parameter uncertainty is a lot of times difficult or even impossible sometimes to 

calculate. This is due to the complexity of the hydrosystems. In such cases, Monte Carlo 

simulation is a viable tool to provide numerical estimations of the stochastic features of the 

system response (Tung and Yen, 2005). 

Practicing the method, random sampling is used from certain probability distributions to 

provide the random numbers used for generating the objects. The idea of the Monte Carlo 

techniques is to repeat the experiment many times to obtain many quantities of interest using 

the Law of Large Numbers and other methods of statistical inference (Kroese et al., 2014). 

Instead of repeating many times it is also possible to generate one long simulation. The choice 

depends on whether the initials values stop influencing sooner or later the generated values.  

The law of large numbers formalizes the intuitive notion of probability which assumes that if 

in 𝑛 identical trials an event 𝐴 occurs 𝑛𝐴 times, and if 𝑛 is very large, then 𝑛𝐴/𝑛 should be 

near the probability of 𝐴. The formalization involves translating „identical trials‟ as Bernoulli 

trials with probability 𝑝 of a success. The law then states that as 𝑛 increases, the probability 

that the average number of successes deviates from 𝑝 by more then any preassigned value 𝜀 
where 𝜀 > 0 is arbitrarily small but fixed, tends to zero (Everitt and Skrondal, 2010).  

In Monte Carlo simulation the system performance measure is repeatedly measured under 

various system parameter sets that are generated from assumed probabilistic laws. It offers a 

practical approach to the uncertainty analysis because the stochastic behavior of the system 

response can be probabilistically duplicated (Tung and Yen, 2005). 

Some uses of the Monte Carlo method are provided by Kroese et al. (2014).The first is 

sampling. In this case information is gathered about a random object by generating many 

realizations of it. That could be a hydrological model that represents a real physical system 

with rainfall, runoff, evapotranspiration etc. Another example can be a stochastic model with 

long range dependence or a hydrosystem. 

The second is estimation. Here certain numerical quantities are determined related to a 
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simulation model. An example is the evaluation of multi-dimensional integrals via Monte 

Carlo techniques. 

Optimization is a key factor in hydrosystems‟ management and engineering. The Monte Carlo 

method is used very effectively for the optimization of complicated objective functions, this is 

called stochastic optimization. In many applications these functions are deterministic but in 

order for the optimization to be more successful, randomness is integrated.  

4.4 The parameterization-simulation-optimization method approach   

One approach to the hydrosystems control problem is the parameterization-simulation-

optimization method (Koutsoyiannis and Economou, 2003).  

In contrast to most common methods that require a lot of control variables, the less 

widespread parameterization-simulation-optimization (PSO) method is a low-dimensional 

method. Few control variables are used, which are parameters of a simple rule that is exists 

through the entire control period. Through this rule the releases from different reservoirs are 

calculated. Specifically, the set of control variables consists of a „„target variable‟‟ depending 

on the objective of the problem examined and a few parameters that determine a simple 

expression for distributing the degrees of freedom of the reservoir system operation. The 

parameterization of the rule is associated with the simulation of the reservoir system, which 

enables the calculation of a performance measure of the system for given parameter values, 

and nonlinear optimization, which enables determination of the optimal parameter values.  

PSO does not only reach solutions that are not inferior to those of the benchmark methods but 

also has several advantages in some domains. In the theoretical level, the PSO method 

exhibits the following advantages over a high-dimensional method.  

First of all, contrary to typical methods that use hundreds or thousands control variables PSO 

needs just a few for the same simulation period. As a result it is very effective and efficient in 

locating its optimal solution.  

Second is the fact that the required computing time in PSO increases only linearly with the 

number of simulation steps n whereas in other methods computation time increase faster with 

n. Because of this, the performance measure in PSO can be based on a large simulation 

period, thus making it possible for a long year basis that leads to taking into account future 

impacts on the system.  

Third is the fact that PSO avoids simplification of the system by describing its dynamics  with 

a simulation model of the system, incorporating stochastic and deterministic components. 

Fourth, the parametric method is compatible with the stochastic nature of the reservoir 

problems and very easily incorporates concepts like probability, reliability, expected value, 

etc., also assigning values to such quantities. 

Fifth, the optimal values of the control variables do not depend on any any quantity that has a 

stochastic behavior and that means they do not have to be changed unless the system 

characteristics, the inflow statistics, or the operational objectives and constraints changed. 

 

 



15 

 

 

Figure 4.2 PSO method (Koutsoyiannis and Economou, 2003) 
 

Figure 4.2 PSO method (Koutsoyiannis and Economou, 2003) 

Sixth, the system can be very easily operated applying the parametric reservoir rule without 

model runs at all, once it is optimized with the PSO method. Similar to this, the model 

parameters and do not depend on forecasted values of inflows, high in uncertainty. In this way 

the operation policy is also not affected by this uncertainty. 

In figure 4.2 we can see a representation of the method. 
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5. Stochastic Tools 

Here some tools are imported for examining statistical properties in times series. Also, 

information about computational methods and their advantages/disadvantages and are being 

provided. Source of the latter is the study by Dimitriadis and Koutsoyiannis (2015) where the 

uncertainty and bias for three of the stochastic (autocovariance, power spectrum, 

climacogram) tools were calculated and this way the three were compared.  

5.1 Autocorrelation/Autocovariance 

The internal correlation of the observations in a time series, usually expressed as a function of 

the time lag between observations. The autocorrelation at lag 𝑘, 𝛾(𝑘), is defined 

mathematically as: 

 
𝛾(𝑘) =

𝐸(𝑋 − 𝜇)(𝛸   − 𝜇)

𝐸(𝑋 − 𝜇) 
 (5.1) 

Where 𝑋 , 𝑡 = 0,±1,±2,…, represent the values of the series and µ is the mean of the series. 

𝐸 denotes expected value. The sample statistic is given by the equation below: 

 
𝛾(𝑘) =

∑ (𝑥 − �̅�)(𝑥   − �̅�)
   
   

∑ (𝑥 − �̅�) 
 
   

 (5.2) 

Where �̅� is the mean of the series of observed values, 𝑥 ;  𝑥 ;  . . . ;  𝑥  . A plot of the sample 

values of the autocorrelation against the lag is known as the autocorrelation function or 

correlogram. The numerator of 𝛾(𝑘) is called autocovariance. Autocorrelation is 

autocovariance standardized and is related to the discrete-time power spectrum by: 

 

𝑐 = ∫ 𝑠 (𝜔) cos(2𝜋𝜔𝜂) 𝑑𝜔

 / 

 

 (5.3) 

 

Autocovariance is intuitive in its definition and it is one of the tools most commonly used in 

time series analyzing and at the process of model selecting. It is well-defined and its bias can 

be easily estimated. However it has estimation errors larger than those of the climacogram (a 

tool discussed later). Besides its large bias, it is also prone to discretization errors as its value 

can never be equal with the true value in continuous time, even for an infinite sample size. 

Additional disadvantages are its negative values in the high lag tail (Dimitriadis and 

Koutsoyiannis, 2015). 
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5.2 Power spectrum 

Power spectrum is a function (𝜔) , defined on −𝜋 < 𝜔 < 𝜋 for a stationary time series, 

which has the following properties (Everitt and Skrondal, 2010): 

1. The function defines the contribution to the total variance of the time series made by 

the frequencies in the band ,𝜔, 𝜔𝛿𝜔- 

2. Harmonic components with finite power produce spikes 𝑠(𝜔) 

3.  For real series the spectrum is symmetric, 𝑠(𝜔) = 𝑠(−𝜔) 

The function is related to the autocovariance function of the series by: 

 
𝑠(𝜔) =

1

2𝜋
∑ 𝛾(𝑘) cos𝑘𝜔

 

    

 (5.4) 

The power spectrum of a stochastic process is discrete time 𝑡 = 0,1,…, with autocovariance 

function 𝛾 = 𝐶𝑜𝑣,𝑥 , 𝑥   -,𝑚 = 0,±1, …, the inverse discrete Fourier transformation of the 

autocovariance function is called power spectrum 𝑠(𝜔) with σ in the band ,0,1/2- .The 

following formula exists (Koutsoyiannis 2013): 

 
𝑠(𝜔) = 2𝛾 + 4 ∑ 𝛾 𝑐𝑜𝑠(2𝜋𝑚𝜔)

 

   

 (5.5) 

For quick computation calculation the use of Fast Fourier Transform (FFT) is appropriate. For 

the calculation of the Fourier transform of a time series 𝑥 , 𝑥 , … 𝑥   , 𝑑(𝜔 ) given by: 

 

𝑑(𝜔 ) = ∑𝑥 𝑒
    ,

   

   

          𝑝 = 0, 1, 2,… 𝑛 − 1;        𝜔 =
2𝜋𝑝

𝑛
 (5.6) 

The number of computations required to calculate {𝑑(𝜔 )} is 𝑛  which can be very large. The 

FFT reduces the number of computations to 𝑂(𝑛𝑙𝑜𝑔  𝑛) and operates in the following way: 

Let 𝑛 =  𝑟𝑠 where 𝑟 and 𝑠 are integers. Let  =  𝑟𝑡 + 𝑡 , 𝑡 = 0,1,2,… 𝑟 − 1. Further let 

𝑝 = 0,1,2,… , 𝑟 − 1, 𝑝 = 0,1,… , 𝑠 − 1.  The FFT can now be written: 

 

𝑑(𝜔 ) = ∑𝑥 𝑒
    = ∑ ∑ 𝑥      𝑒

    
 

(      )

   

    

   

    

   

   

 (5.7) 

 

 

= ∑ 𝑒
    
 

  𝑎(𝑝 , 𝑡 )

   

    

  

where 
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𝑎(𝑝 , 𝑡 ) = ∑ 𝑥      𝑒
       

 

   

    

 (5.8) 

Estimating the amount of 𝑎(𝑝 , 𝑡 ) needs only 𝑠  operations, and 𝑑(𝜔 ) only 𝑟𝑠 . The 

evaluation of 𝑑(𝜔 ) reduces to the evaluation of 𝑎(𝑝 , 𝑡 ) which is itself a Fourier transform. 

Repeating the above task, the computation of 𝑎(𝑝 , 𝑡 ) can be reduced in a similar way. The 

scheme can be repeated until a single term is reached (Everitt and Skrondal, 2010). 

At the study by Dimitriadis and Koutsoyiannis (2015) the following conclusions were made 

about the power spectrum. It has the largest values of estimation error (between 

autocovariance, climacogram and power spectrum). It has a discretization error as its value 

even for an infinite sample size, can never be equal to the true value in continuous time. 

Additionally, in theory it is always positive, practical applications can result in negative 

values. Finally, it often has the highest value of skewness for its regular values and the 

smallest one for its NLD (negative logarithmic derivative) ones. The latter advantage of the 

power spectrum means that its mode should be close to the expected one. 

5.3 Climacogram 

Climacogram is defined as the variance of the averaged process 𝑥(t) (assuming stationary) 

versus averaging time scale 𝑚 and is symbolized by 𝛾(𝑚). The climacogram is useful for 

detecting the long term change (or else dependence, persistence, clustering) of a process or 

multi-scale stochastic representation. Based on the process 𝑥  at scale 1, we define a process 

𝑥( ) at any scale 𝑘 ≥ 1 as: 

 

𝑥 
( ) ≔

1

𝑘
∑ 𝑥 

  

  (   )   

 (5.9) 

It is related to the autocorrelogram by the following transition: 

 𝜍( ) =
𝜍

√𝑘
√𝑎  (5.10) 

Where  

 

𝑎 = 𝑎 + 2∑(1 −
𝑗

𝑘

   

   

)𝜌  (5.11) 

And the term 𝜌  is given by: 

 
𝜌 =

𝑗 + 1

2
𝑎   − 𝑗𝑎 +

𝑗 − 1

2
𝑎    (5.12) 

Also the following classic statistical law exists: 
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 𝜍( ) =
𝜍

√𝑘
 (5.13) 

Σhe bias in the climacogram can be calculated as follows. As shown in Koutsoyiannis (2011), 

assuming that we have 𝑛 = 𝑇/𝛥observations of the averaged process 𝑥 
( ), where the 

observation period 𝑇 is an integer multiple of 𝛥, the expected  value of the empirical (sample) 

climacogram 𝛾(𝛥): 

 
𝛦 0𝛾(𝛥)1 =

𝛾(𝛥) − 𝛾(𝛵)

1 − 𝛥/𝛵
 (5.14) 

 

The climacogram is also related with the power spectrum and the climacospectrum (presented 

below). 

At the same study by Dimitriadis and Koutsoyiannis (2015) the following 

advantages/disadvantages were discovered. The climacogram had the smallest estimation 

error, between the three tools, in estimating the true values but also the true logarithmic 

derivatives. Its bias can be computed simply and analytically. Additionally the fact that its 

values are always positive is an advantage in stochastic modeling. Moreover it is well-defined 

with an intuitive definition and mostly monotonic. Finally, it has (for all the examined 

processes) values of sample skewness close to 0, for the small scale tail, while in the large 

scale tail; its skewness is increasing up to 3. 

5.4 Climacospectrum 

The climacospectrum is a newly introduced stochastic tool. It is defined by Koutsoyiannis 

(2017): 

 
𝜁(𝑘):=

𝑘(𝛾(𝑘) − 𝛾(2𝑘))

𝑙𝑛2
 (5.15) 

It is written alternatively in terms of frequency 𝜔 =
 

 
 

 

𝜁(𝜔) ≔ 𝜁 (
1

𝜔
) =

𝛾 .
1
𝜔/ − 𝛾(

2
𝜔)

(𝑙𝑛2)𝜔
 (5.16) 

Its name: “climacospectrum” comes from the fact that it has characteristics similar to these of 

the power spectrum. The entire area under the curve 𝜁(𝜔) is precisely equal to the variance 

𝛾(0) of the instantaneous process, an attribute that is also evident in power spectrum  

𝑠(𝑤). This is not the only connection with the power spectrum. The climacospectrum has also 

the same asymptotic behaviour with it: 

 𝜁 (0) = −𝜁 (∞) = 𝑠 (0),        𝜁 (∞) = −𝜁 (0) = 𝑠 (∞) (5.17) 

Specifically, the asymptotic behaviour of the second-order characteristics of a process for 
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𝑘 →  0 and 𝑘 →  ∞ is characterized by two parameters, 𝑀 and 𝐻, which are given by: 

 
𝑀 ≔

𝜈 (0)

2
=
𝜁 (0) − 1

2
, 𝛨 ≔ 1+

𝛾 (∞)

2
=
𝜁 (∞) + 1

2
 (5.18) 

The climacospectrum has the following advantages (Koutsoyiannis, 2017): In comparison 

with the power spectrum it is superior in respect to the connection with conditional entropy 

production. Specifically it is more precise and without exceptions at all. Additionally, the 

variance, on which the definition of the climacospectrum is based, is more closely related to 

uncertainty, and as a result to the entropy of the process, than the power spectrum and the 

autocovariance. It is also very easy to calculate in contrast to the power spectrum that needs 

Fourier transformation.  Furthermore, like the climacogram, it is not affected by discretization 

(while autocovariance and power spectrum are) and has a very small bias because of its 

definition as a difference of two variances, in which the biases tend to cancel out. In the end 

the empirical climacogram and climacospectrum are easily determined from data using 

nothing more than the standard statistical estimator of variance and they have a smooth shape, 

much smoother than those of the empirical autocovariance and power spectrum, thus enabling 

better model identification and fitting. 

In Figure 5.1 a climacospectrum of of simulated time series is shown. 

 

Figure 5.1 Comparison of the climacogram and climacospectrum of  generated series with the FHK-C model 
(Koutsoyiannis, 2019). 

5.5 Cross Climacogram 

The climacogram can be further expanded to describe the dependence of different processes, 

replacing the concept of cross-correlogram of two stationary processes 𝑥(𝑡) and 𝑦(𝑡) and   by 

the standardized crossclimacogram (SCC) for scale k and lag h: 

 
𝜌  (𝑘, ) ≔ 𝑣𝑎𝑟 *

𝑋(𝑘)

2√𝛤 (𝑘)
+
𝑌(𝑘 + ) − 𝑌(𝑘)

2√𝛤 (𝑘)
+ (5.19) 
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𝑣𝑎𝑟 *

𝑋(𝑘)/𝑘

2√𝛾 (𝑘)
+
(𝑌(𝑘 + ) − 𝑌(𝑘))/𝑘

2√𝛾 (𝑘)
+ (5.20) 

 The cross-covariance can be replaced by the cross-climacogram (CC) and the cumulative 

crossclimacogram (CCC): 

 
𝛾  (𝑘, ) ≔ 𝜌  (𝑘, )√𝛾 (𝑘)𝛾 (𝑘) (5.21) 

 

 
𝛤  (𝑘, ) ≔ 𝜌  (𝑘, )√𝛤 (𝑘)𝛤 (𝑘) (5.22) 

This tool is used to detect time irreversibility in bivariate processes. 
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6. Long- Range Dependence in Hydrological Processes 

6.1 Definition and Introduction 

One important factor that should be taken into account when trying to understand hydrologic 

processes is long-range dependence or persistence. In hydrology this term is equivalent to the 

term “Hurst phenomenon”. Long range-dependence is defined by Everitt and Skrondal (2010) 

as: “Small but slowly decaying correlations in a stochastic process. Such correlations are 

often not detected by standard tests, but their effect can be quite strong.” 

In hydrology this was first observed by Hurst while investigating the discharge of the Nile 

River. It is essentially the tendency of wet years to cluster and form bigger wet periods and 

the dry years similarly forming periods of draught.  

6.2 Stochastic representation by a Markov process 

A Markov process is a memoryless stochastic process that implies that to make predictions 

about the future behaviour of the system it suffices to consider only its present state and not 

its past history. 

The Markov process is the most easy to use (simple expression of second order 

characteristics), the most parsimonious and it is commonly used due to its advantages. The 

disadvantages are: “its neutrality in terms of smoothness and persistence, and more 

specifically the low entropy production for large time scales” (Koutsoyiannis, 2017). In the 

end, these reasons do not make it always a good candidate to model natural behaviors. 

Nevertheless the Markov process can be approximated as a case of the Filtered Hurst 

Kolmogorov process discussed later on. 

6.3 Stochastic representation by a Hurst-Kolmogorov process 

The representation of the above physical phenomenon can be accomplished through 

stochastics, assuming a stochastic process. A sufficient model is the Hurst-Kolmogorov 

process. It is also called Fractional Gaussian Noise (FGN) in continuous time, introduced by 

Mandelbrot (1965). Alternative names for this are stationary increments of self-similar 

process and simple scaling process. 

The advantage of the FGN model is apart from its very good fit to hydrologic time series is 

that it is parsimonious having only one parameter. A definition of parsimony is given by 

Everitt and Skrondal (2010): “The general principle that among competing models, all of 

which provide an adequate fit for a set of data, the one with the fewest parameters is to be 

preferred.” 

 

Let 𝑘 be a positive integer that represents a larger than the basic timescale of the process 𝑋  . 
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The aggregated stochastic process on that timescale is denoted as: 

 

𝑍 
( )
≔ ∑ 𝑋 

  

  (   )   

 (6.1) 

The statistical properties of 𝑍  for any time scale k are the following. The mean is given the 

equation below: 

 𝐸0𝑍 
( )1 = 𝑘𝜇 (6.2) 

The variance for a stochastic process that follows the Hurst phenomenon 𝛾 
( ) is related to 

variance at the first scale 𝛾 . The bottom index is represents the lag for the autocovariance of 

the stochastic process. 

 𝛾 
( )
≔ 𝑉𝑎𝑟,𝑍 

( )
-𝑘  𝛾  (6.3) 

H is called “Hurst coefficient” a measure of persistence or antipersistence of a process and its 

values can be in the interval [0, 1]. Values in the interval [0, 0.5] show no interest in 

hydrology. The value 0.5 corresponds to random noise. The standard deviation is given below: 

 𝜍( ) ≔ (𝛾 
( )) / 𝑘 𝜍 (6.4) 

 

Figure 6.1 Aggregated standard deviation plot of the Nile timeseries (Koutsoyiannis, 2004) 
 

The Figure 6.1 is produced using the formula 6.4. For H=0.85 the suggested stochastic 

representation seems to be in reality accurate. If there was not any long range dependence the 

white noise and empirical graph should be identical. However it is clearly evident that they 

are not.  

It can be shown that the autocovariance at any scale and any lag is given by: 

 
𝜌 
( )
= 𝜌 =

1

2
(|𝑗 + 1|  + |𝑗 − 1|  − 𝑗   (6.5) 
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As 𝑗 → ∞ the above approximates to: 

 𝜌 
( )
≈ 𝐻(2𝐻 − 1)|𝑗|     (6.6) 

It can also be shown that the power spectrum of the process is approximated by the following 

formula: 

 
𝑠 
( )(𝜔) = 2 ∑ 𝛾 

( )

 

    

cos (2𝜋𝑗𝜔) (6.7) 

   

If we assume the process demonstrates scale invariant properties the following generalization 

is possible. 

 
.𝑍 

( ) − 𝑘𝜇/ (
𝑘

𝑙
)
 

(𝑍 
( ) − 𝑙𝜇) (6.8) 

 This equation is valid for any integer 𝑖 and 𝑗 (with the process being stationary as a 

prerequisite) and any time scale 𝑘 and 𝑙 (Koutsoyiannis, 2002) 

6.4 Stochastic Representation by a Filtered Hurst-Kolmogorov process 

The Filtered Hurst Kolmogorov process is another model that can represent physical 

phenomena with long-range dependence. It is also called Hybrid Hurst-Kolmogorov process 

in its introduction by Koutsoyiannis (2015).   

This process has some advantages over the HK process, while maintaining the persistence or 

antipersistence properties. These are: the variance of the instantaneous process is always finite 

(𝛾  =  𝛾(0)  =  𝜆), while even for 0 <  𝐻 <  0.5 the initial part of the autocovariance 

function for small lags is positive for all variants of the process. A further important feature of 

this process is that it allows explicit control of the asymptotic behaviour of all properties  at 

both ends, which are different at each end, opposite to the HK process, which implies simple 

scaling laws. The asymptotic properties are also easy to calculate. 

The climacogram of the process is given below: 

 

𝛾(𝛥) = 𝜆 (1 + (
𝛥

𝛼
)
  

)

   
 

 (6.9) 

Here 𝛼 and 𝜆 are scale parameters with dimensions ,𝑡- and ,𝑥- , respectively, 𝐻 is the Hurst 

coefficient as in the HK process, a scaling parameter in the interval (0,1), and 𝑀 is a second 

scaling parameter and in the interval (0,1), which will be called the fractal parameter. Both 

parameters are dimensionless. Parameter 𝐻 determines the global properties of the process (as 

𝑡 →  ∞) and 𝑀 determines the local properties (as 𝑡 →  0).  

The process incorporates both the Markov and the HK processes. In the occasion when 

𝐻 =  𝑀 =  0.5, Filtred Hurst-Kolmogorov is practically indistinguishable from a Markov 
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process. Furthermore, as 𝛼 →  0, the process tends to a pure HK process with the same Hurst 

coefficient 𝐻. Additionally, under any parametric scenario, FHK exhibits Markov behavior for 

small time scales (if 𝑀 =  0.5, or similar to Markov if 𝑀 ≠  0.5) and Hurst behavior for 

large time scales. 

6.5 Reproduction algorithm: Symmetric Moving Average scheme (SMA) 

In 2000 a generalized framework for single-variate and multivariate simulation in stochastic 

hydrology was proposed by Koutsoyiannis. It is appropriate for short-term or long-term 

dependency processes and preserves the Hurst coefficient. Simultaneously, it explicitly 

preserves the coefficients of skewness of the processes. 

 The proposed framework incorporates short memory (autoregressive moving average) and 

long-memory (fractional Gaussian noise) models, considering them as special instances of a 

parametrically defined generalized autocovariance function. The generalized autocovariance 

function is then implemented in a generalized moving average generating scheme that yields a 

new time-symmetric (backward-forward) representation. It is called symmetric moving 

average (SMA).It can be used to generate any kind of stochastic process with any 

autocorrelation structure or power spectrum. The SMA scheme is given below: 

 

𝛸 = ∑ 𝑎| |𝑉   

 

    

= 𝑎 𝑉   +⋯+ 𝑎 𝑉   + 𝑎 𝑉 + 𝑎 𝑉   +⋯+ 𝑎 𝑉    (6.10) 

Where q theoretically is infinity but in for practical applications can be restricted to a finite 

number with a small error, as the sequence of weights 𝑎  tends to zero for increasing 𝑗. Σhe 

discrete Fourier transform 𝑠 (𝜔)of the 𝑎  sequence is related to the power spectrum of the 

process 𝑠 (𝜔) by: 

 
𝑠 (𝜔) = √2𝑠 (𝜔) (6.11) 

In addition with the formula 4.7 the discrete Fourier transform can be calculated: 

 𝑠 (𝜔) = 2√(2 − 2𝐻)𝛾 (2𝜔)
 .    (6.12) 

 

The scheme is accompanied by the following formulas: 

 
𝑎 =

√(2 − 2𝐻)𝛾 
1.5 − 𝐻

 (6.13) 

 

 𝑎 ≈
𝑎 
2
,(𝑗 + 1)   . + (𝑗 − 1)   . − 2𝑗   .  (6.14) 
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This method can also preserve the process skewness 𝜉  by appropriately choosing the 

skewness of the white noise 𝜉 . κ corresponds to  the mean. The effectiveness is shown in 

Figure 6.2. The formulas are the following: 

 

(𝑎 + 2∑𝑎 

 

   

)𝐸,𝑉 - = 𝜇 (6.15) 

 
(𝑎 

 + 2∑ 𝑎 
 

 

   
) 𝜉 = 𝜉 𝛾 

 / 
 (6.16) 

 

Figure 6.2 Approximate autocorrelation functions based on HK vs the exact autocorrelation functions of FGN for 
various values of the Hurst exponent H and the number of weights q (Koutsoyiannis, 2002) 

 

  



27 

7. Time’s Arrow  

7.1 Definition 

The term “time‟s arrow” was developed at first by Eddington (1928) to describe time 

directionality, which can be determined by studying the organization of atoms, molecules and 

bodies. He states “Let us draw an arrow arbitrarily. If as we follow the arrow we find more 

and more of the random element in the state of the world, then the arrow is pointing towards 

the future; if the random element decreases the arrow points towards the past. That is the only 

distinction known to physics. This follows at once if our fundamental contention is admitted 

that the introduction of randomness is the only thing which cannot be undone. I shall use the 

phrase „time‟s arrow‟ to express this one-way property of time which has no analogue in 

space. It is a singularly interesting property from a philosophical standpoint. We must note 

that:  

 It is vividly recognized by consciousness.  

 It is equally insisted on by our reasoning faculty, which tells us that a reversal of the 

arrow would render the external world nonsensical.  

 It makes no appearance in physical science except in the study of organization of a 

number of individuals. Here the arrow indicates the direction of progressive increase 

of the random element.” 

7.2 General information and intuitive examples 

Time‟s arrow can be a difficult term to grasp. This is due to the fact that the usual physical 

processes that are comprehended in the everyday life are usually irreversible in time. 

However that is not always the case. Microscopic physics, for example, gives no special status 

to any moment, and it distinguishes only weakly between the direction of the past and that of 

the future. Our intuitive perception of the world as unfolding in time therefore cannot be 

dismissed as being merely subjective. Here are given some information and examples for the 

better understanding of the scientific term.  

This subjective intuitive perspective that we have, that times only moves forward, can help us 

understand an aspect of the problem. Let‟s imagine that we videotape an experiment of a 

dynamic system and reversing the video. For example the physical experiment of a ball falling 

from the sky. The reversed video does not seem very weird for our perception, as it shows a 

ball going up into the air (perhaps it is thrown). In contrast, the ball bouncing on the ground 

until it stays still, after it falls from the sky, is a process that if reversed seems peculiar. The 

reason is that the second process is irreversible in time. A second example is putting some 

milk in a cup of coffee. The reversed video of this process, milk parting the coffee after they 

have been mixed, seems peculiar since it never happens. In reality if we have one molecule of 

coffee and another one molecule of milk it is 100% probable that the milk will part from the 

coffee. It is easily understood that adding more molecules to the experiment just makes the 

probability of this smaller.  
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The direction of time can be also defined by a class of processes that destroy information and 

generate disorder. The irreversible processes that destroy macroscopic information (in the 

coffee-milk example molecular diffusion) are manifestations of the second law of 

thermodynamics. This law states that all natural processes generate entropy, a measure of 

disorder. The irreversible destruction of macroscopic order defines what can be called the 

"thermodynamic" arrow of time. 

On the other hand there are a lot of processes that are irreversible and are diametrically 

opposite. All these processes have a quality in common: they generate order, or information; 

they transform a simpler state into a more complex one. In the phrase of Sir Arthur Eddington, 

they indicate which way "time's arrow" is pointing; they define what can be called the 

"historical" arrow of time (Layzer, 1975). 

7.3 Informational entropy and uncertainty 

The processes that define the historical and the thermodynamic arrows of time generate 

information and entropy mutually. Shannon showed in 1946, that information is part of the 

statistical description of a physical system. It is measured in bits, one bit is the quantity of 

information needed to decide between two equally probable cases. Additionally information 

can also be viewed as a measure of how highly organized the physical systems are. Shannon 

shows that the information content of a system is the minimum number of bits needed to 

encode a completely describe a system statistically.  

The concept of entropy is directly linked to the concept of information. Entropy was first 

defined (by Clausius) in the context of thermodynamics and connected with time 

irreversibility.  It measures the displacement of a system from thermodynamic equilibrium; at 

equilibrium the entropy is maximized. 

Using a formula first produced by Ludwig Boltzmann and J. Willard Gibbs, Shannon defined 

the entropy of information theory. This entropy which measures the uncertainty associated the 

system in statistical terms. The thermodynamic entropy and the statistical entropy of have the 

same mathematical properties and they seem to represent different views of the same subject. 

Entropy and information are related by a simple conservation law, which states that the sum 

of the information and the entropy is constant and equal to the system's maximum attainable 

information or entropy under given conditions. As a result a gain of information is always 

compensated for by an equal loss of entropy.  

The following example and explanation is given by Layzer (1975). Let‟s assume some 

physical system has eight possible states; in binary numbering they could be represented by: 

000, 001,010, 011, 100,101, 110 and 111. To specify a particular state, for example the one 

labeled 001, requires three binary digits, which is the amount of information needed to have 

the information of the exact state. The uncertainty or entropy associated with this description 

is clearly zero. Let‟s now assume we had no information about the state of the system, we 

would assign equal probabilities to each of the eight possible states. In this case the 

information is evidently zero. Since the sum of the entropy and the information in the system 

is constant, the entropy must now be three bits. In general, if a system has 2  possible states, 

where 𝑟 an integer, the maximum quantity information or entropy is equal to the logarithm to 

the base 2 of 2 , or 𝑟. 
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7.4 Irreversibility in stochastic processes 

Many processes occurring in the natural sciences, engineering, finance, and economics 

exhibit some form of nonlinear behavior. This means that some of the characteristics cannot 

be modeled using Gaussian linear processes because time reversibility is not evident. Weiss 

(1975) showed that if the process 𝑥(𝑡) is Gaussian then it is time reversible. As a result a 

directional process cannot be Gaussian. He also showed that a discrete-time autoregressive 

moving-average (ARMA) process is reversible if and only if it is Gaussian. This conclusion is 

very important because is shows that stationary series which show evidence of directionality 

cannot be modeled by Gaussian ARMA models. So other models should be used to model 

accurately this behavior (Koutsoyiannis, 2019).  

As it is previously defined, a stochastic process 𝑥(𝑡) is a collection of (usually infinitely 

many) random variables 𝑥 indexed by t, typically representing time. In turn, a random 

variable, 𝑥, is an abstract mathematical entity, associated with a probability distribution 

function 𝐹(𝑥) ≔ 𝑃*𝑥 ≤ 𝑥+ where 𝑥 is any numerical value numerical value (a regular 

variable).. The stochastic process x(t) represents the evolution of the system over time, while 

a trajectory 𝑥(𝑡) is a realization of 𝑥(𝑡); if it is known at certain points 𝑡 , it is a time series.  

Weiss (1975) defines a stochastic process 𝑥(𝑡), at (continuous) time 𝑡, with 𝑛th 

order distribution function: 

 𝐹(𝑥 , 𝑥 , … , 𝑥 ; 𝑡 , 𝑡 , … , 𝑡 ) ≔ 𝑃{ 𝑥(𝑡 ) ≤ 𝑥 , 𝑥(𝑡 ) ≤ 𝑥 , … 𝑥(𝑡 ) ≤ 𝑥 } (7.1) 

 

as time reversible or time symmetric if its joint distribution does not change after reflection of 

time about the origin, i.e., if for any 𝑛, 𝑡 ;  𝑡 ;  . . . ;  𝑡   ;  𝑡 , 

 𝐹(𝑥 , 𝑥 , … , 𝑥 ; 𝑡 , 𝑡 , … , 𝑡 ) = 𝐹(𝑥 , 𝑥 , … , 𝑥 ;−𝑡 , −𝑡 , … , −𝑡 ) (7.2) 

The next important step studying irreversibility is the method for its detection and 

quantification. A method proposed by Psaradakis (2008) is to measure the probability of the 

differenced process. As the probability is positive, there is a deviation of the median of the 

differenced process from zero.  In a more recent and study, Müller et al. (2017) they propose a 

class of new  ― easy to calculate ―  tests for time reversibility and suggest different ways to 

implement it. They used as an indicator of asymmetry the third moment of differences, but of 

the empirical copulas rather than of the time series. Further, they performed simulations of 

combined sewer systems with original and time-reversed time series and found “significant 

deviations of more than 10%”. In a study by Serinaldi and Kilsby (2016) directed horizontal 

visibilitygraphs (DHVGs) were used to perform an analysis of the dynamics of streamflow 

fluctuations with focus on time irreversibility and long range dependence. The study of 

irreversibility in Koutsoyiannis (2019) states that time asymmetry requires the study of third 

moment 𝜇  and the coefficient of skewness 𝐶  of the process, original and differenced. The 

first moment (mean) of the differenced process is always zero while the second one (variance) 

is always positive and thus he concludes that they don‟t provide indications on time 

asymmetry. Hence, the least-order moment that can be used to detect reversibility is the third. 

The cumulative process enables representation of the process in discrete time 𝜏: 
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𝑥 =

1

𝐷
∫ 𝑥(𝑢)𝑑𝑢 =

𝑋(𝜏𝐷) − 𝑋((𝑡 − 1)𝐷)

𝐷

  

(   ) 

 (7.3) 

𝐷 is the time unit. The symbol for continuous time is 𝑡 and for discrete time is 𝜏.This can be 

expanded to define a discrete time process averaged at scale 𝑘 =  𝜅 𝐷.  

 
𝑥 

( ): =
𝑋(𝜏𝜅𝐷) − 𝑋((𝑡 − 1)𝜅𝐷)

𝜅𝐷
  

 
=
𝑥(   )   , 𝑥(   )   +⋯+ 𝑥  

𝜅
 (7.4) 

To study the time asymmetry of processes we define the differenced process in discrete and 

continuous time, respectively, as: 

 �̃� ∶= 𝑥 − 𝑥   , �̃� , ∶= 𝑥 − 𝑥     

  �̃�(𝑡, 𝐷) ≔  𝑥(𝑡) − 𝑥(𝑡 − 𝐷) (7.5) 

The cumulative process for discrete time is: 

 �̃� = �̃� + �̃� +⋯+ �̃�    

 = 𝑥 − 𝑥 + 𝑥 − 𝑥 +⋯+ 𝑥 −𝑥    (7.6) 

And for continuous time: 

 

�̃�(𝑘, 𝐷) ≔ ∫ �̃�(𝑡, 𝐷)𝑑𝑡 = ∫.𝑥(𝑡) − 𝑥(𝑡 − 𝐷)/ 𝑑𝑡

 

 

 

 

 (7.7) 

 

= ∫𝑥(𝑡)𝑑𝑡 − ∫ 𝑥(𝑡)𝑑𝑡

   

  

= 𝑋(𝑘) − 𝑋(𝑘 − 𝐷) + 𝑋(−𝐷)

 

 

 (7.8) 

For 𝑘 = 𝜅𝐷: 

 �̃�(𝑘, 𝐷) = 𝐷(𝑥 − 𝑥 ) = 𝐷�̃�  (7.9) 

 

For the averaged differenced process at discrete time scale 𝜅 we have: 

  
�̃� 

( ) ≔
�̃�(𝜏𝜅𝐷) − �̃�((𝜏 − 1)𝜅𝐷)

𝜅𝐷
=
�̃�  − �̃�(   ) 

𝜅
  

 

 

 
=
𝑥  − 𝑥(   ) 

𝜅
 (7.10) 

For the original process, averaged at the integer time scale θ, the marginal third moment 
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characteristics are: 

 
𝜇 (𝜅) ≔ 𝐸 0(𝑥 

( ) − 𝜇)
 
1 , 𝐶 (𝜅) ≔

𝜇 (𝜅)

(𝛾(𝜅)) / 
 (7.11) 

 

the second and third moments of the averaged-differenced process: 

 �̃�(𝜅) ≔ 𝑣𝑎𝑟[𝑥 
( )], 𝑣𝑎𝑟[�̃� ] = 𝜅

 �̃�(𝜅) (7.12) 

 
�̃� (𝜅) ≔ 𝐸 0(�̃� 

( ))
 
1 , 𝐶 (𝜅) =

�̃� (𝜅)

(�̃�(𝜅)) / 
 (7.13) 

 

7.5 Irreversibility in streamflow at small scales 

Koutsoyiannis (2019) stated that the irreversibility of streamflow is marked for 

scales of several days and this highlights the need to reproduce it in flood 

simulations. This is offcourse neglected by the models used today. 

 

 

Figure 7.1 Plot of two synthetic time series generated by maximizing time irreversibility properties of a process 
restricted to be marginally Gaussian (N(3, 1)) with lag  one autocorrelation 0.5, so that the variance of the 

differenced process is also 1 (equal to that of the original process). Solution 1 maximizes the skewness of the 
differenced process. (Koutsoyiannis, 2019) 

 

In Figure 7.1 we can see how maximized irreversibility affects time series. It can be 

understood that the hydrograph partly mimics the above behavior. More specifically the 

ascending part of the hydrograph is steeper than the descending one. This property is in fact a 

result of time‟s arrow and can be modeled as a statistical parameter. Koutsoyiannis (2019) 

proposes a model called AMA for this purpose. Mathai and Mujumdar (2019) in recent study 

have also built a model to simulate time irreversible streamflow at multiple sites. Multisite 

correlated streamflow states were generated and then flow sequences that are constructed 
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considering the ascension and recession limbs of the hydrograph at individual sites 

independently.  

In the following figures (7.2, 7.3) real world data is shown to highlight the resemblance with 

the previous figure (7.1). In the figure 7.3 we can see that this behavior is evident at different 

scales. In the next two figures (7.4, 7.5) synthetic time series are plotted to show the 

difference in a time symmetric model and an asymmetric one. 

 

Figure 7.2 Real world data hydrograph 

 
Figure 7.3 Real world data showing irreversibility at multiple scales 
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Figure 7.4 Synthetic  time series with  reversibility parameter equal to13.Produced using the the original 
methodology with the AMA scheme by Koutsoyiannis (2019) 

 

Figure 7.5 Synthetic time series with zero  reversibility. Produced using the time symmetric SMA scheme by 
Koutsoyiannis (2000). 

 

In the figure 7.6 we can see the irreversibility in a river from the USGS database at various 

scales.  
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Figure 7.6 Reversibility test for a station from USGS database. The term ”Skewness ratio” refers to the ratio of 
the skewness of the differenced process and the original process. The code used for its production is given in 

Apendix: C. 

7.6 Reproduction algorithm for irreversible processes of one variable 

Koutsoyiannis (2019) has proposed a mathematical framework to simulate irreversible 

processes. At first the moving average scheme (MA) is used (Koutsoyiannis, 2000), 

 
𝑥 = ∑ 𝑎 𝑣   

 

    

 (7.14) 

where 𝑎  are coefficients to be calculated from the autocovariance function and 𝑣  is white 

noise averaged in discrete-time. Writing the above equation for 𝑥   , multiplying it with the 

MA equation and taking expected values we find the convolution expression: 

 
𝑐 = ∑ 𝑎 𝑎   

 

    

 (7.15) 

 

The key task is to find the sequence of 𝑎 , 𝜂 =  ⋯ ,−1,0,1,…, so that above equation holds 

true. A known solution (Koutsoyiannis 2000) is the symmetric moving average (SMA) 

scheme in which 𝑎   =  𝑎 . 

He also provides a generic solution of an asymmetric moving average scheme in which the 

coefficients 𝑎  are given by: 
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𝑎 = ∫ 𝑒   ( ( )   )𝐴 (𝜔)𝑑𝜔

 / 

  / 

 (7.16) 

Where 𝑖 is the imaginary unit, 𝜃(𝜔) is any (arbitrary) odd real function (meaning 𝜃(−𝜔)  =
 −𝜃(𝜔)) and 

 𝐴 (𝜔) ≔ √2𝑠 (𝜔) (7.17) 

 

The equation can be written also as: 

 
𝑎 = 2∫ cos(2𝜋(𝜃(𝜔) − 𝜂𝜔)) 𝐴 (𝜔)𝑑𝜔

 / 

 

 (7.18) 

 

To calculate the sequence of 𝑎  we must first know the frequency functions 𝐴 (𝜔)  (from the 

power spectrum) and 𝜃(𝜔). For an array of frequencies 𝜔  =  𝑗 𝑤 , 𝑗 =  0,1,… , 𝑞, 𝑤  ≔

 1 ⁄ 𝑞𝐷, we form data arrays (vectors) 𝐴  and 𝐴 , with the superscripts R and I standing for a 

real and an imaginary vector, respectively. On these we perform FFT methodology discussed 

earlier. Both vectors are of size 2𝑞 indexed as 0,… , 2𝑞 –  1. FFT works only if we have 

chosen 𝑞 as a power of 2. When 𝑞 is not a power of 2 DFT (Direct Fourier Transform). The 

real vector has elements: 

 

,𝑨 - =
𝐴 (𝜔 )cos .2𝜋𝜃(𝜔 )/

4𝑞
, 𝑗 = 0, … , 𝑞 (7.19) 

 ,𝑨 - = ,𝑨
 -    , 𝑗 = 𝑞 + 1,… ,2𝑞 − 1 (7.20) 

And the imaginary vector: 

 

,𝑨 - =
𝐴 (𝜔 )𝑠𝑖𝑛 .2𝜋𝜃(𝜔 )/

4𝑞
, 𝑗 = 0,… , 𝑞 − 1 (7.21) 

 ,𝑨 - = 0, 𝑗 = 𝑞 (7.22) 

 ,𝑨 - = −,𝑨 -    , 𝑗 = 𝑞 + 1,… ,2𝑞 − 1 (7.23) 

 

Performing the Fourier transform and getting the real part of the result for 𝑗 =  0,… , 𝑞, we 

will have the sequence of 𝑎  
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7.7 Algorithm modification for further irreversibility conservation 

In the current study there is an attempt to modify the algorithm proposed by Koutsoyiannis 

(2019). The goal is to simulate time series that conserve the irreversibility at larger scales 

without disturbing the balance of the existing method and keeping all of its necessary 

features. The existing algorithm simulates time series preserving irreversibility at only first 

scale therefore the attempt is to preserve irreversibility at both scales: first and second. At first 

it is important to calculate the theoretical moments of the AMA model at the first and second 

scale. 

For simulation length 𝑖, the AMA model can be written as: 

 

𝛸 = ∑ 𝑎      𝑉     

    

   

= 𝑎    𝑉 +⋯+ 𝑎 𝑉       (7.24) 

Where 𝑉  is lognormal white noise. For the first scale we must calculate the second and third 

moment of the differenced and the original sequence respectively. 

The second moment of the original sequence is: 

 

𝑀    .
( )

= ∑ (𝑎      )
 

    

   

 (7.25) 

Also the second moment of the differenced sequence is: 

 

𝑀      .
( )

= ∑ (𝑎      − 𝑎      )
 
+ 𝑎    

 

    

   

 (7.26) 

The third moment of the original sequence is: 

 

𝑀    .
( )

= ∑ (𝑎      )
 

    

   

 (7.27) 

Finally the third moment of the differenced sequence is: 

 

 

𝑀      .
( )

= ∑ (𝑎      − 𝑎      )
 
+ 𝑎    

 

    

   

 (7.28) 

At last, for the second scale we must calculate the second and third moment of the differenced 

and the original sequence respectively. We highlight that at first the process is averaged at the 

second scale and afterwards differenced and not the other way around.  

The second moment of the original sequence at second scale: 
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𝑀    .
( ) (   )

= ∑
(𝑎      + 𝑎      )

4

 

+
𝑎    
4

 
    

   

 (7.29) 

 

Also the second moment of the differenced sequence at second scale is: 

 

 

𝑀      .
( ) (   )

= ∑ [+
(𝑎      + 𝑎    −𝑎      − 𝑎      )

 

4
]

    

   

+
(𝑎  + 𝑎    − 𝑎    )

 

4
+
(𝑎  + 𝑎    )

4

 

+
𝑎    
4

 

 

(7.30) 

The third moment of the original sequence at the second scale is: 

 

𝑀    .
( ) (   )

= ∑
(𝑎      + 𝑎      )

8

 

+
𝑎    
8

 
    

   

 (7.31) 

Finally the third moment of the differenced sequence at the second scale is: 

 

𝑀      .
( ) (   )

= ∑ [−
(𝑎      + 𝑎    −𝑎      − 𝑎      )

 

8
]

    

   

−
(𝑎  + 𝑎    − 𝑎    )

 

8
−
(𝑎  + 𝑎    )

8

 

−
𝑎    
8

 

 

(7.32) 

After calculating the sample moments, computational tools have to equalize between the 

sample (empirical) and the sequence (theoretical) moments so that the parameters are 

satisfied. Optimization tools are used to find the parameters needed. The parameterization 

follows the same methodology as in Koutsoyiannis (2019): A definition of 𝜃(𝜔) as the 

smooth minimum of two hyperbolic functions of frequency, i.e.: 

 
𝜃(𝜔) =

1

𝜁
ln .𝑒   ( ) + 𝑒   (

 
 ⁄   )/ , 𝜃 (𝜔) ≔

𝐶 , 𝜔

𝐶 , +𝜔
+ 𝐶 ,  (7.33) 

After parameter estimation we also use the function of  𝜃(𝜔) that was found to perform the 

Fourier transform and get the real part of the result for 𝑗 =  0,… , 𝑞, At last we have the 

sequence of 𝑎 . At the end we have simulations that conserve reversibility at two scales. For 

example if we choose as the first scale as one hour the second scale to be conserved is two 

hours. 
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8. Case Study: Monocacy River 

8.1 Introduction 

In this chapter there is a case study to test the results from using the modified algorithm 

described in the previous chapter with real data. The case of Monocacy River is investigated. 

The station name is: “MONOCACY RIVER AT BRIDGEPORT” and is located in the state 

Maryland in the U.S.A. The reversibility of the time series is being quantified and conserved 

at both scales (hourly and two hours). In the figure 8.1 daily mean discharge is given for the 

last five years. 

 

Figure 8.1 Daily mean discharge of Monocacy River at Bridgeport, Maryland. 

 

 

Figure 8.2 Monocacy River. 
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8.2 Computational tools 

For the computational part of the study Spyder was used. Spyder is an open source cross-

platform integrated development environment (IDE) for scientific programming in the Python 

language. In Spyder‟s website it is stated:“Spyder is a powerful scientific environment written 

in Python, for Python, and designed by and for scientists, engineers and data analysts.” 

Python is a general purpose language created by Guido van Rossum and first released in 

1991. Python's design philosophy emphasizes code readability . Its language constructs 

and object oriented approach aim to help programmers write clear, logical code for small and 

large-scale projects. 

The following packages were used with Python: 

 Numpy: Base N-dimensional array package 

 Math: for mathematical functions 

 Pandas: data structures and data analysis tools 

 Matplotlib: for plotting  

 Scipy: package for scientific computing  

 Climata: is a pythonic interface for loading and processing time series data from 

climate and flow monitoring stations and observers. climata leverages a number of 

web services as listed below. Climata is powered by wq.io, and shares its goal of 

maximizing the reusability of data parsing code, by smoothing over some of the 

differences between various data formats. 

For optimization the scipy.optimize.minimize function was used. It minimizes a scalar 

function of one or more variables using Sequential Least SQuares Programming 

(SLSQP). 

 

8.3 Database 

Time series were downloaded from the water department of the United States Geological 

Survey (USGS). USGS is the largest provider of in situ water data in the world, and the Water 

Resources Mission is committed to observe, understand, predict, and deliver water data and 

information.  

 The USGS works with partners to monitor, assess, conduct targeted research, and deliver 

information on a wide range of water resources and conditions including streamflow, 

groundwater, water quality, and water use and availability. It has collected water-resources 

data at approximately 1.5 million sites in all 50 States. 

There is a variety of types of data, but generally fit into the broad categories of surface water 

and groundwater. Surface-water data, such as gage height (stage) and streamflow (discharge), 

are collected at major rivers, lakes, and reservoirs. Groundwater data, such as water level, are 

collected at wells and springs. Water-quality data are available for both surface water and 

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Code_readability
https://en.wikipedia.org/wiki/Object-oriented_programming
http://wq.io/wq.io
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groundwater. Examples of water-quality data collected are temperature, specific conductance, 

pH (www.usgs.gov).  

8.4 Station Information 

 

Figure 8.3 Monocacy River at Bridgeport. 
 

 
Figure 8.4 Monocacy River at Bridgeport Station. 

The exact location of the station is: (39°40'44.6, 77°14'04.3). It is in Frederick County, 

Maryland and the Hydrologic Unit‟s number is: 02070009. It is located on right bank at 

downstream side of bridge on State Highway 140 at Bridgeport, 0.9 mi upstream from Cattail 

Branch, 3.4 miles northwest of Taneytown, 4.8 miles downstream from confluence of Rock 

and Marsh Creeks at Pennsylvania-Maryland State line, and 52 miles upstream from mouth. 

The drainage area is 173 miles
2
 and the period of record is from May 1942 to now. 

Some remarks are that there is an occasional regulation at low flow from Lake Heritage and 

other unknown sources upstream from station.  

Extremes for the period of record: maximum discharge, 24,400 ft3/s, June 19, 1996, gage 

height, 25.42 ft; minimum discharge, 0.0 ft3/s, July 24-29, 1966. 

Extremes outside the period of record Flood of Aug. 24, 1933, reached a stage of about 25 ft, 

present site and gage datum, from floodmarks, discharge, about 23,000 ft3/s. Stage exceeded 

that of June 1889, from information by local residents (www.usgs.gov). 
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8.5 Methodology 

The methodology implemented is discussed in this section.  

First of all the station was picked randomly. The time series was downloaded with the help of 

climata.usgs package for a period of 5 years (from November 2014 until November 2019). 

The data was at first 15 minute measurements but was aggregated to 1 hour scale – relevant 

scale for hydrosystem management.  

After that, stationarization of the time series was considered important to take place. 

Specifically the effect of the annual cycle was “removed” by multiplying the discharge values 

by 12 different coefficients, one per month, summing up to 1. These coefficients were found 

by minimizing the total variance of the transformed time. For optimization the 

scipy.optimize.minimize function was used. It minimizes a scalar function of one or more 

variables using Sequential Least SQuares Programming (SLSQP). A python function was 

developed to perform the above task. The function uses as an input the station “code number” 

and gives back the time series aggregated at hourly scale and stationarized. 

Additionally the data had to be fitted into the Filtered Hurst Kolmogorov model to estimate 

the parameters 𝐻, 𝑀 and 𝑎. The time series were normalized at first. For these tasks another 

function was built. The function used both the climacogam and the climacospectrum 

(empirical and theoretical) to fit the data giving emphasis to the climacospectrum at the finer 

scales and to the climacogram in the greater scales. The reason behind that is in the theoretical 

context of these stochastic tools and has been discussed earlier. Also the fitting was not done 

with the pure theoretical climacogram but with the one adapted for bias, in a way also 

discussed earlier. The same happened with the climacospectrum.  

More Python functions were built to calculate the discrete power spectrum through FFT and 

the AMA coefficient. These were translated to Python from the VBA file accompanying the 

study by Koutsoyiannis (2019).  

The next step was to develop a Python function to detect reversibility scalewise. It aggregates 

the data until scale 100 is reached and calculates the sample skewness of the differenced and 

the original process. The ratio is the reversibility estimator and the output is  a plot. Also the 

reversibility of scale 1 and 2 was important to be calculated because it was to be conserved 

later by the algorithm. 

In the first case, when reversibility is conserved at only scale one, optimization tools are used 

to find the parameters needed to find the constant  𝜃. In the second case for sequence 𝜃(𝜔) 
which is defined as the smooth minimum of two hyperbolic functions of frequency, again 

optimization was used. The concept is that after building functions to calculate the sample and 

theoretical moments, computational tools have to minimize difference between the 

sample(real) and the sequence(theoretical) moments. In the second case the difference is that 

this happens for two scales and the square error is minimized. The output is the 𝜃(𝜔) 
sequence. 

With the knowledge of the power spectrum and the 𝜃 or 𝜃(𝜔) sequence we are able to 

calculate the AMA coeffiecients, the 𝑎  sequence through another Python function. After that 

synthetic time series can be simulated. 

In the end we make 100 simulations with 10000 length for each case and test them for 

reversibility using the same criterion as before (skewness ratio). The average of the 
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simulations at each scale is being highlighted in black and each simulation is shown in grey, a 

denotation of variability. 

8.6 Results 

In figure 8.5 the reversibility of  Monocacy River at Bridgeport scalewise. The ratio at scale 

one was calculated as: 𝑟 = 1.390 and at scale two: 𝑟 = 1.197. It seems that it safe to say 

that the physical process is reversible at scale 100 (approximately 4 days). 

 

Figure 8.5 Reversibility test. 
 

As described before the processed time series were fitted into the Filtered Hurst Kolmogorov 

model through both the climacogram (8.6) and the climacospectrum (8.7). The results were 

assumed satisfactory. The parameters calculated were: 𝑎 = 19.399,𝐻 = 0.628,𝑀 = 0.724 
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Figure 8.6 FHK Climacogram data fit. 

 
Figure 8.7 FHK Climacospectrum data fit. 

In the following figure the discrete power spectrum is shown (8.8). However it is drawn in a 

continuous line. 
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Figure 8.8 Descrite Power Spectrum 

In figure 8.9 we can see the 𝑎  sequence for the first case of conserving the reversibility at 

only one scale. 

 
Figure 8.9 𝒂𝜼 sequence results for the first case with constant 𝜽. 

A stated before 𝜃(𝜔) which is defined as the smooth minimum of two hyperbolic functions of 

frequency, after optimization was used the following sequence was found. In the plot (8.10) it 

seen as a line but in reality there are 1024 𝜃(𝜔)parameters. 
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Figure 8.10 𝜽 sequence for the second case of conserving reversibility at both scales. 

After using the 𝜃(𝜔) parameters, the the 𝑎  sequence for the second case is found (8.11). In 

this case for conserving the reversibility at both scales. 

 

 

 
Figure 8.11 𝒂𝜼 sequence results for the second case with varying  𝜽. 

In the end we have the results from 100 simulations of 10000 in length for the first (8.12) and 

the second case (8.13) respectively. The red dots indicate the reversibility that was aimed to 

be conserved. It is shown that the irreversibility targets are achieved. It is also observed that 

the first method cannot achieve the second scale target efficiently as it was expected. 

However it is significantly close to it. 
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Figure 8.12 100 simulations with 10000 length, conserving the reversibility only at the first scale. 

 
Figure 8.13 100 simulations with 10000 length, conserving the reversibility at both first and second scale. 
 

8.7 Conclusions 

The results seem to be generally satisfying. The optimization was successful for both the first 

and the second case finding adequate 𝜃 parameters.  

 More specifically for the first case, where the reversibility has to be conserved only for the 

first scale, the average of the simulations is very close to the sample skewness ratio. This case 

study further verifies the effectiveness of the original algorithm and model. The original 

algorithm actually tends to conserve also the second scale (through the power spectrum of the 

process). That means that the new modification acts as a small adjustment. 
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In the second case again there is high precision with only 100 simulations. The average of the 

simulations is very close to the sample skewness ratio at both scales this time.  

A higher skewness ratio means that more simulations are needed to achieve the same result. 

At last the modification affects the irreversibility at even greater scales implicitly. 

Furthermore the same method could be used to conserve the reversibility at even greater 

scales with high precision. 

  



48 

9. Irreversibility investigation from the USGS Database 

9.1 Introduction 

In this section there is an attempt to quantify the irreversibility at the first 100 scales from a 

large sample of streamflow data. The aim is to study a lot of stations and find the average 

value of skewness ratio for each scale. The first case is the state of Maryland consisting of 

222 stations (9.1). The second case is an even bigger dataset consisting 762 stations around 

the USA (9.2). At first the station number was higher (802) but some stations were excluded 

due to data management criteria. The criterion for missing values was 10%. In the first case 

the data recording period was 2013-2018 or less (mostly 5 year in length). In the second case 

the data recording period was 1900-2019 or less (mostly 20-30 years in length). 

9.2 Methodology 

The methodology is quite similar to the one for the Monocacy River reversibility test. The 

dataset was downloaded with the exact wanted timeframe using the climate package. The data 

was at first 15 minute measurements but was aggregated to 1 hour scale – relevant scale for 

hydrosystem management. After that, stationarization of the time series took place. 

Specifically the effect of the annual cycle was “removed” by multiplying the discharge values 

by 12 different coefficients, one per month, summing up to 1. These coefficients were found 

by minimizing the total variance of the transformed time. For optimization the 

scipy.optimize.minimize function was used. A python function was developed to perform the 

above task. The function uses as an input the station “code number” and gives back the time 

series aggregated at hourly scale and stationarized. 

The next step was to develop a Python function to detect reversibility scalewise. It aggregates 

the data until scale 100 is reached and calculates the sample skewness of the differenced and 

the original process. For each station the data were saved in a matrix and after the average and 

the variance for each scale were calculated, the plots were produced. 

9.3 Results 

The results are presented in the form of plots. The skewness ratio of the first scale for the two 

cases is 2.42 and 2.51 respectively. The skewness ratios of the second scale for the two cases 

are 1.7 and 1.9 respectively. The variance at the first scale of the second case is 43.58 and for 

the second 7.65 (9.3). 
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Figure 9.1 Maryland, 222 stations skewness ratio. 

 

Figure 9.2 Skewness ratio from 762 stations around USA. 
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Figure 9.3 Variance of the skewness ratio of the second case. 

9.4 Conclusions 

The conclusion from the above is that the reversibility of streamflow in the USA at least, has 

expected value of skewness ratio at the first scale around 2.5 and at the second scale around 

1.9. However this result has a very high variance at the first scale that tends to get smaller at 

as the scales get higher. 
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10.  Conclusions and Future Research 

Uncertainty is a major factor in physical sciences and engineering. The main purpose of 

uncertainty analysis is to quantify the uncertainty by estimating statistical properties of the 

system outputs that are affected by the stochastic nature of the natural process or sensitivity in 

the initial conditions.  

It is essential to study he probabilistic behavior of an engineering system is essential 

considering that uncertainty issues are important and must be managed. The true distribution 

for the system response subject to parameter uncertainty is a lot of times difficult or even 

impossible sometimes to infer. This is due to the complexity of the hydrosystems. In such 

cases, Monte Carlo simulation is a very useful tool to provide numerical estimations of the 

stochastic features of the system response. 

Time‟s arrow has an important role in science and is related to randomness and uncertainty. It 

has been implemented in stochastics for some time and it has recently attracted attention in 

hydrological relevant publications. Time asymmetry in stochastic processes is synonymous 

with steeper ascending parts and gradual descending parts in a realization. The same happens 

in a hydrograph where irreversibility is manifested by the steeper rise of the climbing limb in 

contrast to the falling limb. We try to reproduce this behavior through the concept of time 

asymmetry.   Some studies have found that the irreversibility of streamflow is marked for 

scales of several days and this highlights the need to reproduce it in flood simulations. 

In this study real world streamflow data from a large database i.e. the USGS database are used 

to investigate the irreversibility of hourly scale streamflow time series at scales up to one 

hundred hours. The aim is estimate the temporal asymmetry of streamflow data at fine 

timescales in order to assess the importance of taking it into account in its modelling. The 

reversibility of streamflow in the USA, has expected value of skewness ratio at the first scale 

around 2.5 and at the second scale around 1.9. However this result has a very high variance at 

the first scale that tends to get smaller at as the scales get higher. 

This study proposes a modification to the existing method by Koutsoyiannis (2019) that 

conserves irreversibility only at the first scale and makes it capable of preserving the 

irreversibility simultaneously at the first and second scale. To test the method, we use real 

world data. The results verify the method successfully. 

The modification affects the irreversibility at even greater scales implicitly. Furthermore the 

same method could be used to conserve the reversibility at even greater scales. 

Temporal asymmetry investigation from large databases around the world should be a topic 

for future research. Other research topics could be the connection of temporal asymmetry with 

conceptual characteristics of the basin e.g. the surface area. Downstream stations are 

suspected to have higher irreversibility than the upstream ones and this could also be studied. 

Parametric equations could be made for further irreversibility conservation. At last other odd 

functions could be used as the 𝜃(𝜔) function to conserve irreversibility at greater scales 

implicitly. 
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APENDIX A 

Models for AMA (models_for_AMA) 

def FHK_Cauchy_(n, M, H, a, la): 

 import numpy as np 

gamma_k=np.zeros((n+2)) 

 c_h=np.zeros((n+2)) 

for i in range(0, n+2): 

   gamma_k[i]=la * (1 +(i/ a) ** (2 * M)) ** ((H - 1) / M) 

 for i in range(0, n+1):    

   c_h[i]=((i-1 ) ** 2 * gamma_k[ i-1 ] + (i+1 ) ** 2 * gamma_k[... 

...i+1 ]) / 2 - (i) ** 2 *gamma_k[i] 

 c_h[0]=gamma_k[1] 

 c_h=c_h[:-1] 

return c_h 

 

def Markov_(n, a, la): 

 import numpy as np 

 import math 

 #import matplotlib.pyplot as plt 

#import pandas as pd 

 n=1024 

 la=1 

 a=20 

 gamma_k=np.zeros((n+1)) 

 c_h=np.zeros(n+1) 

#la einai to λ =γ(0) 

 gamma_k[0]=la 

 for i in range(1, n+1): 

   gamma_k[i]=(2 * la) * (a / i) * (1 - (1 -... 

... math.exp((-i) / a)) * (a / i)) 

 c_h[0]=gamma_k[1] 

 for i in range(1, n):       

   c_h[i]=((i - 1) ** 2 * gamma_k[ i - 1] + (i + 1) ** 2... 

... * gamma_k[ i + 1]) / 2 - (i) ** 2 *gamma_k[i] 

return c_h, gamma_k  
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APENDIX Β 

Spectra for AMA (last_try) 

def DFT_(f,t): 

    import numpy as np 

    import math 

    n=f.shape[0]+1 

    df=np.zeros((n,2),dtype=np.single) 

    w =np.float16( 2 * math.pi / n) 

    for k  in range (0,n - 1): 

          for M in range(0, n - 1):    

            c = math.cos(k * w * M) 

            S = math.sin(k * w * M) * t 

            df[k, 0] = df[k, 0] + f[M, 0] * c + f[M, 1] * S 

            df[k, 1] = df[k, 1] + f[M, 1] * c - f[M, 0] * S         

          if t == 1 : 

            df[k, 0] = df[k, 0] / n 

            df[k, 1] = df[k, 1] / n 

            #print('dft mpike2') 

    for k in range( 0, n - 1): 

         f[k, 0] = df[k, 0] 

         f[k, 1] = df[k, 1]             

    return f 

  

def FFT__(f, t): 

 #print(t) 

 import math 

 n=f.shape[0] 

 M=math.log(n)/math.log(2) 

 for j in range(1 , int(M)+1): 

  l = int(n / 2 ** j) 

  for k in range( 0 , n ,2 * l): 

     w =( math.pi / l) 

     for i in range( 0 , l ): 

      c =( math.cos(i * w)) 

      S =(math.sin(i * w) * t) 
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      x = k + i 

      y = k + i + l 

      f[x, 0] = f[x, 0] + f[y, 0] 

      #if (i==0) and (j==1): 

       #   print (f[0,0]) 

      f[x, 1] = f[x, 1] + f[y, 1] 

      tr = (f[x, 0] - f[y, 0] - f[y, 0]) 

      ti = (f[x, 1] - f[y, 1] - f[y, 1]) 

      f[y, 0] = tr * c + ti * S 

      f[y, 1] = ti * c - tr * S 

       

 f=Bit_Reverse (f, n) 

  

 if abs(t-1)<0.1 : 

    for i in range (0, (n )): 

        f[i, 0] = f[i, 0] / n 

        f[i, 1] = f[i, 1] / n 

         

  

 return f 

def Bit_Reverse(f,n): 

    j = 0 

    for i in range (0, n - 1): 

          if i < j : 

             t=f[i, 0] #swaping 

             f[i, 0] =f[j, 0] 

             f[j, 0]=t 

              

             t=f[i, 1] #swaping 

             f[i, 1] =f[j, 1] 

             f[j, 1]=t  

             

          k = n / 2      

          while k<(j+1) : 

              j = j - k 

              k = k / 2        

          j = j + k 
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          j=int(j) 

           

    return f 

def FFTPowSpec_(A): 

    import numpy as np 

    # n=2**n+1 

    #n=1025 KANONIKA 

    n=1025 

 

    f=np.zeros((2*n-3+1,2)) 

    df=np.zeros((n-1+1,2)) 

    for i in range( 0 , n ): 

      f[i,0] = 4 * (n - 1) * A[i ] 

       

    for i in range( n , 2 * n - 2): 

      f[i,0 ] = f[2 * n - i - 2,0] 

       

    f=FFT__ (f, 1) 

  

    for i in range(0 , n ): 

      df[i, 0] = (i) / 2 / (n-1) 

      df[i, 1] = f[i,0] 

      #if df[i,1]<0: 

          #print(df[i,1]) 

          #import sys 

          #sys.exit("Error message") 

          

    return df 

        df[i + n - 1-1, 1] = f[2 * (n - 2) + 2 - i-1, 0]#to allaksa 

         

    def FFT_AMACoef_(spectrum, theta): 

    import last_try 

  #  import pandas as pd 

    import numpy as np 

    #theta=0.0625 

    #spectrum=pd.read_excel... 

...(r'C:\Users\USER\Desktop\gia_python_paradeigma9.xlsx')  
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    #spectrum=pd.DataFrame.to_numpy(spectrum)  

    #spectrum=spectrum[:,1] 

    n=spectrum.shape[0] 

    th=np.zeros((n)) 

    th[1:n]=theta 

    th[0]=0 

    #import numpy as np 

    import math 

     

    #n=spectrum.shape[0] 

    ss=np.zeros((n))   

    for i in range( 0 , n ):    

        ss[i] = (2 * spectrum[i ]) ** 0.5 * … 

…math.cos(2 * math.pi * th[i]) / (4 * (n-1 )) 

    f=np.zeros((2*n-2,2)) 

    for i in range( 0 , n ): 

        f[i, 0] = ss[i] 

        f[i, 1] = ss[i] * math.tan(2 * math.pi * th[i]) 

    f[n - 1, 1] = 0 

    for i in range ( n, 2 * n - 2): 

        f[i, 0] = f[2 * n - i - 2, 0] 

        f[i, 1] = -f[2 * n - i - 2, 1] 

    f=last_try.FFT__(f,-1) 

    df=np.zeros((2 * (n - 1) + 1, 2)) 

    for i in range(0 , n ): 

      #print(i + n - 1, 2 * (n - 2) + 2 - i) 

      df[i, 0] = i - n + 1 

      df[i + n - 1, 0] = i 

      df[i, 1] = f[n - 1 - i, 0] 

      if i == 0 : 

        df[i + n - 1, 1] = f[n - 1, 0]#to allaksa 

      else: 

        df[i + n - 1, 1] = f[2 * (n - 2) + 2 - i, 0]#to allaksa 

    return df    

def FFT_AMACoef_var_theta(spectrum, theta): 

    import last_try 

  #  import pandas as pd 
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    import numpy as np 

    #theta=0.0625 

    #spectrum= pd.read_excel 

(r'C:\Users\USER\Desktop\gia_python_paradeigma9.xlsx')  

    #spectrum=pd.DataFrame.to_numpy(spectrum)  

    n=spectrum.shape[0] 

    th=theta 

    #import numpy as np 

    import math 

    #n=spectrum.shape[0] 

    ss=np.zeros((n)) 

    for i in range( 0 , n ):   

        ss[i] = (2 * spectrum[i ]) ** 0.5 * math.cos(2 * math.pi * 

th[i]) / (4 * (n-1 )) 

    f=np.zeros((2*n-2,2)) 

    for i in range( 0 , n ): 

        f[i, 0] = ss[i] 

        f[i, 1] = ss[i] * math.tan(2 * math.pi * th[i]) 

    f[n - 1, 1] = 0 

    for i in range ( n, 2 * n - 2): 

        f[i, 0] = f[2 * n - i - 2, 0] 

        f[i, 1] = -f[2 * n - i - 2, 1] 

    f=last_try.FFT__(f,-1) 

    df=np.zeros((2 * (n - 1) + 1, 2)) 

    for i in range(0 , n ): 

      #print(i + n - 1, 2 * (n - 2) + 2 - i) 

      df[i, 0] = i - n + 1 

      df[i + n - 1, 0] = i 

      df[i, 1] = f[n - 1 - i, 0] 

      if i == 0 : 

        df[i + n - 1, 1] = f[n - 1, 0]#to allaksa 

      else: 

        df[i + n - 1, 1] = f[2 * (n - 2) + 2 - i, 0]#to allaksa 

    return df    
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APENDIX C 

Scripts for USGS Database study 

 

Script: Reversibility_test_2 

import numpy as np 

import math  

import pandas as pd 

import scipy.stats 

import matplotlib.pyplot as plt 

def aggr(n,A): 

     

    if A.shape[0]>n: 

        B=np.zeros(np.int(A.shape[0]/n)) 

        B[0]=np.average(A[0:n]) 

        for i in range(1,B.shape[0]): 

          B[i]=np.average(A[i*n:(i+1)*n])   

        return B 

     

def dif_proc_(A): 

        dif_proc= np.empty((A.shape[0]-1,1)) 

        for i in range(0,A.shape[0]-1): 

         dif_proc[i]=A[i+1]-A[i] 

        return dif_proc      

 

def reversibility_test(A,name):         

         

    max_=100 

    intervals=100 

    k=np.linspace(1,max_,intervals,dtype=int) 

    l=np.zeros((k.shape[0]+1,1)) 

    for i in range(0,(k.shape[0])): 

     q1=scipy.stats.skew(dif_proc_(aggr(k[i],A)),bias=False, 

nan_policy='omit') 

     q2=scipy.stats.skew(aggr(k[i],A),bias=False, nan_policy='omit') 

     l[i+1]=q1/q2 

    l[0]=0  
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    plt.plot(l) 

    plt.xscale('log') 

    plt.title(name) 

    plt.xlabel('Scale(1hr)') 

    plt.xlim(1, 200) 

    plt.ylabel('Skewness ratio') 

    plt.grid(True) 

    #plt.show() 

    plt.savefig(name,dpi=300) 

    print(l[1],l[2]) 

    plt.close() 

    import winsound 

    duration = 1000  # milliseconds 

    freq = 440  # Hz 

    winsound.Beep(freq, duration) 

     

def reversibility_test_no_plot(A,name):         

         

    max_=100 

    intervals=100 

    k=np.linspace(1,max_,intervals,dtype=int) 

    l=np.zeros((k.shape[0]+1)) 

    for i in range(0,(k.shape[0])): 

     q1=scipy.stats.skew(dif_proc_(aggr(k[i],A)),bias=False, 

nan_policy='omit') 

     q2=scipy.stats.skew(aggr(k[i],A),bias=False, nan_policy='omit') 

     l[i+1]=q1/q2 

    l[0]=0  

    return l 

 

Script:Rev_test_generator 

#import sys 

#sys.path.append(r'C:\Users\guest13\Desktop\python_path') 

import pandas as pd 

import numpy as np 

from stationarize_new import import_and_stationarise 

#import matplotlib.pyplot as plt 
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from climata.usgs import InstantValueIO,DailyValueIO 

from scipy.optimize import minimize 

 

 

#from reversibility_test_2 import reversibility_test 

from reversibility_test_2 import reversibility_test_no_plot 

#xronoseira = pd.read_excel 

(r'C:\Users\USER\Desktop\gia_python_paradeigma4.xlsx')  

#xronoseira['values'] = xronoseira['values'].apply(lambda x: 

'{0:0>8}'.format(x)) 

#xronoseira=pd.read_excel() 

#xronoseira=np.loadtxt('C:\\Users\\USER\\Desktop\\zeros.txt',dtype=s

tr) 

df = pd.read_csv('station_ids_final.txt', dtype = str,header=None) 

A=pd.DataFrame.to_numpy(df ,dtype=str) 

#matr=np.zeros((7951,101)) 

matr=np.load(r'C:\Users\USER\Desktop\python_path\matr.npy') 

k=np.load(r'C:\Users\USER\Desktop\python_path\k.npy') 

for i in range(k,0,-1): 

    try: 

        station_id = A[i,0] 

        #station_id="03076500" 

        a=import_and_stationarise(station_id) 

        #reversibility_test(a[0],a[1]) 

        matr[i,:]=reversibility_test_no_plot(a[0],a[1]) 

        print(i) 

        k=i 

        np.save('k',k) 

        np.save('matr',matr) 

    except UnboundLocalError: 

        pass 

    except ConnectionError: 

        np.save('matr',matr) 

 

    except TypeError: 

        pass 

 

Script:stationarize_new 



64 

import pandas as pd 

def import_and_stationarise(station_id):    

     

    from climata.usgs import InstantValueIO,DailyValueIO 

    import numpy as np 

    from scipy.optimize import minimize 

 

    #print(station_id) 

    # set parameters 

    #station_id = "01496200" 

    #station_id = "01484719" 

    param_id = "00060" 

     

    datelist =... pd.date_range(start='1900-10-01',end='2019-12-

12',freq='15T').tolist() 

    data = InstantValueIO(start_date=datelist[0],end_date=datelist[-

1],station=station_id,parameter=param_id,) 

    # create lists of date-flow values 

    flow_=np.empty((1000000,1)) 

    for series in data: 

        flow_ = [r[1] for r in series.data] 

        dates = [r[0] for r in series.data] 

    flow_=np.asarray(flow_) 

    #plt.plot(dates, flow) 

    #plt.xlabel('Date') 

    #plt.ylabel('Streamflow') 

    #plt.title(series.site_name) 

    #plt.xticks(rotation='vertical') 

    #plt.show() 

    name=series.site_name 

    n=len(flow_) 

     

    cn=0 

    for i in range (0,flow_.shape[0]): 

        if flow_[i]<0.5: 

            cn=cn+1 

        if flow_[i]<0.0: 
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            flow_[i]=np.NaN 

#    

np.savetxt(str(station_id)+'_'+str(name),(flow_,dates),delimiter=" 

",header=str(station_id)+' '+str(name)+' '+'Missing Values'+' '+ 

str(cn/flow_.shape[0])+'%')         

    flow_=pd.Series(flow_) 

    flow_.index=dates 

    flow_.to_csv(str(station_id)+'_'+str(name)+'.txt') 

#    

np.savetxt(str(station_id)+'_'+str(name),(flow_,dates),delimiter=" 

")         

 

    if (cn/flow_.shape[0])>0.1: 

        print('too few') 

        return 

    month_=np.zeros(n,dtype=np.int8) 

    for i in range (0, n): 

        month_[i]=np.int(dates[i].month) 

    del data,dates,datelist 

    flow1_=np.empty((n,1)) 

    flow1_[:,0]=0.0283168466*flow_ 

         

    const=np.empty(12) 

    const[:]=0.08 

    flow2=np.empty((n,1)) 

     

    def constraints1(const) : 

      return sum(const)-1 

 

Script:usgs_stationarise 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from climata.usgs import InstantValueIO,DailyValueIO 

from scipy.optimize import minimize 

 

 

 

def import_and_save(station_id):    
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    param_id = "00060" 

     

    datelist = pd.date_range(start='2013-10-01',end='2018-10-

1',freq='H').tolist() 

    data = InstantValueIO(start_date=datelist[0],end_date=datelist[-

1],station=station_id,parameter=param_id,) 

    # create lists of date-flow values 

    flow_=np.empty((360000,1)) 

    for series in data: 

        flow_ = [r[1] for r in series.data] 

        dates = [r[0] for r in series.data] 

    flow_=np.asarray(flow_) 

 

    name=series.site_name 

     

     

    np.savetxt(str(station_id)+'_'+str(name),flow_,delimiter=" 

",header=str(station_id)+' '+str(name)) 

    cn=0 

    for i in range (0,flow_.shape[0]): 

        if flow_[i]<0.5: 

            cn=cn+1 

    if (cn/flow_shape[0])>0.1: 

        return 

    return flow_ 

def stationarise(station_id):    

 

    param_id = "00060" 

     

    datelist = pd.date_range(start='2013-10-01',end='2018-10-

1',freq='H').tolist() 

    data = InstantValueIO(start_date=datelist[0],end_date=datelist[-

1],station=station_id,parameter=param_id,) 

    # create lists of date-flow values 

    flow_=np.empty((360000,1)) 

    for series in data: 

        flow_ = [r[1] for r in series.data] 

        dates = [r[0] for r in series.data] 
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    flow_=np.asarray(flow_) 

 

    name=series.site_name 

    n=len(flow_) 

    month_=np.zeros(n,dtype=np.int8) 

    for i in range (0, n): 

        month_[i]=np.int(dates[i].month) 

    del data,dates,datelist 

    flow1_=np.empty((n,1)) 

    flow1_[:,0]=0.0283168466*flow_ 

         

    const=np.empty(12) 

    const[:]=0.08 

    flow2=np.empty((n,1)) 

     

    def constraints1(const) : 

      return sum(const)-1 

     

    cons = [{'type':'eq', 'fun': constraints1}]  

    bnds = ((0, None), (0, None),(0, None), (0, None),(0, None), (0, 

None),(0, None), (0, None),(0, None), (0, None),(0, None), (0, 

None)) 

     

    def var_(const): 

     

     flow2[:,0]=flow1_[:,0]*const[month_[:]-1] 

     var_=np.std(flow2) 

     ret=abs(var_) 

     print (ret) 

     return ret 

     

    rez=minimize(var_,const,constraints=cons,bounds=bnds) 

    const=rez['x'] 

    flow2[:,0]=flow1_[:,0]*const[month_[:]-1]       

     

    def aggr_sum(n,A):     

     if A.shape[0]>n: 
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        B=np.zeros(np.int(A.shape[0]/n)) 

        B[0]=np.sum(A[0:n]) 

        for i in range(1,B.shape[0]): 

          B[i]=np.sum(A[i*n:(i+1)*n])   

        return B     

    flow_1hr=aggr_sum(4,flow2) 

    return flow_1hr,name 

 

Script: maryland_skewness_ratio 

import numpy as np 

 

import matplotlib.pyplot as plt 

fig=np.zeros((101)) 

for i in range(0,100): 

 fig[i]=np.mean(matr[:,i]) 

for i in range (0,222): 

 plt.plot(matr[i,0:101],'grey',linewidth=1.5,alpha=0.4) 

  

plt.plot(fig[0:101],'black',linewidth=2) 

plt.ylim(0, 10) 

plt.xlim(1, 100) 

plt.xscale('log') 

#plt.title('Simulations using AMA at scale 1hr and 2hr') 

plt.xlabel('Scale(1hr)') 

plt.ylabel('Skewness ratio') 

plt.grid(True) 

#plt.show() 

plt.savefig('Maryland_sk',dpi=300) 

plt.close() 

 

Script: import_usgs_and_normalise 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from climata.usgs import InstantValueIO,DailyValueIO 

from scipy.optimize import minimize 
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# set parameters 

station_id = "01639000" 

param_id = "00060" 

 

datelist = pd.date_range(start='2013-10-01',end='2018-10-

1',freq='15T').tolist() 

data = InstantValueIO(start_date=datelist[0],end_date=datelist[-

1],station=station_id,parameter=param_id,) 

# create lists of date-flow values 

flow_=np.empty((360000,1)) 

for series in data: 

    flow_ = [r[1] for r in series.data] 

    dates = [r[0] for r in series.data] 

flow_=np.asarray(flow_) 

#plt.plot(dates, flow) 

#plt.xlabel('Date') 

#plt.ylabel('Streamflow') 

#plt.title(series.site_name) 

#plt.xticks(rotation='vertical') 

#plt.show() 

n=len(flow_) 

n1=4 

n2=np.int(n/n1) 

month_=np.zeros(n2,dtype=np.int8) 

for i in range (0, n2): 

    month_[i]=np.int(dates[i*n1].month) 

del data,dates,datelist 

flow1_=np.empty(n) 

flow1_[:]=0.0283168466*flow_ 

 

def aggr_sum(n,A):     

 if A.shape[0]>n: 

    B=np.zeros(np.int(A.shape[0]/n)) 

    B[0]=np.sum(A[0:n]) 

    for i in range(1,B.shape[0]): 

      B[i]=np.sum(A[i*n:(i+1)*n])   

    return B     
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flow3=np.empty((n2,1)) 

flow3=aggr_sum(4,flow1_) 

 

d = {'col1': (flow3), 'col2': (month_)} 

df_=pd.DataFrame(index=None,data=d,dtype=float) 

 

mean_=df_.groupby(['col2']).mean() 

mean_1=pd.DataFrame.to_numpy(mean_) 

std_=df_.groupby(['col2']).std() 

std_1=pd.DataFrame.to_numpy(std_) 

flow2_=np.empty((n2,1)) 

flow4=np.empty((n2,1)) 

flow2_[:,0]=flow3[:] 

 

flow4[:,0]=(flow2_[:,0]-mean_1[month_[:]-1,0])/std_1[month_[:]-1,0] 

var_epal=np.var(flow4) 

mean_epal=np.mean(flow4) 
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APENDIX D 

Scripts about parameter estimation 

 

 

Script:theta_parameter 

def theta_parameter(spectrum,A):#spectrum momo h mia sthlh, A h 

xronoseira pou tha vrethei to skewness ratio 

    X1=spectrum 

     

    def rev_parameter(A): 

         

        sh=A.shape[0] 

        skewA=(scipy.stats.skew(A[0:sh-1],bias=False, 

nan_policy='omit')) # unbiased, omit agnoei ta NaN 

        skewAdif=(scipy.stats.skew((A[0:sh-1]-A[1:sh]),bias=False, 

nan_policy='omit')) 

        rev_param=skewAdif/skewA 

        return rev_param 

     

    rev_param=rev_parameter(A) 

    def theta(theta): 

           

      X=AMA_coeffiecient.FFT_AMACoef_(X1,theta) 

      X=X[:,1] 

      X_dif=X[1:(X.shape[0])]-X[0:X.shape[0]-1] 

      orig_var=sum(X**2) 

      dif_var=sum(X_dif**2)+X[0]**2 

      orig_m3=sum(X**3) 

      dif_m3=sum(X_dif**3)+X[0]**3 

      orig_skew=orig_m3/orig_var**1.5 

      dif_skew=dif_m3/dif_var**1.5     

      sk_ratio=dif_skew/orig_skew 

       

      print(theta,(sk_ratio-rev_param)) 

      return abs(sk_ratio-rev_param) 

    #    M=HHK_parameter... 
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    #    dif=AMA(theta,H,M) 

    #    return dif 

        

    res = minimize(theta, 0.1,bounds=((0,0.251),)) 

    return res['x'] 

Script:scale_1k_reversibility 

 

import numpy as np 

import math  

import pandas as pd 

import AMA_coeffiecient 

import matplotlib.pyplot as plt 

import AMA_coeffiecient 

import scipy.stats 

from scipy.optimize import minimize 

import last_try 

 

Xw=pd.DataFrame.to_numpy(pd.read_excel 

(r'C:\Users\USER\Desktop\gia_python_paradeigma8.xlsx') ) 

Xp=pd.DataFrame.to_numpy(pd.read_excel 

(r'C:\Users\USER\Desktop\gia_python_paradeigma7.xlsx')) 

 

#Xw=np.zeros((g.shape[0],1)) 

#Xp=np.zeros((g.shape[0],1)) 

Xw[:,0]=p[:,0] 

Xp[:,0]=p[:,1] 

 

def theoretic_sk_ratio_(X): 

  X_dif=X[1:(X.shape[0])]-X[0:X.shape[0]-1] 

  orig_var=np.nansum(X**2) 

  dif_var=np.nansum(X_dif**2)+X[0]**2 

  orig_m3=np.nansum(X**3) 

  dif_m3=np.nansum(X_dif**3)+X[0]**3 

  orig_skew=orig_m3/orig_var**1.5 

  dif_skew=dif_m3/dif_var**1.5     

  theoretic_sk_ratio=dif_skew/orig_skew 

  return theoretic_sk_ratio  
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bnds = ((None)) 

#theta_m=np.ones((3,3)) 

 

theta_s=0.1 

 

def theta(theta_s): 

 

      Xa=AMA_coeffiecient.FFT_AMACoef_(Xp, theta_s) 

      Xa_=np.zeros((Xa.shape[0],1)) 

      Xa_[:,0]=Xa[:,1] 

      #print(theta,(sk_ratio-rev_param)) 

      rev_1=1.39 

       

      rev_th_1=theoretic_sk_ratio_(Xa_) 

       

      error=(rev_1-rev_th_1)**2 

      print(rev_th_1,error) 

      return (error) 

    #    M=HHK_parameter... 

    #    dif=AMA(theta,H,M) 

    #    return dif 

         

res = minimize(theta, theta_s) 

print(res['x']) 

theta_s=res['x'] 

 

Xa=AMA_coeffiecient.FFT_AMACoef_(Xp, theta_s) 

plt.plot(Xa[:,1]) 

plt.title('a') 

plt.grid(True) 

plt.savefig('af',dpi=300) 

#plt.show() 

 

#rez=minimize(var_,const,constraints=cons,bounds=bnds) 

#const=rez['x'] 
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Script:scale_2k_reversibility 

import numpy as np 

import math  

import pandas as pd 

import AMA_coeffiecient 

import matplotlib.pyplot as plt 

import AMA_coeffiecient 

import scipy.stats 

from scipy.optimize import minimize 

import last_try 

 

Xw=pd.DataFrame.to_numpy(pd.read_excel 

(r'C:\Users\USER\Desktop\gia_python_paradeigma8.xlsx') ) 

Xp=pd.DataFrame.to_numpy(pd.read_excel 

(r'C:\Users\USER\Desktop\gia_python_paradeigma7.xlsx')) 

 

#Xw=np.zeros((g.shape[0],1)) 

#Xp=np.zeros((g.shape[0],1)) 

#Xw[:,0]=g[:,0] 

#Xp[:,0]=g[:,1] 

 

def theoretic_sk_ratio_(X): 

  X_dif=X[1:(X.shape[0])]-X[0:X.shape[0]-1] 

  orig_var=np.nansum(X**2) 

  dif_var=np.nansum(X_dif**2)+X[0]**2 

  orig_m3=np.nansum(X**3) 

  dif_m3=np.nansum(X_dif**3)+X[0]**3 

  orig_skew=orig_m3/orig_var**1.5 

  dif_skew=dif_m3/dif_var**1.5     

  theoretic_sk_ratio=dif_skew/orig_skew 

  return theoretic_sk_ratio  

 

def theoretic_sk_ratio_scale_2(X): 

   

    

  end=X.shape[0] 
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  orig_var=X[0]**2/4+np.sum((X[0:(end-1)]+X[1:(end)])**2)/4 

  dif_var=X[0]**2/4+(X[0]+X[1])**2/4+(X[1]+X[2]-

X[0])**2/4+np.sum((X[2:end-1]+X[3:end]-X[1:end-2]-X[0:end-3])**2/4) 

  orig_m3=X[0]**3/8+np.sum((X[0:(end-1)]+X[1:end])**3/8)                   

  dif_m3=-X[0]**3/8-(X[0]+X[1])**3/8-(X[1]+X[2]-X[0])**3/8-

np.sum((X[2:end-1]+X[3:end]-X[1:end-2]-X[0:end-3])**3/8) 

  dif_skew=dif_m3/dif_var**1.5  

  orig_skew=orig_m3/orig_var**1.5 

  theoretic_sk_ratio_scale_2=dif_skew/orig_skew 

  return theoretic_sk_ratio_scale_2  

 

bnds = ((None, None), (None, None),(None, None), (None, None),(None, 

None), (None, None),(None, None), (None, None),(None, None)) 

#theta_m=np.ones((3,3)) 

theta_s=np.ones(9) 

theta_s[:]=1 

#print(theta_m[2,1]) 

def theta(theta_s): 

      end1=Xw.shape[0]   

      U1=np.zeros((end1,1)) 

      U2=np.zeros((end1,1)) 

     # U3=np.zeros((end1,1)) 

      #print(theta_m) 

      

U1[:,0]=theta_s[1]*Xw[0:end1,0]/(theta_s[2]+Xw[0:end1,0])+theta_s[0] 

      U2[:,0]=theta_s[4]*(0.5-Xw[:,0])/(theta_s[5]+0.5-

Xw[:,0])+theta_s[3] 

     # U3[:,0]=theta_s[7]*(Xw[:,0])/(theta_s[8]+Xw[:,0])+theta_s[6] 

       

      th=np.zeros(Xw.shape[0]) 

      th=np.log(np.exp(-10*U1[:])+np.exp(-10*U2[:]))/(-10) 

      Xa=AMA_coeffiecient.FFT_AMACoef_var_theta(Xp, th) 

      Xa_=np.zeros((Xa.shape[0],1)) 

      Xa_[:,0]=Xa[:,1] 

      #print(theta,(sk_ratio-rev_param)) 

      rev_1=1.39 

      rev_2=-1.2 

      rev_th_1=theoretic_sk_ratio_(Xa_) 
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      rev_th_2=theoretic_sk_ratio_scale_2(Xa_) 

      error=(rev_1-rev_th_1)**2+(rev_2-rev_th_2)**2 

      print(rev_th_1,rev_th_2) 

      return (error) 

    #    M=HHK_parameter... 

    #    dif=AMA(theta,H,M) 

    #    return dif 

     

      

res = minimize(theta, theta_s) 

print(res['x']) 

theta_s=res['x'] 

end1=Xw.shape[0]   

U1=np.zeros((end1,1)) 

U2=np.zeros((end1,1)) 

  #print(theta_m) 

U1[:,0]=theta_s[1]*Xw[0:end1,0]/(theta_s[2]+Xw[0:end1,0])+theta_s[0] 

U2[:,0]=theta_s[4]*(0.5-Xw[:,0])/(theta_s[5]+0.5-Xw[:,0])+theta_s[3] 

 

th=np.zeros(Xw.shape[0]) 

th=np.log(np.exp(-10*U1[:])+np.exp(-10*U2[:]))/(-10) 

 

plt.plot(th) 

plt.title('θ') 

plt.grid(True) 

plt.savefig('theta',dpi=300) 

#plt.show() 

plt.close() 

 

Xa=AMA_coeffiecient.FFT_AMACoef_var_theta(Xp, th) 

plt.plot(Xa[:,1]) 

plt.title('a') 

plt.grid(True) 

plt.savefig('a, sc=22',dpi=300) 

#plt.show() 

 

#rez=minimize(var_,const,constraints=cons,bounds=bnds) 
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#const=rez['x'] 

Script:Parameters_final 

import numpy as np 

from scipy.optimize import curve_fit 

import matplotlib.pyplot as plt 

from scipy.optimize import minimize 

import pandas as pd 

 

def HHK(l0,a,M,H): 

    #  for i in range(0,Nj): 

        #l0=1 

        n=A.shape[0] 

        gamma_=np.zeros(np.int(A.shape[0]/10)) 

        for k in range(0,(int(A.shape[0]/10))): 

         gamma_[k]=l0*(1+(k/a)**(2*M))**((H-1)/M) 

        g_n=l0*(1+(int(A.shape[0])/a)**(2*M))**((H-1)/M) 

       

        return gamma_,g_n,n 

     

def aggr(n,A): 

     

    if A.shape[0]>n: 

        B=np.zeros(np.int(A.shape[0]/n)) 

        B[0]=np.average(A[0:n]) 

        for i in range(1,B.shape[0]): 

          B[i]=np.average(A[i*n:(i+1)*n])   

        return B     

 

def Climacospectrum(A):#to A einai o pinakas me to HHK climacogram 

       # A=l 

        cli_spec=np.zeros((int(A.shape[0]/2),1)) 

        for i in range(0,int(A.shape[0]/2)): 

           cli_spec[i]=(i)*(A[i]-A[2*(i)])/np.log(2) 

           if cli_spec[i]<0 : 

               cli_spec[i]=0.00001 

        cli_spec=cli_spec[1:(int(A.shape[0]/2)+1)] 

        return cli_spec 
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def Climacogram(A,ints): 

        

        max_=int(A.shape[0]/10) 

        intervals=int(A.shape[0]/10) 

         

        k=np.linspace(1,int(max_),intervals,dtype=int) 

        l=np.zeros((k.shape[0],1)) 

        for i in range(0,(int(k.shape[0]))): 

         q1=np.nanvar(aggr(k[i],A))  

         l[i]=q1 

         

         #print(q1) 

        return l 

     

def Climacogram_biased(A,g_n,n): #A is for theoretical climacogram 

         

        max_=int(A.shape[0]) 

        intervals=int(A.shape[0]) 

        k=np.linspace(1,int(max_),intervals,dtype=int) 

#        l1=np.zeros((k.shape[0],1)) 

        l2=np.zeros((k.shape[0],1)) 

        l1=A 

        for i in range(0,(int(k.shape[0]-1))): 

         q1=(l1[i]-g_n)/(1-(i+1)/n)  

         l2[i]=q1  

        l2[-1]=l2[-2] 

        return l2 

         

param=np.array([31.704337789505427, 0.7458597738634244, 

0.7922178198926836]) 

def parameter_estimator(param): 

  

    a=param[0] 

    M=param[1] 

    H=param[2] 
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    clgram_real=Climacogram(A,0) 

    clspec_real=Climacospectrum(clgram_real)     

     

    clgram_theory=np.zeros((int(A.shape[0]/10),1)) 

    res1=HHK(clgram_real[0],a,M,H) 

    clgram_theory=Climacogram_biased(res1[0],res1[1],res1[2])    

    clspec_theory=Climacospectrum(clgram_theory)  

     

    numb=np.arange(1,clgram_real.real.shape[0]+1)    

    

b2=np.sum(np.log(clgram_theory[:]/clgram_real[:])**2+numb[:]**0.5) 

    

a1=np.sum(np.log(clspec_theory[:]/clspec_real[:])**2+numb[:]**0.5)    

    b1=(clgram_theory[0]-clgram_real[0])**2 

    a2=b1+b2*10**5 

    suma=a1+a2 

    print(suma,param) 

    return suma 

bnds = ((0, 100), (0.1, 0.9999999),(0.1, 0.9999999)) 

strval=np.array([52.52,0.6421,0.7294]) 

res = minimize(parameter_estimator,strval,bounds=bnds) 

 

import winsound 

duration = 1000  # milliseconds 

freq = 440  # Hz 

winsound.Beep(freq, duration) 

 

#plt.plot(c,label='Climacogram, theoretical') 

plt.plot(clgram_real,label='Climacogram, empirical') 

plt.plot(clgram_theory,label='Climacogram, theoretical adapted for 

bias') 

#plt.plot(clspec_real,label='Climacospectrum, empirical') 

#plt.plot(clspec_theory,label='Climacospectrum, theoretical adapted 

for bias') 

 

plt.xscale('log') 

plt.grid(True) 

#plt.title('Climacogram') 
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#plt.title('Climacospectrum') 

plt.xlabel('Scale(1hr)') 

plt.legend() 

plt.grid(True) 

#plt.show() 

plt.savefig('Climac31,704337789505427, 0,7458597738634244, 

0,7922178198926836,',dpi=300) 

#plt.savefig('Climacospectrum',dpi=2000) 

plt.close() 
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APENDIX E 

Scripts for simulation 

def AMA_simulation(C1,sim_length): 

  #   import models_for_AMA 

 #    import last_try 

  #   import AMA_coeffiecient 

     import time 

     import numpy as np 

 

     arr = np.array(C1) 

     C1 = arr[::-1] 

 

     #start = time.time() 

 

     import numpy as np 

     import math 

     from scipy.stats import norm 

    # from scipy.stats import pearsonr 

     

     n=C1.shape[0] 

     #sim_length=1000 

     

   #  logparam=1 

     V=np.zeros(sim_length+n) 

     rnd=np.random.rand(sim_length+n) 

     V=norm.ppf(rnd[0:sim_length+n]) 

     for i in range(0,sim_length+n): 

        V[i]=math.exp(V[i]) 

     X=np.zeros((sim_length,1),dtype=float) 

      

     for i in range(0,sim_length): 

      

      X[i]=(sum(np.multiply(C1[0:n],V[i:i+n]))) 

     #end = time.time() 

    # print ((end-start),'seconds simulation')          
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     return X 

Script: 1000simulations 

import AMA_simulation 

import numpy as np 

import math  

import pandas as pd 

import scipy.stats 

import matplotlib.pyplot as plt 

 

def aggr(n,A): 

     

    if A.shape[0]>n: 

        B=np.zeros(np.int(A.shape[0]/n)) 

        B[0]=np.average(A[0:n]) 

        for i in range(1,B.shape[0]): 

          B[i]=np.average(A[i*n:(i+1)*n])   

        return B 

     

def dif_proc_(A): 

        dif_proc= np.empty((A.shape[0]-1,1)) 

        for i in range(0,A.shape[0]-1): 

         dif_proc[i]=A[i+1]-A[i] 

        return dif_proc      

 

def reversibility_matrix(A):         

     

    #dif_proc= np.empty((A.shape[0]-1,1)) 

    #for i in range(0,A.shape[0]-1): 

    # dif_proc[i]=A[i+1]-A[i]    

     

    max_=100 

    intervals=100 

    k=np.linspace(1,max_,intervals,dtype=int) 

    l=np.zeros((k.shape[0]+1)) 

    for i in range(0,(k.shape[0])): 

     q1=scipy.stats.skew(dif_proc_(aggr(k[i],A)),bias=False, 

nan_policy='omit') 
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     q2=scipy.stats.skew(aggr(k[i],A),bias=False, nan_policy='omit') 

     l[i+1]=q1/q2 

    l[0]=0  

    return l 

 

count=0 

nn=100 

rev_matr=np.zeros((101)) 

var_prev=np.zeros((101)) 

rev_matr_f=np.zeros((101)) 

 

for j in range(0,nn): 

    po=AMA_simulation.AMA_simulation(Xa[:,1],10000) 

    var=reversibility_matrix(po) 

    rev_matr[:]=var_prev[:]+var[:] 

    count=count+1 

    print(count) 

    var_prev=rev_matr 

    plt.plot(var[0:40],'grey',linewidth=1.5,alpha=0.4) 

rev_matr_f[:]=rev_matr[:]/count 

x=[1,2] 

y=[1.39,1.2] 

plt.scatter(x,y,color='black',s=60) 

plt.plot(rev_matr_f[0:40],'black',linewidth=2) 

plt.ylim(0, 2) 

plt.xlim(1, 40) 

plt.xscale('log') 

#plt.title('Simulations using AMA at scale 1hr and 2hr') 

plt.xlabel('Scale(1hr)') 

plt.ylabel('Skewness ratio') 

plt.grid(True) 

plt.scatter(x,y,color='red',s=60,zorder=nn+1) 

#plt.show() 

plt.savefig('Simulations dfsd',dpi=300) 

plt.close() 

 

import winsound 
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duration = 1000  # milliseconds 

freq = 440  # Hz 

winsound.Beep(freq, duration) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


