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Abstract 

Dam design and operation can cause significant environmental alteration and is therefore a long-term ongoing 
debate for the scale of these projects. At the same time, the concept of Environmental Flow Assessment is a 
crucial element of modified ecosystems featuring large infrastructure, such as dams and reservoirs, for mitigating 
potential environmental degradation while they operate. Nowadays, integrated scientific frameworks are required 
to quantify the risks caused by large infrastructure. Through the use of stochastic analysis, it is possible to quantify 
these uncertainties and present a solution that incorporates long-term persistence and environmental sustainability 
into a balanced reservoir simulation model. In this study, an attempt is made to determine a benchmark reservoir 
size incorporating hydrological and ecological criteria through stochastic analysis. The primary goal is to ensure 
the best possible conditions for the ecosystem and then to provide a steady supply of water for other uses. Using 
a synthetic timeseries based on historical inputs, it is possible to determine and preserve essential statistical 
characteristics of a river’s streamflow and use these to detect the optimal reservoir capacity that maximizes 
environmental and local water demand reliability. 

Keywords: environmental flow assessment; water balance model; stochastic analysis; reliability; dynamic flow 
regime, reservoir design 

 

 

1.0 Introduction 

Human interventions in the world’s aquatic systems due to a constant demand for reliable sources of clean 
water lead to reasonable concerns over potential impacts on the ecosystems that are affected (Montanari et al. 
2013; Shumilova et al. 2018; Sargentis et al. 2019). Large scale man-made infrastructure such as dams and 
associated hydropower facilities, irrigation systems, water supply and wastewater pipe networks, and water and 
wastewater treatment plants all play an important part in the continuous advancement of civilization. Yet, mainly 



Open Water Journal – Volume 6, Issue 1, Article 1 2 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

due to their scale, these works cause significant alterations to the environment. The engineering problem of 
adapting the local area to suit human needs has led to advancements in technology and scientific knowledge from 
ancient times (Mays 2008; Koutsoyiannis et al. 2007) until now (King et al. 2003). Sustainability and safety have 
always been the primary driving forces for these works with the aim of balancing the scale of human alterations 
to avoid heavily disrupting local ecosystems. One of these engineering areas, dam design, is still receiving strong 
criticism from the scientific community for its harmful effects on the natural environment (Shumilova et al. 2018; 
Tyralis et al. 2014). The main issues documented are the massive landscaping works required, which dramatically 
change a natural ecosystem followed by direct impacts such as a decrease or rapid change in biotic and abiotic 
populations (Fearnside 2001; Dudgeon et al. 2006). 

In order to help preserve key valuable aspects of riverine ecosystems, several factors come into play. The first 
one that comes to mind is the river’s streamflow itself, as it can be clearly defined and measured in terms of 
quantity and quality. Therefore, an environmental flow scheme is one of the most suggested methods of 
maintaining original conditions in any dam-impacted stream (King et al. 2003; Tegos et al. 2017; Dunbar et al. 
1998). In simple terms, it is a scheme implemented to regulate the outflows from dams, in a way that can protect 
or even bolster the living conditions of riverine wildlife. The core concept is that, at the very least, a minimum 
amount of water should be running through a river at all times to sustain local animal populations. One must not 
be mistaken at this point to believe that maintaining a certain downstream flow quantity is the definitive solution 
to the problem. Many ecosystems require a very unstable flow scheme for an ideal replica of original conditions, 
including frequent floods or long periods of drought (Mishra & Singh 2010; King et al. 1999). At this point, 
human intervention is a double-edged sword; by introducing a regulated flow schedule, it could be unclear 
whether an ecosystem benefits or is damaged. As a measure of quantifying this impact, researchers have combined 
the efforts of multiple fields of study, including biology, physics, geology, and chemistry in an attempt to break 
down an ecosystem into components that can be assessed individually at first, then combined and evaluated 
overall (Dudgeon et al. 2006; Holmgren et al. 2012; Efstratiadis et al. 2014; Arthington et al. 2003). 

This overall combination of elements could also be referred to as an ecosystem balance. On the one hand, a 
typical river habitat is mainly comprised of a streamflow regime and its water quality, its wildlife composition 
and subsequent biological interactions, as well as geomorphological factors such as river hydraulics, soil 
materials, connectivity between streams, and presence of physical barriers or lack thereof (Dotson 2019; Tharme 
2003; Seesholtz et al. 2004). On the other hand, human activities may disturb this balance by modifying a river’s 
flow, the quality of its water or the shape of its channel, fishing, or introducing new species. On a larger scale, 
landscaping works required for larger water infrastructure, such as a dam, may cause major alterations, to the 
point where the nature of this balance changes entirely into a new ecosystem. The primary reason for this is to 
avail of local resources, mostly water, to satisfy human needs. It is the nature of these changes that must be 
weighed up against their impact on a river catchment’s natural conditions (Fearnside 2001; Singer 2007; Xu et 
al. 2008). 

Once again, adequately quantifying these effects is a daunting prospect for researchers, as, often, the effects 
of human intervention in riverine ecosystems are beneficial or adverse depending on reasons more subjective than 
objective and it can be very unclear what changes should be classified as either. Socioeconomic factors also come 
into play here – for example, a local community in dire need of water may be a lot more willing to accept major 
changes to the original landscape, at the expense of natural wildlife, in order to sustain their needs (Arthington et 
al. 2006; Poff et al. 2010; Acreman & Dunbar, 2004). In any case, researchers have outlined some indicative 
components of environmental flow in an effort to cover the needs of the people while balancing these against 
mitigating damage to natural habitats. Legislation implemented in various countries around the world usually 
suggests that dam operators implement some type of base flow policy. In broad terms, this often refers to ensuring 
a certain outflow, calculated as a percentage of mean annual flow. For example, in Europe, countries usually 
employ schemes that require the flow below dams to be at least 5% of the mean annual flow (Portugal) or at least 
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the minimum average monthly flow (Greece). In the UK, the minimum is the Q95 percentile, which is the flow 
that is exceeded 95% of the time in a given stream. This method is a lot more versatile in countries with multiple 
types of ecosystems, which is why it has also been adopted broadly in Australia and, in a similar vein, countries 
like Canada and Brazil apply a stricter Q90 discharge. Furthermore, the UK standard has recently taken center 
stage as it is now also employed by the European Water Framework Directive (WFD), which imposes Q95 as a 
bare minimum flow, while simultaneously applying further restrictions such as abstraction thresholds in excess 
of this flow to preserve local fish populations (Commission of the European Communities (CEC) 2019; Acreman 
et al. 2009; Tegos et al. 2018). 

More recently, these concepts have been expanded upon, eventually leading to Environmental Flow 
Assessment (EFA). The core values of EFAs go beyond protecting the already mentioned minimum value of flow 
in an impacted river, now incorporating multiple physical aspects of a catchment, such as floodplains, 
groundwater, and downstream conditions, as well as expanding considerably into the nature of streamflow, 
including complex variables such as flow duration, timing, and rate of change (Tharme 2003; Arthington & Pusey 
1993; King & Louw 1998). While EFA, as an idea, already exists in reports dating as far back as the 1940s in 
California (Brown 2011), more recently, numerous methods have appeared in the field, each adapting to the 
various available inputs and required outputs. Today, EFAs now include complex models of instream flows, fish 
flows, and even artificial flooding (Tegos et al. 2018). 

 Recently, in countries such as the UK, Australia, and South Africa, a holistic EFA approach, known as the 
Downstream Response to Imposed Flow Transformations (DRIFT), has been applied in various water resources 
projects (Arthington et al. 2003). Key benefits of this framework are its interactivity, allowing researchers to 
provide multiple data-driven flow scenarios, allowing stakeholders to compare and contrast according to whatever 
water uses need to be met. It is comprised of four components or modules: biophysical, sociological, scenario 
development, and economic. The first requires a description of riverine ecosystem components. For example, a 
breakdown of the local fish population would require information such as habitat use, movement, and water 
quality tolerances for reproduction. Next, the sociological component identifies local residents who are classified 
as “at risk” and attempts to develop predictions of future changes to the landscape and their likely consequences. 
In the scenario development phase, the possible future flow schemes and biophysical aspects are detailed in 
discrete outputs and. in the final economic module, compensation costs for the people at risk are calculated and 
included in the final outputs to be presented for assessment. This framework has recently been applied in the 
small South African country of Lesotho as part of the Lesotho Highlands Water Project (LHWP) (King & Louw 
1998; Lesotho Highlands Water Project 2019). 

The aim of this study is, while relying on tried and tested EFA methods, to distill the above concepts into a 
simplified “benchmark” model, combining a hydrological and ecological engineering viewpoint into reservoir 
design. This “eco-hydrological” aspect intends to maintain sustainability as the primary parameter, while also 
presenting the ability to include clearly defined and quantifiable inputs, leading to equally clear outputs, which 
can be of use to dam engineers looking to determine optimal sizes for their dam reservoirs. Uncertainty in flow 
assessment is a key factor at this point and quantifying it is best achieved through stochastic analysis. While this 
article focuses on a single case study in Lesotho, the goal is to present a model that can be applied in any dam 
engineering design, once the necessary hydrological and environmental criteria have been studied and included. 
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2.0 Study Area 

 
Figure 1. Map of Lesotho. Lesotho’s catchment boundaries are shown in red, 
hydrographic network in blue, flow monitoring stations are the blue dots, and 
the pertinent hydrometric station SG3 is highlighted in yellow. 

 

This study focuses on the Kingdom of Lesotho. It is a small country, with a primarily mountainous 
geomorphology, located entirely within South Africa. Its largest river, Senqu, in the east, is one of three major 
rivers that contain most of the country’s surface water, the others being Mohokare in the west and Makhaleng in 
the central regions. 

The climate in Lesotho is generally characterized by cool, dry winters and hot, humid summers. Precipitation 
ranges between 500 and 1200 mm on average, with almost 85% of the total precipitation occurring between 
October and April. Furthermore, it seems to be influenced mainly by elevation and orientation of rainfall. For the 
southeastern part of the country, the influence of topography on data has been documented in various studies 
(Arthington et al. 2006; Sene et al. 1998; Climate of Lesotho 2019). In general, there appear to be three distinct 
zones: one in the center of the Lesotho highlands containing parts of low rainfall rainshadow, one comprised of 
smaller areas around the former, and finally, a zone made up of areas along the country’s southeastern border. 
Here, the slopes face primarily eastward and the altitude is predominantly high. A comprehensive map of mean 
total annual precipitation of various smaller catchment areas in the southeastern part of Lesotho is available in 
Figure 3 below. 
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Figure 2. Estimated mean annual precipitation (mm) for the years 1975–1990 
per flow gauge catchment. 

 
On the relationship between rainfall and flow, it is important to gather information on the annual values of 

each for a stochastic model. The geomorphology of the country helps promote a strong correlation between the 
two, as it is mostly comprised of thin soils and basaltic rock, leading to low permeability and high runoff 
coefficients. This factor, combined with frequent dry seasons, means very little water carries over between 
hydrological years. 

It is these lengthy dry periods that spark the need for the LHWP. This encompasses the building of several 
dams in the region, allowing for water storage and export to South Africa, as well as generating electricity. When 
complete, this project could account for 20% of the country’s total income (Lesotho Highlands Water Project 
2019; Climate of Lesotho 2019). Environmental flow, downstream of existing and planned dams, is a key element 
for this project and most studies in the region so far have relied on various applications of the popular DRIFT 
framework, which uses hydraulic data as well as ecological information such as fish surveys (Arthington et al. 
2003; King & Tharme 1994). 

A total of 69 operational river flow monitoring stations are currently available across the three rivers mentioned 
above, but the data analyzed in the study is acquired from station SG3, Senqu River at Seaka Bridge. This 
measurement station returns the daily streamflow in cubic meters per second. After aggregating these inputs into 
monthly data, it is possible to create a timeseries starting from the hydrological year 1972–73 until 1993–94. This 
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particular time period is selected as, after this point in time, the river’s flow began to be impacted by human 
projects. As unregulated flow data is required for this research, only these historical values are retained as they 
are more likely to be accurate. By regulating more recent flows using a mathematical method, there is a risk of 
errors in later calculations (King et al. 1999; Tegos et al. 2017; King & Louw 1998; King & Tharme 1994). The 
aggregated timeseries is shown in Figure 3 below. 

 

Figure 3. Monthly streamflow at station SG3, Senqu River at Seaka Bridge, 
between hydrological years 1972–73 and 1993–94. (m3/s). 

 
Regarding the aggregation method, it is important to note that several of the months have missing daily data 

and have therefore been disregarded. In general, a month is excluded from the data if there are fewer than 25 daily 
measurements per month (corresponding to less than one missing day per week). For the remaining months, they 
are flagged as “missing” if they lack at least one daily measurement. In the data kept for further calculations, there 
is at least one missing day in only 18.94% of months and these are considered accurate enough based on similar 
studies in the same area. Also to note, for the selected data, the average monthly value is 116.56 m3/s, the standard 
deviation is 141.50 m3/s, and the skewness coefficient is 1.91. 

3.0 Materials and Methods 

For simulating the hydrosystem on a monthly time scale, a periodic autoregressive scheme of first order, 
PAR(1), was used, which is the most parsimonious among linear stochastic models. Readers can refer to 
Efstratiadis et al. 2014 for the full mathematical presentation of the monthly stochastic model. 

In this study, a simple reliability-based reservoir model test is proposed, similar to the concept described in a 
study by Koutsoyiannis, but now incorporating a dynamic environmental flow regime (Tegos, et al. 2017; 
Koutsoyiannis 2019). This involves a simple water balance equation, formulated as 

 
St = max[0, min(St – 1 + Xt – δt, c)] (1) 

where, St is water volume stored at time t, above the minimum level, Xt denotes inflow at time t, δt is total water 
demand for the time period of (t−1,t), and c is the reservoir storage volume assumed. Furthermore, to estimate the 
reliability a, the following formula is required: 
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𝑎	 =
1
𝑛&[1	– 	𝑈(– 𝑆𝑡)]

/

012

 (2) 

where, U(x) is the Heaviside’s unit step function, assuming U(x) = 1 for x ≥ 0 and U(x) = 0 for x < 0. The variable 
n represents the length of the timeseries. Then, storage is standardized as a non-dimensional net storage capacity 
K*, described as follows: 

 
𝐾∗ = 	

𝑐 − 𝜇
𝜎 	 (3) 

where, c is the assumed storage, µ is the mean of annual net inflows Xt, and σ is their standard deviation. The aim 
here is to be able to compare the relationships governing reliability and storage between different case studies 
(Koutsoyiannis 2019). The reservoir model algorithm is described below: 

• Generate a series of inflows Xt at a monthly timescale using a stochastic algorithm. 
• Assume a reservoir size c. 
• Calculate a series of reservoir storages using equation (1). 
• Estimate reliability for Environmental Flow and Demand by using equation (3). 
• Repeat steps 3 and 4 for different reservoir sizes. 
• Choose the optimum reservoir size by balancing reliability for both ecosystem and demand criteria. 

To fulfill step 1, in this study, a 1,000-year synthetic monthly timeseries is created by implementing the PAR 
algorithm (Koutsoyiannis 2000; Koutsoyiannis 2019; Tsoukalas et al. 2018; Dimitriadis & Koutsoyiannis 2018). 
This can be done quickly by using the Castalia software package (Efstratiadis et al. 2014). This algorithm is ideal 
for variables that exhibit periodicity and long-term persistence such as streamflow, and the algorithm preserves 
key statistics including mean value, standard deviation, and skewness in the generated synthetic timeseries. Next, 
from this initial output, the overall average is assumed to represent the maximum monthly demand for human 
needs. Usually, the monthly water requirements are a fraction of this assumed maximum per month. While 
existing research can justify a reasonably conservative water demand estimate, the ideal way of conducting this 
step would be to obtain exact demand values by conducting surveys and collecting historical data (Koutsoyiannis 
2019; Tsoukalas et al. 2018; Zacharopoulou et al. 2019). 

To gather information on the environmental flow requirement of the area, many applications of the DRIFT 
framework with a holistic approach would be suitable, as it has been tried and tested in Lesotho with verifiable 
accuracy (Arthington et al. 2003; Tharme 2003; King & Tharme 1994). In the hydrological component of a study 
conducted by Tegos et al. 2018, minimum, median, and maximum baseflows, as well as subsistence flows for the 
river Senqu, have been estimated using local data. More specifically, by using the minimum and mean monthly 
flows as boundaries, the seasonally varying target flows are as mentioned above. Subsistence flow was selected 
as the Q97 value (flows that are exceeded 97% of the time), whereas baseflows were set to Q60, Q75, and Q90 
for minimum, median, and maximum baseflow, respectively. All of the above flows are naturalized, so if the 
reservoir model can accommodate them, the environmental criteria are considered as being met, with reasonable 
accuracy. Tables 1 and 2 below summarize these values per month. 
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Table 1. Environmental flow values at SG3 station (m3/s), January to June 
(1972–2011). 

 1 January 2 February 3 March 4 April 5 May 6 June 

Max baseflow 47.21 121.35 85.16 45.17 21.26 14.27 

Median 
baseflow 27.2 30.44 29.61 30.44 24.14 25.65 

Proposed min 
baseflow 17.28 27.2 28.8 12.06 7.77 4.73 

Subsistence 
flow 3.3 6.16 14.27 6.16 5.07 3.5 

 

Table 2. Environmental flow values at SG3 station (m3/s), July to December 
(1972–2011). 

 7 July 8 August 9 September 10 
October 

11 
November 

12 
December 

Max baseflow 9.1 6.94 12.6 28.8 62.73 70.04 

Median 
baseflow 23.4 21.26 19.89 19.89 27.2 24.29 

Proposed min 
baseflow 3.78 2.75 2.75 4.73 12.6 22.68 

Subsistence 
flow 2.94 1.56 0.61 1.2 2.2 4.73 

 

Now, based on the available demand data, Step 3 of the reservoir model can be conducted. To achieve this, it 
is assumed that a normal random value between the minimum and maximum baseflow is drawn from the reservoir 
for any given month, together with a constant value of water demand for human needs. The latter is represented 
as a percentage of the assumed maximum and varies per month. Naturally, this demand is low in this area during 
traditionally wet months, yet reaches 100% in the peak of the dry season. The goal of calculating a combined 
demand profile in this way, is to stress test the reservoir model under the primary directive of sustaining a dynamic 
environmental flow scheme, as current EFA standards require. In this sense, as the priority is to maintain 
ecosystem balance, a rule is added to the model that environmental flow must be accommodated first, and then 
human needs. It is easy to quantify the efficiency of meeting both goals by measuring whether they were met or 
not as a percentage of all months. If a selected environmental flow cannot be accommodated for a given month, 
subsistence flow outflows as an alternative, and if even this is still not possible, whatever remains in the reservoir 
will outflow instead. Naturally, any excess inflows that are over the preselected dedicated storage c “spill” 
downstream and are not included into the following month’s calculations. 
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Moving on to the estimation of reliability a for environmental flow and human water demand, it is important 
to clarify what the model perceives as criteria of success for meeting its preset goals. In this model, even if 
subsistence flow successfully outflows from the reservoir for a given month, that month is calculated as successful 
for the model and fails only if this basic criterion is not met. On the other hand, if the constant monthly value for 
human water demand cannot be output from the reservoir, the model automatically fails with no backup value. It 
is relevant to note at this stage that these specific criteria have been selected due to the unique nature of the case 
study and model goals. As stated previously, the aim for this particular study is to maximize environmental flow 
reliability at all costs. At the same time, Lesotho is a characteristically dry country (Sene et al. 1998), therefore it 
can be assumed that any lengthy period of drought is an environmental “failure.” This may not be accurate on a 
global scale, though; there are case studies around the world where long dry periods can actively benefit the 
ecosystem (Holmgren et al. 2012; Wilhite & Glantz 1985). If the study were to be undertaken in these locations 
with the same criteria, the model would display a failure in environmental flow reliability, which might then be 
wrongly mistaken as overall damage to the ecosystem. Therefore, it is important to understand the model’s 
limitations and tweak it accordingly before applying it in a given location. 

4.0 Results 

With all of the necessary inputs collected, the reservoir model algorithm detailed above can be implemented 
for a thousand synthetic years. Figures 4 and 5 below compare standardized reservoir capacity K* with demand 
and environmental flow reliability. 

 
 

 
Figure 4. Capacity–demand reliability curve, assuming maximum demand 
(mean annual inflow is the highest demand value). 
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Figure 5. Capacity–environmental flow reliability curve, assuming maximum 
demand (mean annual inflow is the highest demand value). 

As expected, the model can meet environmental flow requirements much more easily than human demand. 
This is primarily due to the fact that the former are set as the prime directive and any water will cover those needs 
first. Even when setting a very low initial value for reservoir capacity c, environmental flow reliability is 
approximately 90%, while human water demand reliability is 44%. This indicates that even a small reservoir can 
assist an ecosystem in maintaining at least a basic subsistence flow to preserve the bare minimum environmental 
requirements, immediately offering more options to regulate the river and ensure ecosystem sustainability. When 
assuming a typical reservoir size K* = −0.5 (for the Lesotho example, corresponding to 1,261 hm3), environmental 
flow reliability is now 92%, on average, whereas demand reliability is set to 51%, on average. Evidently, the 
presence of a small reservoir here has assisted in meeting both demand criteria, but by a rather insignificant 
amount. The months where reliability is not met here are likely to be due to extended periods of drought. Man-
made reservoirs could prevent this and allow a steadier flow throughout the year even in unfavorable conditions 
(Montanari et al. 2013). This point is further illustrated when a larger reservoir K* = 0 is selected (for this area, 
corresponding to 3,516 hm3) and these values rise to 93% and 60%, respectively. While within a theoretical model 
the storage value can be eventually raised until 100% reliability is reached overall, in practical terms the maximum 
possible size is limited. Based on Figures 4 and 5, the most cost-efficient volume for the reservoir appears to be 
for K* values of 1.5 to 2 (9,500 to 12,000 hm3 storage for the Lesotho example). In any case, this indicates that 
large reservoirs, in general, perform better to facilitate human water needs as well as to output a dynamic eco-
friendly flow regime. That said, it is also evident that reservoir sizes become impractically large to build quickly. 
Lesotho, as a case study, has the benefit of being mountainous, but in flatter areas a reservoir of this size may be 
entirely unfeasible (Shumilova et al. 2018; Tyralis et al. 2017; Efstratiadis et al. 2014; Fourniotis 2012; 
Koutsoyiannis 2011). 

It is also appropriate to visualize the model’s response to demand on a monthly basis for the entire simulation 
length. Figures 6 and 7 below compare overall reliability per month, assuming K* = 0. 
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Figure 6. Demand reliability per month, assuming K* = 0. 

 
Figure 7. Environmental flow reliability per month, assuming K* = 0. 

In the case of water demand for human needs, assuming a larger reservoir (K* = 0) and the worst-case scenario 
demand profile, decent performance is observed throughout traditionally wet months in a hydrological year 
(October through April), yet very poor results are given during the dry months of June, July, and August where 
reliability drops below 10%. This is a consequence of two things: naturally the demand is highest during these 
months, but also this particular inflow profile is marked by huge drought periods in a typical year, most often 
occurring during dry months, and lasting up to seven months with zero inflows. To meet demand under these 
extreme conditions, only a very large reservoir can achieve satisfactory results. 

On the other hand, the environmental flow reliability is much more stable regardless of month. Assuming a 
larger reservoir (K* = 0), generally values above 90% are achieved, with a slight dip during August and September. 
This dip can be attributed to the naturally low inflow values and frequent dry spells during those months. 
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5.0 Discussion 

After running the model on the case study of Lesotho and studying its results, there are elements that promote 
further discussion, as well as aspects that require more research if it is to be applied in different locations and/or 
real case studies. These points are briefly outlined below. 

This stochastic eco-hydrological model is meant to be a simple benchmark for desktop studies. Its aim is to 
present a parsimonious method to estimate the optimal reservoir size for a given river catchment with known 
streamflow and demand profiles. In order to truly assess its efficiency and accuracy, conduct an evaluation of the 
model in real world conditions must be conducted, preferably in an entirely different location. This would allow 
testing against all of the model’s assumptions and constraints. 

Naturally, the above is no simple task; while the framework presented in this study is easy to use, the inputs 
required can prove very difficult to obtain. Firstly, at least twenty years of monthly inflow data are required to 
implement a stochastic algorithm and generate a synthetic timeseries with scientifically reasonable levels of 
accuracy. Next, a full EFA must be conducted in the case study area. If a holistic methodology in line with current 
field standards is applied, this entails a network of at least two to three years of measurements. Depending on the 
site, this data may not be readily available or be substantially lacking in quality (Tegos et al. 2017; Zacharopoulou 
et al. 2019; Efstratiadis et al. 2014). 

Further to the above point, it is important to also conduct habitat retention analysis in the given study area that 
the framework is tested in. Not only is this a mandatory requirement for modern holistic EFAs, it also results in 
dynamic flow that often requires less water overall (Tegos et al. 2017; Tegos et al. 2018). 

Once environmental flow data is available, a dynamic profile then needs to be set up in conjunction with the 
model proposed in this study. Currently, the framework simply assumes a normal random value between 
minimum and maximum baseflows. This leads to cases of unnaturally low environmental flow values during 
some traditionally wet months and vice versa. While this is a good enough approximation for determining a 
reservoir size given the number of factors involved, it would be better to implement a “smart” distribution of 
environmental flow demand using a secondary algorithm. For example, this could be a demand distribution that 
would adapt how close it is to the minimum or maximum baseflow values depending on how wet the last few 
months were. Furthermore, simulated droughts or floods could also be accommodated in this way, as is often 
requested by modern EFAs. Adding this parametric capability to environmental flow will allow researchers to 
further stress test their reservoirs against even stricter criteria for the ecosystem. 

In a similar vein, the nature of human water demand may vary significantly across different parts of the globe. 
The demand profile from this study assumed that the mean annual inflow is the maximum monthly demand. While 
this conservative estimate is a good enough approximation for the needs of this study, in order to conduct a proper 
evaluation of the model in a real-world scenario, a historical timeseries of human water demand would also be 
necessary. Using actual data from a source such as a public water utility or local authority, one could generate a 
monthly schedule of water demand much closer to actual conditions. 

In its present state, the model’s criteria for environmental flow categorize any month where demands were not 
met as a failure. While this is true for reliability as a definition, this does not necessarily directly correlate with a 
failure of protecting the ecosystem. While for the case study of Lesotho, which is a predominantly dry region in 
direct need of water, this analogy is likely to be apt, there are multiple catchments around the world where 
droughts can be beneficial. It is necessary, then, to be able to distinguish under which cases failure to meet 
environmental flow demands is detrimental to the ecosystem of a given area. If there are no significant links 
between the two, the concept of reliability may not be enough to adequately explain the nature of a catchment 
(Dotson 2019; Tharme 2003; Dimitriadis & Koutsoyiannis 2018). 

6.0 Conclusions 
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As with any engineering project, dam design is a science inherently linked with risk and uncertainty. The 
aspect of reservoir sizing is one that is often the center of debate between stakeholders, as it directly governs the 
scale of works and, thus, the subsequent environmental impacts. As the newer holistic EFA approaches suggest, 
there is usually more than one adequate solution to the problem of setting up an environmental flow scheme 
downstream of a dam. Which one ends up being chosen raises questions of trust between the operator and the 
public. Nowadays, presenting a sustainable design that prioritizes the ecosystem can serve as a way of bridging 
the gap between these groups with conflicting interests and this is where the stochastic eco-hydrological 
framework presented in this study can come into play. 

In this study, it has been made clear that maintaining and prioritizing an eco-friendly flow regime for any given 
reservoir, without significant costs in meeting other needs, is a feasible goal, no matter the reservoir size. 
Expanding from this point, satisfying both environmental and human water demands appears to be more reliant 
on reservoir capacity than even the demand profiles themselves. This suits engineers from a design perspective 
as, by adopting this proposed framework, they may quantify exactly how cost-efficient their proposed reservoir 
will be by linking its size to reliability for both ecosystem and local demand. 

The results of the stochastic eco-hydrological framework appear to indicate that the larger the reservoir, the 
more efficient it is, both for meeting local demand and maintaining a dynamic natural river flow downstream. 
However, large dam projects are often seen as extremely invasive and hazardous to the environment. It is 
imperative that the importance of large reservoirs from an engineering and hydrological perspective is recognized, 
but also that every design is linked to risk. This risk can never be eliminated, but it can be quantified and steps 
can be taken to mitigate potential losses. These losses are not only comprised of the initial landscaping works 
required to build a dam, their impact is an ongoing process that continues well beyond the structure’s life 
expectancy. As such, it is a dam engineer’s duty to ensure overall sustainability for their work. The model 
proposed in this study combines the concepts of engineering, stochastics, and environment into hydrology, with 
the aim of helping designers to achieve this goal. While it may not present a final solution, it can definitely 
highlight the importance and simplicity of preserving environmental flow in modern dam operation schemes. 
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