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MpoAoyog

H ekmovnon kot mapouciaon tn¢ mapoloas SUTAWATIKAG Epyaoiag onUAatodotouV To
TéNog NG doitnong pou otn oxoAn MoAttikwv Mnxavikwv oto EBvikd MetooBLo MoAutexveio
KaBwg Kal Tnv amoapxn €vog véou kepahaiou otn {wn pou. KaBwg auth eival n tehevtaia
oeAiba mou ypaddw yLa TNV EKMOVNON TNG EPYOCIa LOU VIwBwW TNV avaykn va EuXapLoTHoW
Bepud OAa Ta MPOowWA IOV CUVERAAAQV OUCLAOTLIKA OAAG Kol NOLKA oTnVv eKmdvnon TNG.

Apxika, Ba nBela va euxaplotiow Wolaitepa tov k. A. Evotpatiadn, Emk. Kabnyntn
E.M.M, 1ou pe Vv WBLotnTa Tou eMPAENOVTOG Hou €6waoE TNV eukalpia va acxoAnbw pe éva
e€alpetikad evlladépov Kal MPpwTotuTo B€pa. Ol KPIOLUEG EMLIOTNHOVLKA TTAPATNPHOELS Kal
OUUBOUAEG KaBwG Kal To €AKPVEG evOLladEpoV TOU yla TNV €EEAEN TNG SUTAWMOTIKAG
epyaoiag Bondnoav otnv oAlokAnpwon tnG. MapoAeg T SUOKOAEC KOTOOTACEL( TIOU
QVTLUETWITEL N TTAyKOOULA KOWvOTNTO AOYyWw TG mavdnuiag unnpée mavta SimAa Hou pe Tnv
idla aoteipeutn o0pefn. Odeidw Aoutov va ToV EVXAPLOTACW ylo ToV XPOvo Tou S1EBeoe o€
ouvexeic tnAedlaokéPelg KaBWE Kal yla tnv SLapkr) ILoTN TOU OTLG LKAVOTNTEG LOU QKOO KOl
OTLC a0TOXieG Hou. TEAOG, eival avaykaio va emonuavw OtL To AO0G Tou Kal N adldAeuttn
KaBobrynaon Tou Tov KATESTNOoAV OTO HATLA LoU w¢ €vav aAnBbwvo daokalo.

Eniong, odeilw va euxaplotiow tov Ap. lwavvn TooukaAd yla TNV cuvelopopd Tou
otnV ekmovNon TNG mapouoag epyaciag kabwg Kal yla tov xpovo nou S1Ebeoe og autnv. H
EVAOXOANON TOU KoL PETA amd tnv UTIOAOYLOTIKN Stadilkacia cuvéBaAE ouoLOOTIKA OTNV
BeATiwon TNG CUYKEKPLUEVNC SUTAWHOTLIKAG EPYAOLOG. ZUYKEKPLUEVA XWPLC TN CUUBOAR TOu N
napovoa gpyaocia 8 Ba Ntav n dla. Akoun Ba BeAa va Tov euxapLOToW yla TNV NOLKA Tou
ouvelodopd ota LEANOVTIKA BripaTta Tng EMayyEALOTIKAG Hou otadlodpopiag.

Eniong, Ba nBeha va euxaplotiow Toug K. MakpomouAo kot Mapdon yLa To EALKPLVEG
evOladEPOoV TOUC OXETIKA LE TNV SUTAWHOTLKA LOU €pyaoia Kal TIC oUUPBOUALC Tou.

AkohoUBwc, odpellw va evxaplotriow tov Yroyndlo Atdaktwp Atovion NikoAdmouAo
yla tnv BonBela Tou o€ €va onpavTtiko onuelo TnG mapouvoag epyaciag. Akoun, 6a nbeka va
guxaplotiow tov Ap. Mavaywwtn Kooolépn yla tTnv nOkn otnplEn Kot to evdladEpov mou
€6¢ele yla TNV Mp0oodo NG Epyaciog pou.

Téhog, Ba nBela va euxaplotow Toug GIAOUC KOL TNV OLKOYEVELD HOU Yyl TNV
TIVEUMATIKN OTAPLEN TOUC KOTA TN OLAPKEL TWV OTOUSWV HOU KOL Yl TNV TIOTN OTLC
duvatotnTeg pou.

Zakkn Fewpyla — Kwvotavtiva
ABnva, lovAlog 2020



Abstract

Due to their negligible storage capacity, small hydroelectric plants cannot offer regulation of
flows, thus making the control of energy production a very difficult task, even for small time
horizons. Further uncertainties arise due to limited information, both in terms of upstream
inflow data and technical characteristics. Usually, the sole available measurements refer to
power production, which is a nonlinear transformation of the river discharge. In this thesis we
investigate the three configurations of this transformation, named the forward, the inverse
and the calibration problem. The major outcome is a generic stochastic framework for the so-
called inverse problem of hydroelectricity, i.e. the extraction of streamflow from observed
energy data, focusing on two key potential sources of uncertainty, i.e. in energy production
(observational error) and the efficiency curve of turbines (parameter error). Key issue of this
reverse engineering approach is that the model error is expressed in stochastic terms, which
allows for embedding uncertainties within calculations. Another interesting issue is the
extrapolation of high and low flows outside of the range of operation of SHPs, which is
employed by combining empirical hydrological rules for representing the rising and falling
limbs. The methodology is tested in hypothetical problems as well as in a real-world case, i.e.
the oldest (est. 1926) small hydroelectric plant of Greece, located at Glafkos river, in Northern
Peloponnese. Among other complexities, this comprises a mixing of Pelton and Francis
turbines, which makes the overall modelling procedure even more challenging and also
requires to extract the efficiency curves of the two turbines through calibration. Our analyses
indicate that the proposed framework may be the basis for handling several practical
problems and open research questions in the broader area of simulation and optimization of
small hydroelectric works.



EAANVIKA mtepAnydn

AOYyw TNG APEANTEQC LKAVOTNTOG amobnkeuong, Ta Hikpd udponAektpka €pya (MYHE) dev
UTopouv va npoodEpouv puBULON TWV powv, KOBLOTWVTAG £TOL TOV EAEYXO TNG TAPAYWYNG
EVEPYELAG TIOAU SUOKOAO €pyo, aKOWUN Kal yla HUIKPOUG XPOVIKOUG opilovteg. MNepaltépw
aBefaldtnteg MPOKUTMTOUV AOYWw TEPLOPLOUEVNG TAnpoddpnong, mou adopd elte o€
Sebopéva ELlOPOWV E€LTE OE TEXVIKA XOPOKTNPLOTIKA TOU €pyou. ZuvnBwg, Ol HOVASIKEG
SlaBéolpeg peTproelg avadEpovial oty Mapaywyn €VEPYELAG, n omoila eival €vag pn
YPOUULKOG LETACYNMOTIOMOC TNG AMOPPONG TOU TOTAMOU. € AUTHV TN SUTAWUATIKA gpyacia
SlepeuvwvTal TPELS EKSOXEG TOU UETACKNUATIOUOU aUTOoU, TIou SLapopdwvouV avtiotolya To
€VBL Kal to avtiotpodo MPOPANUa kKabBwg kal To MPoPAnUa tng Badbuovounong. To kUpLo
QMOTEAECHA ElVOL EVOL YEVIKO OTOXOLOTLKO TTAQLGLO yLat TO AeyOUEVO avtioTpodo mpoBAna tng
UOPONAEKTPIKAG €eVEpyelag, OnAadn n e€aywyn XPOVOOEPWV elopong amd Oedopéva
TapATNPNUEVNG EVEPYELAG, eoTialovtag o SUo PBaolkég mBavég mnyEg afePfalotntag,
OUYKEKPLUEVAL OTNV Tapaywyn eVEPYELaG (ODAALATO TOPATNPCEWY) KOL OTNV KOUTTUAN
anddoong Twv otpofilwv (odaApata mapapéTpwy). Baoko INTnua autng tng avtiotpodng
TIPOCEYYLONG €lval OTL TO LOVTEAO ODAAUATOC ETMULTPETEL TNV EVOWHUATWON TG afefatotntag
oTouG umoAoylopoug, Sedopévou Ot ekdpaletal LE OTOXOOTIKOUG Opouc. Eva dAho
evlladEpov IATnUa elval n cUMIANPWOnN tou udpoypadnuatog, SnAadn o UTIOAOYLOUOG TwV
vPnAwv Kal XapUNAWV powv, EKTOC TOU EUPOUG Aettoupyiag twv MYE, KATL TOU ETLTUYXAVETOL
HE TN XPNON EUTELPIKWY KAVOVWV YLOl TNV QVATOPAoTOon TwV avoSlkwy Kol KoBodikwyv
KAadwv pon¢. H pebodoroyia Sokipaletal o MANBwpPa UTIOBETIKWY TIPOBANUATWY, KABWG
ETLONG KOl OE PLO TIPAYUATIKA TIEPIMTWON, AUTH Tou MaAaldtepou (mepimou 1o 1926) pikpou
ubponAektplkol £pyou tnG EAAGSag, mou PBploketal otov motapo Mavko, otn Bopela
MeAomovvnoo. Metal aAAwV TEPUTAOKOTHTWY, TO £pyo auTo mepthapBavel vo otpofiloug,
évav tUmou Pelton kot évav Francis, yeyovog mou kaBlotd tn ouvoAikn Stadikacia
povtelomoinong akopn Mo SUCKOAN pLag Kat amattel tTnv e€aywyr Twv KOUMUAwV anddoong
Twv 6Uo otpofilwv péow Pabuovounong. OL avoAUOEelG pag UTIOSELKVUOUV OTL TO
TIPOTELVOLEVO TIAQUOLO UTIOPEL VO AmOTEAECEL TN BACN YL TOV XELPLOUO TTIOAAWV TIPAKTIKWV
NMPOPANUATWY KOl QVOLXTWV EPEUVNTIKWY EPWTINUATWYV OTOV EUPUTEPO TOHEA TNG
npooopoiwaong Kat BeATioTonoinong HIKpwv USPONAEKTPLKWY EPYWV.



Exktevng nepiAnyn

AVTIKE{PHEVO TNG TTapoVoOG Epyaciog amoteAel n povieAomoinon TG AeLtoupyilag pKpwyY
UOPONAEKTPLIKWY €pywV UTO KaBeotw¢ afeBalotntag. JUYKEKPLUEVA, OVATITUGOOUUE Eval
HOVTENO O€ TipoypaUUATIOTIKO TieplBaAAov MATLAB to omoio déxetal dedopéva mapaywyng
EVEPYELOG KaL €EAYEL TNV TOPOXA TOU LSATOPEVHATOC, TIOCOTIKOTOLWVTOG TNV aBefatotnta
TIOU TIPOEPXETOL TOCO Ao ta dedopéav Ll0060U (MapatnpnUeEVN EVEPYELR) OCO KAl OO TLG
E0WTEPLKEG SLEPYAOLEG TOU OUOTAMATOG (T.X. KAUMUAEG amodoong otpofidwy). H mapandavw
TIPOCEYYLON KAAELTOL WG TO «AVTIOTPODO EVEPYELAKO TIPOBANUAY, TTOU OTNV Tteoloa Epyacia
QVTLLETWTIZETAL WG TIPOPBANO OTOXOLOTLKN G TTPOCOUOLWONG.

Elvat yvwoto ot to Eupwmnaikd ZupBoUAlo mpowBel pia oOAoKANPWUEVN TIPOCEYYLON YL
TNV KALLATIKA KOL EVEPYELOKN TIOALTIK, HE OTOXO TNV OUMOTPOTI TNG aAAayr¢ Tou KAlHATog
KaBwg koL TNV avénon tng evepyelokn acdpaielog tng E.E. EvielkTika, pe Baon tTnv yvwotn
oupdwvia «20-20-20», pia oElpa LETPpWY ULOBeTABNKAV Ao Ta KPATN-UEAN LE OTOXO:

e Melwon TwV EKMOUMWV agpiwv BeppoknTiou:

e AU&noN TNC KATOVAAWGONG EVEPYELAC TIOU TIPOEPXETAL ATIO AVOVEWOLUES TINYEC
evépyelag (AME)-

e Meiwon otn Xpron MPWTIOYEVOUG EVEPYELOG.

AkoAoUBwg¢, n kuBepvntikn TOALTIKN TNG EAAGSAG amooUpeL TV e€dpTtnon amo tov Awyvitn,
npowbwvtag emnevbuoelg oe AME. OL oxetkég emevduoelg umoAoyiletal va ¢tacouv 10
Sloekatoppvpla supw €wg to 2030. MANBwpa WWTIKWY ETAlpElWY omeLdouv va
BeAtioTOMOLAOOUV TNV TEXVOYVWOLA KAl VO KATAPTIOOUV €EELSIKEVUPEVO TIPOOWTILKO yla va
avtamnokplBoUv oto VEo MAALoLo TNG evEpPyeLaG. MveTal Katavonto OTL HETABOAN TWV HECWV
TIapaywyn¢ evépyelag onpatodotel tnv BeAtiotomnoinon Twv UGLOTAPUEVWY QLOALKWY TIAPKWY,
UOPONAEKTPLIKWYV £pYywV K.A., KABwG emiong kat tn dnuloupyia véwv. H ane€aptnon amno tov
Awyvitn katl n otpodn otig AMNE kablotouv avaykaia tTnv peylotonoinon tng amodoong Kot
Slaxelplong Twv UPLOTAUEVWVY USPONAEKTPLKWY EPYWV KL TOV OXESLOCUO BEATIOTOTIOLNUEVWV
UOPOEVEPYELOKWY CUOTNUATWY KABe TUMOU Kol KAlpakag (UeyaAo/pikpd uSponAekTplkd
€pya, €pya avtAnolotapievong).

Ta USPONAEKTPLKA €PYA UE EYKATEOTNEVN CUVOALKH LOXU KATW Twv 15 MW voouvtal wg
ULKpA USPONAEKTPLKA epyooTacta Kal n Asttoupyia toug dladépel oe onUaviko Babuod amnd
TQ HEYAAQ. ZUYKEKPLUEVA, Ta ULIKpA udponAektpikd €pya (MYHE) ekpetalAevovtal HOvVo Tn
por Tou motapou Kat tn dtadopd vPopétpou ou Snuoupyel To puotkd avayAudo yla va
TIAPAYOUV EVEPYELD, QTALTWVTIAC HLKPNC HOvVo KAlpakag €pya. Efattiac tng pundapvig
amoBrkeuonc vepou Aoyw tnG EAAePNG ppAyuUaTog, N mapakoAouBnon TnG Aeltoupyiog Twv
MYHE eival e€alpetikng onuaociag Kal KaBoploTikog mopAyovtag otnv MePIMTwon mou
pHeAeTdtal n avafaduion toug. QoTtdCO, N CWOTH KOL CUCTNUATIKY TtapoakoAouBbnon tng
Tiapaywyng evépyelag kat anodoong twv otpoBilwy Sev eival pia e0KOAN KoL TUTIOTIOLNHEVN
Sadikaoia. Ou afePfaldtnteg ot TEXVIKA MEYEDON (Kuplwg oTIg KOUMUAEG amodoong Twv
oTpoBiAwV Kal OTIC USPAUALIKEG QMWAELEC OTOV aywyo MTwong) kabwc Kal ta Addn otig
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TapaTNPRoeLs pong rn/ kot evépyelog, kobiotavtal KaboploTKEG yia TNV Asttoupyio evog
TETOLOU £pYOU.

H avamtuén evog mAalolou mMoooTKomoinong Twv mopandavw ofeBalotitwy Kpivetotl
e€alpeTIKA XpAoLUN yla Tov oxeblaoud kat Staxeipton twv MYHE, mou og kaBe mepimtwon
TPOUTOBETEL TN poVTEAOMOINON TOU HETACXNHATIOUOU TNE TAPOX G TOU USATOPEVLATOC OTN
B€on tng udpoAnyiag (elcodog cuUOTAUATOC) O NAEKTPLKN EVEPYELQ TTIOU TTAPAYETOL ATIO TOV
otaBuo mapaywyng (€€06o¢ cuotApaTog). MPOoKUTITOUV TPELG SLATUTIWOELS TOU TIPOBANRUATOC:

e [Eulceia Statumwon, ATOL €KTIUNON TNG TOPAYOUEVNG EVEPYELAG Yla SedopEvn
TIaPOoXI KO YVWOTA TEXVIKA XOpAKTNPLOTIKA Tou MYHE-

e Avrtiotpopn diatunwon, ATOL EKTLINCN TNG TIAPOXNG aro deSopuéva evEpyEeLag, Kot
YL YVWOTA TEXVIKA XAPAKTNPLOTIKA Tou MYHE:-

e EKTiUnONn TEXVIKWV HeyeBwv (mapduetpol) Tou MYHE péow Baduovounong, Ue
Bdaon yvwota dedopéva eveépyeLlag Kot tapoxnc.

Itnv nmopovoa SumAwpatikiy epyacia Sivetal éudacn oto avtiotpodo mpoBAnua, yla To
omolo avamntuooetol €va YeVIKO HeEBOSOAOYLKO TAQLOLO OTOXQOTLKAG TPOCOMOoiwaNnG, Tou
neplypadetal oto dtaypappa tne Ewkdvag 1. E8IkoTEPQ, TO LOVTEAO TTIOU MPOTEIVETAL EEAYEL
KOTOPXAV VIETEPULVIOTIKA, LECW ULAG EMAVAANTITIKAG Stadikaoiag, Tig mapoxEg yla dedopévn
XPOVOOELPA TTAPAYWYNG EVEPYELAC, LE TNV TPOUTOBeoN OTL ival otnv euPEAeLa Aettoupylag
Twv oTpofidwv. Emiong, yla Tnv akpfn moootikonoinon Twv afeBaloTitwy mou MPOKUTOUV
W¢ arokALOELG Ao TIG TTPAYHATLKEG TTAPOXEG, KPIVETAL amapaitnTn N OTOXAOTIKY TteEpLypadn
TWV AVOKTNUEVWY TIAPOXWYV TOU HOVTEAOU, LECW SLOOTNUATWVY EUTILOTOCUVNC, OTWG dalveTal
oto nmapadelypa tng Elkovag 2. H otoxooTik TPooEyyLon UAOTIOLE(TAL PE TN YEVEDH TUXOULWV
TIPAY LATOTIOLOEWV YLa KAOE XpOVIKO B, CUUGWVA LLE TOL OTATLIOTIKA XOPAKTNPLOTIKA TWV
0DAAUATWY TOU HOVTEAOU (TeplBwWPLA KATAVOUH Kol SO 0UTOCUOXETLONG).

Onwg yivetal cadEg To Hoviélo yla To avtiotpodo mpoBAnua Suvartal va EAyEL TTAPOXEG
HMOVO yla To gUpoC Asttoupylag Twv otpofilwy. Katw amod to eAdxL0To Kol Mavw amnod To
HEYLOTO OPLO TIOPOXNG N TIOPAYOUEVN EVEPYELA Elval UNdEV 1 elval n péylotn (ne Baon tnv
OVOMOOTLKA oYU TwV oTpoBidwv), avilotoixws. AuTOg 0 TEPLOPLOUOC 0OAYNOE TNV €PEUVA OE
pLo pebodoAoyia cuUMARPWONG yLot CUUPBAVTO CUVEXOUEVWY EAAXLOTWY 1 LEYLOTWY TIOLPOX WYV,
oTNV omola ETMUSLWKETAL N CUUTIANPWGN TOU USPOYPADAUATOS XPNOLLOTIOLWVTAC EUTIELPLKOUG
kavovec. To udpoypadnua Staxwpiletal oe SUo kAadoucg, avoSilkd kot KaBodlko, Kol n
ocupmAnpwon yivetat yla kabe kKAado yvwpilovtag tig SUo TeEAEUTALEG TIUEG YyLa TIG OTIOLEG
€Xoupe yvwota dedopéva evépyelac. 2to udpoypadnua urmoBEtoupe OtL 0 KABoSIKOG KAASOC
oKoAouBOel ekBeTIK oTelpeon (LOVTEAO YPAULLKOU TOULEUTIPO) EVW O aVOSIKOG LeTaBAANETOL
VPAUUKA. H ouumAnpwon tou udpoypadiatog OKOTEVEL 0TNV OAOKANPWUEVN Slatumwon
TOU LOVTEAOU, TIPOKEUEVOU va eEAYETAL N TARPNG Xpovooelpd rtapoxng. Eival evéladépov va
ETUONUAVOUUE OTL yla TIG UPNAEG mapoxEG n Stadikaoia CUUMANPWONG LG ETUTPETEL TNV
MPOPBAePn TNG MapoxNG axung Kabwe kot tnv nuépa mou cupPaivel. Avtiotolxn yvwon
e€aodaliloupe Kal yla TNV xapunA£g mapoxes. Onwc kot otnv pebodoloyia tou avtiotpodou
nipoPBANUaATog, eKPPAlOULE OTOXACTIKA TNV CUUTIANPWON Tou udpoypadruatoc.



ifpobs > Pmin

YES

Energy production ¢ H(Q,) Iterative numerical
data (P) scheme

|Q[S—1] _ Q[S]| > AQ

Comparison
Qmodel"’ Qobserved

Qmodet = Q1)

Creation of
confidence interval
forretrieved
streamflow

Generation of m
synthetic error
realizations

Ewkova 1: Aldypappa pong ToU MPOTELVOUEVOU HOVTEAOU AVAKTNONG XPOVOOELPWV
TLAPOXN G KAl Tou eVpoug aBefaldtnTdg toug and dedopéva mapaywyng EVEPYELAG.
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Ewkova 2: MpoCoUOLWUEVN TIOPOXA LUE OTOXOOTLKA TIPOCEYYLON YLO CUVEXH AELTOUPYia TOU
otpofilou Pelton oto udponAektpikd «MAaUKOC». Antelkovilovtal N HETPNUEVN TTapoXn, N
TLAPOXI TIOU TIPOKUTITEL OO TO VIETEPULVLOTIKO OVTEAO, KOL TPELC XOAPOKTNPLOTLKEG TILEC

TLAPOXNC Ao TN OTOXOOTIKA TPOooéyylon (SLapeoog kat opla epmiotoolvng 90%).
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flowstream(m?*/s)
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Ewkova 3: Nopadelypo cuUmAnpwaong udpoypadriUaToc yLa apoxEC ou unepBaivouy
TNV OVOUOLOTLKI Topoxr| TwV otpoBilwv (otnv mpokelpévn nepintwon 5.0 m3/s) kat
avtioTolya 0pLa EUMLOTOoUVNG.
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Ewova 4: Noapadelypo cupmAnpwong udpoypadruatoc yio TapoxEG KATW arnod To 6plo
Aettoupyiag twv otpoBilwv (otnv mpokeLpévn nepintwon 0.5 m3/s) kat avtiotoa dpla
gumotoouvne.

To povtélo mou mpoteivetal epapUOCTNKE O VAL ELKOVIKO KAl O €va UDLOTAUEVO €pyO
(MYHE TAaUKOU). ZUYKEKPLUEVA, OTO ELKOVIKO €pyo Xpnolpomotndnkav dvo Stadopetikol
TUToL oTtpoBiAwy, evw oTo €pyo Tou NMauvkou peAeTRONKe n Hi€n Twv otpoBilwv Kabwg Kat n
Aettoupyia kaBe otpofilou Eexwplota. Q¢ mpwtoyevn dedopéva eladdou eAndOnoav wptlaia
Sebopéva mopaywyng EVEPYELAG, NUEPNOLEG TTAPOXEC, N LOXUG TOU CUOTAUATOG, To UYPOoC
ntwong, N SLAUETPOC TOU aywyoU MTWong KaBwg Kal oL KAUUAEG arnodoong Twv oTpofilwy.

‘Ooov adopd oTo £LKOVIKO £pyo, LeAeTAONKav SU0 Mapdyovieg afeBaldotntag:

o ABeBalotnta ota Sedopéva mapaywyng evepyelog (opaipata elcodou)
e ABsfaldtnTa otnv KaumuAn anodoong Twv otpoBilwy (opAApata mapapETpwy)

InUELWVETAL OTL 0 BaBuog anddoong twv udpootpofilwy lvat cuvaptnon Tou Adyou g
TPEXOUOAC MPOC TNV OVOUAOTLKA TAPOXH TOUG, Kal SIVETAL O EUMELPIKA vouoypadriuata.
TNV UEAETN evOg uSponAeKTpLKOU €pyou, 0 Babudg anmodoong Bewpeitatl ouyxva otabepog.
AVTIO£TWG, KOTA TN AetToupyia Tou o BaBuog anodoonc €xel SLAKUMAVOELC Kal e€apTaTtal amno
TNV €LOEPXOUEVN por) oTov oTpOPho. Ot avaluoelg pag £del€av otL n Stadopd otn Bewpnon
Aettoupyiag-oxedlaopol dpavnke OtL elval KABOPLOTIKN OTA UKPA USPONAEKTPLKA €pya. ZTNV
napovoa epyacia HeAETNONKaV apKETEC KAUMUAEG otpofilwy, oL omoie¢ akoAouBouv pla
TIOPAUETPLIKN) OVAAUTIK) GOPUOUAQ TIOU MOG ETUTPETEL VA TIPOCAPHOLOUME OTOLASNATIOTE
OX€0N KOl VO TIOPAYOUE OLKOYEVELEG LOOTIBOVWY KAUTIUAWY, BEWPWVTAG TG TTAPAUETPOUG
NG OXE0NC WG TUXaieg HeTABANTEG, OMWCE oto Ttapadelypa tn¢ Etkovag 5.
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Ewkova 5: Nopadelypa mapaywyng Tuxaiwv KaUmuAwyv anddoong yla otpofilo tumou
Pelton.

JTO €LKOVIKO £pYy0, Ta oPAaApaTa oTa «mopatnpnuéva» dedopéva mopaywyng eVEPYELAC.
elonxbnoav ocuvBeTikd, pe okomod va PeAeTnOel n emppor Toug otnv avtiotpodn oxéon
evépyelac—Tiapoxng. E¢etaotnkav dtadpopol mpoobetikol TUMOL oPAAPATWY TOU atkoAouBolv
Kavoviki A Mpupa katavoun (Ue acupuetpia), kKaBwg Kat TOAAQTAACLAOTIKA obAApaTa, Kot
€ywve aviumapaBoAr Toug pe Ta opaApata tng e€ayouevng mapoxns (amokAioslg and tnv
UETPNUEVN). Elval evlladEpov OTL To TPOOOETIKO 0dAAUA OTNV eVEPYELA 08NnYEl og éviova
OUCXETIOMEVA OPAAUATO TNG TIPOCOMOLWHEVNC TIOPOXNG, AVIIBETA TO MOAAATMAQCLOOTIKO
odalpa dSnuouvpyel apaipota popdrng Asukol BopuBou (pe APEANTEX AUTOCOUGCXETION KOl
ETEPOCUCYETLON UE TNV TOPOXH).

‘Ooov adopa 1o £€pyo Tou Mavkou poékuPav apkKeTEC SUOKOALEC KUPLwg Adyw EANeldNC
6ebopévwy. l8laitepa ol KapmuUAec amodoong Twv otpoBiAwv ATOV AYVWOTEC Kal N
TIPOCEYYLON TOUG €yLVe HE BeATIOTOTONON HECW YEVETIKWVY aAyopiBuwv amod ta dedopéva
EVEPYELOG Kal apoxnG. Emiong to delypa twv Sedopévwy mapaywyng EVEPYELAC YLoL CUVEXN
Kal Tautoxpovn Asttoupyia twv udpootpoilwy ATAV APKETA ULKPO.

KaBiotatal cadég OTL TOo MPOTEWVOUEVO OTOXOOTIKO TAQLCLO QVOAUEL LA 1N YPOUULKN
oX€0N, TOCOTIKOTIOLWVTAC TNV UTapkt ofeBatdtnta oe OAeC TIG TTUXEC TNG (amodoon
otpoBidwy, kaBapo UPog mtwong, opaipata ota dedouéva evépyelag). H avaykn Omapéng
EVOC TETOLOU HOVTEAOU Oladailvetal Kuplwg amd Ta OmOTEAECHATA OTN HEAETN TOU
uvdponAektplkoL £€pyou otov MNavko. Mo cuyKeKpLUEV, ELKAlOUUE OTL oL afeBalotnteg otnv
KOUTTUAN TwV oTpofilwyv kaBw¢ Kal ta AdBn otnv mapatrnpnon TG EVEPYELAG KAl TNG PONC
£€XOUV WC ATTOTEAECHA TN KN OIMOSO0TIKN AELTOUPYLO TOU GUOTAATOG.
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To povtélo mou mpoteivoupe Suvatal va epappooTel o OAa Ta UIKPA USPONAEKTPLKA
€pya, adevog yla Tov EAeyX0 TNG AsLToupyiag Toug Kat adeTEpou yla tnv BeATioTONOLNON TOU
OoXeOLOOMOU TOUG aAAA KAl TNV EMLXELPNOLOKA TOUG Slaxeiplon (MPOyvwaon EVEPYELAKNG
Tapaywyng). Zuykekpluéva, eilval duvatd va EMITUYXAVETAL O TIPOYPOUUOTIOUOC TNG
TIPAYWYNG EVEPYELOG HECW TOU cuvduaopol guBL kal avtiotpodou mpoPAnuatos. Méow
NG avtiotpodng oxéong e€ayovral ol mpoodateg MApPoxXEC, SnUloupyeital €va oxnua
POPBAePNG TNG MOPOXNG KAl TEAOC yiveTal n mPOPAedn TNG EVEPYELAG OTO EMOUEVO XPOVIKO
BAua péow tnNg KAOOOLKNG ox€ong. EmutpdoBeta, n mapovoa €peuva aVESELEE TNV avayKn yLa
Slepevvnon NG PeAtiotomoinong TNG SLOXEPLOTIKAG TOATIKAC Twv OTpofilwv otnv
TauTOxpovn Aswtoupyla, TPOKEEVOU va peylotonoinBel o Babuog amodoong tou
OUCTAUATOC.
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1 Introduction

1.1 Motivation

In 2007, the European Council set a package of three key targets for year 2020, in an effort
of making renewables the key player in energy production in the long term. These so-called
“20-20-20" targets are:

e 20% cut in greenhouse gas emissions (from 1990 levels);
e 20% of EU energy production from renewables;
e 20% improvement in energy efficiency.

At this time, Greece's government policy withdraws its dependence on lignite, thus strongly
promoting investments in RES. Relevant investments are expected to reach 10 billion euros by
2030. Numerous private companies are rushing to optimize know-how and train qualified
personnel to meet the new energy framework. In is scene, it is necessary both to maximize
the efficiency and optimize the management on the existing hydroelectric plants and to
develop new hydropower plants of all types and scales, i.e. large, small, and particularly
pumped-storage projects (Koutsoyiannis et al., 2009).

Hydropower plants, which have a total installed capacity less than 15 MW are considered
as “small” and their operation differs significantly from the large ones. In particular, SHPPs use
the river’s flow to produce energy directly. Due to their negligible storage capacity, small
hydroelectric plants (SHPPs) cannot offer regulation of flows, thus making the scheduling of
energy production a quite difficult task, even for small time horizons. Uncertainties in the
technical characteristics (mainly in the performance curves of the turbines and the hydraulic
losses in the pipe stock) as well as the observational errors in the flow and / or energy, become
crucial for the operation of such projects. The creation of a quantitative framework for the
above uncertainties is considered very useful for the design and the management of a SHPP.
Subsequently, there are three formulations of the problem:

e Forward configuration, i.e. assessment of the energy produced for given inflow
data and known technical characteristics;

e Inverse configuration by means of reverse engineering, i.e. estimation of the
discharge by using energy production data, and known technical characteristics;

e Estimation of unknown or uncertain technical characteristics (handled as
parameters) through calibration, based on known energy and flow data.

In this diploma thesis, we emphasize on the inverse problem of hydroelectricity, for which
we develop a generic stochastic/probabilistic framework, and we also discuss and test the
calibration problem. Preliminary results of the present study were presented at the General
Assembly of the European Geosciences Union (Sakki et al., 2020).
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1.2 Research objectives

Considering the three possible expressions of the flow-energy transformation problem, in
our research we set the following objectives:

e Formulation and computational implementation of each problem type;
e Recognition of uncertainties on technical characteristics;

e (Quantification of uncertainties on observational errors;

e Configuration of efficiency curve by using analytical formula;

e Calibration of efficiency of each type, using the inflow and energy data;
e Stochastic approach of errors for the inverse engineering problem type.

The main focus of this research is the retrieval of flows from energy data, so-called the
inverse problem of hydropower. The inverse engineering problem type involves the three flow
ranges:

e Low flows, below the minimum operational discharge of turbines;
e High flows, exceeding the nominal discharge of turbines;

e Intermediate flows, which are directly estimated based on observed
hydropower data.

The usefulness of such a model becomes apparent if we consider the huge uncertainties
on river flow and finally on energy production and its cost.

1.3 Thesis outline

This thesis is divided into nine chapters and an appendix.

This first chapter introduces a preamble to the subject, the research objectives and the
motivation of our work.

The second chapter provides a brief bibliographic overview on the meaning and usefulness
of the hydroelectric plants, and especially of the small hydropower plants (SHPPs). Also this
chapter presents the layout and the characteristics of a SHP.

Chapter three includes the literature review for the design, operation and maintenance of
hydropower systems. In addition, this chapter discusses the issue of uncertainty on literature
basis.

The fourth chapter discusses the three typical flow-energy transformation problemes, i.e.,
the forward and inverse engineering approach, as well as the issue of calibration. After
introducing the typical input data of SHPPs and their processing, it presents the formalization
of the three problems and their challenges. Moreover, we explain in detail the hydraulic
calculations and the estimation of efficiency.

The fifth chapter explains the core of our research, which is the stochastic modelling
framework for the inverse problem of hydroelectricity. In particular, it presents the proposed
numerical procedure for extracting the streamflow data under uncertainty, during the

16



operation of turbines within their flow limits. In the proposed framework, uncertainty is
expressed by means of observational errors in energy data, as well as internal modelling errors
with respect to the efficiency curves of turbines. For the latter, we develop an approximative
parametric formula, which is also used in the context of calibration. Moreover, we provide a
semi-empirical approach for the extrapolation of the hydrograph when the flow is outside of
the range of the turbines.

The sixth chapter illustrates the model implementation in MATLAB environment.
Specifically, we provide the code snippet for the whole numerical procedure.

In the seventh chapter we test our methodology in a hypothetical SHPP with two
alternative turbines. In this example, we calibrate the efficiency curve, implement the reverse
engineering procedure to reconstruct the streamflow and quantify the derived uncertainties
for several error expressions and associated scenarios (e.g. normal, gamma-distributed). We
also implement the extrapolation approach for the high and low flows, while the detailed
results are given in the Appendix.

In the eighth chapter we implement our research in a real-world case, i.e. the Glafkos
power plant, comprising a Pelton and a Francis turbine. Initially, we provide an overview of
the study area, the system characteristics and its operation since its establishment (1926). In
this study we extract the inflows for three time periods, i.e. the individual operation of the
two turbines as well as their mixing. The issue of uncertainty, particularly regarding the
efficiency curve of Francis turbine, as well as the observational errors in energy production
data, are thoroughly discussed.

The ninth chapter summarizes the conclusions and the future perspective of our research.
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2 Overview of small hydropower plants

2.1 About hydropower

Throughout history, human population growth has been supported by a steadily increasing
production and consumption of energy. In the most recent five decades, the world energy
consumption increased substantially. For instance, the electric power consumption per capita
in 1971 was 1200 KWh, whereas in 2014 it has increased up to 3133 KWh (The World Bank,
2017). Specifically, the per capita energy consumption has risen from a global average of 1.56
tones of oil equivalent (toe) per person in 1973, to 1.66 toe per person in 2000 and to 1.92
toe per person in 2014 (The World Bank, 2017). This rapidly increasing energy demand raised
the need for shifting to renewable energy sources, such as wind, solar, biomass, geothermal
and hydropower. According to summary statistics for years 2017 and 2018, renewables
contributed 18.1% to the world's energy consumption and 26% to its electricity generation,
respectively (REN21's 2019 report).

Of these so-called green energy sources, hydropower is the most efficient, in both technical
and economic terms, with a price competitive to fossil fuels. The idea of hydropower is simple.
Stored water in a high elevation has a dynamic energy that turns into hydraulic energy, as
water flows to lower areas. Next, the hydraulic energy is converted to mechanical, by using
hydrodynamic machines (turbines). In particular, a hydro turbine converts the energy of water
through continuous flow of fluid and constant rotary motion. Transforming the energy of the
passing fluid under a constant supply to mechanical energy is done in the rotating part of the
machine, which is called a rotor, by means of thrust. The drive torque is transferred to the
rotor shaft, which is coupled to the electric generator shaft, which converts the mechanical
power to electricity. A final conversion is employed through the transformer, in order to
supply the high-voltage electricity grid.

The small hydropower plants are based on the exploitation of dynamics surface water
energy, by converting it initially to kinetic and then to electricity, according to the laws of
electromagnetic fields. Initially, running water is confined or water is stored in natural or
artificial lakes. The kinetic energy of water is converted into mechanical energy by the rotation
of the axle of a turbine impeller. Then, the turbine operates a generator, which converts
mechanical energy into electricity.

HYDRAULIC TURBIME GENERATOR TRANSF,
CIRCUNT

—'I

Hidraulic Pawar Mechanical F'uwar Electrical Power

Figure 2.1: Serial conversion of hydrodynamic energy to electric energy at the grid through a
hydropower system (Ramos & Betamio, 1999).
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Figure 2.2: USGS

It is worth mentioning that the earliest evidence of taking advantage of hydraulic energy
through water wheels and watermills goes back to the ancient Near East in the 4th century BC
(Wikipedia,2020). It is also known that much earlier, namely in ancient Egyptian times, people
have used energy in running water to operate machinery, grind grain and corn (Wikipedia,
2020). Nowadays, modern hydro plants produce electricity using turbines and generators. The
first hydroelectric station was built in 1882 in Appleton, Wisconsin, and produced 12.5 kW,
thus providing light to two papermakers and a house. Nowadays, the largest hydroelectric
station, called the Three Gorges Dam, built in 2012 in China, has a capacity of 22 500 MW.

In general, the hydropower works are either dam-based or run-of-the-river; the latter
belong to a broader category of the so-called Small HydroPower Plants (SHPPs), which is the
focus of this research. Dam-based hydropower plants typically require the construction of
large-scale infrastructures, in order to offer long-term regulation of flows through the
reservoir storage. However, they also have significant impacts on the riverine ecosystem and
the surrounding environment. On the contrary, RoR plants are quite simple structures, since
they produce hydroelectric energy without requiring large-scale interventions in the river for
employing water storage (reservoir). With respect to large reservoirs, they have limited
socioeconomic and environmental impacts, thus making them more attractive.

Hydroelectric power has played an important role in worldwide spread of electricity and
has helped to boost industrial development. Hydroelectric works continue to produce 16.6%
of global electricity. Further growth of this mature technology is possible, though many
countries have already developed cost-effective sites. The total installed capacity for
hydroelectricity has now surpassed 1290 GW, and there remains vast untapped potentials
around the world, especially in developing countries. There was more hydro commissioned
than solar and wind energy and experts predict that hydropower capacity could double by
2050 (IHA, 2014). In Greece, the installed capacity is just under 3500 MW, while hydropower
covers about 10% of our electric energy needs.
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Figure 2.3: The total hydropower installed capacity IHA (2019)

2.2 Small hydropower plants

III

In order to define a Hydroelectric power plant as “small”, the installed power must be
under a certain limit, that is defined in the corresponding national legislation. This limit varies
considerably among different countries, but the most common values are between 10 and 30
MW. For example, in California, hydroelectric generating stations with a maximum capacity of
less than 30 MW are classified as small. The "small hydro" description may be stretched up to
50 MW in the United States, Canada and China (WIKIPEDIA). For the distinction between Small
HydroPower Plants (SHPPs) and large ones, the Greek state has adopted a capacity limit of 15
MW. Most of SHPPs in Greece have a capacity from 0.5 to 3.0 MW. Such projects do not cause
significant visual impacts and public opposition, because they involve neither large-scale
water collection and storage works nor the construction of large dams, thus being quite
compatible with the environment.

There are four different types of SHPPs, based on their storage capacity (Mamassis et al.,
2020). The first one is put at the outlet of a large dam, e.g. to exploit the environmental flow.
In this case, the outflow target through the turbines is well-ensured, since there is a
satisfactory storage of water (this target is small, if compared with other water uses, and is
also put in priority). The second one is so-called run-of-river (RoR), which utilizes the
streamflow as it comes, without the ability to store the water (water is captured and diverted
to a forebay tank). This is the most common SHPP type. Another type involves the construction
of a low-head dam across a large river or channel, which creates a small reservoir upstream
of negligible regulation capacity. The last one is so-called in-stream, which utilizes the
streamflow velocity to produce electric energy. Because of the fluctuations of river’s
streamflow very few projects of this type exist.
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Components of plant

Figure 2.4: Components of a small hydropower plant (Source: www.energypedia.info).

2.3  Run-of-river plants: layout and operation

As mentioned before, the small hydroelectric plant utilizes the natural fall of the surface
water, through a pressurized hydraulic system that sends water to a turbine. A general layout
of a small hydroelectric station is demonstrated below.

Figure 2.4 illustrates a sketch of the most characteristic type of a small hydroelectric work,
referred to as run-of-river plant (RoR). In this layout, the power station is located far away
from the intake, to ensure an economically effective elevation difference between the forebay
tank and the power station, but the case that it is embodied in the intake is also common. The
main elements of this configuration, as moving from upstream to downstream, are:

(a) A weir, comprising a water intake that controls the amount of river flow to be
used for hydroelectricity, from which the exploitable water is abstracted from the
stream or, more generally, from the water source. The water abstraction system is
designed so that part of the flow (ecological supply) will be by priority conveyed to the
downstream natural system, while surplus water is also spilling through the weir.

(b) Achannel, which is referred to as headrace, that conveys the water to a forebay
tank. At the entrance of the channel there is sand trap and a desilter, which allows for
managing sediment transport (a detailed layout is shown in Figure 2.5).

(c) The forebay, which is designed to ensure the appropriate hydraulic conditions
of the input into the penstock. The basic criterion for designing the forebay is the
prevention of air into the supply pipeline, which can cause cavitation problems. Due to
its small storage capacity, the forebay offers very limited regulation (e.g. for few hours)
and also ensures a practically constant head.

(d) The penstock system, basic component of which is the pipeline, through which
the flow is conveyed to the turbine under pressure. The installation of the pipeline may
be either underground or superficial. The pipeline is usually placed in a pit and then is
buried, for environmental reasons as well as for the protection of the pipe from wear.
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(e) The power house, hosting the turbines and the generator. The power house is

the place where the penstock ends and the electromechanical equipment (turbines),
the transformers, the generator and the monitoring and control equipment are
installed. The type and number of turbines is selected according to the flow rate and
head of plant and the best-case scenario for the operation of the plant. The layout of
the power house depends on the existing topography, the flow conditions of the natural
water stream and the type of electromechanical equipment.

(f) A tailrace that conveys the water back to the river, after exiting the turbine.

Figure 2.5: Overview of concept and main components of a RoR plant (GGF, 2012).

In order to define the exact design of a small hydropower plant it is essential to define of
project layout and formulation and finally the layout optimization. Specifically, the following
studies and optimization procedures are critical:

o

O O O O O O

Hydrological study (streamflow data, preferably at daily basis or finer, flow-
duration curve, environmental flows, flood regime, dry/wet year conditions);
Basic topographical overview (available head, siting of main system components,
access conditions, existing roads);

Pre-design of hydraulic structures with cost estimations;

Optimisation of sizing;

Detailed field investigations;

Detailed engineering design and bill of quantities;

Choice of suitable equipment (turbines, penstock diameter etc.);

Budgetary quotations for equipment.
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o Figure 2.6: Typical layout of intake works in a RoR plant (Mamassis et al., 2019).

The above steps are necessary to design a small hydropower plant that uses with the most
effective way the inflows of a river. If planned properly, hydropower offers the lowest
generation cost at a very low risk and over a quite long life time. The hydrological study
determines how much water will be available for electricity generation over the year, hence
it provides the basis for the optimal siting and sizing of the system, in technical and economic
terms.

2.4 Turbines

2.4.1 Classification and operation

The turbine system converts the hydraulic energy of the diverted river water, expressed in
terms of net head, into electricity. Which turbine(s) to select depends in large part on site
characteristics (e.g. available net head), and the river's discharge regime. In hydroelectric
systems, turbines are generally classified into two categories:

i. impulse turbines (e.g. Pelton), taking advantage of the kinetic energy of water
falling from a large elevation (outflow to the atmosphere); the flow velocity is
substantially amplified by passing water through a nozzle;

ii.  reaction turbines (e.g. Francis), operating under pressure, as the chamber of the
runner remains completely filled by water.
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Each turbine operates in a specific range of flows. The maximum flow, also referred to as
nominal, is determined by power capacity of the turbine, while the minimum one ranges from

10-30% of maximum. Below this value the ability of the turbine to generate electrical power
is negligible.

Next we will briefly mention the two major turbine types that are used in hydroelectricity,
and particularly in run-of-river plants, i.e. Pelton and Francis.

-

Head (m)

Figure 2.6: Typical recommendation ranges for turbine selection.

2.4.2 Pelton turbines

Pelton is one of the most effective hydro-turbine. Pelton is an impulse turbine. In 1889, the
American engineer, Lester Allan Pelton, patented this machine by streamlining the traditional
windmill technology. A jet of water passing from a contracting nozzle enters the double
buckets of the turbine wheel, to produce energy as the runner rotates. After it is impinging
the buckets, the water outflows freely (i.e., under atmospheric pressure). Since the jet flow is
not axisymmetric, thus only part of the runner is activated (typically only two or three out of
about 20 buckets), they are also referred to as partial admission. The idea of energy
production the substantial increase of the flow velocity from Vito V2 where V1 is the velocity
through the penstock, with diameter D1, and V, is the velocity through the nozzle, with
diameter D, << Di. Generally, V1 ranges from 4 to 6 m/s, while VV; may exceed 100 m/s.
Impulse turbines are applicable for large heads (H > 250 m) and relatively small Q.
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Figure 2.4: Sketch of the Pelton wheel (source: Wikipedia).

2.4.3 Francis turbines

In 1849, the American engineer, James B. Francis, built a new turbine, which has since bore
this name and is the most common type of turbine in medium-sized hydroelectric projects.
Francis The Francis turbine is a type of reaction turbine a category of turbine in which the
working fluid comes to the turbine under immense pressure and the energy is extracted by
the turbine blades from the working fluid. Part of the energy is given up by the fluid because
of pressure changes occurring in the blades of the turbine, quantified by the expression of
degree of reaction, while the remaining part of the energy is extracted by the volute casing of
the turbine. At the exit, water acts on the spinning cup-shaped runner features, leaving at low
velocity and low swirl with very little kinetic or potential energy left. The turbine’s exit tube
(also known as draft tube) is shaped to help decelerate the water flow and recover the
pressure.

Francis turbines are suitable for a wide range of discharge and head conditions, thus they
are applied most of hydroelectric works worldwide (all but two large hydropower systems in
Greece employ Francis turbines). The Francis turbine is commonly used for heads from 40 to
600 m and for discharge values from 0.2 to 20 m3/s, thus resulting to power capacity values
from 10 kW to 770 MW. The speed range of the turbine is from 75 to 1000 rpm. In contrast to
the Pelton turbine, the Francis turbine operates at its best completely filled with water at all
times. However, its efficiency ranges from very low to very high values, thus making it very
difficult as for the optimal operation.
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Figure 8.5: Stay vanes and guide vanes of a typical Francis turbine (www.theconstructor.org).

2.5 Advantages and disadvantages

Small hydroelectric power plants have a number of significant advantages, which
establishes them as an effective source of energy. SHPPs are based on the idea to exploit the
waterfalls, which are a renewable energy source and therefore do not face visible risk of
depletion, as the contingency fuels. Contrary to what happens with fossil fuels, water is not
disposed of in the production of electricity and can be used for other purposes. Specifically,
small hydropower plants may be combined with parallel uses such as water supply and
irrigation, helping to maximize the utilization of water resources. Furthermore, they have brief
investment amortization time due to very low operational and maintenance costs and the cost
of generating electricity has not huge fluctuations and essentially corresponds to the
depreciation of the project. In environmental approach, the SHPPs do not have waste or
residues, eventually do not pollute the environment. Due to the fact that small hydropower
plants are constructed in isolated mountainous areas, the nuisance caused by them is minimal.
The transport pipeline is usually underground, the building of the plant can be adapted to the
local architecture, modern turbine technology ensures reduced sound nuisance and there is
no need to store water. The result is not only not to be disturbed, but often for the visual
environment area to be upgraded.

Despite their significant advantages, small hydropower plants present some disadvantages
which they must be taken into account in order to maximize the benefits from the application
of this technology. Besides the low operational cost, they have a high construction cost (of the
order of 1000-2000 €/KW) and for this requires the allocation of relatively large funds.
Although, the most crucial disadvantage of SHPPs is the uncertainty around energy
production, due to lack of water storage. This feature, which is an advantage in terms of size
of the environmental burden, implies zero flexibility in the management of energy in the
Transmission System, since the energy produced should be consumed immediately.

Overall, small hydropower stations are a viable, clean and cost-effective alternative to dam-
based plants, and provide the option of decentralized power production. The difficulties that
occur by the small hydropower plants, should not, in any case, be considered as an inhibiting
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factor in their promotion. The insurance of energy sustainability and the protection of the
environment require the exploitation of every economically and environmentally sustainable
energy source.

2.6 Development of small hydropower plants over Greece: current status
and perspectives

An important qualitative feature in the field of small hydropower plants is their spatial
distribution in Greek territory. The natural resource that they use for electricity production is
water, i.e. rainfall or, in general precipitation and it is natural their development to be geared
towards areas with rich water potential. In Greece the richest hydrological basins are
concentrated mainly in the northern and western regions of the mainland, which are
dominated by the mountain range of Pindos. The map below presents the distribution of small
hydropower plants, depending on the stage of their implementation. The map also shows the
spatial distribution of the mean annual rainfall over Greece.

As the investment interest in small hydropower plants has become particularly intense the
last five years, the search for new sites has turned to the less developed areas. Generally, in
Greece 107 small hydropower plants operate. Today, in Thessaly there are 28 projects under
development, 29 in Western Macedonia and 9 in Peloponnese.

Stage of implemetation

@ Installation license
# Operating license
& Production license

. 259%9mm

400mm

Figure 2.7: Elevation map of Greece, showing the locations of licensed small hydroelectric
plants (Hellenic Ministry of Development).
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3 Research advances in the design and operation of
small hydropower plants

3.1 Literature review

During the past three decades many experts have employed comprehensive research on
the optimal design, operation and performance of small hydropower plants. Yildiz and Vrugt
(2019) mention that this research has primarily focused on five issues: (1) the determination
of the optimal power capacity, (2) the development of specialized metrics (indices) that
convey properly the economic performance (profitability) and energy production of power
plants, (3) the development of fast and efficient optimization approaches for the design of the
hydropower system, (4) the design, operation, analysis, and performance assessment of
turbines, and (5) the importance of streamflow processes and surface hydrology on the overall
performance of small plants.

Many researches focused on the optimum capacity of small hydroelectric plants as for their
economic profitability. For instance, Santolin et al. (2011) proposed a model for the capacity
sizing of a small hydropower plant on the basis of techno-economic analyses of the flow
duration curve by using seven parameters. Montanari (2003) presented a method for finding
the most economically advantageous choice for the installation of micro hydroelectric plants
with small net head and modest flow rates. Anagnostopoulos and Papantonis (2007) found
that the use of two turbines of different size can enhance sufficiently both the energy
production of the plant, by optimizing the mix of turbines, and the economic results of the
investment. In addition, they demonstrated that the optimum size of turbines depends
strongly on the characteristics of the installation site and the actual turbines used. Mishra et
al. (2011) concluded that the properties of the river discharge and number of poles of the
generator determine the optimum size and investment costs of small hydropower plants,
nevertheless, these variables are often ignored during design and optimization analyses.

The choice of one or more turbines in small hydropower plants is a multidimensional
problem because their operation is based on many unknown characteristics. Research into
turbine selection, design, analysis, operation and performance has led to approaches for
direct measurement, monitoring, numerical simulation and optimization of the turbine
efficiency. Cobb and Sharp (2013) studied a laboratory-scale test fixture in order to test the
operating performance characteristics of impulse turbines (Pelton and Turgo). Elbatran et al.
(2015) reviewed the selection of low head micro-hydropower turbines with emphasis to
poorly developed areas, and looked forward to using simple turbines for achieving good
performance with minimum initial and running cost. Finally, Skjelbred and Kong (2019)
compared the performance of linear interpolation and spline interpolation for turbine
efficiency curves, in the short-term hydropower scheduling (STHS) problem and the bidding
strategy in intraday market.
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3.2 Issues of uncertainty

Small hydropower plants have operational flexibility such as quick starting, stopping and
load variations thus helping in improving the overall reliability of the power system. In this
context, it is not surprising that this form of hydropower exhibited such an expansion during
the past decades. On the other hand, these works are subject to multiple uncertainties that
span over all aspects of flow-energy transformations, and affect many crucial tasks, including
the optimization of turbines efficiency, the maximization of economic performance, the
operational maintenance and the optimization of turbines mix.

The most apparent and well-studies issue of uncertainty involves the hydrological inputs.
Evidently, due to their negligible storage capacity, small hydroelectric plants strongly depend
on the sequence of hydrological periods, and particularly the low and medium flows. Casadei
et al. (2014) proposed empirical methods to improve the performance of a SHPP according to
the hydrological regime of the river, the frequency of dry and wet years, and the target energy
production. Moreover, the fluctuations of demand and supply adjust more uncertainties in
the operation and design of small hydropower plants. Bjerkholt and Olsen (1984) discuss the
sizing and capacity utilization of a hydroelectric power system, when uncertainty in supply and
demand are explicitly taken into consideration.

In a more general context, the quantification of hydrological uncertainty across water
resource systems is a topic of extended research. This uncertainty either refers to the process
of interest (in the particular case, streamflow) or the modelling procedure for extracting this
process (e.g. through rainfall-runoff models). Regarding the first issue, hydrologists have long
appreciated the usefulness of stochastic approaches and have applied them in a wide range
of water resources applications, including the design and operation of hydropower systems
(mainly large ones, comprising hydroelectric reservoirs). The most common use of stochastics
is the generation of synthetic inflow data for the representation of all aspects of variability of
streamflow and its statistical dependencies in space and time. The literature offers a plethora
of models that reproduce the most important statistical characteristics of hydrological
processes. Among many others, Koutsoyiannis (2000) proposed a framework for single- and
multivariate simulation and forecasting problems in stochastic hydrology that allows for
representing multiple persistence structures, while Tsoukalas et al. (2019) provided a flexible
methodology for combining different stochastic models to represent any distribution and any
dependence structure across any sequence of scales. The aforementioned methodologies
have been implemented within time series generators, such as Castalia (Efstratiadis et al.,
2014) and the recently released AnySim package (Tsoukalas et al., 2020).

Furthermore, the literature has also discussed the uncertainties induced by the use of
hydrological models for representing the transformation of rainfall to runoff, when direct flow
observations are limited or even missing. For instance, Vrugt et al. (2009) provided important
advances in testing hydrologic theories, diagnosing structural errors in models, and
appropriately benchmarking rainfall measurement devices by introducing a novel Markov
Chain Monte Carlo (MCMC) sampler, entitled differential evolution adaptive Metropolis
(DREAM). Sadegh et al. (2015) have used Bayesian inference with DREAM in the evaluation of
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run-of-river hydroelectric plants, by proposing mathematical expressions of flow duration
curves (FDC), coupled with uncertainty quantification.

A last issue of uncertainty involves the characteristics of hydraulic turbines, which are key
component of hydropower systems. The experience so far reports many problems which
degrade their condition and efficiency and require proper operation and maintenance. After
only few years of operation, turbines can show significantly reduced performance due to
various reasons such as cavitation, erosion, fatigue and material defects (cf. Kumar and Singal,
2015, also proposing methods for the effective maintenance of turbines). For this reason, the
standard efficiency curves provided by the manufacturers may deviate significantly from the
actual efficiency in the field, which is a major source of uncertainty affecting a wide range of
applications, including performance assessment, real-time operation and power predictions.
In this context, Abbas and Kumar (2019) mention that the total uncertainty in flow and
efficiency measurements at the best efficiency point has been found to be the minimum one,
when compared with other operating points.
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4 Simulation problems in small hydropower plants:
forward and inverse formulations

4.1 Input data and assumptions

The simulation problems in small hydropower plants are expressed either in forward or
inverse mode. The forward simulation aims at estimating the energy produced by a system
with given characteristics and given inflows. On the contrary, in the inverse simulation, the
objective is to retrieve the overall input, i.e. the streamflow, for given system characteristics
and given (observed) energy data.

Input data for the forward problem are:

e Streamflow upstream of the intake, Q;

e Gross head, H, expressed as the elevation difference between the forebay tank and
the outlet level, which is practically constant;

e Geometrical and hydraulic characteristics of the penstock, which allow for estimating
the hydraulic losses, h; (section 4.3);

e Maximum discharge that can pass from the turbines, Q,,4, Which is also referred to
as nominal flow;

e Minimum discharge for energy production, Q,,,;», Which depends on the turbine type
and is typically expressed as fraction of nominal flow, i.e. Qnin = @ Qmax;

e Power plant efficiency, n, which is typically expressed as function of rated flow,

Q/Qmax (section 4.4).

The nominal flow is associated with the power capacity of the plant, B,,,,, given that for
Q/Qmax = 1 the efficiency is maximized. Under this premise we get:

Pmax

Q = (4.1)
max VY Nmax Hn

We remark that the above relationship includes the net head term, H,,, which is function
of Quax- In this respect the formula cannot be solved explicitly, thus in the context of
preliminary calculations, we can omit hydraulic losses and thus substitute H,, by the gross
head, H. This approximation is valid only in case of large heads and penstocks with minimal
losses. A more elegant approach, which is specific case of the inverse problem, is discussed in
section 4.6.

It is important to remark that both problem configurations (forward, inverse) are subject
to measurement errors and uncertainties that span over all elements of the governing
formulas, and they are transferred to the simulated outputs. Herein we present the model
formulation in deterministic terms, i.e. without accounting for uncertainties. In next chapter
we will provide a more integrated approach, emphasized to the inverse problem, to allow
embedding different sources of uncertainty within calculations.
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4.2 The forward problem: converting discharge to hydroelectric energy

Let Q be the streamflow arriving at the intake of a RoR plant. The flow passing through the
turbines is restricted by the discharge capacity Q,qx, i-€-:

Qr = min(Q, Qmax) (4.2)

If the flow is less than its minimum operational limit, the turbine efficiency is practically
zero thus any anergy is produced. On the other hand, provided that Q > Q,,,;n, the energy
production rate, i.e. the power, is calculated by the relationship:

P =n(Qr)y Qr H,(Qr) (4.3)

where:

7 is the power plant efficiency, expressed as function of discharge;
y is the specific weight of water (9.81 KN/m3);

Qr is the flow passing through the turbines (m3/s);

H,, is the net head, i.e. the constant gross head, H, after subtracting the flow-dependent
hydraulic losses, h; (m).

The estimated power production from the above relationship is approximative because of
the input uncertainties (flow data) and the internal uncertainties of the system, i.e. in the
power plant efficiency as well as in H,,. Hydraulic losses include friction and local ones, which
are function of discharge and the penstock properties (roughness, length, diameter,
geometrical transitions). Large hydroelectric reservoirs allow for controlling outflows; thus
their turbines are normally working with the nominal flow, which maximizes efficiency. In
contrast, SHPPs are operating with any flow conditions, where 7 is strongly varying across the
feasible flow range (Qmin, Qmax)-

The energy production during a time interval [t1,t2] is the integral of power, i.e.

t2
E= f P(t)dt (4.4)
t

1

Also, assuming constant efficiency and net head, we get the following formula, expressing
the energy produced over a specific time interval:

E=nyVH, (4.5)

where V is the water volume passing the turbines during this time interval (m3), and E is the
energy, expressed in Joules.

4.3 Estimation of hydraulic losses

Gross head reduction is due to frictional losses across the penstock, as well as local energy
losses that occur at all changes of the flow geometry. For given discharge, Q, and pipe
diameter D, the flow velocity is given by:
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_ 40

V= D7 (4.6)

For the above flow characteristics, the energy gradient J across the pipe is typically
estimated by the so-called Darcy-Weisbach formula:

1V?
J=f—— (4.7)
D2g
where f is a (dimensionless) friction factor. The latter is given by the Colebrook—White
equation:

1 € 2.51
—=-2 log( > (4.8)

ﬁ 3.7D+ Re\/f

where Re := V D/v is the Reynolds number and €/D is the relative roughness, which are both
dimensionless quantities, whereas ¢ is the absolute (surface) roughness of the specific pipe
and v is the kinematic viscosity of water, which is function of temperature; e.g., for T= 15 °C,
v=1.1x10"%m?/s.

For a pipe of length, L, and by considering steady uniform flow with discharge Q and
diameter D, the friction losses, which are generally the main component of the total hydraulic
losses, are given by:

_ 89
hf = fLW (4-9)

Due to the complexity of friction loss calculations through eq. (4.9), a number of simplified
formulas have been developed in the literature (e.g., the Hazen-Williams expression), which
are yet noticeably less accurate than the Darcy-Weisbach equation. A more consistent and
accurate approximation is offered by the so-called generalized Manning equation, introduced
by Koutsoyiannis (2008):

1/(1+y)

- (e 810
T D5+[>’

where 8, y and N are coefficients depending on roughness, for which Koutsoyiannis (2008)

provides analytical expressions that are valid for specific velocity and diameter ranges. In

particular, for large diameters (i.e., D > 1 m) and velocities (i.e., V> 1 m/s) that are typically

applied in hydropower systems, we get:
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(4.11)

N = 0.00757(1 + 2.47¢,)%1*

where ,:=¢/g, is the so-called normalized roughness and &, := (v?/g)*/3 = 0.05 mm, for
temperature 15 °C.

The roughness coefficient, ¢, is a characteristic hydraulic property of the pipe, mainly
depending on the pipe material and age, where aging depends on the water quality. For design
purposes, it is recommended to apply quite large roughness values, e.g. €¢ = 1 mm, in order
to account for all above factors at the end of time life of the penstock. For the above value,
we get £,=1/0.05 = 20, and thus 8 =0.262, y = 0.009, and N = 0.0131.

On the other hand, local, also referred to as minor hydraulic losses, are occurring at every
change of geometry (transition) and thus change of flow conditions (e.g. flow entrance
through the intake, change of diameter, flow split, elbow, etc.). Each individual loss is generally
estimated by:

VZ
=k— 4.12
h, =k 29 (4.12)

where k is a dimensionless coefficient, depending on transition geometry. Classical hydraulic
engineering handbooks (e.g., Roberson et al., 1998) provide analytical relationships, empirical
formulas and nomographs for estimating k as function of local geometrical characteristics,
(e.g., ratio of upstream to downstream diameter).

Typical values that are applied in hydroelectric systems are:

e Intakes: k=0.04

e Grids: k=0.10-0.15

e Contractions: k=0.08

e Elbows: k=0.10

e Valves, fully open: k=0.10-0.20

e Outflow to tailrace: k=1

In preliminary design studies, local loss calculations can be generally omitted, since the
geometrical details are not yet specified, or they are roughly estimated, by considering an
aggregate value of k for all types of local losses. We remark that in case of reaction turbines
(e.g. Francis, Kaplan), the outflow is by definition made under pressure through the draft tube

to an open channel, thus the value k = 1 should always be applied. This case does not stand
for Pelton turbines.
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4.4 Estimation of efficiency

The total efficiency of a hydropower plant can be dissolved in four several factors as below:

n=nrNeNrrNe¢ (4.13)
where:

nr is the efficiency of the turbines;

n¢ is the efficiency of the generator;

Nrr is the efficiency of the transformer;

g is the efficiency of the transmission lines;

Typical values for the three latter are 0.96, 0.98 and 0.98, respectively.

The power plant efficiency depends on the turbine types and the overall configuration of
the hydroelectric power plant. This factor not only is crucial at the design stage but also in the
operation of the power plant. Although in preliminary design and management studies
efficiency is considered constant, it is actually function of head and flow. Both are varying,
mainly due to fluctuations of the upstream level (case of hydroelectric reservoirs, where
turbine flows are well-controllable) or due to the inherent variability of the flows captured by
small hydropower plants.

The turbine efficiency, nr, for specific dimensions (e.g., diameter runner) is usually
expressed by means of nomographs as percentage of rated flow, Q/Q.max (Anagnostopoulos
& Papantonis, 2003). Figure 4.1 illustrates typical performance curves for turbines that are
applied in small hydroelectric plants. We observe that the curves change significantly with
turbine type and sizes. Other important issue is that there is a particular flow rate for which
the turbine efficiency is maximized; this peak is practically achieved at the nominal discharge.
It is worthy commendable that after years of operation the efficiency curves change.

We remark that the flow-efficiency nomographs are provided by the turbine manufacturer
and they are obtained by data extrapolation from a reduced scale model. Since it is not
possible to exactly preserve dynamical, geometrical, and kinematical similarity between the
model and the prototype, it is also not possible to precisely estimate the efficiency. Although
empirical corrections are employed to better reflect the prototype performance, actual
efficiency is unknown, since it also depends on constructive and operational characteristics of
the power plant, as well as changes due to deterioration, damage and aging of the equipment
over time (Paish, 2002). In general, efficiency increases with scale, i.e. discharge and turbine
Pelton, Crossflow and Kaplan machines retain high efficiency even when running below their
design flow. In contrast, the efficiency of Francis turbines falls away sharply if run at below
half its normal flow.
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Figure 4.1: Typical efficiency curves for turbines applied in SHPPs.

In the present study, we investigate the performance of two commonly used turbines,
namely Francis and Pelton. The Francis turbine belongs to the group of reaction turbines, and
use the force exerted by the water to rotate the runner inside the turbine, in a way similar to
how the engines of an airplane create trust. Reaction turbines exhibit a rather poor efficiency
at low flows despite their relatively high specific speeds. As for the Pelton turbine, it is the
typical case of impulse machines and its strong advantage over the Francis turbine is the
approximately stable efficiency for quite a large range of flows.

As shown in the graph, between Pelton and Francis efficiency curves, the latter not only
depends on the specific speed but also its efficiency varies from 0.08 to 0.96, thus making
energy calculations very sensitive against errors induced by uncertain efficiency curves. Due
to Francis efficiency variance, it is appropriate to approach the efficiency curve in stochastic
terms. On the contrary, the Pelton’s efficiency varies from 0.65 to 0.89.

4.5 The mixing of turbines

It is quite common that a small hydropower plant is equipped with more than one parallel
turbines and the total flow is separated, as illustrated in the flowchart of Figure 4.2. Therefore,
it is necessary to extend this procedure for the case of turbine mixing. The main difficulty in
this problem is the consideration of the way these turbines operate. As mentioned in Chapter
3, many experts consider the problem of optimal mixing, generally involving the
implementation of two turbines of the same or different type, which operate at different flow
ranges in order to capture as much as more wide range of the flow variability. In general, there
are two ways to define the operation of turbines:

e hierarchical operation, by assigning a master turbine and an auxiliary one, symbolized
A and B, respectively;

e combined operation, where the sharing of flows is derived through optimization.
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If the turbines are set in a specific priority order, the simulation problem is quite simple,
because turbine A is systematically utilized up to its nominal discharge. The remaining flow
passes through the turbine B, until reaching the nominal discharge of B, thus the surplus flow
is spilling through the weir. The above policy is the simplest one, but not the overall optimal,
because of the nonlinearities induced by the efficiency curves of turbines. In a more rigorous
optimization context, the operation of two turbines accounts for the maximization of the
combined efficiency of the system across all feasible flows, which ensures the maximum
energy production. There are a lot of ways to separate the total inflow, on the basis of
operation rules that account for different percentages for each turbine across different

periods of operation.
INFLOW
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Figure 4.2: Operation of turbines in case of mixing.

4.6 The inverse problem: retrieving discharge from energy

In the inverse problem, we consider a given power production P, and solve for the flow
that passes through the turbines, Qr, which is calculated by:

~ P
¥y n(Qr) Hy(Qr)

The flow that passes through the turbines, inside of the range of operation of SHPPs, can
be estimated through an iterative numerical scheme, accounting for nonlinearities induced by
efficiency and net head formulas, n(Q) and H,(Q). Details on the numerical procedure and
its convergence properties are discussed in section 5.3.1.

Qr (4.14)
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Since, the turbines operate only in a certain range of flow, the power production fluctuates
between zero and its maximum value, i.e. the installed power capacity, P, 4. If the power
production is zero, then we know that the streamflow is below the minimum discharge of
turbines, Q,,in, but we cannot retrieve its exact value. On the contrary, when the system
produces its power capacity, we known that the streamflow certainly exceeds the nominal
discharge, Q,,4x, Yet its exact value is again unknown. Therefore, in contrast to the forward
problem, for which we can extract the full time series of power production from a given
streamflow sample, the inverse problem is not well-posed, since for a given power time series
only part of the corresponding streamflow set can be retrieved.
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Figure 4.3: Example of hourly energy production time series (data derived from Glafkos
plant, for a period of 10 days).
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4.7 The inverse problem in calibration setting: retrieving system properties
from discharge and energy

Except from retrieving discharge from hydropower, another expression of the inverse
problem involves the extraction of internal properties of the system through calibration, i.e.
for given input (streamflow) and output (energy) data. This involves system components that
are associated with energy conversions, both across the conveyance system (e.g., penstock
roughness) as well as the mechanical equipment (efficiency of turbines and transformers). We
remark that all these characteristics are not measured in the field, thus they are subject to
uncertainties. The most crucial and at the same time interesting calibration problem is the
extraction of efficiency curves. In Chapter 5 we also discuss a framework to optimize the
efficiency curves by using an analytical parametric formula, which inspired by the
Kumaraswamy distribution model.
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5 Stochastic modelling framework for extracting
streamflow time series from SHPP’s energy data

5.1 Rationale and objectives

This chapter discusses the modeling framework that has been developed in this thesis. As
mentioned before, the goal of our research is to extract the streamflow arriving at the inlet of
a SHPP from energy production data, and evaluate its uncertainty. The data processing and
the computational implementation of models, which will be described in this chapter, are
done by using the MATLAB software. The code snippets as well as related comments are
provided in Chapter 6.

Our rationale originates from the fact that in the case of small hydropower plant design
and simulation, several components of water-energy transformations are handled as constant
and certain quantities, while they are actually varying and uncertain. More precisely:

In the context of preliminary design of small hydropower plants, the main objective is the
estimation of energy production from discharge. In this respect, crucial elements of the
forward formula for the estimation of energy, such as net head and efficiency, are usually
considered as constants. Similar approaches are also employed is common optimization
studies (i.e. sizing of penstocks and turbines), where efficiency and net head are handled as
constants. On the contrary, the formulas and procedures that are proposed in this study
consider that efficiency and net head are not constant but they depend on the flow that passes
through the turbines.

Furthermore, the usual practice to face both the forward and the inverse energy problems
in a SHPP are handled as fully deterministic. Apparently, for a given discharge we can easily
extract the power production, and vice versa, if the system properties are known. However,
in real world studies the available data from a SHPP’s operation may be quite limited or/and
unreliable. It is a fact that the design of a hydroelectric power plant differs from its actual
operation. This difference arises due to multiple uncertainties and errors both in design and
operation. In the real-world there are several potential sources of uncertainty, such as the
power data, hydraulic calculation, and flow-efficiency relationship.

In this research, we focus to two key uncertain issues, in particular the observed output
(energy production), and the efficiency curve of turbines. As for the hydraulic calculations,
uncertainties refer to parameters that are associated with friction and minor losses, e.g. the
roughness coefficient, which also changes with time. Nevertheless, these errors affect the net
head estimations, thus they become less important as the gross head increases, which is the
typical case in run-of-river plants.

5.2 Model overview

As shown in Figure 5.1, the inverse problem in stochastic setting is posed as follows: First,
we estimate the flow time series that passes from the turbines, through an iterative numerical
scheme, using the energy production data. We highlight that this only involves part of the full
hydrograph between the minimum and maximum (nominal) operational discharge of the
system; the full streamflow data also comprises higher and lower values, which are estimated
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in a different, semi-empirical manner (see sections 5.5.2 and 5.5.3, respectively). The next step
is the comparison with the observed streamflow data. Following this, it is essential of express
the model residuals through an error function, extract their statistical characteristics and
fitting a suitable distribution, e.g. Gamma. After this, we generate m synthetic error
realizations and the associated discharge ensembles. The latter are used to extract typical
uncertainty metrics of the modelled flows, such as expected vales and confidence intervals.

ifPobs > Pmin

YES

Energy production ¢ H(Q,) Iterative numerical
data (P) scheme

P(0)
n(Q)H(Q)y

|Q[S—1] _ Q[S]| > AQ

Q) =

Qmodet = Q1)

T
Contimes

Comparison
Qmodel"’Qobserved

Creation of
confidence interval
forretrieved
streamflow

Generationof m
synthetic error
realizations

Figure 5.1: Flowchart of proposed model.
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5.3 The inverse problem under uncertainty

The proposed model estimates the flow that passes through the turbines for a given value
of energy production, while its deviation from the observed flow is handled as an error term
that follows a specific distribution and has a specific autocorrelation structure. Herein we will
use the Gamma distribution and express errors through a first-order autocorrelation model,
but this can be generalized for any stochastic model. In this respect, the retrieved streamflow
is expressed in stochastic terms, as the unique means for consistent quantification of
uncertainty, thus allowing to express the overall uncertainties of the inverse transformation
in typical statistical terms (e.g. marginal statistics and confidence intervals).

5.3.1 Numerical procedure

Firstly, it is necessary to check whether the flow passing through the turbines, Qr, equals
the input streamflow, @, which is true only when the power production, P, is positive and less
than P,,,,. The following cases arise:

o IfP=0thenQ < Qin (any energy is produced, since the streamflow arriving at
the turbines is less than the minimum operational value);

o If P=P,, then Q = Qjqx (the streamflow exceeds the nominal discharge of
turbines, and the surplus quantity spills over the weir);

e IfO<P <BuuthenQ = Q7

In the last case, we compute the turbine flow for time step t = 1, ..., n by using the
deterministic inverse formula Q; = f(P), which is expressed in the following recursive form:

P
Q;ﬁ-l] — - ( E]) Hn( ;s]) (5.1)

where s is an iteration counter. For every time step, the above relationship is repeated until
the flow converges. To run the formula, an initial flow value is assigned, typically the last
known value of the simulated data. This iterative scheme usually converges after three
repetitions. The upper limit in order to terminate this procedure is expressed in terms of
absolute difference between subsequent flow values, 4Q:

QM -0 > 29 (5.2)

If the above statement is true, then the relationship (5.1) is re-employed for s + 1, until
(5.2) becomes false.

5.3.2  Stochastic modelling of errors

Apparently, in a real-world study, the flows extracted from energy data will deviate from
actual ones, due to errors and uncertainties that appear in all components of the flow-energy
transformation procedure. These involve energy data, internal properties and assumptions
regarding the hydraulic and electromechanical equipment (penstock, turbines, generator,
transformer), and even minor errors due to imperfect convergence of eq. (5.2). All these are
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transferred as model errors i.e. deviations of simulated from actual flow data (also referred to
as residuals).

Following this, it’s crucial to investigate the way to express the model residuals, i.e. the
discharge errors for each time step. In this research, three formulas are examined (Efstratiadis
etal., 2015):

Wi = Qr,t — Qobs,t (5.3)
w, = % (5.4)
we =1n (Qr¢) — In (Qops,t) (5.5)

Although an ideal model error should follow the white noise properties, thus being
homoscedastic and uncorrelated both in “space” (correlation with the parent process, e.g.,
flow) and time, in the real world we cannot avoid the existence of dependencies. In this
respect, for the generic case we should represent the error through a stochastic model, not
simply a statistical one.

The formulation of the stochastic model for residuals requires the computation of their
marginal statistical characteristics and dependence properties, such as the mean, variance,
skewness, autocorrelation, and the cross-correlation between the observed flows @, ¢ and
the error data w;. If the autocorrelations are large, it is suggested to use a stochastic model
that allows to describe the dependence structure of the error process. In our analyses, the
representation and synthesis of model residuals w;is employed through a first order
autoregressive (Markov) model, AR(1) as:

We=@QWeqt Z¢ (5.6)

where w; is the error process, with mean p, standard deviation o, skewness y, and lag-1
autocorrelation coefficient p; ¢ = p is the first order autoregression coefficient; and z; is an
i.i.d. process (white noise) with mean p, , standard deviation g, and skewness coefficient y, .
The statistical characteristics of the white noise z; are related with those of w; by:

Uz = Uy (1 - (,0) (5-7)

0, = 0,1 — @2 (5.8)
_, _1-e

Yz = Yw (1 _ (p2)3/2 (59)

The next step is the generation of m synthetic error realizations (“ensembles”), by using
the Gamma distribution. The Gamma distribution can be parameterized in terms of a shape
parameter a = k and an inverse scale parameter b = 1/6, called a rate parameter. A random
variable X that is gamma-distributed with shape a and rate b is denoted. The corresponding
probability density function (PDF) in the shape-rate parametrization is:
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r(a)

where I'(«) is the gamma function

fx) = (x =) 1e =9 x >0a >0 (5.10)

r(a) = fya‘l e Ydy (5.11)
0

The distribution’s parameters are given by:

4
K = E—Z (512)
A= i_z (5.13)
K
C= Uy — 7 (5.14)

where p, is the mean, s, is the standard deviation and &, the skewness of the sample. In this
case Uy, Sy , &, are the statistical characteristics of the residuals. The location parameter ¢
allows for the better fitting of data, particularly when the latter is bounded (e.g., in the case
of non-negative processes).

The Gamma distribution defined by the above relationships represents random processes
that are always positively asymmetric. If the coefficient of asymmetry &, is negative, the
parameters are calculated as below:

-4
K = g (515)
1= VK (5.16)
Sx
_ K
C=—U,+ 7 (5.17)

For the generation of random numbers that follow a negatively-asymmetric gamma
distribution, we can use the same generators as before, by setting k = |k| and change the
sign of the final result.

5.3.3  Generation of flow ensembles and uncertainty assessment

The stochastic model runs to generate m sets of synthetic error realizations w;; (also
referred to as ensembles) for the same time horizon n with the observed flow data. The
number of ensembles should be large enough to allow for describing the model uncertainty
as much as more accurately (in our analyses we generate 100 ensembles). These are next used
to get the associated discharge scenarios (turbine flows) for each ensemble j =1, ..., m by
employing the appropriate inverse transformation for each error expression, i.e.
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Qrjt = f(P) + wj, (5.18)
Qr,jc = explf(P)] +w;, (5.19)
Qrjt = f(P) wj; (5.20)

The quantification of uncertainty for each time step t is employed by estimating the
statistical characteristics of the corresponding sample of synthetic flow values Qr j ;. The latter
are empirically expressed in terms of quantiles, e.g. median. In this respect, we also provide
confidence intervals based on empirical estimation of two characteristic quantiles (low, high)
for each time step t, for a given confidence level (the latter describes the uncertainty of a
sampling method). It is necessary to select a confidence level y, such as 90, 95, or 99%; but
any percentage can be used, depending on the size of sample, i.e. the number of ensembles,
m. In this respect, for each time step we create the upper and lower limits of the confidence
interval using the following functions:

Qupper = Q(1+y)/2 (5.21)
Quower = Q(l—y)/z (5.22)

where the subscript denotes the quantile of simulated flow values for each specific time step.
For instance, for m = 100 and y = 90%, the confidence limits are captured by the 5% larger
and 5™ smaller flow value, and they are generally not symmetric with respect to the median.

5.4 Parametric model for deriving efficiency curves

The efficiency-discharge relationship can be well approximated by the following analytical
formula, inspired by the generalized probability density function proposed by Kumaraswamy
(1980). In probability theory and statistics, the Kumaraswamy's double bounded distribution
is a family of continuous probability distribution functions defined in the interval (0, 1). The
probability density function of the distribution, without considering any inflation, is:

f(x;a;b) = abx® (1 — x%)(1 — x%)P~1 (5.23)

Easily, we can extract the cumulative distribution function:

F(x;a;b) =1—(1—x%)P (5.24)
where a and b are non-negative shape parameters.

In its simplest form, the distribution takes values in the interval (0, 1). In a more general
form, the normalized variable x is replaced by the unshifted and unscaled variable z, where:

X = ﬁ Zmin < Z < Zmax (5.25)
For different values of a and b the Kumaraswamy distribution formula creates a wide range of
curve shapes that may fit to multiple function types, such as power, exponential, logarithmic,
sigmoid, logistic, etc. (Figure 5.2). In this respect, an analytical formula for turbine efficiency
nomographs can also be well-approximated by the Kumaraswamy function. By turning its two
shape parameters, we can fit the model to any empirically derived curve, thus significantly

facilitating calculations.
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Figure 5.2: Plots of Kumaraswamy function for different values of shape parameters a and b
(Wikipedia, 2020).

Under this premise, the generic efficiency-discharge relationship can be approximated by the
following analytical formula:

n=n,. + <1 _ (1 _ (M)a>b> Momnax — Tomin) (5.26)

Qmax - Qmin

This formula uses a dimensionless expression of discharge, based on Qi and Q,,4x, tWO
efficiency limits, n,,;, and n,,4, , and the two shape parameters, a and b. We remark that the
above formula has in fact four free parameters, since for a given power capacity P, and after
empoying an iterative procedure as described in section 5.3.1, we get:

P

Omax = ¥ Nmax Hn(Qmax) (5.27)
P

Qmin = (5.28)

¥ Nmin Hn(Qmin)

Figure 5.3 illustrates different efficiency curves which are extracted from the analytical
formulas, as described before. This formula allows to shape the efficiency curve by changing
the parameters a, b, Nyin, Mmax- This change is not just about the limits to which the curve
fluctuates (Nyin, Mmax), but also is concerned about the camber and generally the way this
curve reaches n,,,,. The procedure for efficiency curve construction presented here is rather
simple and generic. Its main advantage is that it is transparent and allows for reaching almost
perfect accuracy, depending on the data quality and knowledge about the turbine
characteristics. It is essential to remark that since the nomographs typically refer to the
turbine efficiency, for the extraction of total efficiency we should also account for additional
energy losses in the generator and the transformer. Typically, an overall correction is
employed, by multiplying the data by a constant value that may range from 0.88 to 0.97
(Anagnostopoulos, I., personal communication, 2020).
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We should also highlight that using the empirical nomographs is a usual practice, and most
of times effective, at least for preliminary design purposes. However, the uncertainties, which
arise in the real-world operation of hydropower plants make these nomographs obsolete. In
the case study of Chapter 8 (Glafkos power plant), this consideration will be verified. In this
context, another major advantage of the proposed approach is the opportunity for expressing
efficiency under uncertainty, by considering the four model parameters as random variables
that follow a known distribution function. Furthermore, by considering these parameters as
unknown, we can establish a calibration framework, to extract efficiency curves from given
power and turbine flow data (cf. Hidalgo et al.).

Efficiency

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 09 1

Q/Qmax
Figure 5.3: Example of randomly generated efficiency curves.

5.5 Extrapolation outside the operational flow limits

5.5.1 Problem setting

As mentioned in the Chapter 4, the proposed methodology for the inverse problem extracts
only discharges, which range between Q,,i,, and Q,,,4x- Actually, the methodology, that will be
described, completes the missing data by extrapolating the simulated turbine flows outside
this range, thus obtaining the upper and lower part of the hydrograph that cannot be
extracted from the inverse problem. We remind that the maximum discharge that can pass
from the turbines, also named the nominal flow, is the upper limit that we can extract from
the energy production data. Following this, the minimum discharge that can pass from the
turbines, which is typically the 10-30% of the nominal flow (depends on turbine type), is the
lower limit we can extract from energy. When the power production is zero, then the flow is
under the lower limit, Q,,in. On the contrary, when the system produces its power capacity,
then the flow is over or equal with its nominal discharge, Qqx-
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In order to determine the extrapolation procedure, it is necessary to mention our two basic
principles:

e therising limb follows a linearly increasing function;
e the falling limb follows a negative exponential recession function.

Moreover, the extrapolation is made by linking the two last known discharge values both
for the rising and falling limbs. As before, the approach is not deterministic, since the
extrapolation procedure is employed for all synthetically-generated flow ensembles, thus also
obtaining ensembles of the full streamflow process. In this vein, confidence intervals are
created for low and high periods, which are outside of the range of operation of a SHPP.

Subsequently, the extrapolation of the hydrograph for high and low flows is crucial for the
real-time operation of a small hydropower plant. Particularly for high flows, this extrapolation
allows not also the estimation of the peak flows, but also the recession rate that is
representative of the flood propagation over the basin. Furthermore, the knowledge of last
flow values is essential for short-term planning purposes, involving the prediction of expected
energy on the basis of discharge forecasting scenarios. Preliminary ideas on this topic of major
importance have been recently demonstrated in a research work presented in the General
Assembly of the European Geosciences Union (Sakki et al., 2020).

5.5.2  High flows

The flood flows upper the discharge capacity, Q,,4x, that arrive at the inlet of a small
hydropower plant as well as the flood duration are essential elements of its operation, during
which the surplus inflow spills over the weir. Their estimation is based on the extrapolation of
the rising and falling limb of the flood hydrograph, for a given sequence of known turbine flow
values little before and little after the operation of turbines in their maximum capacity,
respectively. We remind that the computation of turbine flows is made by using the
deterministic inverse formula, which allows us to extract the “intermediate” discharge values

within the range (Qmin, Qmax)-

For the rising limb we employ a linear extrapolation, while for the falling limb we consider
an exponential extrapolation. Both are reasonable assumptions, justified by empirical
evidence worldwide, and also validated by recent research aiming at the development of
dynamic unit hydrographs (Michailidi, 2018).

Let Q;_, and Q;_; be the last known turbine flow values that are extracted from the inverse
formula during the operation of the power station below its capacity, and At is a unit time
interval (since t is a time index, not a time variable). In order to approximate and eventually
extrapolate the hydrograph forward, it is required to compute the slope of the linear rising
limb, which is:

Qt—l - Qt—Z
At
Any forward discharge value is calculated by using the relationship:

Q= (5.29)
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Q: = max(Qmax, Q-1 + @ t) (5.30)

The above formula ensures that all estimated flow values in the rising limb will exceed the
nominal flow, Q,,4, Otherwise they are manually set equal to Q,;,4y-

As for the falling limb, the extrapolation is employed backwards, following a negative
exponential law, based on the well-known linear reservoir approach, which is a simple yet
effective model for describing recession phenomena, e.g. low flows through the groundwater
zone (Risva et al., 2018). Under this assumption, any discharge value after a given peak flow,
Qy, can be calculated by using the relationship below:

Q: = Q exp (—kt) (5.31)
where k is a recession parameter. For a known pair of subsequent turbine flow values t steps
after the peak, i.e. Q¢;1 and Q¢,,, the characteristic properties of the falling limb k and Q, are

extracted by solving the system:
Qes1 = Qo exp (—k(t + 1)) (5.32)

Qt+2 = Qo exp (—k(t +2)) (5.33)
from which we get:

Qt+1)
Qt+2
Apparently, the intercept point of the two extrapolations (forward linear and backward

exponential) is the estimator of the peak discharge. In general, this occurs in an intermediate
time between two subsequent time indices.

k = ln( (5.34)

8
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—@— Retrieved from power-rising limb Retrieved from power-falling limb

Observed — esseeeen Linear extrapolation-rising limb

Exponential extrapolation-falling limb

Figure 5.4: Example of extrapolating high flow values for missing days 6 and 7, when the
streamflow exceeds the upper discharge limit (turbine capacity) of 5.0 m3/s.
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Figure 5.4: Example of extrapolating high flow values for missing days 5, 6 and 7, when the

streamflow exceeds the upper discharge limit (turbine capacity) of 5.0 m3/s. The first value

of the rising limb is manually set equal to the nominal discharge, since the last two known
values do not allow for estimating the slope of the hydrograph.

Figures 5.4 and 5.5 demonstrate two examples of extrapolating high flows. In both cases the
maximum discharge that can pass through the turbines is 5.0 m3/s. In the first example, the
last known discharges in the rising and the falling limbs are 4.0 and 3.0 m3/s, respectively. The
fitting to the known hydrograph and particularly the estimation of the peak value and time
are almost perfect. On the other hand, in the second example the rising limb cannot be well-
approximated, since the last two known values at days 3 and 4 do not capture the flood
phenomenon, thus resulting to a very small slope. However, by manually setting the unknown
flow value of day 5 equal to the nominal discharge, i.e. 5.9 m3/s, we obtain a peak flow up to
9.0 m3/s, which is quite close to the real value of 10.3 m3/s. Regarding the falling limb, in both
cases the fitting is very satisfactory, since the recession parameter of both flood events is quite
well approximated by the two first known discharge values after the nominal one.

As for the stochastic approach, we implement almost the same procedure with the inverse
model for retrieving turbine flows. Firstly, it is necessary to estimate the model residuals, by
comparing with real discharge data, next formulate an appropriate stochastic model for the
residuals, accounting for their marginal and dependence properties, and eventually generate
a number of synthetic error realizations (“ensembles”) and associated discharge scenarios.
For each scenario, we run the extrapolation method thus obtaining ensembles for the full
hydrograph, i.e. low, intermediate and high flows, and also estimate their uncertainty bounds.
Figure 5.6 provides an example, which refers to the part of the flow time series that has been
discussed before (Figure 5.4).
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Figure 5.5: Example of extracting uncertainty bounds for extrapolated values.

5.5.3 Low flows

Similarly to the estimation of high flows, it is necessary to represent the period of low flows.
As already mentioned, the turbines operate only for flows over Q,,,, while for lower flows
any energy is produced. This extrapolation is very important for a small hydropower plant,
because the duration and the frequency of these periods may be crucial for the scheduling of
the operation of power plant and the prediction of its performance. For instance, if these
period are extended or they happen too often, then the plant is not efficient. Due to all
uncertainties, which are also mentioned before, it is possible that a plant will not be as
efficient as hypothesized in its design.

The hydrograph extrapolation for low flows follows the same idea with the extrapolation
of high ones. The recognition of periods of low flows is straightforward, since during this
period the power production is zero. The estimation is based on the forward extrapolation of
the falling limb and the backward of the rising one, using the same assumptions with high
flows, i.e. the rising limb is linear the falling exponential. It is worthy commendable that if the
any estimated discharge value exceeds the minimum flow, it is manually set equal to Q,in-

Figures 5.7 and 5.8 illustrate the extrapolation of the hydrographs when the discharges are
below Q,,;n- The difference between these figures is concerned about the last known
discharge in falling limb. Specifically, in Figure 5.8 the falling limb declines sharply and the last
known discharge is under the minimum discharge. In order to extrapolate the falling limb, we
manually set the last known streamflow to Q,,in.

Again, the approach is stochastic with very interesting results. Due to the importance of
this estimation, it is essential to provide confidence intervals for each examined period of low
flows. As shown in the example of Figure 5.9, the most noticeable feature is that in day 6 the
confidence interval cannot capture the observed flow. The lower limit is over the real flow in
fifth day.
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Figure 5.6: Example of extrapolating low flow values for missing days 5, 6 and 7, when the
streamflow is below the lower operational discharge limit of 0.5 m3/s.
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Figure 5.7: Example of extrapolating low flow values for missing days 4, 5 and 6, when the
streamflow is below the lower operational discharge limit of 0.5 m3/s.
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Figure 5.8: Example of extracting uncertainty bounds for extrapolated values.
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6 Model implementation in MATLAB environment

6.1 Data insert-matrix pre-allocation

The code snippet below demonstrates the following actions:

o Insert in the MATLAB workspace the data from a MS Excel spreadsheet in the form of
one dimensional index;

= Edailydatal: the observed daily energy production
= Qobseved: the observed daily flow

o Determining the size of the registers used below in order to increase computational
speed. These registers are:

= D:the diameter of penstock

A: the cross-section area of penstock

= Hol: the gross head

= nl:the starting efficiency

= L: the length of penstock

= e:the normalized roughness

= Qmodelhour: the extracted hourly streamflow
= Qmodeldaily: the extracted daily streamflow

» errorl: wy = Qr: — Qopst

Qr:—Q
" error2: w, = L <obst
Qobs,t

» error3:w, =1n (Qr¢) — In (Qops¢)

= rndm: the random numbers in order to generate synthetic errors realizations
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rompt="doste xreonoseires dedeomencn';
Edailydatal=xlsread ('DATAETE.x1sx", 'Sheetl', '"B3:B3653")

B3 -B3553 ")
Ehourdata=FEdailydatal/24
Gobserved=xlaread ('DATAETE.x13x", 'Sheetl', "C3:C3653") 7

hours=3size (Ehourdata,l);
days=size (Edailydatal,l);
'NATRFET

D=xlsread('DATAFIK.x1sx", 'Sheetl', 'D1");
A=(pi=*D~2)/4;

Hol=xlsread ('DATAFETE.x13x", "’ J
nl=xlsread ('DATAETE

g=9.81;

L=xlsread ('DATAFTIK.x1sx", 'Sheetl', 'D4");
e=xlsread ('DATAFTK.x1sx", 'Sheetl', 'D5")
error=I*0.01;

*1dr—4__:s{da /3, 1ﬁﬁ],

6.2 Useful functions

6.2.1  Friction losses

The function above is called to calculate the energy losses for given flow, diameter,
normalized roughness and length of penstock.

funection [ Hf ] = energy loas eik( gq,D,e,L )
b=0.25+0.0008%e+0. 0247 {1+7.2%*e) ;

g=0.083/ (1+0.42%e) ;

H=0.007537*{ {(14+2.47*e)~0.14);

p=4"{3+k);

k=D~ {5+b) »

c=1/{1+g3):

J=({p* (N~2) * {g~2) / (pi~2) [k} ~o;

Hi=J*L;

end

6.2.2 Efficiency

These functions compute the efficiency for each time step. The first one calculates the
efficiency for given changing the parameters a, b, n,,in, Mmax and the streamflow from
turbine. The second one calculates the efficiency by using the empirical nomograph.

functicn [n]=coef francis eik cal(a,b,nmin,nmax,q)

qmin=0.5;

gqmax=5;

n=real {(nmin+ {1-{1-{{g—gmin) / (gnax-qnin) ) ~a)~b) * (nmax-nmin) ) :
end
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6.3 Inverse problem

This code snippet calculates the deterministic formula for the so-called inverse energy
problem. It is worth noting that, this code calculates only the streamflow, which extracted
from the energy production. If the energy production is over the installed power the model
,for this time step, the extracted streamflow is the nominal discharge. On the contrary, if the
power production is zero, then the flow is outside of the range of operation of SHPP’s. In this
case, the code characterize this flow as "low”.
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for k=l:hours elseif abs (dQ)<0.05

Eep=Ehcurdata (k) if a3»2
if Eep>Il Q(t)=0dok(s):
de=E({l)-Ehcurdata{k) Hi{t)=Hdck({a):
T=2; elaeif sg<=2
while abka{de)>=error Q{t)=0dck{l):
Hf=energy loss eik(q,D,e,L): H{t)=Hdck{l):
kt=2; end
V=g/k; 3=3+1;
Ht=kt* (V~2) f2/g: end
H{t)=Hol-Hf-Ht; E{t)=Q(t)*g*n*H(t);
n=coef francis eik(g): de=E (t) -Ehcurdata{k) r
R{t)=Ehourdata (k) / (g*n*H(t) ) : E1=E(t) :
g=R{t): a=R{t):
do=0{t)-Q{t-1) Hl=H{L):
Qdck{1)=0(t) t=t+l;
Hdck{l)=H{t): end
3=2; Hmodel (k) =H1;
if abka{dQ)>=0.05 nmodel (k)=n;
n=coef francis eik(g): Emcdel (k)=E1;
Hf=energy loss eik(qg,D,e,L): fmodelhour (k) =q;
kt=2; elaeif Eepw=I1
V=g Rk Hmodel (k) =Heol;
Ho=kt=* (V~2)/2/3; nmodel (k) =1ow;
Hdok (3)=Hol-Hi-Ht; Emcdel (k) =1ow;
Qdok (3)=Eep/ (g*n*Hdck (3} ) ; fmodelhour (k) =low;
dQ=0dck {3) -Qdck{3-1) end
H{t)=Hdck{3): end

Qit)=0dok{a) :

6.4 Model residuals (errors)

The following code snippet illustrates the calculations for the model residuals, as described
at the previous chapter. The two first moments, mean and standard deviation, are calculated
as well. These error index is essential to approach the flow stochastically.

for p=1l:t-1
if {(Qdata(p)>gmin) s& (Qdata (p)<gmax)
errorl (p)=Qocbaerved (p) -Cmodelhour (p)
error? (p)=1log (Qobaerved (p) ) -log ((modelhour (p) )
ved (p) -Qmodelhour {p) ) . /Qobserved (p)

6.5 Synthetic error realizations

As for the generation of m synthetic error realizations, it's essential to calculate the
statistical characteristics of each error (mean, standard deviation, skewness, correlation, cross
correlation). In this study, the correlation between error and retrieved discharge as well as the
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correlation of error are too large As a result, the AR1 model is required. This extract
demonstrates the calculation of the statistical characteristics of the white noise.

The code snippet below shows the generation of 100 synthetic error realizations and the
association with the first kind of error. Moreover, as can be seen clearly the intervals at this
example are slightly strict (90% confidence level).

Firstly, the script creates in the first row random numbers, which follow the Gamma
distribution with the error’s statistical characteristics. The rest of the synthetic errors for each
time step and for every realization concern the correlation of error as well. Moreover, the
synthetic errors are sorted, in order to extract the confidence intervals. Finally, the intervals
are extracted from the association of the error and the simulated streamflow. In the provided
example this error is simply added to the retrieved discharge.

skewerror=3kewnessa (error) ;

e T E e rl mmm T FTE wl . = +1 1" ATy =
correlerror=xlaread ("DATRAEIK.xlsx', 'Sheetl', 'DE") ;

IWN=Merror* (1-corr

atdwn=atdew

e — o Lrmtas v ek 1 . (| S 7o g T I B i
Ccawn=skewer * | 3)/ {{l-correlerror~2)~1l.59);

rondm{l,i)=gaminv{rand,a,l/b)+c;
for t=2:days

rondm(t,i)=gaminv(rand, a,l/b)+c +correlerror.*rndm{t-1,1i};

end
medgam=median {rndm, 2) ;
sorted=3crt (rndm, 2) ;
lowergam=zercs (1,days3) ;

upergam=zercs (1,days) ;

for i=l:days
lowergam({l,i)=scrted (i, 10};
upergam(l,i)=3crted (i, 30);
wer=zerod (1,daya) ;

ercs(l,days);

:days
lower(l,i)=0dailymodel {i, 1) +lowergam({l, i) ;
uper{l,i)=0pdailymedel {i, 1) +upergam(l,i);

med({l,i)=0dailymocdel {(i,1)+medgam (i, 1);
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7 Theoretical investigations

7.1 Problem configuration and input data

In order to put in practice, the “inverse energy problem” and the extrapolation of high and
low flows, we first formulate a theoretical example of a hypothetical small hydropower plant.
The plant contains a single turbine of 10.8 MW power capacity and its operation is tested by
using daily inflows over a ten-year period. In order to present a holistic study of this problem
two alternative turbines are considered, i.e., Pelton or Francis, operating at low flow limits of
10 and 20%, respectively. This approach is ideal due to the differences of efficiency curves of
these turbines. Specifically, the efficiency of Pelton’s turbines do not exhibit significant
fluctuations against discharge, and usually range between 0.65 and 0.89. On the contrary, the
efficiency of Francis turbines range between 0.08 and 0.96, also depending on the specific
speed of the turbine.

To evaluate the methodology, as described in previous chapters, it is required to extract
the actual power production depending on inflows (initial data, obtained by solving the
forward problem), the net head, the average efficiency and the installed power. The
hypothetic plant has net head H,, = 260 m, which is considered constant for the forward
problem, and an average efficiency n = 0.85. Following this, the installed power is 10.8 MW
and the maximum discharge of turbines is 5.0 m3/s. On the contrary, the minimum discharge
is 0.5 m3/s and 1.0 m3/s for Pelton and Francis turbines, respectively. The Table 7.1
demonstrates the characteristics statistical and not of the hypothetical SHPP, which is used
for the test of our methodology. Furthermore, Figure 7.1 illustrates the inflows at the entrance
of the SHPP, whereas Figure 7.2 and Figure 7.3 represent the energy production the two
alternatives turbines Francis and Pelton, respectively.

Table 7.1: Characteristics of the hypothetical SHPP.
Pelton Francis

Minimum operational discharge Q,;,;,, (m3/s) 5.0 5.0
Maximum operational discharge Q4 (Mm3/s) 0.5 1.0
Power capacity 1,,,,, (MW) 10.8 10.8
Operating time ratio 0.30 0.30
Ratio of volume passed from turbines to total runoff 0.75 0.75
Mean annual production (GWh) 11.8 10.9
Average daily energy (MWh) 37.9 32.2

Standard deviation (MWh) 55.0 56.5

[6x)
©



14.00
12.00
10.00

8.00

6.00

4.00
2.00
0.00

9-14-1971 6-10-1974 3-6-1977 12-1-1979

Inflow (m¥s)

Date

Figure 7.1: Inflow time series at the entrance of the hypothetical small hydropower plant.
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Figure 7.2: Simulated energy data through the Pelton turbine using actual inflows.
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Figure 7.3: Simulated energy data through the Francis turbine using actual inflows.

7.2  Assignment of artificial uncertainties

7.2.1 Overview

The implementation of the inverse problem under uncertainty, and eventually the
investigation of the arising uncertainties, requires the assignment of artificial errors to crucial
factors of the hydroelectric plant. In this study, the error expressions are either observational
or parametric. Observation errors are expressed as random perturbations of energy
generation data, by assigning an additive or multiplicative error term to simulated energy that
follows either a normal or a skewed (Gamma) distribution. On the other hand, the extraction
of discharge data under parameter uncertainty is made by using a set of 100 randomly
generated efficiency curves around the “actual” ones (Pelton or Francis), to represent the
inherent uncertainties of the modelling procedure. In the first setting, the uncertain discharge
data are represented in stochastic terms, i.e. by employing the AR(1) model to residuals, while
in the second setting the ensembles are directly obtained by solving the inverse problem for
each equifinal efficiency curve (term “equifinal” is applied to denote that all curves are
equivalently possible to be the true ones).

7.2.2  Uncertain energy

The uncertain energy production is expressed in two ways. The first is by adding or multiply
to the actual energy data e;(Q;), which is obtained from the known inflows Q;, an error term
Ae;, as follows:

e = e, (Qr) + Ae, (7.1)

ef = e:(Q¢) Ae; (7.2)
where Ae; is expressed by means of unbiased noise. The distributions which describe the
artificial error are the Normal N (u, o) and the three-parameter Gamma with skewness y;. As
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for the Normal distribution and 7.1, the mean is zero and the standard deviation is expressed
as percentage of the standard deviation of simulated energy production, i.e. 1%, 5% and 10%
of g,. Also, as for the 7.2 and the Normal distribution the mean is 1 and the standard deviation
is 0.1 and 0.2. This range of errors demonstrates how much is the uncertainty and how can
the possible measurement errors in energy production affect the streamflow estimations. The
uncertainty of inflows that are retrieved by the inverse procedure is quantified in terms of key
statistical characteristics of residuals, namely:

e mean, variance, skewness
e lag-one autocorrelations
e cross-correlations with actual flow data

In this study the error is expressed as the difference:

W = Qrr — Qopsit (7.3)

Table 7.2 demonstrates the statistical characteristics of the three types of errors for the
two alternatives turbines, by assigning a small variance to energy data, i.e. 1%. A common
conclusion for all error configurations is that there exist obvious differences between the two
turbine types. In particular, the estimated flows for the Pelton case exhibit errors that are
highly correlated, both in time and space (cross-correlation with discharge), while in the case
of Francis the errors exhibit significantly smaller dependencies, yet they are highly skewed.
Regarding the differences among the three error types per se, we remark that the formula
(7.3) has “better” statistical behavior, due to the relatively smaller lag-one autocorrelations
and cross-correlations. In this respect, this formula will be next generally used as the overall
expression for error modelling.

Table 7.2: Statistical characteristics of different types of errors.

Error 1 Error 2 Error 3 Error 1 Error 2 Error 3
0.04 0.01 0.01 -0.11 -0.08 -0.09
0.06 0.07 0.04 0.20 0.19 0.11
1.41 0.88 -1.06 1.21 -2.50 -1.42
0.62 0.75 0.80 0.77 0.82 0.78
0.78 0.82 0.88 0.31 0.96 0.88

7.2.3  Uncertain efficiency curve

As it commonly known, the data sets of hydropower plants may be subject to measurement
errors regarding energy production data as well as inflows. The examples above are the so-
called observational errors and may due to imperfect measurement systems and human
faults, as well. On the contrary, one of the most important factor, the efficiency of turbines,
at hydropower plants many times seems to have errors. As mentioned in previous chapters,
the efficiency is not constant and depend on the turbine type and the flow. In addition, the
initial efficiency curve, which be used to primary study of plant is, at majority, empirical and
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the actual efficiency is still indefinite. Also, this efficiency curve changes due to deterioration,
damage and aging of the equipment over time. For instance, it is possible that not only the
maximum efficiency will decrease with time but also the minimum operational flow will also
increase, thus reducing the effective flow range of the turbine. As can be understood, the
study of a hydropower plant may be totally different from its operation.

In order to focus on the impacts of efficiency on the relationship energy production and
stream flow it is necessary to create different efficiency curves for one turbine. The calibrated
initial efficiency curve is given in analytical form, which described before. Firstly, it is necessary
to consider a turbine with known efficiency curve and known inflows and extract the energy
production through the forward formula. This energy production is essential information to
move on the inverse problem and the investigation of the efficiency’s uncertainties. The
generation of 100 synthetic efficiency curves around the known one allows to represent these
uncertainties in stochastic terms. This generation is a result of changes in four parameters a,
b, Nyin, Nmax- The changes in parameters a and b are around 10% of the known value. Also,
a realistic change of n,,,;;, and n,,,4, is considered 0.1 around the known value. The extraction
of stochastic flow series in this case becomes directly for the inverse formula.

Table 7.3: Efficiency curve parameters for the two problem settings.

0.51 10.56 0.83 0.30
0.59 3.95 0.91 0.70

7.3 Results of inverse problem under uncertainty

7.3.1 Observational uncertainties (errors in energy)

The statistical characteristics of simulated discharge errors provided below, after adding a
normal error term to actual energy data (zero bias, standard deviation 1, 5 and 10% of energy
standard deviation).

Following this, the statistical characteristics of simulated discharge errors, after adding a
gamma-distributed error to actual energy data (zero bias, standard deviation 1% of energy,
skewness coefficients 0.3, 1, 5).

Even if this formula seems to have better correlations than the others formula, it is
necessary to use the AR(1) model to residuals because the autocorrelation is still big. The most
important feature is that when the standard deviation is increasing the autocorrelation is
decreasing. On the contrary, when the skewness is rising the autocorrelation fall.

The statistical characteristics above demonstrated at the timeseries of streamflow, which
retrieved by the inverse problem. For instance, two line graphs are represented below and as
can be seen the increase of standard deviation from 1% to 10% of observed energy standard
deviation not only affect the retrieval discharge a lot, but also the confidence interval are
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extended. Specifically, when the maximum gap between upper and lower limit in first scenario
is 0.2 m3/s, in second scenario with one size class up this gap is 0.46 m3/s.

On the other hand, when skewness changes the flow from the inverse formula don’t be
affected dramatically. This feature can be released from the timeseries below.

Table 7.4: Statistical characteristics of error type 1 for alternative turbines by adding artificial
error with standard deviation

" PELTON FRANCIS PELTON FRANCIS PELTON  FRANCIS
[Mean  [OIEY, -0.109 0.044 -0.115 0.049 -0.109
0.065 0.201 0.100 0.196 0.139 0.205
1.411 1.212 1.968 1.225 1.154 0.921
0.619 0.768 0.243 0.736 0.125 0.672

0.777 0.312 0.398 0.947 0.310 0.900

Table 7.5: Statistical characteristics of error type 1 for alternative turbines by adding artificial
error with skewness

. PELTON FRANCIS PELTON FRANCIS PELTON  FRANCIS
| Mean  [NEY -0.117 0.037 -0.116 0.036 -0.116
0.064 0.179 0.064 0.180 0.060 0.179
1.442 0.674 1.174 0.683 0.573 0.680
Autocorrelation [N 0.794 0.633 0.795 0.723 0.796
Cross-correl. 0.773 0.968 0.780 0.968 0.862 0.968

Table 7.6: Statistical characteristics of error type 1 for alternative turbines by multiplying
artificial error with standard deviation
0=0.1 0=0.2

PELTON FRANCIS PELTON FRANCIS
0.05 -0.06 0.06 -0.08
St. deviation 0.19 0.13 0.36 0.15

0.84 0.93 0.21 0.75
Autocorrelation 0.03 0.07 0.06 0.08
Cross-correl. 0.23 0.51 0.11 0.22
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Figure 7.6: Simulated flows and its uncertainty for additive error following Gamma
distribution with y = 0.30.
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Figure 7.7: Simulated flows and its uncertainty for additive error following Gamma
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Figure 7.8: Simulated flows and its uncertainty for multiplicative error following Normal
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Figure 7.9: Simulated flows and its uncertainty for multiplicative error following Normal
distribution witho = 0.2 & u = 1.0.
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7.3.2 Parameter uncertainties (errors in efficiency)

This subchapter discuss the impact of the possible changes in efficiency by using the
analytical formula, which we proposed in Chapter 4. These changes are due to deterioration,
damage and aging of the equipment over time. Furthermore the choice of a turbine in design
maybe is not be the same in operation. Thus allows us to investigate not only the minimum
and maximum efficiency 1n,,,;n, Nimax but also the whole efficiency curve by changing the shape
parameters a and b. The synthetic curves are around the “true” one, which is extracted from
the optimization of the Francis turbine. The optimization in turbine was a necessary step in
order to pass from the empirical efficiency curve to analytical one.

Table 7.3 Parameters of synthetic curves and the optimal one

Optimal Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic
efficiency efficiency efficiency efficiency efficiency efficiency efficiency

curve curve 1 curve 2 curve 3 curve 4 curve 5 curve 6
- 0.593 0.738 0.750 0.714 0.677 0.787 0.700
“ 3.946 4.444 4.221 4,589 4.764 4.633 4.240
0.568 0.623 0.598 0.583 0.573 0.578 0.568

m 0.907 0.957 0.932 0.857 0.907 0.912 0.793
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Figure 7.10: Synthetic efficiency curves (six out of 100) around the “true” one (red line).
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Figure 7.11: Simulated flows and its uncertainty for errors in efficiency curves.

From Figure 7.11 (simulated flow data for one year period) we see that the uncertainties
in efficiency have an important impact in the energy-flow transformation. The most noticeable
feature is that the extraction of low flows (0.5-1.0 m3/s) is not affected importantly from the
parameter changes. On the contrary, the uncertainties around the efficiency curve have a
significant impact on the retrieved streamflow over the value of 1.0 m3/s.

7.3.3  Extrapolation of high and low flows

For one of the problem settings, namely the extraction of flows from the Pelton case,
considering an additive error N(0, 0.10,), we detected all events for which the estimated flow
should exceed the nominal one, i.e. 5.0 m3/s (11 events), or be less than the minimum one,
i.e. 0.5 m3/s (8 events). Characteristic examples have been already discussed in section 5.5,
while the full cases are given in the Appendix.
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8 Real-world case study: Glafkos power plant

8.1 Study area and data

8.1.1 Glafkos river basin

In this case study we examine the real-world small hydropower plant of Glafkos, located in
South-Western Greece. Glafkos is a small river in the city of Patras, flowing into the Gulf of
Patras (lonian Sea), south of the city centre. The study basin extends over the Northern
Peloponnese Water Department (EL02), and drains an area of 7.4 km?. Its relief is generally
characterized as mountainous, in the upstream part, semi-mountainous in its outer perimeter
and lowland in its coastal zone. Specifically, the catchment includes several tributaries, i.e.:

Malamamoutis

Romanos

Diakoniaris

Elexistra

Glafkos (main watercourse)
Filiouras and Xiropotamos
Neromanas

O O O O O O O

Catchment of Glafkos River |

Study basin
Glafkos river

Dam

HP plant

Figure 8.1: Glafkos basin upstream of the diversion dam (Langousis and Kaleris, 2013).
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8.1.2  Project details

The hydroelectric plant of Glafkos was built in the period of 1922-1926 and it was the first
project of this type in Greece. As shown in Figure 8.2, the system comprises a run-of-river
plant, with a small diversion dam upstream (i.e., at the inlet). Initially, it was intended to fulfill
both the water and power supply of the city of Patras, from the waters of the homonymous
river. The first dam had a water gate and it was completely different than the current one. In
1968, PPC bought the plant from the municipality of Patras and included it in the network of
its hydroelectric power plants under the administration of Ladonas HPP (Wikipedia). Although
Glafkos now produces very little energy in relation to the needs of Patras, it covers almost the
entire water supply needs of the city for a large portion of time within each hydrological year,
i.e. from mid-November to the end of April. As made for all projects of this type, it mainly
exploits the baseflow of the river. In case of flood events, if the inflows exceed the conveyance
capacity of the system, the surplus water is drained downstream by opening of the water
gates, since the flood control capacity of the project is negligible.

Figure 8.2: Layout of Glafkos hydropower system (Efstratiadis et al., 2020).

Initially, the total installed power capacity was 2.25 MW (3 Francis turbines of 750 kW
each). However, due to the small capacity of the Francis units, their old technology and the
damages occurred so far, their performance gradually fell by 60% and they were eventually
put out of operation. In 1997, two new turbines have been installed, i.e. a Francis-type (2.3
MW) and a Pelton-type (1.4 MW), thus the station’s total power capacity rose to 3.7 MW. In
mean annual basis, the hydropower plant produces 10.4 GWh, covering about 1/30 of the
electricity needs of the city of Patras. In term of capacity, the installed power of Glafkos is 3.7
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MW, while the city of Patras needs up to 80 MW. After passing the turbines, the flow is used
for irrigation and water supply.

The hydropower system is a typical run-of-river scheme. The small diversion dam, shown
in Figure 8.3, receives a mean annual inflow of 39 hm3. The water intake is located at an
altitude of 339 m and serves to create a small tank to drive water to a diversion tunnel.
Upstream of the entrance of the tunnel there are two sand collectors, equipped with valves
at their bed to drain the solids. To protect this dam, a cofferdam has been laid at 400 meters.
For the conveyance of flood flows, there are two gateways, one automatic (electric) and one
manual.

The length of the diversion tunnel is 1 695 m and its cross section is not constant, but
ranges from 1.64 m? up to 1.95 m?. At the end of the tunnel there is a tank from reinforced
concrete, with an inner diameter of 9 m and a height of 9 m, serving as surge chamber. At its
bottom there is a conical opening with a diameter of 1.50 m towards the penstock. This is used
to protect the penstock and the turbines from excess pressure in case of water hammers, as
well as to provide the additional amount of water required when starting the units. At its bed
there is also a small drain pipe which is used to clean the water tower from rubble.

As shown in Figure 8.4, the penstock is made of concrete and steel and it is placed in the
surface, both for economic reasons and also for ensuring easy supervision and maintenance.
The pipe conveys the water from the forebay to the power station and after passing it through
the power generation units to the downstream river. Its length is 308 m, its diameter 0.90 m,
the average slope is about 48% and its thickness ranges from 7 to 14 mm.

Figure 8.3: View of the diversion dam (Evaggelatos, 2016).
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Figure 8.4: View of the penstock (Evaggelatos, 2016).

8.2 Problem setting
Apart from the aforementioned technical characteristics, in order to solve the inverse

problem, the following data are also necessary:

e Observed energy production;
e Observed flows at the inlet of the diversion tunnel;

e Efficiency curves for each turbine.
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Figure 8.5: Inflow time series diverted to the turbines (full data).
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Figure 8.6: Hourly energy production through the individual operation of the Pelton turbine
for one-month period.

In Glafkos we used inflow and energy production for a common period of three years, i.e.
2015-2018 (J. Stefanakos, 2019, personal communication). One of the key challenges of this
problem was the different temporal resolution of the two data types. In particular, the energy
production data from each turbine was provided in hourly resolution (Figure 8.6), while the
inflow data in daily (Figure 8.5). The efficiency curves for both turbines, Pelton and Francis,
were unknown, thus making this problem even more challenging. In the figures below are
demonstrated the timeseries of Pelton’s energy production for one-month period.

8.3 Turbine characteristics and efficiency curves

As mentioned before, the hydropower plant includes a Pelton turbine, with installed power
capacity 1.4 MW, and a Francis-type, with installed power 2.3 MW. The efficiency curves of
both turbines were unknown. Hence, we initially tested several empirical curves that are given
in the literature (Papantonis, 2008), before selecting the ones illustrated in Figure 8.7. All
values are multiplied by 0.95, since the original curves only refer to turbine efficiency.

In order to improve the model fitting, we next employed a calibration approach to
determine the two curves in analytical terms, i.e. by means of the parameter efficiency
formula. The results of this approach are presented in section 8.5.

Table 8.1: Efficiency curve parameters for Francis and Pelton turbines.
a b MNyngy MNynin

PELTON 0.51 10.56 0.83 0.30
FRANCIS 0.59 3.95 0.91 0.70
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8.4 Computational procedure

Although the available inflow data are from 2008 to 2018, we only took advantage of
specific sub-periods, in order to investigate the flow-energy transformations under different
modes. In particular:

e A continuous period of 7 months, from April to November 2017, when only the
Pelton turbine was in operation;

e Non-continuous periods of individual operation of the Francis turbine;

e 21 days of continuous operation of both turbines.

The computational procedure is as follows:

i. Retrieval of hourly flows from hourly energy data, through the inverse
procedure;

ii. Aggregation of hourly flows to the daily scale;

iii. Extraction of error time series for different error types, by contrasting the
aggregated daily flows to the actual ones;

iv. Statistical analysis of errors, and selection of suitable error type on the basis of
error characteristics;

v. Determination of stochastic model (in our case, AR(1)) and of its parameters;

vi. Generation of synthetic error realizations through the stochastic model;
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vii. Synthesis of 100 ensembles of stochastic daily flow data, by adding synthetic
errors to simulated data;

viii. Empirical estimation of target flow values for three characteristic quantiles (5,
50 and 95%), representing the low and upper limits of confidence intervals and
the median estimation of the retrieved flows;

Apparently, since we compare real flow and energy data, after employing the inverse
procedure we expect to detect errors that reflect all uncertainties that are embedded in the
data and the rest of computational assumptions. Actually, in this system we detected multiple
issues of uncertainty, as discussed below.

The first origins from the different time scale of data (hourly for energy, daily for inflow).
From a first point-of-view, this should only be a straightforward problem of data aggregation.
In our study, as the beginning point to measure the flow is midnight but it’s possible due to
change of work shift this time not to be constant.

According to the general experience, we consider that the Pelton turbine is starting to
operate at 10% of its nominal discharge. For a maximum power capacity 1.4 MW and a
maximum efficiency 0.89, we get a maximum discharge at approximately 1.057 m3/s. As for
the Francis, we assume that the turbine is starting to operate at 20% of its nominal discharge,
which is approximately 1.995 m3/s (for power capacity 2.3 MW and maximum efficiency).

8.5 Results

Initially, we tested the three types of errors, as explained in Chapter 5, and estimated their
statistical characteristics. As made for the hypothetical problem, we finally kept the type |
error; its summary statistics for the two turbines are given in Table 8.2. We remark that in the
case of Pelton, the skewness is negative, while it known that the Gamma distribution describes
processes with positive skewness. So, the random variable is expressed as Z = —X and thus
the mean and the skewness become -0.001 and 1.782, respectively. Regarding Francis, we
demonstrate two sub-cases, one with the empirical curve and one the analytical ones, which
is derived via calibration. Details are provided in next section.

Table 8.2: Statistical characteristics of error type 1 for Francis and Pelton turbines.
Standard Skewness Autocorrelation Cross-
deviation correlation

| Pelton [V 0.041 -1.782 -0.184 0.165

Francis, -0.026 0.142 6.795 0.850 -0.015
empirical

Francis, -0.002 0.085 5.947 0.045 0.083
analytical
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Figure 8.8: Simulated flow from May to November 2017, for the continuous operation of
Pelton turbine (deterministic approach).
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Figure 8.9: Simulated flows and its uncertainty from May to November 2017, for the
continuous operation of Pelton turbine.

From Table 8.2 we remark that the derived errors for both turbines are unbiased and
exhibit limited auto- and cross-correlations, which is desirable. On the other hand, in both
cases the skewness is very high, particularly for the Francis turbine. This may due to few yet
important errors in flow and/or energy observations. In general, the inverse modelling for the
case of Francis results to larger errors that the Pelton, as indicated by the more than double
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value of the standard deviation. This systematically poorer performance is probably explained
by the larger uncertainty of the efficiency curve of Francis over the Pelton.

In Figures 8.8 and 8.9 we contrast the two approaches for extracting the turbine flows from
observed energy, i.e. deterministic and stochastic, respectively, for the continuous operation
of Pelton from May to November 2017. From the first approach, it seems that the flows
extracted by the (deterministic) reverse engineering procedure fit very well to the observed
ones, thus the model performance is excellent. However, by adding the stochastic error term,
the actual model uncertainty, as quantified in terms of confidence limits, is much larger than
expected. In particular, the upper limit of the confidence interval is much wider, resulted from
the large positive skewness of the error. Nevertheless, the stochastic approach allows to
quantify the uncertainty induced even from small errors of the observed data. Apparently, the
same conclusion stands for the forward problem, i.e. if the streamflow has been measured
with errors, the prediction of energy production will be uncertain as well.

Regarding the Francis case, its period of continuous operation is quite small, namely
approximately one month. By repeating the same procedures with Pelton, i.e. deterministic
and stochastic, we extract the reproduced, the median and the upper and lower confidence
limits, which are shown in Figure 8.10. The contrasting of the aforementioned time series with
the observed data indicates a remarkable uncertainty. Specifically, the median estimation is
very close to the low (5%) confidence limit, while the actual data are very close and even
exceed the upper (95%) limit.
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Figure 8.10: Simulated flows and its uncertainty by using the empirical efficiency
curve for specific speed ng = 100.
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Figure 8.11: Simulated flows and its uncertainty by using the analytical efficiency formula.

This abnormal behaviour reveals that the most essential problem at the study of this
turbine is the uncertainty of its efficiency curve. As mentioned in section 4.4 the efficiency of
this type of turbine varies significantly with discharge, thus the modelling procedure is
expected to be sensitive against this input element. In order to better fit the simulated to the
actual inflow data, and consequently reduce the uncertainty of the inverse modelling
procedure, we first extracted an optimized efficiency curve, by applying the analytical formula
(5.26) on the basis of simultaneous flow and energy data, and next run the inverse problem
to extract the inflows, for the given efficiency. The calibration was carried out by employing
the evolutionary algorithm which is embedded in MATLAB. The optimized parameters are
Nomin = 0.70, N0y = 0.95, a = 0.59 and b = 3.95. As expected, the new curve ensures better
fitting, with the deterministic approach, and little more narrow confidence limits, with the
stochastic one, as shown in Figure 8.11.

8.6 Combined operation of Pelton and Francis turbines

As discussed before, the period of mixed operation of the two turbines introduced further
uncertainties and makes the modelling of this small hydropower plant even more challenging.
In fact, the management policy for the combined operation of the two turbines was unknown.
In addition, the common period of operation was very limited, namely only 20 days, thus
making difficult to extract safe conclusions for the entire range of feasible flow values. In this
respect, the beginning and end of mixing was beyond reach. However, the inverse problem
was easy to set, since energy production data from each individual turbine were available.
Under this premise, the deterministic inverse modelling procedure, described in section 5.3.1,
fits also in the mixing of turbines, since the total inflow is just the addition of the two individual
flow values that are extracted from the associated energy data, i.e.:

Qtotar = erancis + Qpelton (8.1)
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Figure 8.13: Simulated flows over 20 days of continuous operation for both turbines.
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Figure 8.14: Simulated flows and its uncertainty for the mixture of turbines.

In Table 3 we demonstrate the results of our analysis, which are yet not representative
since the available sample is too small, i.e. only 20 days, thus the estimation of the statistical
characteristics of error may not be reliable enough. Nevertheless, for the completeness of the
study we provided a stochastic model for the errors and used it to estimate the confidence
intervals of the retrieved streamflow. As shown in the table, both the auto- and the cross-
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correlations are too large, which is evidently due to sample uncertainty.

Table 8.3: Statistical characteristics of error type 1 for the mixing of turbines.
Autocorrelation

Standard
deviation

Cross-
correlation

Skewness

0.078

0.179 0.279 0.920 -0.852
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9 Conclusions and perspectives

9.1 Synopsis and conclusions

The aim of this research was to investigate the non-linear flow-energy transformations
across small hydropower plants as well as their complexities and uncertainties. This problem
has three possible configurations, the forward (from flow to energy), the inverse (from energy
to flow), and the calibration when both flow and energy data are available.

We mainly emphasised on the reverse engineering aspect, i.e. the retrieval of streamflow
from energy production data, here called the inverse problem of hydroelectricity. Initially, we
developed a deterministic model, which is based on an iterative numerical scheme, that was
next formulated in stochastic terms. This approach allows to express the overall uncertainties
that are embedded in the aforementioned reverse transformation in typical statistical terms
(e.g. marginal statistics and confidence intervals). Here we focused on two key uncertain
issues, i.e. the observed output (energy production) and the efficiency curve of turbines.

A well-known peculiarity of SHPPs is the fact that these systems only operate within a specific
range of inflows. This challenging task was the opportunity to implement a semi-empirical
methodology for extrapolating the part of hydrograph, which is above the nominal flow of
turbines or below the minimum flow to produce energy. Our key principle is that the rising
limb follows a linear increasing law while the falling one is described as a linear reservoir
recession, thus following an exponentially decreasing formula.

Moreover, we discussed another interesting configuration, the extraction of unknown or
uncertain technical characteristics of the system, through calibration. In particular, we
analysed the efficiency curves, for which we provided a generic parametric expression that
can fit to any empirical curve, to facilitate calibration. Our literature research, as well as, our
tests on both hypothetical and real-world cases indicated that the efficiency is the most
uncertain component of flow-energy transformations for the small hydropower plants.

We first studied an hypothetical small hydroelectric plant for two types of turbines, i.e.
Pelton and Francis. In order to investigate the effects of observational errors we added
synthetic errors in energy production data. Furthermore, the uncertainty on efficiency curves
of turbines was described through multiple curves around the “true” one. The confidence
intervals of the extracted flows, considering the artificial errors and the alternative efficiency
curves, point the importance of this research.

The spearhead of this research was the study of the real-world small hydroelectric station
at Glafkos. This SHPP includes two turbines, i.e. Pelton and Francis. The mixing of turbines, the
unknown efficiency curves, the different temporal resolution of flow and energy data, and the
possible observational errors in both types of data render this case more challenging. Our
analyses indicated that efficiency is the major source of uncertainty, particularly for the case
of Francis machines, in which efficiency drops rapidly as discharge decreases. This observation
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was the motivation to calibrate the efficiency curve and to further investigate the impact of
efficiency on flow-energy transformations.

9.2 Future research perspectives

From the experience gained so far, we have detected several issues for future research,
regarding the modelling of small hydropower plants. Specifically:

e Application of the proposed framework to a large number of small hydropower
plants (particularly real-world ones), to test the methodology under different
system configurations, flow regimes and error sources;

e Modelling of additional uncertain factors, which affect the relationship
between inflows-energy production, namely the parameters used in the
estimation of hydraulic losses such as pipe roughness;

e Investigation of alternative error expressions and statistical/stochastic
approaches for the generation of synthetic error data;

e Adjusting of the new analytical expression of efficiency curves to a wide
range of commercial turbines of all types;

e Generalisation of the calibration approach to include several unknown
characteristics of the flow-energy transformation, such as the parameters of
the analytical efficiency curves and other technical quantities.

The proposed framework may be used in a multidimensional context that span over the
three configurations of the flow-energy transformation problem. In particular:

e The design of small hydropower plants under uncertainty, by expressing the
forward problem in stochastic terms;

e The management policy of turbines, by using the inverse engineering approach
as a driver for optimizing their operation, specifically in the more complex case
of turbine mixing;

e The scheduling of energy production, where the prediction of energy can be
better formalised as a flow prediction problem. In this formulation we can first
implement the inverse approach in order to extract the recent flow sequence,
next employ a short-term forecasting scheme to obtain future flow ensembles
and finally run the forward model to transform them in energy terms.

This last point triggers a wider perspective of the reverse engineering problem in
hydroelectricity, which is the extrapolation of the current status of hydrometric information
across Greece by obtaining past flow data in the existing SHPP sites (about 130). This may
solve the major shortcomings caused by the lack or low quality of flow data, mainly in small
and medium-scale catchments that generally lack of hydrometric infrastructure.
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Appendix: Extrapolated inflow hydrographs for the
hypothetical SHPP
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Figure A.1: Example of extrapolating high flow values, when the streamflow exceeds the
upper discharge limit (turbine capacity) of 5.0 m3/s.
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Figure A.2: Example of extrapolating high flow values, when the streamflow exceeds the
upper discharge limit (turbine capacity) of 5.0 m3/s.
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Figure A.3: Example of extrapolating high flow values, when the streamflow exceeds the
upper discharge limit (turbine capacity) of 5.0 m3/s.
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Figure A.4: Example of extrapolating high flow values, when the streamflow exceeds the
upper discharge limit (turbine capacity) of 5.0 m3/s.

88



13

12

11

10

Streamflow( m?*/s)

—@— Retrieved from power-rising limb —&— Retrieved form power-falling limb
Observed e Linear extrapolation-rising limb

--------- Exponential extrapolation-falling limb

Figure A.5: Example of extrapolating high flow values, when the streamflow exceeds the
upper discharge limit (turbine capacity) of 5.0 m3/s.
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Figure A.6: Example of extrapolating high flow values, when the streamflow exceeds the
upper discharge limit (turbine capacity) of 5.0 m3/s.
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Figure A.7: Example of extrapolating high flow values, when the streamflow exceeds the
upper discharge limit (turbine capacity) of 5.0 m3/s.
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Figure A.8: Example of extrapolating high flow values, when the streamflow exceeds the
upper discharge limit (turbine capacity) of 5.0 m3/s.
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Figure A.9: Example of extrapolating high flow values, when the streamflow exceeds the
upper discharge limit (turbine capacity) of 5.0 m3/s.
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Figure A.10: Example of extrapolating high flow values, when the streamflow exceeds the
upper discharge limit (turbine capacity) of 5.0 m3/s.
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Figure A.11: Example of extrapolating high flow values, when the streamflow exceeds the
upper discharge limit (turbine capacity) of 5.0 m3/s.
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Figure A.12: Example of extrapolating low flow values for missing days 5, 6 and 7, when the
streamflow is below the lower operational discharge limit of 0.5 m3/s.
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Figure A.13: Example of extrapolating low flow values for missing days 5, 6 and 7, when the
streamflow is below the lower operational discharge limit of 0.5 m3/s.
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Figure A.14: Example of extrapolating low flow values for missing days 5, 6 and 7, when the
streamflow is below the lower operational discharge limit of 0.5 m3/s.
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re A.15: Example of extrapolating low flow values for missing days 5, 6 and 7, when the

streamflow is below the lower operational discharge limit of 0.5 m3/s.
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Figure A.16: Example of extrapolating low flow values for missing days 5, 6 and 7, when the

streamflow is below the lower operational discharge limit of 0.5 m3/s.
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Figure A.17: Example of extrapolating low flow values for missing days 5, 6 and 7, when the
streamflow is below the lower operational discharge limit of 0.5 m3/s.
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Figure A.18: Example of extrapolating low flow values for missing days 5, 6 and 7, when the
streamflow is below the lower operational discharge limit of 0.5 m3/s.
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Figure A.19: Example of extrapolating low flow values for missing days 5, 6 and 7, when the
streamflow is below the lower operational discharge limit of 0.5 m3/s.
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