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Overall motivation: recognizing uncertainties in the 
project life of renewable energy systems

Specific target: embedding uncertainties in the design of small hydropower plants
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▪ To define a hydroelectric plant as small, the installed power capacity of the turbines must 
be under a certain limit, determined by the national legislation (15 MW in Greece). 

▪ The common type of small hydropower plants are the so-called run-of-river (RoR) that take 
advantage of the elevation difference between the intake and the outflow site.

▪ Due to their negligible storage capacity, RoRs do not employ regulation; in particular, the 
arriving flow is diverted and delivered under pressure to a downstream power station.

▪ In the context of siting and layout of RoRs, key design objectives are:

Setting the design of small hydropower plants

o maximization of discharge;

o maximization of head (elevation difference 
between the intake and the outflow site);

o minimization of diversion length.

▪ RoRs are subject to two major issues, associated 
with the turbine type and the power capacity:

o they only exploit part of inflow between a 
minimum and a maximum value; 

o in this feasible range, the turbine efficiency is 
highly varying, according to a rated flow.

▪ As result of the above peculiarities, the typical design practice in turbine selection is the 
mixing of two turbines, preferably of different capacity. 



The design challenge in a nutshell 

Research questions within turbine mixing optimization:

▪ Definition of performance metric, ensuring a sustainable compromise between the 
investment costs and the expected revenues;

▪ Effective and efficient incorporation of uncertainty within optimization;

▪ Assessment of impacts of uncertainty within design;

▪ Interpretation of uncertainty in practice.
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RoRs in a simulation context: overview

▪ Input data:

o Streamflow time series at the intake, 𝑞, after subtracting environmental flows;

o Gross head, ℎ (practically constant);

o Power plant efficiency, 𝜂(𝑞), expressed as function of discharge;

o Maximum discharge that can pass from the turbines (nominal flow), 𝑞𝑖,𝑚𝑎𝑥

o Minimum discharge for energy production, 𝑞𝑖,𝑚𝑖𝑛 (typically, 10-30% of 𝑞𝑖,𝑚𝑎𝑥)

▪ In the generic case we consider two turbines of power capacity, 𝑃1 and 𝑃2, operating 
within flow ranges (𝑞1,𝑚𝑖𝑛, 𝑞1,𝑚𝑎𝑥) and (𝑞2,𝑚𝑖𝑛, 𝑞2,𝑚𝑎𝑥), respectively. 

▪ The maximum (nominal) discharge of each turbine is given by:

𝑞𝑖,𝑚𝑎𝑥 =
𝑃𝑖

γ 𝜂𝑖,𝑚𝑎𝑥 ℎ𝑛

where 𝜂𝑖,𝑚𝑎𝑥 is the total efficiency at the maximum discharge, which depends on the 
turbine type, γ is the specific weight of water (9.81 KN/m3) and ℎ𝑛 is the net head, i.e. 
the gross head, ℎ, after subtracting hydraulic losses, ℎ𝐿.

▪ Hydraulic losses include friction and local ones, which are function of discharge and the 
penstock properties (roughness, length, diameter, geometrical transitions).

▪ The minimum discharge of each turbine is expressed as ratio of the maximum one, i.e.:

𝑞𝑖,𝑚𝑖𝑛 = 𝜃𝑖 𝑞𝑖,𝑚𝑎𝑥



RoRs in a simulation context: computations

▪ We consider a hierarchical operation of the two turbines, where the flow passing from the 
first one is given by:

𝑞𝑇1 = min(𝑞, 𝑞1,𝑚𝑎𝑥)

▪ If 𝑞 > 𝑞1,𝑚𝑎𝑥 then the surplus flow passing from the second turbine is:

𝑞𝑇2 = min(𝑞 − 𝑞𝑇1, 𝑞2,𝑚𝑎𝑥)

▪ The hydraulic losses and thus the net head, ℎ𝑛, are estimated as function of the total 
discharge, 𝑞𝑇1 + 𝑞𝑇2, which is diverted to the turbines.

▪ For 𝑞𝑇𝑖 < 𝑞𝑖,𝑚𝑖𝑛 the turbine is set out of operation, while for 𝑞𝑇𝑖 > 𝑞𝑖,𝑚𝑖𝑛 the energy 
produced by each turbine is:

𝛦𝑖 = 𝜂 𝑞𝑇𝑖 𝛾 𝑞𝑇𝑖 ℎ𝑛 ∆𝑡

where ∆𝑡 is the time interval of calculations and 𝜂 𝑞𝑇𝑖 the flow-dependent total 
efficiency of each turbine, which is either expressed analytically (Sakki et al., 2020):

where 𝑎 and 𝑏 are shape parameters that change according to the turbine type.

𝑛Τ = 𝑛𝑚𝑖𝑛 + 1 − 1 −
𝑞/𝑞𝑚𝑎𝑥 − 𝜃

1 − 𝜃

𝑎 𝑏

𝑛𝑚𝑎𝑥 − 𝑛𝑚𝑖𝑛



Depreciation of turbines as performance metric

▪ For a given configuration of major system components (intake and power station sites, 
layout of diversion), the investment costs are directly associated with the turbine capacity, 
also affecting the maximum discharge and thus the sizing of the water transfer system. 

▪ On the other hand, the mean annual energy is associated with the anticipated revenues 
from the operation of the power system. 

▪ In this context, we propose an optimization function, aiming at the maximization of the 
net annual profit, estimated as the difference:

𝐹 = 𝑢 𝐸 − 𝐷

where 𝐸 denotes the mean annual revenues from energy production, is 𝑢 the unit price of 
energy, and 𝐷 is the depreciation of electromechanical equipment (E/M).

▪ Considering a period of 𝑛 years with a specific 
interest rate 𝑖, the equal annual instalments for 
the E/M equipment are estimated by:

𝐷 = 𝐶
𝑖 (1 + 𝑖)𝑛

(1 + 𝑖)𝑛−1

▪ The cost of the E/M equipment is linked with 
the power capacity, 𝑃, and the head, ℎ, 
through the empirical functions of the form:

𝐶 = 𝑎 𝑃𝑏 ℎ𝑐
Adapted by Aggidis (2010)



Insights into the design optimization problem

▪ The design optimization problem aims at specifying the power capacity values of the two 
turbines that maximize the net annual profit of the system, under the legislative 
constraint of total allowable capacity for small hydropower plants, 𝑃𝑚𝑎𝑥, i.e.:

maximize 𝐹 𝑃1, 𝑃2

s. t. 𝑃1 + 𝑃2 ≤ 𝑃𝑚𝑎𝑥

▪ The response surface of the objective function, 𝐹, is strongly nonlinear, resulting into two 
optimal mixings, (𝑃1

∗, 𝑃2
∗), with quite close performance.

One-million-euro question: 

Will the optimal mixing of turbines 
change if uncertainty is accounted for?

▪ The two optima reveal two alterative 
operations of the hydropower system, 
one by setting in high priority the large 
turbine (Global) and the other the 
small one (Local).

▪ A conventional deterministic design 
concludes to a unique solution, i.e. the 
global optimum of the profit function. 

Local

Global



Let’s talk about uncertainty in the design of RoRs

▪ External uncertainty: inflows

o Process uncertainty;

o Data uncertainty (sample size and scale).

▪ Internal uncertainty: flow-energy conversion

o Actual efficiency vs. empirical nomographs;

o Effects of equipment aging.

▪ Generic tools to represent uncertainties: 

o Statistics, accounting for marginal properties;

o Stochastics, also accounting for dependencies.

o Copulas, for quantifying predictive uncertainty. 

Equally probable efficiency 
curves asymmetrically 
spread around the standard 
(empirical) one to 
emphasize aging effects

Observed inflows
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stochastic regime of observed inflows



Proof of concept: Design of RoR plant at Achelous

▪ Run-of-river hydropower plant, in a sub-catchment of Achelous river, Western Greece;

▪ Sizing of two Francis-type turbines, taking advantage of a gross head of 150 m;

▪ Daily inflow data for years 1969-2008 (mean annual inflow 2.15 m3/s);

▪ Environmental flow 0.25 m³/s, released downstream of the intake, through the fish 
passage (30% of mean discharge of September, according to the Greek legislation);

▪ Inputs of efficiency formula: 𝜃 = 0.15, 𝑛𝑚𝑖𝑛 = 0.33, 
𝑛𝑚𝑎𝑥 = 0.93, 𝑎 = 0.78, 𝑏 = 3.11 (parameters fitted to 
an empirical nomograph for Francis with 𝑛𝑠 = 100);

▪ Cost inputs: 𝐴 = 14400 €, 𝑏 = 0.56, 𝑐 = −0.112;

▪ Inputs of depreciation formula: 𝑛 = 10 years, 𝑖 = 4%.

▪ Optimized mixing: 11.7 and 2.4 MW.



Generic scheme for embedding uncertainty within design

▪ Uncertainty refers either to the inflow (process uncertainty) or to the flow-energy 
conversion formula (parameter uncertainty).

▪ For the representation of the inflow processes uncertainty, which is due to hydroclimatic 
variability, we employ two alternative approaches for generating 100 inflow ensembles of 
20 years (i.e., the economic life of such projects, according to the Greek legislation):

o Statistical approach, by fitting a suitable distribution model to the historical time 
series (in particular, the Generalized Gamma), next used as data generator;

o Stochastic approach, where we employ the generation scheme implemented 
within the anySim package (Tsoukalas et al., 2020) that reproduces the 
probabilistic properties and the auto-dependence structures of the observed data 
across seasons and across three scales of interest (daily, monthly, annual).

▪ For the representation of the uncertainty of the standard efficiency formula:

o We consider its parameters as random variables, by assuming that the efficiency 
bounds 𝜂𝑚in and 𝜂𝑚𝑎𝑥 follow a beta distribution, while the two shape parameters
𝑎 and 𝑏 are normally-distributed.

o We repeat the design procedure by running each out of 100 inflow scenarios 
with different efficiency curve, provided via random sampling of its parameters.

o The selection of aforementioned distributions ensures that the rated flow -
efficiency ensembles are asymmetrically distributed around the standard curve, 
to account for the effects of systematic drop of efficiency due to aging.  



Architecture of design optimization under uncertainty

▪ The design under uncertainty is formalized by means of a modular scenario-based scheme, 
each one resulting to 100 optimized mixings of power capacity values:

Scenario A: 100 inflow realizations, provided through random sampling from the 
Generalized Gamma distribution model;

Scenario B: 100 inflow realizations, generated through the stochastic model;

Scenario C: Combinations of 100 synthetically-generated inflow realizations with 100 
randomly-generated efficiency curves around the standard one.

▪ The above scheme is tested not only with the original daily inflows per se, but also by 
aggregating the data at the monthly time scale, in order to assess the uncertainty induced 
by the temporal resolution of the historical time series.

▪ For each run of the design optimization procedure, we extract:

▪ optimized mixing (design variables) and depreciation (objective function);

▪ energy-probability curves;

▪ For each scenario, we quantify the uncertainty of its optimized outputs, in terms of:

▪ empirical probability distribution of total capacity and depreciation;

▪ scatter plots of power capacity values, 𝑃1
∗ and 𝑃2

∗;

▪ empirical quantiles of energy-probability curves, for 90% confidence intervals.



Scenario A: Statistical approach for inflow uncertainty



Scenario B: Stochastic approach for inflow uncertainty



Scenario C: Joint uncertainty of inflow and efficiency



Copula-based modelling of predictive uncertainty [1]

Copulas (Sklar, 1959; 1973) can be particularly useful tools for the quantification of the
model’s ℳ predictive uncertainty, since the allow the derivation of conditional distributions
(see, Tsoukalas (2018)). In particular, let 𝑌𝑂 and 𝑌𝑀 denote random variables (RVs)
corresponding to the observed and modelled data respectively. Their marginal distributions
(CDFs) are denoted by 𝐹𝑌𝑂 𝑦𝑂 and 𝐹𝑌𝑀 𝑦𝑀 . Note that 𝑌𝑀 is a function of our predictive

model ℳ 𝜽 ,where 𝜽 denotes its parameters. Further to these, the joint CDF among 𝑌𝑂 and
𝑌𝑀, can be expressed by,

𝐹 𝑌𝑂, 𝑌𝑀 ≔ 𝑃 𝑌𝑂 ≤ 𝑦𝑂, 𝑌𝑀 ≤ 𝑦𝑀 = 𝐶 𝐹𝑌𝑂 𝑦𝑂 , 𝐹𝑌𝑀 𝑦𝑀 = 𝐶 𝑢𝑂, 𝑢𝑀

where 𝐶 𝑥, 𝑦 denotes the copula CDF, as well as 𝑢𝑂= 𝐹𝑌𝑂 𝑦𝑂 and 𝑢𝑀 = 𝐹𝑌𝑀 𝑦𝑀 are

uniformly distributed RVs in [0, 1].

In order to quantify the model’s ℳ predictive uncertainty, the idea is to establish the
conditional CDF, 𝐹 𝑌𝑂|𝑌𝑀 = yM ≔ 𝑃 𝑌𝑂 ≤ 𝑦𝑂|𝑌𝑀 = yM , that is,

𝐹 𝑌𝑂|𝑌𝑀 = yM =
𝜕𝐶 𝑢𝑂, 𝑢𝑀

𝜕𝑢𝑀
=: 𝐶𝑂|𝑀 𝑢𝑂|𝑢𝑀

where 𝐶𝑂|𝑀 stands for the conditional copula. The conditional distribution, 𝐶𝑂|𝑀 can be

inverted and solved for 𝑢𝑂, for a given probability (of non-exceedance) 𝑎 ≔ 𝐶𝑂|𝑀 (e.g., 𝑎 may

express the 5, 50 or 95% uncertainty level). The above procedure can be compactly written as,

𝑢𝑂
𝑎|𝑢𝑀 = 𝐶𝑂|𝑀

−1 𝑎|𝑢𝑀

where, 𝐶𝑂|𝑀
−1 𝑎|𝑢𝑀 stands for the inverse of 𝐶𝑂|𝑀 𝑢𝑂|𝑢𝑀 .



or more compactly written as, 

𝑦O
𝑎ห𝐹𝑌𝑀 yM

= 𝐹𝑌𝑂
−1 𝐶O|M

−1 𝑎ห𝐹𝑌𝑀 yM

Finally, in order to find 𝐹𝑌𝑂|𝑌𝑀
−1 𝑎|𝑦𝑀 the final step entails the transformation of 𝑢𝑂

𝑎|𝑢𝑀 from

the uniform domain to the target one using the inverse CDF of its marginal distribution, i.e.,

Copula-based modelling of predictive uncertainty [2]

𝑦O
𝑎ห𝑢M = 𝐹𝑌𝑂ห𝑌𝑀

−1 𝑎ห𝑦M = 𝐹𝑌𝑂
−1 𝑢O

𝑎ห𝑢M = 𝐹𝑌𝑂
−1 𝐶O|M

−1 𝑎ห𝑢M

where 𝜃 denotes the copula parameter. 

It remarked though that the top two relationships are general and hold for any other bivariate 
copula.

As an example, for the Gaussian copula the latter expression reads as, 

where Φ denotes the univariate Gaussian CDF.

For the Clayton copula the above relationship reads as, 

𝑦O
𝑎ห𝐹𝑌𝑀 yM

= 𝐹𝑌𝑂
−1 Φ 𝜃Φ−1 𝐹𝑌𝑀 𝑢M + 1 − 𝜃2 Φ−1 𝑎

𝑦O
𝑎ห𝐹𝑌𝑀 yM

= 𝐹𝑌𝑂
−1 𝑎

−𝜃
1+𝜃 − 1 𝐹𝑌𝑀 𝑢M

−𝜃 + 1

−
1
𝜃



Uncertainty induced by time scale

▪ In the design of RoRs, the desirable resolution 
of inflow data is daily, although in practice 
many studies use monthly data. We repeat the 
design procedure using the standard efficiency 
curve, driven with monthly stochastic inputs 
that are generated by aggregating the original 
historical data.

▪ We quantify the process-scale uncertainty for 
the depreciation of the E/M equipment and 
the optimized power capacity of the two 
turbines.



Conclusions

▪ In small hydroelectricity, all key design quantities (turbine capacity, depreciation of E/M 
equipment, energy production) are subject to significant uncertainties induced by the 
inflow data and the empirical efficiency curve that are used in conventional sizing.

▪ As more sources of uncertainty are accounted for, the variability of the optimal system 
sizing is amplified.

▪ Our research indicated that the most vital sources of uncertainty are associated with:

o the temporal scale and size of the inflow data sample;

o the assumptions made about the statistical distribution of the inflow process and 
its fitting to the empirical data;

o the selection of the efficiency curve and its systematic degradation over time.

▪ It is worth mentioning that the effects of uncertainty are not restricted to the design 
quantities per se, but also to the optimized operation policy, i.e. the hierarchy within 
the turbine mixing.

▪ The uncertainty-aware design approach, taking advantage of  state-of-the-art statistical, 
stochastic and copula-based tools, makes a step from a unique optimal value “chained” 
to the limited information offered by empirical data, to a cloud of optimal solutions.

▪ This cloud provides the essential decision-making framework to select the design 
characteristics of the basis of reliability, expressed in terms of confidence intervals.
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