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Figure 3.1 Empirical distribution of the Hurst coefficient H as resulted by
applying the aggregated variance method to the 1265 annual rainfall records.

Figure 3.2 Box-plots depicting the sample differences resulting from variations
in the value of minimum scale kmin when applying the climacogram method.

Figure 3.3 Box-plots depicting the sample differences resulting from variations
in the number of minimum values # in kmax when applying the climacogram
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Figure 3.4 Double histogram depicting the empirical distribution of the Hurst
coefficient H resulting from the climacogram method (left) and from the
LSSD method (right), both applied to the 558 annual rainfall records without
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Figure 3.5 Paired histogram depicting the match of the empirical (blue) and
theoretical (purple) distribution of the Hurst coefficient H resulting from
applying the aggregated variance method to the 1265 historical records and
1265 synthetic records respectively. The synthetic records are realizations of
a stochastic process characterized by a theoretical Hurst coefficient H = 0.58.

Figure 3.6 Box-plots depicting the resulting sample differences of the
autocorrelation coefficient p between the empirical series and uncorrelated

Series fOr 1ags 1,2, 3. .ot

Figure 3.7 Box-plots showing the sample differences of the autocorrelation
coefficient p between the empirical series and synthetic series generated

from an AR(1) model for1ags 1, 2, 3.......cccovvimiiiininnicineeceereee s

Figure 3.8 Observed Hurst coefficient H vs. autocorrelation coefficient p1 points
of the 1265 annual rainfall records and the theoretical line typical of a HK
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Figure 4.1 Map of the 27 analyzed stations with daily rainfall records spanning
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Figure 4.2 Climatograms showing the partition in two seasons (a) and three
seasons (b) after application of the SSD clustering algorithm for the station
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Figure 4.3 Spatial and climatological coherence of the identified seasons for the
regions of Europe (a,c,e) and Australia (b,d,f). Figures a,b show the location
of the stations on a Koppen climatological map, while the rest show the
stations clustered by similarity. White dots represent stations having one
season; the remaining dots denote stations having at least 60% overlap of
months belonging to the wet season. Red dots denote stations with a lower

percentage of similarity to their neighboring stations...........cccocoovivinininnnnnnn,

Figure 4.4 Gumbel probability plots of the fitting of the GEV distribution to the
annual maxima (red solid line), to the wet season maxima (blue dashed line)
and to the dry season maxima (cyan dash-dotted line) for the stations of
Prague (a) and Florence (b). For the station of Florence (b), the fitting of the
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GEV distribution to the transition season maxima (green dotted line) is also
SNOWTL. .o 85

Figure 4.5 Gumbel probability plot of the fitting of the GEV distribution to the

annual maxima by the maximum likelihood method (blue color), least-
squares method (magenta color) and method of moments (yellow color)
along with 95% Monte Carlo Prediction Limits (MCPL) for each method for
the station of Genoa (a). The crossing over distance observed in the area of
high return periods, where the wet-season probability line (blue solid line)
crosses the annual probability line (red solid line), is greatly eliminated when
a common shape parameter is employed via the least-squares method (b). ........ 86
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represent the 1st and 3rd quartiles, respectively, and the whiskers extend to
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The understanding and modelling of hydrological extremes is a classic endeavor in
hydrology and engineering, one which has received renewed interest during the past
decades under climate change theory. Long before concerns regarding intensification
of extremes became prominent, their inherent variability and uncertainty sufficed to
make their understanding and modelling challenging. Stochastics, integrating
probability, statistics, and the theory of stochastic processes, offer a uniquely
appropriate and consistent framework to deal with the uncertain nature of extremes.
While the marginal properties of extremes have been extensively studied in the
literature, the same does not hold for their temporal properties, since extremes are
traditionally treated as temporally independent. As a consequence, their temporal
behaviours have been either largely overlooked, or approached via deterministic
reasoning. Yet, there are both empirical and theoretical grounds that question the
independence assumption, namely the fact that hydrological extremes originate from
natural processes characterized by marked dependence at various scales.

This Thesis aims to stochastically investigate and model the temporal variability and
dependence of hydrological extremes from seasonal to climatic scales. The key
innovation of the analysis is the identification of the temporal behaviours of the
extremes and their stochastic linkage to the inherent properties of the parent
hydrological process. Such an approach creates new perspectives on understanding
the temporal dynamics of hydrological extremes that can significantly improve the
perception of related risk over time and inform advanced mitigation practices. Two
complementary objectives are pursued in this respect: (a) the characterization of their
temporal properties, including the multi-scale dependence dynamics, from long-term
hydrological records, and (b) the development of hydrologically relevant modelling
frameworks that reproduce the observed extremal patterns. These objectives unfold at
the following three scales: (i) the seasonal scale, pertaining to extreme rainfall
seasonality and dependence dynamics of seasonal streamflow extremes, (ii) the annual
scale, with respect to the propagation of long-term persistence, i.e. Hurst-Kolmogorov
(HK) dynamics, from the parent process to the extremes and properties thereof, and
last, (iii) the climatic-scale, regarding the theoretical and empirical basis of climatic
projections of future rainfall.
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O Opoc «axpoTaTo» VTIOONAWVEL OTIAVLA KXL OHAVTIKA Y EYOovOTa TIov eival O0OKOAO
1 axoun kot adbvato va mpofAepOovv pe Paon v wotopikn epmetpla. Kat’
avadoyla, ta akpale vOpoAoyikd @awvopeva oxetilovtal pe TNV EUPAVLON
BpoxomTwoewv KAt amoppowv acvvrOoTa ey &ANC évtaonc 1/kat cuXVOTNTAC OV
amoteAovv ev duvdpel kivdvvo yia v avOpwmivn kowwvic. TvyKekpLpueva, ot
akpaiec BPoXOMTWoelc kKol TANUUOpec pmopovv va PBAdpovv To dounpévo
TEPLPAAAOV, CVUTEPLAQUPAVOUEVWY CUAVTIKWY €PY @V DTLOSOUNC, va dtxtaepdEovy
TNV OLKOVOULKT] KQL 0y POKTIVOTPOPLKT dpaoTNPLOTNTA TPOKAAWVTAC OLKOVOLLKEC
QTMWAELEC, EVW ATOTEAOVY dpeon amelAn] yix tn onuoota vyela. 'Etot, 1 xatavonon
TOVC TIOV €XEL WG 6TOXO TO HETPLAGHO TOV OXETLKOV KIvdUVOoL amoteAovoe avékaOev
TIPOKANOT, YEVIKA Vi TNV Kowwvia, Kot l0tkd Yl v emotun. Tic teAdevtalec
dexaetiec Opwe, avt 1 TpokAnon éxer yiver axopa peyaAvtepn xkabac
applopnteitar mAéov ptlikd 1 da n emdpreta T cLUPaTIKNC avTIANYNC Y TN
draxwdvvevon (Hall et al., 2014).

AT ™ pla mMAgVpE, N Ty KOOUL KAAVPN TWV KATAOTPOPWY OO TA LECH
evnuépwone  avénoe T daBOeclpotTnTa  MAPAdEYUATWV  KATAOTPOPLKWOV
vdpoAoyikwv yeyovotwv (Barredo, 2007), mpoxaAwviac oAoéva avEavouevec
avnovxlec OXETIKE pe TNV evTaTikomoinon Twv akpotdtwv. Or avnovyxiec avtég
evtelvovtal mepaltépw ano Tic mpoPAePelc e Bewplac e avOpwToyevovg
KApaTikne aAdaync. Zoppawva pe v tedevtaia, ol avénpévec avOpwnoyeveic
exTOUTEC aeplwv Oepuoknmiov Tic TeAevtalec Oekaetiec €xovv TpokaAéoel
OLOTNHATIKES aAAay €C 6TN dvva LK) TOV KALPHATOC oL 001y oV 01T O€ppaven Tov
TLAQVITN Kal evtatikoToinon Tov kvukAov tov vepov (IPPC, 2014; ITéumtn éxOeon
afoAoynonc AR5). e avt 1 Paon, €xer vmootnpixOel amd pépoc Tng
EMUOTNHOVIKNG KOWOTNTAC OTL elvar avaykaia piax pLlikn] avadlaTvTwon Twv
vnoBécewv Kat Twv peOOdwV povTEAOTOINONC TPOKELUEVOL VA CVHTEPLANPOEL
QLTIOKPATIKA 1 eTOpaot Twv vEéwv avOpwnoyevay apayoviwv (Milly et al., 2008).
Av xatavtn)n 0éon éxet eTuxptOet oe peydAo paduo otny vdpoAoyia (Cohn and Lins,
2005; Montanari and Koutsoyiannis, 2014, Koutsoyiannis and Montanari, 2015;
Serinaldi et al, 2018; Koutsoyiannis, 2020a), oL avnovxiec oxetikd pe TNV
EVTATIKOTOINON TwV aKPOTATWY oTO HEAAOV elvar KvplapXec OTN OXETLKN
BLALoy papla.

ATo v aAAn mAevpd, elval evpéwc TapadekKTO OTL 1 OLVAULKI] TNG
dtakvdvvevone €xel aAAdEel KATA TOV TEPAOUEVO QLOVX WG QTOTEAECUA
CLOTNHATIKWY aAAaywv oy €kBeon Tov avOpwmov 6tov VOPoAoY Ko kivdvvo. T
Tapadetypa, 1 €kBeon tov avOpwmov cTov  vVOpoAoyKwV Kivduvo €xel avénbdel
daxpovikd we amotédespa tne avOpwmivne Taone yiax opydvwon e Cwrlc oTnv
eyyvtnta vdpoAoyikawv diktvwv (Ceola et al., 2014). Tavtoxpova, n evidOela Evavtt
akpalwv vOpoAoylkwv yeyovotwv éxel emionc avéndel Adyw 1Ttnc vnArc
TIKVOTNTAC TANOVGUOV 0Ta Ao TIKA KEVTPQ KAl TG dvapXNec aoTikomoinone. Movo
otnv EAAGOa, madvw amo 200 Odvator Adyw akpalwv mANppvpwy éxovv avapepOet
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antd 1o 1960, pe v mAewoPn@ia TOVC VA CLYKEVIPWVETAL OTNV EvIova
QOTIKOTIOMULEVT] TLEPLOXT] TNC ATTIKNC.

H vmextiunon t6co tov peyé0ovc 000 Kal TG GLXVOTNTAC EHPAVIONG TwWV
aKPOTATWV €lval, dLOTLXWC, GLXVOC TAPAYOVTAC O TMEPLMTWOELS VOPOAOY LKWV
KataoTpopwv dvev mponyovuévov (Mimikou and Koutsoyiannis, 1995; Coles et al.,
2003; Koutsoyiannis et al., 2012; Ntigkakis et al., 2018). Avnovxiec exppdCovtal
emlONC WS TPOC TO eVOEXOUEVO VTLEKTIUNONG TNC TLOavOTNTAC Ao TOX G VTIOdOHWV
KaL €pywv peydAnc kAlgakac amo akpalec Ppoxonmtwoelc Kot TANUUDpeS, kabwc
mANOoc oxeTikwV aotoxlwv £xel avapepOel ta tedevtala xpovia. TvykekpLlueva,
akpaia vVOpPoAOYIKA @aOpEVa €XOVV TPOKAAECEL KATAOTPOPEC @PayUATwY,
KaTappevoelc yepupwv kat ocofapéc Oopéc oTIC VTIOOOUEC UETAPOPWY,
ovpmeptAauBavopévay  OpOHwV  Kal oLdNPodpOHwY, TPOLEVWVTAC TEPAOTLEC
otkovoplkéc Cnutéc kat avOpwmivec anwAetec (Wardhana kot Hadipriono, 2003;
Serra-Llobet et al., 2013; Koskinas et al. , 2019; Kellermann et al., 2019; Pizarro et al.,
2020).

Etvat pavepo ot n avapadpion tov vdpoAoy kol o X edlao Lo evavTL akpalwy
yeyovotwv  amotelel  mAéov  emuTakTIK  avdykn  vPnAc  KOWwVLIKNC
TpoTePALOTNTAC. ATO avTnv TNV dmoym, vootnpileTatl OTL, TPOTOL EEETACOVE TNV
emidpaon mMayKOoHIwV TAcEwV 1N €EWTEPIKWY Tapayoviwv, elvar kplolgo va
peAtiwOel mMpwtioTwe TO VMAPXOV E€TUTESO KATAVONONG TwWV VOPOAOY LKWV
akpotatwv, ekvavtac ano  depyacia tnc fpoxomtwonc. I'ia to okomo avto,
elval ONHaVTIKO va eMAVEEETAOOVHE MPWTA Kol KVPLY, KAL VIO TO QWS VEWV
dedopévwv, TNV £YKVPOTNTA TWV KAXGIKWY VTIOOE0EWV IOV dLETIOVY T1) LEAETN TV
AKPOTATWV.

H xpovikn aveEaptnoia eivatr n xvplapxn vmobeon oe epapuoyéc Bewplac
aKpalwv TIHOV, OTIWS CLVAVTATAL 0T TLEPLOOOTEPQ ETUOTNHOVIKE £y Xelpidia. 'Etot,
eve 1 Tepllwplar KATavopn Twv akpoTdtwy éxetl peAetnOel exTeVWC 0T OXETIKN
BLpALoy papla, N xpovikn peTapANTOTNTA TOVC €lTe Tapayvwpiletal €& oAokApov
elte  peletdtar  péow  vreteppwiloTikwv  Oewproewv, epdoov T WO
avtipetoniCovtal ek Twv MPOTEPwV we aveldptntes tvxalec petapAntéc. H
VTO0Ee0N WO TOOO TNC XPOVIKNC aveEQPTNOLXG ETUDEX ETAL CUAVTIKIC QHPLOPTNONC
emi N PAoeL TO0O eUTELPLKWV 000 Kol OewpnTikwv A0y wv. O KUpLOTEPOC ATLO AVTOVG
elval Toyeyovog 0Tt T vOPOAOY LKA akpOTATA ElVAL TUPOLOV PUGLKWY OLEPY AOLWY TIOV
xapaxtnpilovtal ot dleg amo woxvpec douec e€aptnonc oe Oldpopec kAipakec. H
Oewplae twv oTtoxaoTiKOV HeEOOdwV 1 OTold EVOWHATWVEL TIC €VVOLEC TNG
TOaVOTNTAC, TNG OTATIOTIKNIC KoL TWV 0TOXAOTIKWY aveALEewy, amoTeAel TO TTAEOV
TpOo@opo OewpnTikd TAQOLO Yl TN KATAvonon kat OLepeLVNON TNG XPOVLIKING
HeTapANTOTNTAC AKPOTATWY TOL AamoKAlvovv amd tnv wWeat) ocvvOnkn Tnc
aveEaptnoiac (Koutsoyiannis, 2020b).

O kevTplkoOg 0TOXOC TNC Tapovoac OLXTPLPNG elvat 1 6TOXXOTLKY dLepedvnon
TV VOPOAOY LKWV AKPOTATWY WC TPOC TNV XPOVIKH TOVUC HeTaPAnTOT)TA Kal
eEAPTNOT, KAL T CUVETIAYOLLEVT] EMAVEEETAON TWV KAQGIKWV VTIOOEGEWV TG HLEAETNC
tovc. H Paocikn kawotopla eotidletal oTnv  avayvwplon Twv XPOVIKWV
OLUTLEPLPOPWY TWV AKPOTATWY KL OTN OTOXQAOTLKN 6VVOEOT TOVG UE TIC €yYevel
OLOTNTEC TNC UNTPLKNC vOPoAoYLkrc depyaciac. Mia Tétol tpoaéyyon dnuLovpyel
Evaveo TMPpLlopa KaTavonong e SLVapLKnG Twv VOPOAOY LKWV ’KPOTATWY TIOV UTtOpEL
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v BEATIOOEL ONHAVTIKA TNV avTIANPN TOV GXETIKOV KIVOLVOVL GTO XPOVO Kal va
OVVELOPEPEL  OTNV  avaPAOULon  TPAKTIKWY — UETPLACHOD  TNG  VOPOAOYLKIC
drakwwdvvevone.  Ta 1o okomo avto, kataptiCetar éva dvoevpeto cOVOAO
XpPOVooelpwV  peEYAAOL pnkovc kot TiOevtar 00O emipépovc otoxou: (a) o
QATOTEAECUATIKOG XAPAKTNPLOUOS TWV XPOVIKWV LOLOTNTwWV Kal TG eE&pTNong Twv
AKPOTATWY ATO ETOXIKEC €WC KALPATIKEC KALPLAKES, OMWC TPOKVTITOVY ATO TLC
lOTOPIKEG  xpovooelpéc, kat (B) n  Owxpopewon pebodoroyikwv mAalciwv
LOVTEAOTIONONC VI TNV QVATIAPAY WY TWV TAPATPNHEVOV X POVIKWV TPOTUTIWV.
H avaAvon agpopd vdpoAoyikd akpotata e TPELG XPOVIKEC KALHAKEC: TNV ETOXLKT,
Vv etnote, kat v kApatikn. To kVplo copa e avaAvonec apopd otn dtepevvnon
TWV aKpaiwv PPOXOTTWOEWY, Ol XPOVIKEG LOLOTNTEC TwV OTolwv €xovv peAetnOel
eAdxtota oe oxéon pe avtéc twv amoppowv. H xpovikn e€aptnon twv akpaiwv
amoppowv Otepevvdtal emione e dVO 0KOTOVC: (@) TOV EVTOTUOUO ETIOX KWV OOUWV
eEAPTNONC TOL PEATLOVOLY TNV TPOPAEPLUOTNTA TWV aKpalwV amop powv, kat (f) Tnv
oLYKpLoN TV OOTNTWY TOVC WHE aLTEC TNC BPoXOmMtwone wote va eEaxOovv
evpvtepa vOpoAoyka ocvumepaopata. IMapaxdtw yivetar cvvomTiky avagopd
0TOVC GTOXOVC KL OTQ EVPHHATA TWV ETUHEPOVC KeEPaAalwy.

XPONIKH EEAPTHXH AITO TH MHTPIKH XTOXAXTIKH ANEAIZH XTA
AKPOTATA THX: ETIIXKOITHXH THX BIBAIOTPA®PIAY

Yto kepdAalo 2 avantvooetal To Oewpntikd TAaloto e dratpipric. Apxika,
miapovotalovtat ot Oeple ALWOELC EVVOLEC TWV OTOXAOTIKWV aveEALEEWY KAl

TLEPLY paQovTaL Ta Pactkd epyadeia avdAvong e X poviknic eEAPTNONG IOV
xpnotpomotovvtat. [Tpaypatomnoteital ektevic emiokomnon e PIPALoy pagiag
OXETIKA pe 1 Oewpla akpalwy TV kKot avadelkvvovtal LePLKd amod Ta AlyoTepo
Yvwotd Oewpntikd anoteAéopata mov oxeTtilovtal pe v eEdpTnon Twv
aKPOTATWV. TN 0VVEX e, TapovotldlovTal kpLtikd oL kvplapxec pebodoAoytkég
mpooeyyloelc otn povteAomoinon twv akpotdtwv. TéAoc, tpocodiopilovTat
avoLXTEC DewpnTLKéC EpWTIOELC OXETIKA [ TIC LOLOTNTEC AKPOTATWY ATtO
0TOXXOTIKEC aveALEELC e VPN AT XpOVIKT GLOXETLON KAl «BapLéc» Ovpég
KaTavounc.

EITANEEETAXH THX YITAPEHYX. EMMONHZX TH AIEPTAZIA THX
ETHZXIAY. BPOXOIITQXHX

1o xepddaro 3 Otepevvdtar n Omap&n eppovrc, aAAwwc Ovvautkrc Hurst-
Kolmogorov, otn diepyacia tnc etnolac PpoxOmTwonc amo pia maykoopule pdon
dedopévwv. H avayvwplon e dTapéne eppovic oe i uotkr] dtepyaocio amoteAet
loxvpo kivTpo Yo TN dLlepebVNon TWV HaKPOTPODEGHWY X POVIKWV LOLOTHTWY TWV
akpotatwv tc. Eva n eppovr) éxet avayvwplotel wg duvaptkr oe TAR00c Quotkwy
dtepyactwv, 1n vmapén tnc ot depyacia NG PPOXOTTWONC TAPAUEVEL
adtevkpiviotn. Etol, emavefetaletal 0w X PNoLHOTIOLOVTAC £V LAY KOG IO 6VVOAO
Bpoxopetpkwy oTaOpwv.

ATo v avdAvon TOv TAYKOGULOV GLVOAOL 0edOUEVWY  TIPOKVTITOLY
aloonueiwtec evdel&elc vmap&ne eppovic oty etiole fpoxomtwon. H Oewpntikn
Tpn e mapapétpov Hurst H = 0.58 mov extiunOnke péow avaAvonc Monte Carlo
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uropel va OewpnOel avtimpoowmevTikt] Yl v mAetovotnta (97.5%) twv 1265
otaOpwv (Ercova 1). H dour) tnc avtocvox étione PpéOnke emione yevikd loxvpotepn
atd 1 doun evoc povtéAov Markov kat cvvemnc e TV auTiV €vog HOVTEAOL e
eppovt). Oplopévec HeAETEC IOV ElxaV XPNOLUOTIOMOEL HIKPOTEPQ Tk dedopevwv
(Potter, 1979; Fraedrich and Blender, 2003; Kantelhardt et al., 2006) vrtootriptEav tnv
kataAANAOTTA TN dour)c Markov, xwpic opwc va dtepevvovv Tic dtapopéc petald
TPy HOTIKNG Kol OewpnTIKIC AUTOCVOXETLONG YLl OLAPOPEC X POVIKEC VOTEPTTELC.
Avtéc ot drapopéc pmopel va efvat pikpéc, woTtooo, éxel amodetxOel OtL evdéxeTal
va  €xovv o0oPapéc ETUTTWOELG OGOV  QaPOp TNV  afepfalotnTa  eKTiUnong
(Koutsoyiannis and Montanari, 2007). I'ia mapaderypa, 6cov agopd TN oTATLOTIK
ONUAVTIKOTNTA TWV TACEWV, Ol MAPATNPOVHEVEC XAAaYEC OTIC BPOXOTTWOELG
umopel va OewpnOovv MoAD Tio oTavieg amo O, Tt elvat otnv mpay patikotnta (Cohn
and Lins, 2005). TéAoc, katadeixOnke OTL 11 dOUT TNC AVTOCOVOXETIONG QATOKALVEL
ONUAVTIKE aTtO TNV Ttepimtwon e aveEaptnolac.

empirical time series = synthetic time series
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Ewova 1 Katavoun tne mapapétpovc Hurst amd mapatnpnuévec xpovooelpéc (uUtAe
xpopa) kot and cvvOetikéc xpovooelpéc (HwP XPOUR) ATO OTOXQAOTIKY avEALEN pe
napapetpo H = 0.58.

Av kol ta Tapamdve evpripata Tdooovial VTEP TNG VTapPENC  HLOG
loxvpotepnc Oounc e&aptnone amo avtv mov ovvnbwc vrmotibetal o
BpAoypapia (Potter, 1979; Fraedrich and Blender, 2003; Kantelhardt et al., 2006),
Qatvetal OTL VIIAPXEL Pl aovupvia LeTall TV HIKPOTEPWY KAl LEYAADTEPES
xpovikéc kAipakec (Fraedrich and Larnder, 1993; Pelletier and Turcotte, 1997; Poveda,
2011; Ault et al., 2013). I'ia T0 oKOTO QVTO, dev TPEMEL Vo MAPAPAETETAL 1] TUO
onpavTikny Ty afePALOTNTAC GTOV TPOGOLOPLOUO TNG EUUOVIIC, TIOV Elval TO P1KOG
e xpovooetpac (Koutsoyiannis, 2002; Koutsoyiannis and Montanari, 2007). Eva
ONUAVTIKO CUUTIEPAG A TIOV TIPOKVTITEL ATO TNV AVAAVOT €lval OTL OL TIPAY LATLKES
XpovooeLpéc pmopel va amokAvouy onuavTikd amo amAoOTomTikéC VTIOOETELC TIOV
xpnotgomotlovvtat oty TPasdn, OMwe 1N XPOVIKN aveEaptnola, Kol wg €K TOVTOV, 1
EUTLEPLOTATWHEVT HEAETN TV OLOTNTwY eEAPTNONG Elval amapaltnTn, dkd OTav
evdlapépovy pakpompobespol xpovikot optCovtec.

21



XAPAKTHPIXMOZXZ KAI MONTEAOITOIHXH THX AKPAIAY. ETTOXIKHX
BPOXOITTQYXHX

To kepaAaro 4 peAetd Tn Xpoviky LETABANTOTNTA TWV aKpalwV PPOXOTTWOEWY TIOV
mpokaAeltal ano v enoxtkotnta. e to okomo avtd avalvetat éva cbhvolo 27
oTaOuawv fpoxrc pe dedopéva nuepiolwy Katay papwv mov vrepPaivovy ta 150 £1n.
[Tpotelvetar pla katvotoplkr] peOodoAoyla TOV ETUTPETEL TOV QVTIKELREVIKO
TIPOGOLOPIOUO TNG ETOXLKOTNTAC OTIC AKPRIEC NUEPNOLEC BPOXOTITWOELG KAl T1)
povteAomoinon TnNc mePLOWPLAC KATAVOHNG Twv akpotatwyv  k&Oe emoxrc.
H peBodoroyia avayvwplone emoxnc elvat oe 0éon va mpoodlopioet Tn PEATIO
eTLAOYT] HOVTEAOTIOMONC Vi TNV ETOXIKN akpala ppoxomtwor, mpoodiopllovtac
TO0O TO PEATIOTO aplOUO emOoXWV OO0 K&l T1 XPOviKy ddpkelx Tovg, PAOEL TOV
kpLinplov mAnpogpopiac Akaike (AIC). Avtiyia tnv avBaipetn kat palikn epappoyn
Twv 4 emoxwv Tov £€Tovg, 1 péDodoc mpokpivel PEWdWAN kAl KATd TEPITMTWON
povteAomoinon e emoxtkOTNTac K&Oe 0TaOUOoL IOV ATOOEIKVDETAL GUVETIEOTEPT
KOl ATIOTEAETPATIKOTEPT YL TN HEAETN TwV akpoTaATwv oty Tpd&n (Etkdva 2).
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Ewova 2 TTiOavotikd dary pappata Gumbel tne mpooappoync e Fevikevpévng
Katavourc Axpotdtwv (GEV distribution) ota etrjola xat emoxikd péytota pdoet (a) tne
mpotewvopevne pebodoAoyiac kat (b) Tov cvpupatikod emiuePLOUOL o€ 4 ETOXEC YL T
Xpovooelpa ppoxontwoewy tne Adnvac.

Katadekvvetat emione otL n vmap&n oxvpnc emoxtkotntac ennpedlel tnv
TepLOWPLA KATAVOUT TWV AKPOTATWY WC TPOC TLC TP PETPOVS O€onc kat KALpakag
e Tevikevpevne Katavoune Akpotatwv (GEV) ot omolec eivatr vipnAotepec v
vypn meplodo. AvtiOeta, 1 MAPAUETPOC OXNUATOC TAPOVLOLALEL TEPLOPLOHEVT
EMOXIKN HETAPANTOTNTR, KAl dpa 1 eMOXLKOTNTA dev emnpedlel ovOLAOTIKA TO
oxfua e ovpac tnc katavournc. Ilpokvmter emionc OtL N avaAvon twv eToLwWV
peylotwv, xwplc emapkn TPOcsdLOPLo O TNG ETOXLKOTNTAG, Elval VTLEP GLVTNPNTLKOD
oXedlao oy, 0eOOUEVOV OTL GUUTEPLAQUPAVEL TIC OTIAVIEC TEPLMTWOELS AKPalwY
yeyovotwv onuavtikov peyébovg ov cvppaivovy otnv Enpt meplodo. Qotdo0, Yo
TOV €VOOETNOLO VOPOAOYLKO O X edLTUO, Elval oNpavTIKO v AN Oel vToYn 1 ETOX KT
peTapAnToTnTa Twv akpotdtwv. H celpd péytotwv tne vypric emoxnc mepLEXEL
TOADTIHEG TIANPOPOPLEC OXETIKA HE TO XPOVO EHPAVIONG TWV TUO aKpaiwv
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YeyovoTwv, TapOTL TO EY e00C TOVC AVALEVETAL KOVTA 0TO EKTLUWHIEVO &TO TN 0ELP&
eTNOlWV peylotwy. Q0TO00, 1 EKTIUNON TNC EMOXIKOTNTAC OTA WUEYLOTA Elval
onuavtiky yie Enpéc vdpoAoytkéc meplodove wote va amopevxOel  damavnpn
vTiEpekTiuNon Twv peyeOwv oxXedaopol eMOXIKWY €pywv KabBwe kol &oKOT
dLOX €TEVON TTANUUVPIKWY POWV O& TLEPIMTWOT TAHILEVTIPwWY VOPOOOTNOTNG.

Ta evpripata avtd éxovv duecec epappoyéc tooo ot Oewpntikny cOAANYN
NG ETMOXIKOTNTAC O€ aKpalec PPOXOTMTWOELC OCO Kol 0TN pHOvTeAoToinon otnv
Tpd&n. Le peBodoAoy ko emimedo, cvpPaAAovy otV evpLTEPN KOLEpwon KpLTnplwv
eTLAOYNC LOVTEAWV 0TV vOpoAoYia, OTwe to AIC, evw amote AoV onuavTiko fripa
TUPOC TOV «QVTIKELUEVIKO» TLPOODLOPLOUO TNG ETOX LKOTNTAC TOCO 0& TOTUKY 00O Kol
o€ Ty KOopla KA Lpaka.

AYNAMIKEXZ EEAPTHXHY TON EITOXIKQON AKPAION ATIOPPOQON

To Kepalato 5 peletd tnv vmapén e€dptnonc otic vPnAéc kat xapunAéc amoppoic
0NV EMOX KT KALpaka, TOVC TOAVOLC Y EWPVOLKOVC Kl VOPOAOY LKOVC Ttaepdy ovTeg
TLOV €VVOOLV TNV ekdNAwo1] g o€ pLa vOpoAoytkr| Aekdvn kabwe Kal T dvvatoTnTa
alomoinone 1Tnc oxeTiknc mAnpogopiac yix T PeAtiwon e TOAVOTIKNC
MpoPAePnc MANUULPIKOV alxpwv kot xapnAwv powv. I to okomo avto,
avaAvovtal dOedouEva NUEPNOLLY TAPOX WV Avw Twv 50 eTwv and 224 ToTapOVS 0TV
Evpwmn.

Ta amoteAéopata delxyvovv OTL 1 MAeOVOTNTA TV TOTAHWV eu@aviCel
XQPAKTNPLOTIKA EEAPTNONG OTNV ETOX KN KALLAKA, TTOV EKONADVOVTAL WC Y PAUILKN
OVOXETLON UETAED TWV TPOYEVEOTEPWV HECWV UNVIAIWY QTOPPOWV KAL TWV
petayevéotepwy () MANppvptkwy atxpwov oty vypn enoxn (High Flow Season;
HES) xat (B) péowv anoppowv otn Enpn emox1] (Low Flow Season; LFS), avtiotoixa.
H ovoxétion yx Tic amoppoéc e ENpne emoxne etvat vpnAotepn an’ OTL yLa g
vyprc emoxnc, evw Kal oTic OO TEPIMTWOELS ep@aviCeTal avénuévn xwpikn
petapAntotnta kabwc kot opadomoinon e ovoxétione (Ewkova 4).
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Ewcova 3 Xwpikn katavour] e Y pappiikic cvoxETong (o) Twv TMANUUVPIKOV ALY oV TV
vyp1n mepiodo (HES) pe tic péoec amoppoéc tov mponyovuevov unva (aptotepd) kat (B) twv
péowv amoppowv tnv Enpr meptodo (LES) pe tic péoec amoppoéc Tov mporyovpevov piva
(0e&1d). O mivakag delxvel Ta X pWHXTA TLOL AVTLOTOLXOVY 0TIC KAKGELS TWV CLOXETIOEWY.

ATO Tt peAétn MAROOVC Yew@LOoKkWY KAl VOPOAOYIKWY XAPAKTNPLOTIKWY TWV
AeKavawy amopporjc TPoKLTTEL OTL PPadVTEPOL XPOVOL VOPOAOYLKIC ATIOKPLONG TNG
Aexavne, kabwc xat 1 kvplapxn LMap&n Paclknc PonNc €vVOOVV TNV EMOXLKN
ovoXETLoN. AvTLOETwWC, 11 GVOXETION Elval XaUNAOTEPT OTIC KAPOTIKEG AeKAveC TOv
avtanokpivovtat ypriyopa kabwc ce Aekdvec pe vpnArn edkr] amoppor] kat
vPNAOTEPN péan PpoxOTTWOT, TLOXVWC AOY W TNC TIapovGiag KOPESLEVWY GLVONKWY
o0& VY pOTEP KALpaTA KAt TG avENUEVNC Ppaxvmpobeopnc petafAnToTnTde TOvC.

Q¢ mpoc TV MpakTiky aglx, TapovotdleTal Lix epappoyt agloToinong g
ETOXLKNC GLVOXETLONG Yl TN Pelwon NS afefaldTnTAC TWV EMOXIKWY TPOPAEPEWV
VPNA@V KL XXUNADV pOWV, LECW CTOXAOTIKWY HOVTEAWY TIOV EVOWUATWVOLY VEEG
TPATNPNOELC O€ pnviaia KApaKka ylo Ty avavéwon Twv TlavoTikwy eKTIHNOEDV
ToUC.

Ta amoteAéopata cvvnyopovv oto OTL 1] DTAPEN EMOXLKNG «UVIHNC» TOV
TIOTAHOV Tap€XEL ONUAVTIKES TIANPOPOPLEC Vi TNV KaTavonon kat TpopAen twv
aKpalwv aATopPowV, eV eEX0PaALCEL oTUAVTIKO X pOVO opilovTa og KAlpaka unvay,
Y ) AMPn anopdoewv oxeTikKd pe TNV MPOANYn vdpoloylkwv kwoObvwy 61N
Aexdvn.
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To kepdAato 6 mpaypatevetal ) dvvautkn 6tddoone e eppoviic anod T UNTPLK
OTOXQOTIKY] aVvEALEN oTa akpoTatd 1Tne, €0TLAlovIiac oOTO QOLVOUEVO 1TNC
opadomoinoric tovc. H vmap&n dopr|c opadomoinone twv akpotdtwy ap@lopntel tTnv
VTIO0ESN NG XPOVIKNC aveEaptnolac Tove Kal €T0L, 1 kKaTavonon e elvat kplotun
ylx Tov LOPOAOYIKO oxedoUO Kl TNV avTiAnyn tnc xpoviknc eEEALENC TOV
kwovvov. Edw, emidtwoketar (o) 1 Oewpntikn] Kol eumelptkn] ovvdeon petacd e
duvapLkng opadomoinone Twv aKPOTATWY KAl TNG pakpompobeounc eupovic, onA.
e dvvapkne HK, xat (B) n pebodoroyia avaktnone tne devtepne, dnAadn tnc
EHULUOVIC TNG OTOXAOTIKNG aVEALENC, Ao TNV TpwT, dNAadn xpovikn cvuTEpLpOopa
Twv akpotdtwv Tnc. e to okomo avtd ocvAAéyetal pix dvoevpetn Paon
vdpoAoykic mAnpopopiac amd 60 NuepoLOVC PPOXOUETPLKOVS oTabuove ava Tov
KOOUO pe Tidvw amo 150 £t npepnolwv katay papay.

Eva yeviko cvumépacpa mov TpokOTTEL €lvat OTL 1 duvaToTNTa AVayvVawpLoT|C
NG EQHOVIC ATIO X POVOOELPEC LEYIOTWY Elval Tieploplopévn Kat eExcOevel otadlakd
kaBwe avéavetal To KATOPAL TAVW aTd TO OTOl0 CVAAEYOVTAL T AKPOTATA. L1T1|
XPOVLIKN CUUTEPLPOPR TWV QAKPOTATWY VTIAPXEL ONUAVTLKI] ETULPPOT] TOCO ATO TIC
orotnTec e€aptnone devtepne tdéne (dvvapkny HK) 6oo kat and tic poméc vipnArc
TAENG NG UNTPLKNG AVEALENC, KAL EMOPEVWS elval amapaltnTn 1 eMlyvwon Kol Twv
dvo yia TV kKatavonot] tovc. 'Etot, exTipfioelc g oVoXETIONG TWV AKPOTATWY LOVO
pe pebodovg devtépac TALNC OMWE TO KALPAKOY pappa Kol delkTec opadoToinong
BacLoLévoL 0T OLXGTIOPEd, DTIOEKTLHOVY T VO X €TLOT AKPOTATWY a0 aveALEELC pe
un-Fkaovotavy ocvpmepipopd, ol omolec emnpedloviar and poméc vymAoTepnc
taénc. I 1o Adyo avtd mpoteivetar évac véoc Tubavotikdc OelkTtne TOL
xapaxtnpilet tnv opadomoinon Pacel Tnc mOavOTNTAC HN VTMEPPAONG EVOC
dedopévov katw@Aiov oe kA lpaka kat ovoudletat deiktne NEPVS (Non-Exceedance
Probability vs Scale). O oeixtne umopel va xapaxtnpioer v opadomoinon twv
akpotatwv and mAROoc avelifewv, ocvumeptAapfavopévay autwv pe LOXVPN
eppovr), tonov HK, xat Papiéc ovpéc katavounc. Ilpoteivetar paAota Kot
TPOOQPHOYT] €VOC UOVTEAOVL TOv elxe apxikd mpotabel Yl TV mepLypapn e
TuBavotntac un ppoxnc (probability dry) amo Koutsoyiannis (2006), To omoio pmopet
Vo xapakTnploeL Tov TpoTelvouevo TlavoTiko delktn we e&nc:

-1
p® = p(1+(5 /n_l)(k_l))n, p=1-F(u) (1)
OTOVL U elval TO KATWP ALyl Ta akpotata, F 1 meplOwpla 6uvapTnon KaTavourc, kat
n, & mapapetpotl oto (0, 1). I Tipéc twv mapapétpwv n=1xat & = 0.5, mpoxvmTEL N
ovumepLpopd aveéALEnc Aevkod Gopvpov, dnAadn xpovikne avelaptnoiac. Kabwg
QUEAVETAL 1] EQHOVT] TNG UNTPLKNG aVEALENC, avEaveTal 1] TOVOTNTA Un EUPAVIONG
aKpotaTtwv ot pla kAlpaka (avtiotolxa, o petov AoydptOpoc tne mubavotntac
HeloveTal omwe @atvetal otnv Etkova 4) kat oL mapdpetpol tov povtéAov yivovtal
n<1xat &>05. Avty n ovumeppopd vrtodnAwvel OTL 11 &AAN OYn e VTap&ne
OpHadOTIOINONC TWV AKPOTATWY elval 1 VTIAPEN TIRPATETAUEVWY X POVIKDOV TIEPLOdWV
Xwplc axpatec TapatnpnoeLc.
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Extetapévec mpooopowwoelc cvvOetikwv xpovooelpwv Monte Carlo yix
BpoxOopeTPLKOVC 0TaOUOVC €deLEav aTOKAIGELS ATIO TN CLUTEPLPOPR avelapTnolag
Kol OVHQVia TNG OUadOTOMNoNC TWV AKPOTATWY [e TIC dLoTNTEC eEdpTnone (doun
HK) kat kxatavounc (axptprc dtatnpnon 4 mpwtwv ponwv) e UNTpeLKc aveALlEng,
onwc patvetat otnv Ewkova 4.
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Ewova 4 Meiov puotkoc AoydptOpoc e Tubavotntac pn vriéppacnc Tov katw@Alov Tpog
v KAlpaka ye 28 xpovooelpéc Bpoxnc otnv OAAavdia pe agpatpeon emoxikotTnTac 2
mpwTwV portawv, Kabwg kat 95% opta Monte Carlo yia Oewpntikd povtédo pe ovoxétion HK
ue H=0.7 xat datr)pnon 4 mpwtwv pomav, yia 4 SlapopeTikd katw@Ala akpotdtwv: (a) 10%,
(b) 5%, (c) 1% xat (d) 0.5%.

KataAyovpe 010 cLpTEPAGHA OTL T AKPOTATA TEVOLY VAL «KPVPOLY» TNV
EUPOVN] TNG  UNTPIKNG OTOXKOTIKNG avEALENG, oOONywvTag Ovxva onuaivet
AovBaopéva 0To CVPTEPAC A TNG XPOVIKNC aveEaptnoiac. Ol emMTWoELS OUWE TG
EUUOVIC OTNV EKTIUNON TWV AKPOTATWY Elval LTIAPKTEC, TTAPOAO TOV 1] LOXVS TwWV
evdel&ewv amod ovvn0elg xpovooeLpég eivat ovXVE advvaun.

ETTIAPAYH EMMONHY XTHN ITEPI®OQPIA KATANOMH TON AKPOTATON
KAITAIOTHTON TOYX

To KepaAato 6 eEetalet tnv emidpaon e e€dptnonc oty meplbwpla KATAVOU! Twv
aKPOTATWV kKAOWC kAL TWV XAPAKTNPLOTIKWY LOLOTHTWY TOVC.

Lo mAalolo avtd afloAoyeltal apxXIkd HEow EKTETAUEVWY TTPOGOUOLDCEWV
Monte Carlo n epappootipotta twv Oewpnuatwv e Oewplac akpalwv Tipwy KAt
edikd 1 woxve e Fevikevpévne Katavopnc Axpotdtwy yia €UUOVEC GTOXROTIKEC
aveAi€elc pe eEdptnon tomov HK. @atvetat 0TL N mpooap oy TNc KATAVOUTNC [E TN
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1ébodo otabuopuévav eAaxiotTwy TeTpaywvwy elvat TOAD LKAVOTIOMTIKT] ®KOUT Kol
Yl Un AOUUTTOTIKES oVVONKeES aveAlEewv pe €vtovn eE&pTnon. AToO v AAAn
TAEVPQ, elval apglofnTiotpo edv n Oewpla Tov delktn axpalac cvoxétiong (extremal
index) yia aveAlEelc mov TMapdyovy Hovo Ppaxvmpobecun opadoToinon akpoTA TV
emapkel Yo va meprypapel akpotata and éupoves avelifelc. Ouv tedevtaleg
epupaviCovv Tic €&NC OLOTNTEC KATAVOUNG O& OXE0N HE TANPWSC aveEEAPTNTEC
aveAl&elc: (a) N mapapetpoc KAlpaxkag, mov oxetiCetal e TN HeTafANTOTNTA TWV
AKPOTATWY, QUEAVETAL WG QMOTEAECUX TNC QUENUEVNC peTAPANTOTNTAC TNG
upovne avéAlEng oty O kAipaxae, (f) N mapdpetpoc Oéonc e katavourc
HELWVETAL WG QMOTEAECHQ TNC OPAdOTOMNONC TWV AKPOTATWY O& AlyOTepeC
kAlpakeg, aAAd (y) N mapdpetpoc oxnuatog dev emnpealetal, xabws Oewpnrikd
TaVTICETAL PLE TNV TRPARETPO OXNHATOC TNG OVPAC TS TepLBwPLAS KATAVOUNC TNG
HNTPLKNC avEALENC.

Avadekvoetal emtione N emppor] e eEAPTNONC OTLC OLOTNTEC TWV aKpalwY
napatnprocwy dvew katw@Aiov (Peaks Over Threshold; POT) oe etrjoia kA ipaka. H
anovoila yeyovotwv POT oe éva étoc elval muo mibavny amod tnv MEPIMTWON TNC
AN povc aveEaptnolac, aAA& 6TV TEPIMTWON TIOL AVTA EUPAVIGTOVY, AVAHLEVETAL
vPNAOTEPN OLAPKELX TNC «OVOTAONC» QKPOTATWV KAl WHEYAADTEPN €VTao.
Ot erumtwoelg agpopody TOCO TNV EXTIUNON TV KIvOVVWY TIANPUDPAC, WS TIPOS TV
exTiunon e xpoviknc mepLtodov mov pta eptoxn elvat vmo katakAton (Dimitriadis
and Koutsoyiannis, 2020), 650 kot tnv extipnon e cvAAOYIKNC dtakivdvvevonc amo
aBpototikt] éx0eon 6ToV KiVOULVO TIOV APOoPa& LOLAUTEPR TIC AOPAALCTIKEC TIPAKTIKEC
vavtl puolkwv kataotpopwy (Serinaldi and Kilsby, 2016b; Goulianou et al., 2019;
Manolis et al., 2020; Papoulakos et al., 2020).

ATO T peAétn XpOVOOELPWV PPOXOTMTWOEWY Kal amoppowv otnv (O
vdpoloykn meptoxt], MpoekLPAV ATOKAIGELS TNG XPOVIKNG CLUTEPLPOPAC TWV
QKPOTATWV TOVC ATO TNV TUTUKI CUUTIEPLPOPE avelapTnolac, oL OToleC Tav TLo
EVTOVEC 0TNY ETNOLX KALPAKQ YL TIC ATOPPOES, OTWES palvetal otnv Etkova 5.

(a) Bologna rainfall station (b) Po River
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Ewdva 5 ITiBavotntec vmépfacnc twv eTiolwv UEYIOTWV Yyl TIC TAPATNPNHEVES
XpOovooeLpéc kaL Xpovooelpéc (ot TeplBwplac Katavopn)c aAAd amovoiag 6VoXETIONG HEow
txatac avadidtalne (shuffled data) yiax to otabuo ppoxnc otn Bologna xat nuepnoiwv
aTmoppowv Tov Totapov Po.
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MovtéAa tomov HK mpooappoospéva ota dedopéva avamapniyayav e
eTUTVX O T MAPATNPNHEVA X POVIKA TTPOTUTIA TWV AKPOTATWV, OTWE PAIVETAL OTNV
Ewcova 6 yia tov motapo Po, delxvovtac Tic duvatotnTec TOV 0TOXXOTIKOV TTANLG oV
HK wc mpoc tnv e&Nynon kot avamapaywyn e Xpovikne pHeTapAntotntac twv
QKPOTATWY.
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Ewkova 6 I010tnTec Twv peyiotwv dvw katwpAiov (POT) yia tv xpovooelpd amoppowv Tov
motapov Po (90 étn) kat 1000 cvvOeTikéc xpovooelpéc amo oToxaoTiko povtéAo dourc HK:
(@) xaTavoun ocvXVOTNTAC ERPAVIONC TwV peyloTwy ava xpovo, (b) Tbavotnta véppaocnc
TC aOpoloTIKNC évTaonc peyloTwv 610 €10c, (¢) oxéon Tov apltOpov peylotwv avd €toc pe
T péon évtaon Tovg, kat (d) katavour] e xpovikne didpkelac opadac peyloTwy.

KAIMATIKEX ITPOBAEWEIX TAXEQON MEAAONTIKON BPOXOITTOYXEQN

To xepalato 8 efetdlel ) Oewpnruikny kot eumelpikny paon te pedodoAoyiong
povteAomoinone kat mpoPAePnc kAlpaTikwy Tdoewv o1 fpoxomtwon. Kabwc n
Oewpla e avOpwToy evode KAPHATIKNC dAAQYTC TTPOPAETIEL TNV EVTATIKOTOINOT
TOV KUKAOVL TOV vepolh Kal Twv akpotdTtwv 6to péAAov, éva peydAo pépoc e
oLy Xpovne €pevvac ylx Ta akpotata oty vdpoAoyia meploTpépetal yopw amod T
VTETEPUWIOTIKY UEAETN TWV XPOVIKWY aAAaywVv Twv akpoTdTwv o€ KALLATIKN
KAlpoka, Omwe eatvetatl kat oty Ewcova 7.
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precipitation + hydrology + extremes + trends
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Word ratio =

0.8 ®— <100 results peryear —»

0.6

Ratio

0.4

02 —3-year moving average

0
1900 1920 1940 1960 1980 2000 2020

Year of publication from Google Scholar

Ewcova 7 Xpovikn petafoAn] kat KIVOUHEVOC LEGOSC OPOC TOV AOYOV EUPAVIONG TNG AEENC
‘trends’ oe dnpootevoelc Tov Google Scholar mov mepLéxovy 0N To svvdLACcUO AéEewy
‘precipitation’, ‘hydrology” kat ‘extremes’.

Evo 1 avdAvon otopikov tdcewy wg mpog TNV ‘6TATIOTIKN oNpavTikoTnta’
TOUG €XeL Kuplapxnoel otn PpAoypagie, 1 a&loAdynon TN TMPOYVWOTIKNC
LKaVOTNTAC TOVC WC UOVTEAwWY dev €xel a&loAoynOel, mapd tnv mpopavny onuacic
TIOV evEXeL Yl TOV HEAAOVTIKO oxedlaopo evavtt kwdbvwv. Avtn 1 épevva
enavatonoOetel To MPOPANUa e a&loAoynonc tdoewv, wc TPOPANUa eTLAOYNC
HOVTEAOL TOL TTPOSAVATOALCETAL GTNV AVAYVWPLOT TOV HOVTEAOV e TIC KAADTEPECS
TPOYVWOTIKEC LOLOTNTEC, TO OTOLO OEV elval OVTE LOODVVALO UE TO «TIPAY HATIKO»
HovTéAo oUTe pe To HovTEAO ToL e&nyel kaAvTepa TNV Ttepiodo Ppabpovounonc.

o o okOTO QVTO, elodyeTal éva CLGTNUATIKO TARIGLO ETUKVPWONG TWV
TIPOYVWOEWV TWV TACEWV LEOW TNG OLYKPLONG TOL opaApatoc poPfAeync (RMSE)
He avto TMOoLv Aappavetar and anAovotepa povtéAa péoov opov. To prkoc Tnc
Xxpovooelpac emipepiletal oelplakd oe mepLodove Pabpovounonc kot 30etiec
ETUKVPWONG Kal aEloAoyoLvTaL Ol TPOYVwoele pe Pdon Tic Tomikéc Tdoelc (local
trends), tic tdoelc amo 0Ao to pnkoc e xpovooelpac (global trends), Tov Tomiko
néoo O0po (local mean) xat tov oAkd péco Opo (global mean). Ta povtéAa
a&LoAOYODVTAL WG TIPOC TA CPAAUATA TOVG OTIC TPOPAEPELC TNG €TN0LAG HEYLOTNC,
OVVOALKTC kat péonc fpoxOmTwonc kabwe kat tne etnotac mhavotnTac un Poxmnc
yie 30 €t petayevéotepa e meplodov Pabpovounonc twv povtédwv. Ta
amoteAéopata OTwWe TPOKVTITOVY aTd TO 6VVOAO Twv 60 stabpwy dvew twv 150 etawv
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delxvouv OTL T HOVTEAQ KATATAGOOVTAL ATIO TO KXADTEPO 0TO XELPOTEPO WG EENG:
TOTUKOC LECOC OPOC, OALKOC HEGOC Opoc, OALkT] Tdon Kot Tomikt] Tdon (Etcova 8).
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Ewova 8 Katavopr] tov péoov opdApatoc mpopAepnc (RMSE) kat tne TuTtikec Tov

QTOKALONC OTIWC EXTIUNONKE ATO TV ETUKVPWOT TWV 4 TIPOYVWOTIKWY HOVTEAWY G €
dLadox 1kovC eTLUEPLIOUOVS TOV GLVOALKOV PUNKOVS TWV XPOVOO ELPWV KaL YL Tovg 60
otaBuove fpoxomTwonc.
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H Eexwplotn e&étaon e mA€ov mpoopatne meptodov 30 etawv yia k&Oe oTabpod
emufefalwoe eMioNe TNV MAPATAV® KATATAEN TWV HOVTEAWY, EVO Kapla OVYKPLTIKY
avENON NS TPOPAEPLUOTNTAC OEV EVTOTUGTNKE YLt TO LOVTEAO TOTUKNGC TAONC KATX
v Kowr Televtala mepiodo (1980-2009). Ta amoteAéopata Oeixvovv OTL 1
pHeAAovTikny petafANToTnTA TNC PPOXOTMTWONG TPOPAETETAL KAT& WEGO OpPO
KaAvTepa amd Ta MO @edwA& poviéAa pécov Opov, Yyeyovoc TO OTolo
VTIO0TNPLCETAL KAL TELPAUXTIKA LECW TIPOOOHOLWOEWV Eupovwy aveAiEewy. T (Lo
H1KOC XPOVOOELPAC OTNV TMEPIMTWON LOXVPNG EMUHOVIG, O TOTUKOG HEOOG €xel
KaAUTEPEC LOLOTNTEC TPOPAEYNC ATIO TOV OALKO. Le 0X €01 e XPOVIKA aveEAPTNTEC
aveAi€elc, oL éppovec aveAielc xapaxtnpilovtal ano avénuévn petapAntotnta oe
peydAec kAlpakec. Xwplc emlyvwon avtnc tne dOTNTAC TovS, 1 HeTafAntotta
QUT!] UTopEl EVKOAX VA TMAPEPUNVEVTEL WG «OVLOTNUATIKY TAOT» €L0IKA 0& PIKPQ
TUNUATA TWV X POVOOELPWV TOVG.

Y& kdO¢e mepIMTwon TPOKVTITEL OTL EUTIELPLKA DEV TEKUNPLWVETAL 1] TIPAKTIKN
MG MPOEKTAONC KALUATIKOV TACEWV PpoxOmTwone oto UeéAAov. H eyyevrc
petapAnTotnTa e fpoxomtwonc kabotd ovtwe 1§ dAAwe dvoxept] TV TPOPAePn
mC oe peydAec kAlpaxec, MOAD TeploooTEPO de OTAV 1] MOAVTIAOKOTNTA TWV
TPOYVWOTIKWY HOVTEAWY avEAVETAL.

O xevtpkoc otoxoc avtic tnc datpipric elvar n otoxaotiky Odepedvnon Kot
HovteAoToinon TG XpoviKn UeTAPANTOTNTAC KAl eEAPTNONG TWV AKPOTATWY XTO
ETOXLKEC £wC KALPATIKEC KAlpaKES. Baotkr] kavotopia amoteAel n avayvawplon Twv
XPOVIKWV CVLUTEPLPOPWY TWV AKPOTATWV KAL 1] OPYQVIKY] OUVOEST] TOVC e TIG
gyyevelc 1dotnTeC TNC unTpLknic vdpoAoyknc depyaciac. Mi tétolx TPocéyyon
onutovpyetl évavéo Tplopa katavonone e OLVaLKNS Twv VOPOAOY LKWV AKPOTATWY
TIOV UTOPEL VA BEATIOOEL GNUAVTIKA TNV QVTIANYPT TOV GXETIKOV KLVOVUVOL 0TO X pOVO
Katva xpnotpornomOel yia tnv avapaOpion TpakTikwy LeTpLao oy TS VOPOAOY LK1|C
drakvdvvevonc.

[Tepartépw épevva elvatl amapaltntn yLa TOV EVIOTUOUO KOV OOUwV eEAPTNONG
QKPOTATWV TNC PPOXOMTWONG Kol amopponc o0& TOAAATAEC XWPOXPOVIKEC
kAlpaxec. H ovpmepliAndn tov mpoopata avamtuyueévwVy eKTLUNTPLWY POTIWV
vPnAc taénc otn pebodoAoyia extiunonc akpotdtwv (k-moments; Koutsoyiannis,
2019c) elval e€loov kploLpn Kat avapévetal va BeEATIWOEL TN LOVTEAOTIOMOT] TOVG O
PEQALOTIKEC TPO-AOVUTITWTIKEC OLVONKEC, OMWC QUTEC TOV CLVAVTIWVTAL GTNV
vdpoAoyia. TéAog, elval onpavTikO TAEOV TNG KATAVONONG TN OTOXACTIKOTITAC TOV
vdpoAoyikov kwdLvov, va peAetndel kat 1 oToxaOTIKOTNTA TNG avOpwTmivng
xpoviknc €xBeonc kat evnaOetac (vulnerability) évavti tov kivdvvov. Néot tvmot
dedopEVWY TIOV EVOWUATOVOLY TIANPOPOPLES Vi TN OLeTapt] avOp@Tov kot LOATIKOD
TieptpdAAovtoc kaOloTavtat oAoéva kat eplocoTepot dtabéatpot kat Oa umopovoav
Vo GLVOPAUOVY TLPOC TNV OALGTIKOTEPT KATAVONGT THG VOPOAOY LG dlakvOVVEVGTC.
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1.1 Motivation

The term ‘extremes’ signifies rare and consequential events that are difficult or even
impossible to predict from past experience. By analogy, hydrological extremes pertain
to the occurrence of rainfall and streamflow of /east expected properties that are able
to place human-water systems under severe stress. In particular, extreme rainfall and
flooding can damage the built environment, including water-related and civil-
engineering infrastructure, may disrupt financial activities triggering economic losses,
while pose direct threats to public health. Naturally so, their understanding and
mitigation of associated risk have always been a challenge to society and science. In
the past decades though, this challenge has become ever prominent as the adequacy
of the conventional perception of risk has been radically questioned itself (Hall et al.,
2014).

On the one hand, worldwide media coverage of disasters has increased the
availability of examples of catastrophic hydrological events (Barredo, 2007), causing
growing concerns on intensification of extremes. These concerns have been
scientifically corroborated by the anthropogenic climate change hypothesis. The latter
suggests that the increased anthropogenic emissions of greenhouse gases over the past
decades have induced systematic changes in the climate dynamics that lead to the
intensification of the water cycle (IPPC, 2014; Fifth Assessment Report AR5). On this
basis, it has been argued that a radical reformulation of assumptions and modelling
practices would be required in order to explicit model the presence of new
deterministic drivers (Milly et al., 2008). Although this position has been largely
debated in hydrology (Cohn and Lins, 2005, Montanari and Koutsoyiannis, 2014;
Koutsoyiannis and Montanari, 2015; Serinaldi et al., 2018; Koutsoyiannis, 2020a), the
associated expectations of intensification of extremes in the future are omnipresent in
the literature.

On the other hand, it is widely accepted that the risk dynamics may have altered
during the past century as a result of systematic changes in human exposure and
vulnerability to extreme events. In this respect, it has been found that human exposure
to flooding, stemming from living in proximity to the river network, has consistently
increased over the years (Ceola et al., 2014). At the same time, vulnerability to extreme
events is further exacerbated by high population density and uncontrolled
urbanization. In Greece alone, over than 200 fatalities due to extreme flooding have
been reported since 1960, with the majority of them concentrated in the highly
urbanized area of Attica. At the global scale, the series of the 1999 rainfall-induced
flood events in the densely populated Vargas state of Venezuela, is considered one of
the worst water-related disasters worldwide resulting in more than 15 000 fatalities. In
a later study, it was found that the occurrence of such rainfall was extreme but not
implausible based on the historical record and could have been anticipated if a
probabilistic framework accounting for uncertainty was applied (Coles et al., 2003).

The latter case study highlights the essential role exerted by hydrology in terms
of frequency estimation of extremes and hence, risk preparedness. The
underestimation of both the design quantiles and the frequency of occurrence of the

32



extremes is unfortunately, a common factor in cases of unprecedented hydrologic
disasters (Mimikou and Koutsoyiannis, 1995; Coles et al., 2003; Koutsoyiannis et al.,
2012; Ntigkakis et al., 2018). Furthermore, increasing concerns are expressed regarding
the possible underestimation of the probability of failure of aging infrastructure and
large-scale engineering projects as numerous engineering disasters triggered by
extreme rainfall and flooding have been reported in recent years. These include dam
accidents and disasters, bridge collapses and severe damages to transport
infrastructure, including roads and railways, that have caused massive economic
losses and human fatalities (Wardhana and Hadipriono, 2003; Serra-Llobet et al., 2013;
Koskinas et al., 2019; Kellermann et al., 2019; Pizarro et al., 2020).

Therefore, the improvement of hydrological design and risk mitigation
emerges as a high societal priority. In this respect, it is argued that before considering
the case for global trends or external drivers, the need to advance the understanding
and modelling of extreme hydrological events, starting with rainfall, is imperative. To
this aim, it is important to first and foremost revisit the classic assumptions governing
the study of extremes in light of new empirical evidence.

1.2 Framing the research question

The realm of civil and environmental engineering is perhaps the scientific field most
organically connected to the need for probabilistic estimation of extremal properties.
Although the first statistical approach of hydrological extremes is found in Fuller
(1914), it is widely acknowledged that it was the work of Gumbel (1941), who placed
the probabilistic study of extremes at the core of hydrological science. Among a series
of preceding theoretical works, Gumbel’s work, popularized by his renowned book
(1958), was the most influential to the engineering cycles, triggering a domino of
studies in hydrology that provided probabilistic grounds to analysis of extremes in the
decades to follow. Some landmark examples of probabilistic extreme value modelling
include the estimation of the extreme sea level surge for the sea dike projects in the
Netherlands (de Haan, 1994), the construction of consistent rainfall intensity-duration-
frequency curves for engineering design (Koutsoyiannis et al., 1998) as well as the
estimation of regional flood frequency in the US (Stedinger and Griffis, 2008). A major
advance has been the shift from deterministic approaches towards fully probabilistic
modelling of rainfall and streamflow extremes (Koutsoyiannis, 1999, 2004). The field
of applications has since become so wide that the probabilistic methodologies of
extremes are now integral to the National Flood Insurance Program in the US (FEMA,
2016).

Contrary to inference for regular quantities which involves estimation within
the range of available data, inference for extremes is synonymous to extrapolation to
the range of unobserved behaviours. The latter is heavily dependent on assumptions
regarding their properties. Independence is the most central assumption in extreme
value theory applications, encountered in most engineering textbooks. In Gumbel’s
words (1958):

The observations from which the extreme values are drawn ought to be

independent. This condition may be met in an experimental setup. However, it

is seldom met in natural observations. Still, the asymptotic theory gives a very
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good fit for such observations, because it is only the asymptotic behaviour of

the initial distribution which counts.

In other words, Gumbel himself acknowledges the non-fulfilment of the independence
assumption in observations, but suggests that the latter should be irrelevant to the
estimation of the magnitude of extremes.

Often the nuance of such statements is missed by standard practice and the
asymptotic arguments for the distribution of extremes are misinterpreted in favour of
the perception that observed extremes are in fact independent. The adherence to the
independence assumption is further supported by the widespread use of statistics in
hydrology (Koutsoyiannis, 2019a), where the independence assumption is central. Yet
while in the field of statistics dealing with controlled experiments and idealized
theoretical conditions, independence is a tenable assumption, it is rather a misplaced
one in the case of real-world unique observations. In hydrology, ever since the works
of Hurst (1951), the presence of long-range temporal dependence in observations, else
known as persistence of Hurst-Kolmogorov dynamics, has been widely acknowledged
(e.g. Koutsoyiannis, 2003; Montanari, 2003; O’Connell et al., 2016; Dimitriadis, 2017).
By now, it has been theoretically and empirically established that presence of
dependence in the data renders the application of classic statistics erroneous,
introducing bias in the estimation of moments and quantiles, and inflates confidence
and prediction intervals. Thus, unawareness of dependence is bound to lead to severe
underestimation of uncertainty, which in the case of long-range dependence could be
of the order of magnitude (Cohn and Lins, 2005; Koutsoyiannis, 2005; Hamed, 2008;
Koutsoyiannis and Montanari, 2007; Lombardo et al., 2014; Serinaldi et al., 2018).

Notably, the independence assumption in hydrology is contradicted by
empirical evidence of extremes at small scales, as in the case of long-duration rainfall
and flood events and seasonal clustering of events, and more rarely, even at greater
scales, as in the case of multi-year droughts and flood-rich/flood-poor climatological
periods (Hall et al., 2014; Merz et al., 2016). Yet for a combination of the above reasons,
reinforced by the limited availability of long records and the peculiarities of extremes
from dependent processes hiding their properties, the independence assumption
continues to dominate the modelling of hydrological extremes.

Stochastics, integrating statistics, probability calculus and the theory of
stochastic processes, offer a self-contained and powerful framework for the study and
modelling of uncertain processes, including extremes deviating from idealized
randomness (Koutsoyiannis, 2020b). This thesis aims to employ both stochastics and
real-world empirical evidence to investigate the temporal properties and dependence
dynamics of extremes, revisiting the relevance that the common assumptions thereof,
i.e. of being independent and identically distributed (IID), bear for hydrological
practice. In this respect, primary focus is placed upon integrating the understanding
and modelling of extremes to that of the parent process by exposing the hidden links
between the two, from seasonal to climatic scales. To this end, a rare dataset of long-
term observational records is compiled and two specific objectives are developed: (a)
to efficiently characterize the temporal properties and dependence dynamics of
observed extremes from seasonal to climatic scales, and (b) to formulate
hydrologically relevant and parsimonious modelling frameworks to reproduce them.
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The main body of the analysis prioritizes the investigation of rainfall extremes,
the temporal properties of which are generally understudied compared to the
streamflow ones. Dependence dynamics of streamflow extremes are explored as well
with two purposes: (a) to identify dependence dynamics of high operational relevance,
as in the case of seasonal predictability of streamflow extremes, and (b) to gain
additional hydrological insights by comparing their dependence properties to those of
the rainfall process.

1.3  Structure of thesis

The remainder of this thesis is structured in eight chapters. More specifically, the thesis
outline is presented below.

Chapter 2 presents the basic stochastic framework that is employed throughout
the thesis and provides a thorough literature review on modelling extremes. It also
identifies open questions in the literature and highlights present challenges.

Chapter 3 revisits the subject of long-term persistence in the annual rainfall
process via a global database. Although persistence in the streamflow process is well
studied, persistence in the rainfall process is much less acknowledged. The findings of
this chapter form the empirical basis for tracing dependence dynamics in rainfall
extremes through a consistent stochastic framework.

Chapter 4 deals with dropping the independently distributed (ID) assumption
in modelling of rainfall extremes, by accounting for their seasonality. It resolves the
open question of optimal identification of extreme rainfall seasonality by introducing
a new model selection method for the characterization and modelling of seasonal
rainfall extremes.

Chapter 5 switches the focus to the seasonal dynamics of streamflow extremes,
exploiting short-term dependence for predictability of high and low flows. A large
database of rivers is explored to identify potential for seasonal predictability and
investigate the presence of physical drivers enhancing it.

Chapter 6 deals with the propagation of persistence dynamics from the parent
process to its extremes. It exposes the shortcomings of existing indexes in revealing
persistence in extremes and addresses this gap by introducing a multi-scale
probabilistic dependence characterization for extremes. An empirical investigation of
dependence properties of rainfall extremes is carried out using a long-term dataset.

Chapter 7 revisits theoretical results of Extreme Value Theory and approaches
open questions pertaining to persistent processes through extensive simulations. The
manifestations of dependence dynamics in the annual patterns of rainfall and
streamflow extremes are investigated while the performance of the second-order
stochastic framework is evaluated in terms of reproducing them.

Chapter 8 completes the body of analysis on the facets of extremal dependence.
A novel methodological approach is introduced to evaluate the relevance of trend
projections to the future, by examining the statistics of their predictive performance in
the past. Classic modelling principles and current approaches are discussed and tested
against both data and simulations.

Chapter 9 revisits the thesis motivation and objectives and outlines the most
important contributions. A discussion on future research directions is provided.
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Appendix A contains background information, sources and acknowledgments
for the compilation of the long-term rainfall dataset, while Appendix B contains
supplementary material for Chapters 5, 6 and 8. A list of related publications is
provided at the end.

14 Innovation points

The thesis formulates innovative modelling frameworks, the specific contributions of
which are summarized in Chapter 9. Methodologically, the most fundamental
innovation points are the following:

(a) The research subject per se is an innovation point, as the mainstream practice is
to focus solely on the marginal distribution of extremes, ignoring their temporal
properties. It is shown that their temporal behaviours critically affect our
perception of risk and may affect various design properties.

(b) The introduction of the notion of scale in the characterization of extremal
dependence is novel on its own, as it is usually the lagged correlation that is
explored.

(c) The attempt to link extremal properties to the second-order properties of a
process, both in terms of characterization and modelling is also a novelty of this
work. Usually, the extremal properties are studied under asymptotic
arguments, which allow disregarding the properties of the parent process.

(d) The systematic evaluation of the predictive skill of trends is performed for the
first time to the author’s knowledge. Although the evaluation of models by their
predictive performance is established in hydrological literature, it has not been
employed in such context so far.

A few other points are considered innovative with respect to current practice, although
they are in fact revisiting classic approaches. These include:

(e) The compilation of a long-term observational dataset (>150 years) for studying
rainfall extremal properties. There is a well-justified increasing interest in
studying global databases, as these are essential for identifying common
properties and investigating their spatial distribution as well. Yet, such
databases are mostly comprised of short and medium-length records (<100
years) that are insufficient for the study of long-term variability of extremes.

(f) The use of parsimony as the modelling principle of choice. The parsimony
principle is embedded in various sophisticated statistical procedures, however
its meaning is often obscured by the standardized and complicated character of
the former. Herein, the virtue of parsimony is highlighted, in an original
fashion, directly linked to prediction.
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This chapter lays the theoretical foundations of the thesis. It starts by presenting the
fundamental theoretical concepts of the stochastic framework and the analytical tools
for second-order dependence which are used throughout the thesis. It also presents a
thorough review on the history of extreme value theory and highlights some of its less
known results, related to extremal dependence. It provides a critical overview of
common approaches in modelling extremes in hydrology and beyond, and identifies
open theoretical questions and challenges.

2.1 Definitions in a stochastic framework

In this section, we define the pivotal probabilistic and stochastic concepts that are
ubiquitous throughout the analysis. For a comprehensive presentation of stochastic
theory reader is referred to Papoulis (1991) and Koutsoyiannis (2020b).

211 Random variables, stochastic processes and timeseries

A random variable is a function that maps outcomes of experiments from the non-
empty set (, else called set of elementary events or states, to numbers. A formal
definition of the concept, along with the axiomatic definition of probability, is owed to
Kolmogorov (1933). To distinguish random variables from regular variables, we
underline them following the Dutch convention. A stochastic process is then an
arbitrarily large family of random variables x(t) (Papoulis, A., 1991). These variables
are indexed by f, which in our case, represents time, either from the discrete set of
integers Z (resulting to a discrete-time stochastic process), or from the continuous set
of real numbers R, (resulting to a continuous-time stochastic process). Following
Koutsoyiannis (2020b) we denote a continuous time stochastic variable by x(t), and a
discrete one by x.. The stochastic variables per se can be either discrete (discrete-state
stochastic process), as in the wet or dry day, or continuous, e.g. rainfall amount
(continuous-state stochastic process). The index can also be multidimensional by e.g.
referring to space. A realization x(t) of stochastic process x(t) is called a timeseries. Both
its observation and simulation take place in discrete time, but for theoretical and
physical consistency, it is desirable to deduce the theoretical properties thereof in
continuous time. Then the discrete-time representation is derived from the integration
of the continuous-time process as (Koutsoyiannis, 2020b):
1 D

X i=—= x(u) du 1
— DJdeayp @)

where 7 € Z represents the continuous time interval [(7—-1)D, 7D] and D is the time
step. It is important to distinguish between the notion of a timeseries and the one of a
stochastic process, as the former is a finite sequence of numbers (observations),
whereas the latter is a family of infinite stochastic variables.
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2.1.2 Distribution function and moments

The distribution function of a random variable x(t) is:
F(x;t) := P{x(t) < x} )

This is called the first order distribution function of the process, and generalizes for
the n-th order as:

F(x1,%p, o, X t1, by, oo, 1) := Plx(t1) < x1,x(8) < X, ..., x(t,) < X} 3)

A stochastic process is fully determined if we know the nth order distribution, or else
joint distribution, for any n. The most important moments of a process that we utilize

herein are the following;:
i.  The process mean:

+00

pO=Ex®) = [ xfnds @
ii.  The process variance:
ot i=varlx(t = [ (- w(P (1) ®)
iii.  The process autocovariance:
c(t;h) 2= covlx(h), x(t + b)| = EL(x(t) - p(®)) (x(t + 1) = p(t + )] (6)

iv.  The process autocorrelation coefficient:

c(t; h)

r(t;h) = corr[x(b), x(t + h) | = o+ 7)
v.  The process coefficient of skewness:
k()
O =G ®

where u;(t) == f_ +OO(x — u(t))®f (x; 1) dt, the third central moment of the process.
vi.  The process coefficient of kurtosis:

4D
=007 ©)

where py(t) == f_ +OO(x — u(t))*f(x; ) dt, the fourth central moment of the process.
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2.1.3  Stationarity, cyclostationarity and ergodicity

A process is defined as stationary if its statistical properties are invariant with respect
to a shift of time origin, i.e. x(t) and x(t’) have the same nth order distribution for any
t and t' (Kolmogorov, 1931; Khintchine, 1933). Kolmogorov (1947) further defined the
special case of wide-sense stationarity in which the mean is constant and the
autocovariance depends only on the time lag. In these case, the time index t in
equations (4)—(7) could be dropped. On the contrary, a nonstationary process is one
whose statistical properties are deterministic functions of time. Recalling the
distinction between a process and a timeseries, it is clear that (non)stationarity is a
property of a process and it cannot be inferred from a timeseries alone.

A nonstationary process could have some of its properties depend on time in a
periodic manner, in which case it is called cyclostationary, and by adequate
modifications can be modelled by stationary models. Such is the case of a process
exhibiting pronounced seasonality, examples of which are discussed in Chapter 4.

A central problem in the study of stochastic processes is the estimation of their
parameters from data. The fundamental property of processes that allows estimation
from data and is tacitly implied in all timeseries analyses, is ergodicity (Papoulis, A.,
1991). Ergodicity is a wider property of dynamical systems which can also be defined
in the context of stochastic processes based on the ergodic theorem (Birkhoff, 1931;
Khintchine, 1933) as follows (Koutsoyiannis, 2010). A stochastic process x(t) is ergodic
if the time-average of any integrable function g(x(f)) equals the true expectation
(ensemble average) as time tends to infinity, i.e. for a continuous process:

1 T
Jim 7 [ gx)dr =Elg (x) (10)

and for a discrete-time process:

T
1
lim — Z; g(x) =E[g(x)] (11)

The equation of the true expectation (right-side), i.e. a number, to the ensemble
average (left-side), i.e. a stochastic variable, implies zero variance of the latter as the
sample grows infinite, which is precisely the condition for ergodicity (Koutsoyiannis,
2020b). If g(x(t)) =x(t), then the fulfillment of equations (10)-(11) makes a process
mean-ergodic, while other specifications exist depending on the type of the function
g, e.g. covariance-ergodic (Papoulis, A., 1991). The relationship of stationarity and
ergodicity is a delicate one which also depends on the systems dynamics being
stochastic or deterministic. For a stochastic system, the two do not necessarily coincide,
but it is possible and practical to formulate a stationary model that is ergodic too,
considering that a nonstationary model is generally nonergodic (Koutsoyiannis, 2010;
Koutsoyiannis and Montanari, 2015; Montanari and Koutsoyiannis, 2014). For a
deterministic process, the two are theoretically connected (see Mackey, 2011; and
discussion in Koutsoyiannis, 2020b).
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214 Dependence in time

Unlike classical statistics dealing with samples of measurements and experimental
outcomes which can be appropriately designed in order to be modelled as
independent random variables, the study of timeseries introduces the notion of
dependence in time, hence change in time. This is precisely the focus of stochastics, as
the mere definition of a stochastic process involves its time evolution (Kolmogorov,
1931).

In hydrology, the study of dependence in time has a long history dating back
to the works of Hurst (1951), who observed that the annual behaviour of the level of
the Nile river deviated from that of a purely random process. It has since become a
very active topic in hydrology even under deterministic interpretations, discussed in
Chapter 8. The stochastic patterns of manifestation of dependence in the rainfall and
the runoff process form the central subject of the thesis, and parts of the relevant theory
are outlined throughout all Chapters. In the following section, we present and
summarize the stochastic methodology for quantification of dependence in time for
hydrological problems that forms the reference framework for the main body of
analysis.

2.2  Second-order properties, scaling laws and HK dynamics

The complete determination of a stochastic process requires knowledge of its nth order
properties. In terms of estimation from data, this is almost impossible considering the
bias of higher-order classical moments (Lombardo et al., 2014). In this respect, the
second-order moments of a stochastic process, i.e. the autocorrelation, autocovariance
and functions thereof, provide robust information on their dependence, have lower
estimation bias, and are useful in the simulation process. Not surprisingly, they are
the most extensively used tool in stochastics (Papoulis, A., 1991).

A common characteristic of second-order properties is their association with
asymptotic power laws ast — 0 ort — oo, or else scaling behaviour (Koutsoyiannis,
2014). Power laws are functions of the form f(t) o t’ and can be visualized in the form
of a straight line with slope b from a doubly logarithmic plot of f(t) on t. A power-law
valid over the entire domain is called simple scaling, while power-laws valid in the
domain of t — 0 define Jocal behaviour and the caset — oo, define global behaviour
(Koutsoyiannis, 2020b). Power laws have been studied in many domains, being
popularized by Mandelbrot (1983), although first mathematically described by
Kolmogorov (1940).

In hydrology, scaling of the second-order properties in long-time horizons is a
ubiquitous behaviour, which was first observed in the Nilometer data by Hurst (1951),
and hence is also known by the term Hurst behaviour/phenomenon (O’Connell et al.,
2016). In order to give credit to the mathematical representation by Kolmogorov, in
hydrology it is also known as the Hurst-Kolmogorov dynamics (HK dynamics;
Koutsoyiannis, 2010). In the wider literature, it is known as well as long-range
dependence, long-term persistence, and long-memory (Beran, 1994). The latter term
though has been disputed on the basis that the induced long-range dependence is a
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product of long-term change instead of the result of a long-memory physical
mechanism (Kleme§, 1974; Koutsoyiannis, 2011b).

221 Climacogram and climacogram-based modelling

A comprehensive characterization of a process’s second-order scaling properties can
be achieved by inspecting its variance behaviour when the process is averaged, or
aggregated, over different scales. The function of the variance of the averaged process
versus the scale is called the climacogram, while the function of the cumulative process
versus the scale is called the cumulative climacogram (Koutsoyiannis, 2010). The
climacogram of a process x(t) is defined as:

(k) = [X(k)] _ F(k)

(12)
where I'(k) is the cumulative climacogram, and X(k) is the process x(t) aggregated at
timescale k:

k
X (k) = fo x(f) dt (13)

or for a discrete-time process, with climacogram y,:
X=X+ -+ X (14)

The climacogram is theoretically equivalent to other second-order properties, namely
the autocovariance, autocorrelation and the power-spectrum, but it is advantageous
estimation-wise for having superior properties in terms of bias, discretization errors,
and sampling uncertainty (Dimitriadis and Koutsoyiannis, 2015). For these reasons, it
is the basic tool employed herein for second-order characterization.

The theoretical climacogram differs among processes with different second-
order dependence structure. For three key types of stochastic processes the following
hold (Koutsoyiannis, 2020b). In case of an independent White-noise process in discrete
time, the climacogram is a function of the variance of the process 02 and the scale «:

02

Vi = o (15)

which generalizes for the continuous-time by changing the scale to a real number k :=
KD

D
yk) === (16)

For a continuous-time process x(t) with variance A = y; = y(0) = ¢(0) and short-range
dependence, i.e. an AR(1), or Markov process:
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(17)

where a is parameter with units of time. In the case of a continuous process with
asymptotic scaling at oo, the climacogram is:

u)Z—ZH

k) =2 (—

. (18)

where a and A are scale parameters, with dimensions [t] and[x?] while H is the so-
called Hurst parameter ranging in the interval (0,1). The latter equation is the
definition for a Hurst-Kolmogorov process. The case H = 0.5 corresponds to an
independent process, while for 0.5 < H <1 the process is persistent and for 0 < H <
0.5 anti-persistent.

From equations (16) and (18) it is evident that when the scale tends to zero the
process’s variance reaches infinity, which is not plausible for natural process, as an
infinite variance process would require infinite energy to materialize. In order to
remedy this shortcoming, and improve flexibility of the model for dependence in
shorter time scales, the filtered Hurst-Kolmogorov process is developed with several
climacogram types (Koutsoyiannis, 2017). The generalized Cauchy-type climacogram
is:

E
M

(k) = A (1 + (S)ZM) (19)

where M is an added dimensionless parameter which controls the local scaling of the
process (fractal behaviour), named M in honor of Mandelbrot (Koutsoyiannis et al.,

2018). Values of M < % indicate a rough process, while M > % indicate a smooth process.

For more, on the bounds of scaling the reader is referred to Koutsoyiannis (2017). The
usefulness of this parameterization in simulation is discussed next in Section 2.4.

222 Scaling in time by the entropic view: from predictability to uncertainty

A counter-intuitive characteristic of dependence in time is its non-equivalence to
predictability, even more its association with increased unpredictability at greater time
scales. The biased perception of dependence in favour of predictability, reflected by
the term ‘memory’, is fortified by the dominance of autocorrelation-based models in
the literature. Autocorrelation is intuitive for prediction purposes but does not expose
uncertainty, on the contrary to the variance-based characterization of the climacogram.

A rigorous way to investigate the case for (un)predictability is through the
unifying notion of entropy, which represents degree of uncertainty or ignorance
(Papoulis, A., 1991). The conditional entropy, i.e. the uncertainty about the future
when the past is observed, is directly linked to predictive uncertainty, while the
difference between entropy and conditional entropy equals the information gain.
Koutsoyiannis (2005, 2011) showed that the HK dynamics is a product of conditional
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entropy maximization at large time scales, whereas the AR(1) model maximizes
conditional entropy at small time-scales (k=1,2). An increase in model autocorrelation,
signifies a decrease of conditional entropy at lower scales (1,2), thus improves
predictability, whereas at higher scales the exact opposite is true. As the timescale
increase, the conditional entropy of all models also decreases, yet at a different rate
compared to the unconditional. For a scaling process (HK dynamics) the information
gain remains constant with the scale, as does the autocorrelation function, due to the
same rate of decrease of the conditional and unconditional entropies. However, this
does not imply greater predictability, as in fact, the conditional entropy still remains
greater than the case of an AR(1) model (Koutsoyiannis, 2005). This view of
predictability is particularly relevant when dealing with climate, which represents the
average weather at scale k=30 years (Koutsoyiannis, 2010). For a given scale, it is the
role of time window that becomes critical in determining the predictability horizon, as
highlighted in Dimitriadis et al. (2016). The relation of dependence with predictability
is examined both at short time-scales, in Chapter 5, and at climatic-scales in Chapter 8.

2.3 Dependence in extremes: theory and diagnostics
2.3.1 The development of classic extreme value theory

Before considering the case of dependence, it is worth recapitulating the fundamental
results of extreme value theory which is now well established. If yq,v5,..,y, is a

sequence of identically and independently distributed (IID) random variables, then
the maximum of them, i.e. the largest order statistic, x,, :== max(yy, vy, ..., ¥,) has the

following probability distribution function:
F.., () := (F,(x))" (20)

Results concerning the asymptotic behaviour of this distribution as n — co were
obtained in the early 20t century. Fréchet (1927) was the first to identify the
homonymous limiting law, Fisher and Tippett (1928) showed that there are only three
possible types of the limiting laws, von Mises (1936) identified sufficient conditions
for convergence to the limiting laws and provided a common parameterization, while
Gnedeko (1943) set the solid foundations for convergence to the limiting laws under
weak conditions. Their results were lately popularized to the engineering community
by the prominent book of Gumbel (1958). A detailed presentation of the early history
of the contributions is provided in Kotz and Nadarajah (2000). Specifically, the
asymptotic theory for extremes states that for extremes from IID random variables, if
there exist rescaling constants a, > 0 and b,,, so that for the linearly rescaled maximum

by N e .
xp, = x”ﬂ - exists a non-degenerate limiting distribution, then this should be of the

n

form:
1

G(x) = Fyy () = exp | - (1 +& (xT_b)] | with1+ (x _ b) >0 (21)

a
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The latter is known as the generalized extreme value (GEV) distribution. In this
parameterization, ¢ is a shape parameter € R, @ > 0 a scale parameter and b a location
parameter € R. The shape parameter is unique and is identical to the tail index of the
parent process, but the scale and location parameters depend on n. The first limiting
law known as extreme value type I (EV1) is retrieved for & = 0 and is the well-known
Gumbel distribution. The second law, known as extreme value type II (EV2), emerges
for £> 0 and is the Fréchet distribution. The third law (EV3) appears for & < 0 and is
the reverse Weibull distribution, but it is less of interest in applications of extremes, as
it yields an upper bound. A parent distribution F is said to belong to a domain of
attraction if a linear transformation of its maxima follows one of the three limiting laws
(Von Mises, 1936). For instance, light-tailed distribution and heavy-tailed distribution
with tail index £=0 belong to the domain of EV1, heavy-tailed with tail index £>0 to
the domain of attraction of EV2, and distributions bounded from above to EV3
(Koutsoyiannis, 2020b). For typical applications of finite 7, as in the annual maxima
case, equation (21) is only an approximation of the distribution of extremes, and its
asymptotic validity could be questioned. Details on the strength of convergence in
cases of interest to hydrology can be found in Koutsoyiannis (2004a, 2004b) and
Papalexiou and Koutsoyiannis (2013), and are further discussed in Chapters 4 and 7.

The three limiting laws form exactly the class of max-stable distributions,
meaning that if G is max-stable then it can be shown that it is of extreme value type,
while the EV class has the property to be max-stable (Leadbetter et al., 2012). A max-
stable distribution as originally defined by Fréchet (1927) is one which retains the same
form under a linear transformation of its maxima, specifically, forany n € Nand x €
R, there exists a,, > 0 and b,, such that:

(G(a,x +by))" = G(x) (22)

2.3.2  Extreme value theory under dependence

It is straightforward to see that some sort of restriction of the dependence structure is
required in order to obtain an asymptotical result for the type of extremal behaviour.
Otherwise it could be assumed that all y; are equal arising from an arbitrary
distribution function, in which case the distribution of its extremes x,, would be this
arbitrary distribution (Leadbetter and Rootzen, 1988). As discussed in the previous
section, the IID assumption was fundamental in the early development of the classic
extreme value theory. Juncosa (1949) was the first to generalize results in case of non-
ideally distributed variables. Some years after a number of publications emerged in
the direction of relaxing the independence assumption. Early considerations of the
case for dependence originated in the literature in the works of Watson (1954) and
Newell (1964) who studied asymptotic results for extreme value series from stationary
sequences of m-dependent random variables, i.e. considering events that occur more
than time m apart as independent. Berman (1964) identified conditions for asymptotic
independence of Gaussian processes and Loynes (1965) showed that m-dependence
could be replace by the uniform mixing (else referred to as strong mixing) assumption
for the parent process, which was further generalized by O’Brien (1974). The uniform
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or strong mixing assumption is first introduced in Rosenblatt (1956) and is defined in
probabilistic terms requiring that any two events separated in time tend to being
independent as the separating time grows larger.

A pivotal result concerning influence of dependence on extreme value theory
was obtained by Leadbetter (1974) who studied weaker conditions under which the
non-degenerate limits of dependent sequences are still extreme value distributions. In
particular, Leadbetter introduced the distributional mixing condition known as
D(u,) condition which states that under weak conditions that exclude long-range
dependence only for high level exceedances G is still an extreme value distribution, or
equivalently, it is max-stable. This is a condition much weaker than the strong mixing
condition which applied to all exceedances (uniform mixing) as presented in Loynes
(1965). Examples of moving-maxima processes for which this holds are provided in
Berliant et al. (2006a), comprising cases of validity in even weaker conditions of the
original D(u,), i.e. including periodic Markov Chains. These results further establish
the use of the EV theory and justify its acceptable empirical performance through the
years.

Although dependence under the D(u,)condition does not challenge the
asymptotic validity of the extreme limit theorems, it may affect the choice of the limit
distribution. Leadbetter (1974) also introduced a second stricter condition known as
D’(u,,) which limits the amount of short-range dependence in high-level exceedances,
or else local clustering, by requiring the probability of more than one exceedance in a
cluster to be negligible. This implies asymptotic independence and is satisfied in the
early results obtained in the literature (e.g. Watson, 1954; Loynes, 1965). Together these
conditions ensure that asymptotically the occurrence of exceedances form a Poisson
process, while the possibility of clustering of events is limited. If the D’(u,) does not
hold then the exceedances of the threshold can occur in clusters as a compound
Poisson process. In particular, Leadbetter (1983) by extending a result of Chernick
(1981), showed that the weak mixing D(u,,) condition alone suffices for the asymptotic
distribution of extremes from stationary processes to be precisely of the same type of
that of an IID sequence with the same marginal distribution. In this case though,
dependence affects the parameterization of the limit distribution in terms of the
linearly rescaling constants. The quantification of extremal dependence is defined in
terms of a constant 6 € [0, 1], which is called the extremal index, and for which the
following statement holds. If a process y has an extremal index, then for each 7 > 0:

(1) there exists u,(7) such that n(l — F(u,(t)) = 7 , which suggests that the
mean number of exceedances is constant as n — oo, and

(ii) P{x, < u,(7)} = " (23)

which suggests that the extremal distribution converges to a generalization
of the limiting form for the IID case, G?, where G the limiting distribution
for the associated IID process %,,.
If (i) holds and D(u,(t)) holds for each 7 and P{x,, < u,(7)} converges for some 7>0
then (ii) holds for some 0 € [0, 1] and all 7>0, and therefore the process has an extremal
index (Leadbetter et al., 2012). The case of 6 =0 is considered pathological as it leads
to P{x,, < u, (1)} — 1 for all 7although it may have marginal meaning in specific cases.
If 6 =1 this corresponds to the form G takes for IID data, but in case 0 > 0, then the (¢,
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a, b) parameters of G are related to the ones of the limiting distribution of the
associated independence sequence, G (equation 21) by:

=g, —a65, b=b+(0° -1,
E=¢,  a=a +( ),5 (24)

Therefore, only the shape parameter remains the same. These results can relate to ones
derived from the generalized Pareto distribution for over-threshold exceedances,
whose connection to extreme value theory was established by Pickands (1975) while
also previously found in an independent study by Balkema and de Haan (1974). For
independent processes, 0 = 1, although the latter also holds for some cases of
dependent processes under the stricter condition D’(u,,) which limits the amount of
local clustering, i.e. short-range dependence in high-level exceedances (Leadbetter,
1983a). This condition is equivalent to assuming asymptotic independence. On the
contrary, values of 0 <1 represent the tendency of exceedances to occur in clusters.

Therefore, the extremal index can be thought as way to link extremal clustering
behaviour of the process to its parent dependence structure. It can be shown that the
extremal index is related to various properties of clustering of events, e.g. 7' is the
mean size of extremal clusters. Likewise, the extremal index is the reciprocal of the
limiting mean number of exceedances in blocks with at least one exceedance, thus it
can be estimated as the ratio of the total exceedances of the threshold vs the number
of cluster with at least one exceedance, which is known as the blocks estimator
(Beirlant et al.,, 2006). It can be also related to the conditional time between
exceedances, as well as the distribution of the maxima of the process, as shown before.
Based on these properties, various estimators have been proposed in the literature, as
the runs and maxima methods. A comparison of various methods is provided in
Ancona-Navarrete and Tawn (2000) who point out the strong dependence of the
estimate on the selected threshold for extremes.

It is worth reiterating however that fulfilment of the D(u,) condition alone
does not guarantee that a process has an extremal index. For the latter both P{x, <
u,(7)} and the associated with the IID process P{X, < u,(t)}, need converge to a
nondegenerate distribution (and thus of extreme value type). O’Brien (1974) and
Leadbetter et al. (2012) construct a few counter-examples for which D(u,) holds and
P{x, < u,(t)} converges, but the process does not have an extremal index because the
associated IID sequence does not converge; yet the latter are too artificial and unlikely
to be of practical interest.

In practical terms the above results show that weak forms of extremal
dependence alter the parameters of the limiting distribution but do not invalidate its
appropriateness. A slight decay has been reported in the rate of convergence to the
asymptotic laws (e.g. Eichner et al., 2011), yet for normal sequences Leadbetter et al.
(2012) prove that it is the same as in the independence case. In practice since the
parameters are typically estimated from the data, regardless of the user’s awareness
of it, the effect of such dependence is incorporated in the model for extremes. Yet
awareness of dependence is still important in terms of the bias induced in the
estimation of extreme value quantiles (Koutsoyiannis, 2020b).
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2.3.3  Other measures of extremal dependence

An alternative way of expressing extremal dependence other than testing based on the
D’(u,) condition, is in terms of the limiting behaviour of the joint distribution of
extremes. This measure has found large applications in multivariate extreme value
analysis of independent random variables, where it is known as tail dependence
coefficient (Ledford and Tawn, 1996). Sibuya (1960) was among the first to examine
tail dependence by providing the proof for the asymptotic independence of the
bivariate normal distribution. Under the assumption that the multivariate variables
have only weak long-range dependence, the concept can also be suited for the
examining dependence in extremes, treated as lagged variables of a single process. If
[X;, X,5] denotes a bivariate random vector with common marginal distribution
function F representing distinct exceedances of a threshold, then the coefficient of tail
dependence between X; and X, is defined as:

x = lim P[X; > x[X; > x] (25)

where x* denotes the upper end point of the common marginal distribution, given that
the limit exists. The case of y = 0 signifies asymptotic independence, whereas cases
of 0 < x < 1 denote asymptotic dependence. Threshold-dependent variants of the
original coefficient have also been formulated, able to characterize dependence at sub-
asymptotic levels as well (Coles et al.,, 1999). A number of other summaries of
multivariate dependence exist (see eg. Beirlant et al., 2006; p. 273) but a more relevant
discussion for applications in univariate processes and particularly rainfall series is
provided in Ledford and Tawn (2003). An obvious however limitation of this approach
is the increase in dimensionality when one is interested in characterizing dependence
beyond the bivariate case.

2.34 Cases of stronger dependence

It is recalled that the results and methods of the previous section are based on the
assumption of some form of restriction of long-range dependence in high-level
exceedances (D(u,) assumption). This is considered a weak assumption and it may be
asymptotically valid for extremes even from classes of processes exhibiting long-range
dependence, namely Gaussian linear processes (Embrechts et al., 1999). However,
given the marked non-Gaussianity of natural processes and the fact that extremes from
lower thresholds may also be of interest, inference based on related metrics is not as
straightforward for persistent processes. We stress that results concerning the validity
and uncertainty of these metrics in non-Gaussian long-term persistent processes are
very scarce in the literature, in fact the topic is not covered at all in most textbooks (e.g.
Galambos, 1994; Embrechts et al., 1999; Beirlant et al., 2006; Finkenstadt and Rootzén,
2003; Kottegoda and Rosso, 2008; Kotz and Nadarajah, 2000; Leadbetter et al., 2012;
Resnick, 2007; Beran, 2004). A notable exception are the mathematical contributions on
extremal properties of self-similar processes by O’Brien et al. (1990) showing that
different limits may emerge for the extremes of self-similar processes, other than the
ones suggested by EVT, and the former may not have a planar point process
representation, i.e. as the Poisson point process for IID extremes.
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A few other contributions on the subject mainly refer to Gaussian processes.
Normality is a convenient condition for the study of extremes, as the joint moments of
normal processes —which control the extremes’ behaviour, are fully determined by
their mean and covariance structure. For such processes, Mittal and Ylvisaker (1975)
have shown that in cases of strong persistence defined in terms of the rate of decay of
the covariance function, i.e. cases where the D(u,) condition is not satisfied, the
limiting distribution of extremes from normal processes is a normal distribution too.

Therefore, the theoretical properties of extremes from heavy-tailed and
persistent processes are understudied, despite their relevance to natural process. In
practice though, simulation provides the means for circumventing this issue, as
performed in Chapters 6-7. The modelling options to simulate extremal behaviour are
discussed next.

24 Treatment of dependence and extremes in common modelling
approaches

Having discussed the development of theory and inference tools for extremal
dependence, in this section we examine how the latter is dealt by common modelling
approaches of the wider statistical literature. Studies dealing directly with extremal
dependence abound in the econometrics literature, relating to modelling insurance
and finance data (Embrechts et al., 2013), but are much scarcer in environmental
literature. Below we review the most relevant hydrological modelling approaches of
two types; ones related to the joint modelling of extreme and nonextreme properties
of the parent process, and ones focused on the tail of the distribution of the parent
process. In the final section, we discuss potential for bridging the two.

24.1 Joint modelling of nonextreme and extreme properties of the parent process

A complementary approach to the use of asymptotic theory for studying extremes is
the explicit modelling of the parent process generating the extremes. This approach is
particularly useful in cases where modelling of the parent process is required but
preservation of the extremal properties is also essential, as in the case of streamflow
simulation for reservoir management. In such cases, achieving an efficient modelling
of the whole process including the tails, is not only practical, but improves theoretical
consistency of the model estimates” as well. In general however, in parent process
modelling extremal dependence is rarely explicitly dealt by, rather the behaviour of
extremes is assessed in terms of model validation. As preservation of the multi-scale
properties of a process is rather challenging, often this approach differentiates between
placing the modelling focus either on finer or larger time-scales. Attempts to achieve
consistency among these scales typically make use of disaggregation techniques (e.g.
Koutsoyiannis and Manetas; 1996). Below we revisit the most classic and some
relevant emerging approaches with regard to their accounting for extremes and
dependence. Covering asymptotic results on general classes of stochastic models is not
within the scope of this review; namely the interested reader is referred to Rootzén
(1986; 1988) for extremal dependence in Markov chains and moving-average processes
with non-Gaussian tails. Rather the aim here is to outline the basic characteristics of
hydrological models with respect to flexibilities in modelling long-term persistence
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and extremes. In this respect, non-parametric models are not discussed as they do not
allow extrapolation to events beyond the range of the observed.

Point process models

Fine scale (sub-hourly, hourly or daily) rainfall requires a different modelling
approach to that of large scale rainfall (monthly, annual or inter-annual) due to of the
distinctive characteristics of rainfall at fine scales, i.e. prevalence of clustering
mechanisms, including intermittence (Koutsoyiannis, 2006). Waymire and Gupta
(1981) demonstrate mathematically that fine-scale rainfall properties are consistent
with point process theory. According to Cox and Isham (1980), a point process defined
in the set of positive real numbers, R* is “a stochastic process for which each
realization consists of a collection of points, each point having a well-defined position,
usually in one-dimensional space, but possibly in some higher dimensional space”.
The main categories of point processes are Poisson-cluster processes, Cox processes
and renewal processes. The first category is the simplest and most widely used in
literature as established by Rodriguez-Iturbe et al. (1987a; 1987b). In the general case
of this approach, storms arrive according to a Poisson process of rate A triggering the
generation of clusters of cells associated with each storm according to another process.
Cells are characterized by duration usually following an exponential distribution, and
a random depth described in terms of its first three moments. Depending on the type
of process that is employed for the cell clustering mechanism, two main models are
identified in literature, the Neyman-Scott and the Bartlett-Lewis processes (Onof et al.,
2000). In the Neyman-Scott processes, the number of cells in a storm follows a random
distribution, usually Poisson or geometrical, and the cell arrival times are
exponentially distributed. In the Bartlett-Lewis processes, the cell arrival process is
another Poisson process of rate , associated with the origin of each storm and
terminated at an exponential rate y. Thus, in the first case the arrival times of cells are
modelled with respect to the storm origins, while in the second case the inter-arrival
times between successive cells are of interest. The model is fitted upon minimizing the
difference between theoretical properties of the model and observed rainfall statistics.
Typically, the latter include first and second-order statistics (mean, variance,
autocovariance) as well as the probability dry, from timescales ranging from 1 h to 24
h, while inclusion of the third moment has been proposed as well in order to improve
the fit to the extremes (Cowpertwait, 1998).

Reproduction of the extremes is the most challenging task for this type of
models, as they tend to underestimate hourly and sub-hourly extremes (Verhoest et
al., 2010), often followed by an overestimation the daily (Onof and Wang, 2019).
Inclusion of the skewness in the calibration set along with various re-
parameterizations of the original model and coupling with disaggregation schemes
have been found to contribute to better fitting to the extremes (Cowpertwait, 1998;
Kaczmarska et al., 2014; Kossieris et al., 2018; Onof and Wang, 2019). Onof and Wang
(2019) argue that it is of high importance to capture the fat-tailedness of the storm
intensity distribution as well, by employing a heavier tail distribution in the model.
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The other critical issue with respect to the extremes relates to capturing their
long-term variability. By construction Poisson-cluster processes are characterized by
short-term dependence induced by the clustering of cells within a storm, but lack long-
term dependence due to the use of a Poisson process for the generation of the storm
arrivals and the independence of the cells among different storms (e.g. Rodriguez-
Iturbe et al., 1987b). Marani (2003) highlighted the fact that accordingly Poisson-cluster
models are expected to underestimate the variance for scales larger than those of
calibration, which typically extends from one to few days; which is also confirmed by
Onof and Wang (2019) in spite of various amendments to the original model. A
remedy proposed by Park et al. (2019) is the coupling of the Bartlett-Lewis model with
a seasonal autoregressive integrated moving average (SARIMA) model in order to
capture the observed long-term rainfall variability. The model showed an improved
fit to multi-scale extremes, which however came at the cost of a substantial increase in
the model parameters compared to the original version. Recently, Kim and Onof (2020)
also attributed the underestimation of the variability and extremes at large-scales to
the fundamental structure of Poisson cluster models and proposed the use of adequate
reshuffling procedures to induce long-term dependence in the model output. These
works along with other prior studies (Kim et al., 2013; Paschalis et al., 2014) converge
to the fact that accounting for rainfall variability across scales in this type of models is
crucial for a better reproduction of the extremes.

Two-part models

Two-part models are based on the decomposition of the modelling of the rainfall
process to the explicit modelling of the occurrence process, i.e. dry or wet state, and
that of the rainfall intensity process, i.e. the nonzero rainfall of wet days (Srikanthan
and McMahon, 2001). This class of models is one of the oldest in rainfall modelling
(Gringorten, 1966; Todorovic and Woolhiser, 1975) and also became popular under the
term ‘stochastic rainfall generators’ (Wilks, 1999). The occurrence process is typically
modelled by a ‘chain-dependent” process, comprising two states, a wet and a dry, the
alternation between which is determined by a matrix of transition probabilities. The
latter is usually assumed to be a Markov chain of order p, where p in case of daily
rainfall indicates the number of days which are taken into account for the estimation
of the transition probabilities. The common choice is that of a first-order Markov chain,
although the resulting dependence pattern of dry spells is often underestimated (e.g.
Wilks, 1999). This may be in part amended by considering higher-order Markov
chains, or different parameterizations for the transition probability scheme,
incorporating stronger dependence (Koutsoyiannis, 2006). An important drawback
however is that the modelling of the rainfall intensity process typically entails the
assumption of independence (Wilks, 1999). In fact, it is well-known that this class of
models underrepresents the inter-annual rainfall variability (e.g. Buishand, 1978; Katz
and Parlange, 1998). Possible improvements may come from the incorporation of
hidden state Markov models which have shown potential in capturing inter-annual
variability (Sansom, 1998; Thyer and Kuczera, 2000).

Multifractal models
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Multi-fractal models also known as multiplicative random cascade models, arise from
the concept of self-similarity, else scale-invariance, who shaped in the mid 20th century
and became popular by the works of Mandelbrot (1974, 1983). A detailed review on
the history of the concept, its definitions and its applications in hydrology is given by
Veneziano et al. (2006b) and Veneziano and Langousis (2010). These models are
mainly phenomenological based upon the empirical observation of scaling in nature
(e.g. Newman, 2005). They are built upon the concept of perfect scaling of moments,
and have been popular simulation algorithms of rainfall during the past decades
(Schertzer and Lovejoy, 1987; Gupta and Waymire, 1993; Marshak et al., 1994; Over
and Gupta, 1994; Menabde et al., 1997; Langousis and Veneziano, 2007). A desirable
feature of these models is that they reproduce variability in a parsimonious fashion
that also captures other statistical properties including the extremes (Veneziano and
Langousis, 2010). At the same time though they encompass some fundamental
limitations. First, typical models assume a single scaling exponent for all the moments
of the process, which has been questioned in the literature for the rainfall process (e.g.
Veneziano et al., 2006a; Molini et al., 2009; Serinaldi, 2010). In particular regarding the
autocovariance structure more complicated behaviours have been observed (Marani,
2003; Markonis and Koutsoyiannis, 2016; Iliopoulou and Koutsoyiannis, 2019).
Furthermore, the basis in multi-fractal analysis is the determination of the moment
scaling function from the data, which is impacted by enormous estimation uncertainty
considering classical moment estimators. In particular, estimation beyond the order
of three is shown to be highly unreliable (Lombardo et al., 2014). Apart from the latter,
Koutsoyiannis et al. (2018) highlighted a number of theoretical inconsistencies in the
fractal approach and its applications, most notably the fact that scale invariance is a
mathematical abstraction that violates certain natural laws as finiteness of energy and
space. Rather the existence of scales beyond which a certain power law exists or ceases
to hold appears to be a more applicable assumption for natural processes (Gneiting
and Schlather, 2004; Gneiting et al., 2012; Koutsoyiannis, 2016). Considering the latter
points, Koutsoyiannis et al. (2018) suggest that the useful concepts of fractal theory can
be incorporated into existing stochastic models, while related estimation issues may
too be more rigorously treated within the framework of stochastics.

Linear stochastic models

The class of stochastic models has a long history dating back to early 20th century; a
classification of dominant approaches is provided by Koutsoyiannis (2019a). The most
widely known modelling approach is autoregressive models which originated in the
works of Yule (1927) and Walker (1931) and gained stochastic foundations by the
works of Wold (1938, 1948) and Whittle (1952, 1953). They became however popular
by the acronyms —AR(p) (autoregressions of order p), MA(q) (moving-averages of
order q), ARMA(p,q) (linear combination of the latter models) and ARIMA (p,d, q)
(autoregressive integrated moving average), given in the famous book of Box and
Jenkins (1970). By construction they are short-range dependence models, with the
exception of the ARFIMA(p,d,q) model able of modelling long-range dependence
through the use of a real valued d parameter, instead of the integer one (Granger and
Joyeux, 1980; Hosking, 1981)
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Despite their large popularity, this class of models suffers from a number of
issues, namely definition in discrete time in contrast to the continuous-time evolution
of natural systems, definition in terms of the autocorrelation structure whose
estimation is negatively biased, and overparameterization, with the exception of
simple AR(1), ARMA(1,1), and ARFIMA(0,d, 0) versions (Koutsoyiannis, 2016).
Koutsoyiannis (2000, 2002, 2016) developed an alternative parsimonious approach for
model identification and fitting based on a generalized form of the autocovariance
structure, and proposed a simulation algorithm, the symmetric moving-average
scheme (SMA), suitable both for short- and long-range dependent processes. Another
approach for long-range dependence is the approximation of the second-order
structure by an infinite sum of Markov processes (Mandelbrot, 1971), an approach
parameterized for HK processes by Koutsoyiannis (2002). In contrast though to the
flexibility of the SMA scheme, the former is a simple scaling approach and cannot
preserve the dependence structure at timescales tending to zero (fractal behaviour; cf
Dimitriadis and Koutsoyiannis, 2018). A further advance to the moving-average
scheme has been the development of its asymmetric variant (AMA) which enables
preservation of temporal irreversibility of the process (Koutsoyiannis, 2019a). The
latter may be profound in atmospheric process at fine time-scales while it is
particularly relevant for the simulation of the streamflow processor time scales up to
several days (Ribatet et al., 2009; Mathai and Mujumdar, 2019; Serinaldi and Kilsby,
2016a; Koutsoyiannis, 2019b).

A marked challenge for the above models is the preservation of the marginal
distribution of the process in cases of non-Gaussianity (see Tsoukalas, 2018; for a
review of different approaches in hydrology). The latter is particularly relevant for the
reproduction of the extremes. The original version of the SMA model (Koutsoyiannis;
2000, 2002, 2016) explicitly models the second-order properties of the process and
approximates the marginal distribution by preserving the first three moments (thus,
up to skewness). An extension of the model enabling preservation of four moments
(up to kurtosis) has been provided by Dimitriadis and Koutsoyiannis (2018a). An
alternative approach was followed by Papalexiou (2018) performing the simulation of
the dependence structure in the Gaussian domain using autoregressions and back-
transforming to the non-Gaussian domain through the inverse transformation. The
known effect of the non-linear marginal transformation on the autocorrelation of the
process (Embrechts et al., 2002) is dealt by prior to the model application, by inflating
the correlation structure of the parent Gaussian process in order to preserve the target
correlation of the arbitrary process. A similar modelling approach based on the
Gaussian auxiliary process but using the SMA model for the generation scheme
instead, is developed by Tsoukalas et al. (2018). A general form of this approach is
reviewed in Lavergnat (2016). Finally, an alternative approach of performing the
simulation of the dependence structure in the frequency domain, instead of the time-
domain, using phase randomization and coupling with a parametric distribution is
suggested by Brunner et al.(2019).

It is worth recapitulating that short-range dependent Gaussian processes
asymptotically do not exhibit extremal dependence (6 = 1), while the same might be
true even for Gaussian processes with weak long-range dependence (Leadbetter et al.,
1983; Embrechts et al., 1999; Ancona-Navarrete and Tawn, 2000). Therefore, in
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presence of clustering of extremes and long-term rainfall variability, from the above
class of linear models only the ones able to simulate long-range dependence and heavy
tails should be of interest.

Autoregressive conditional heteroscedasticity models

These models are mainly developed in the econometrics literature around the concept
of stochastic volatility. Stochastic volatility refers to random changes of the variance
as a function of time, defined in the context of stochastic recurrence (difference)
equations (de Haan et al.,, 1989). These models were introduced in econometrics
because usual linear models of the ARMA-type exhibited light tails and conditional
constant variance and could not capture the peculiarities of financial timeseries. The
latter refer to presence of heavy tails, changes in volatility, high correlations in the
squares and absolute values of the data, clustering of high-threshold exceedances,
while showing almost no correlation in the actual values of the data (Embrechts et al.,
2013). Hydrological processes share some similarities with the above properties,
therefore although applications of this class of models are very limited in hydrology,
they represent a potentially interesting class for consideration. A relevant application
of such a model for daily rainfall was performed by Laux et al. (2011).

In discrete-time, models reproducing stochastic volatility are referred to as
‘conditionally heteroscedastic’ models and are of two general types. Engle (1982)
introduced the AutoRegressive Conditionally Heteroscedastic process of order p
(ARCH), extended by Bollerslev (1986) who developed the generalized version
(GARCH(p, 9)). In contrast to the linear case where the noise is additive, the noise in
these models appears multiplicatively. The variance however is changing linearly,
conditionally on the values of past observations for the ARCH type, as well as on their
conditional variance for the GARCH type, in a way that high volatility may arise either
as a result of large absolute values of past data or from previous periods of large
volatility (e.g. Embrechts et al., 2013). Therefore, a squared ARCH process can be
represented as an ARMA process. Different definitions of the way in which the
variance changes conditionally abound giving rise to many variants of the type, while
extensions to continuous time have also been proposed (Kliippelberg et al., 2004). An
attractive property of these models have been the possibility to generate heavy tails
using light-tailed noise terms, i.e. Gaussian innovations (Kesten, 1973). Conditions for
the existence of stationary versions and for the existence of moments are discussed in
Embrecths et al. (1996). A review on different types of ARCH models and fitting
methods is provided by Shephard (1996).

The distinctive feature of ARCH processes is that they exhibit extremal
clustering, which is the reason for their wide popularity in finance and econometrics.
The degree of clustering may be difficult to obtain analytically, but can be
approximated through Monte Carlo simulations as in de Haan (1989). Therefore,
GARCH models implicitly capture some properties of persistent timeseries but in
principle they do not preserve the correlation structure of the original process and they
are not designed to reproduce long-range dependence, either. The reason is that in
standard ARCH and GARCH modelling the behaviour of the conditional variance is
modelled and this may appear persistent, irrespectively of the behaviour of the
unconditional one, which is the modelling focus in case of long-range dependence
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(Mikosch and Starica, 2002). Modifications however have been proposed in order to
capture LRD-type behaviour defined in the absolute values and their squares of log-
returns (Breidt et al., 1998; Giraitis et al., 2000; Ibragimov and Lentzas, 2008). Overall,
the merits of the ARCH framework pertain to modelling heavy tails and clustering of
extremes. Yet ARCH theoretical properties are not as developed as in the case of linear
stochastic processes, and the modelling of the unconditional second-order dependence
structure, which is important in hydrology, is not straight-forward.

Copula models

The copula representation is a way of modelling continuous multivariate distributions
by separating the modelling of the univariate marginal distributions and that of their
dependence structure (Joe, 2014). The latter is modelled through the copula which is a
multivariate distribution comprising univariate dependent random variables
uniformly distributed U(0, 1). The theoretical foundations are based upon Sklar’s
theorem (Sklar, 1959), showing that every multivariate cumulative distribution
function of a random vector can be expressed in terms of its marginals and the copula,
and the works of Fréchet (1951) and Hoeffding (1940) who derived the bounds of the
copula. Applications of copulas abound in the statistical literature particularly due to
their flexibility in modelling dependence structures other than the linear case; for
instance dependence measures of monotonic association such as the Kendalls’ tau
(1938) and Spearmans’ rank correlation (1904) as well as more general dependence
structures (cf. Joe, 2014). The linear dependence is argued to be counter-intuitive and
too restrictive for non-elliptical multivariate distributions (Embrechts et al., 2002). A
desirable property of copulas is that under strictly increasing transformations of the
random variables, the copula properties, including dependence between extremes,
remain invariant. The bivariate Gaussian copula is the most commonly applied due
to the desirable properties of the multivariate joint normal distribution. Yet with
regard to capturing the behaviours of extremes, the Gaussian copula is not suited; e.g.
see Sibuya (1960) for the proof of lack of tail dependence in the bivariate Gaussian case.
In such cases, the Gaussian copula will underestimate the joint tail probability, and
therefore non-Gaussian copulas, such as the Archimedean (Genest and MacKay, 1986)
are often employed.

The great flexibility of the copula framework renders it a possible modelling
option for a wide range of hydrological issues. Although in practice it has not been
particularly popular for full process modelling, it is discussed in this section due to its
potential of coupling with a wide range of modelling approaches. Notable examples
are studies using the copula approach coupled with the Markov-chains in order to
simulate intermittent rainfall (Laux et al., 2009; Serinaldi, 2009a, 2009a), coupled with
linear stochastic models for simulation of hydrological processes (Lee and Salas, 2011;
Papalexiou, 2018; Tsoukalas et al., 2018), use of multidimensional copulas to
characterize various dependence structures in hourly rainfall (Salvadori and De
Michele, 2006), as well as copula applications in the spatio-temporal modelling of
rainfall (Villarini et al., 2008; Serinaldi, 2009; Bardossy and Pegram, 2009; Laux et al.,
2011). A greater deal of copula applications are found in the field of multivariate
hydrological frequency analysis, as in intensity-duration rainfall models (De Michele
and Salvadori, 2003; Zhang and Singh, 2007; Vandenberghe et al., 2010), and
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multivariate flood modelling (Favre et al., 2004; Grimaldi and Serinaldi, 2006; Serinaldi
and Grimaldi, 2007). Currently, the field of applications is still rapidly growing
(Salvadori and De Michele, 2010), following the similar trend in finance and insurance
(Embrechts, 2009).

Overall, the copula literature consists of a number of ad hoc approaches for
modelling dependence structures and extremes. In terms of long-range dependence,
Ibragimov and Lentzas (2008) employ a copula-based definition and show that there
exists a range of copula-based Markov-processes that exhibit such dependence on the
copula-level. However, these approaches do not form a well-understood and stand-
alone framework for modelling long-range dependence, and tracking its effect on
extremes. This shortcoming is prominent when compared to the self-contained theory
of stochastic processes, where both theoretical properties and sample estimation
procedures for dependent data are established. In this respect, a critical point of view
on the applications of copulas is provided by Mikosch (2006).

242  Extreme-oriented modelling

Bortot and Tawn (1998) identify four critical components of the behaviours of extremes
for stationary sequences: (i) the probability of exceeding the threshold, (ii) the
distribution of the exceedances of the threshold, (iii) the long-range dependence
between exceedances and (iv) the local clustering of exceedances within any set of
dependent exceedances of the threshold. The basic theory behind impact of
dependence in modelling of extreme, presented in Section 2.3., provides an asymptotic
characterization of (ii), i.e. the distributional behaviour of extremes, by setting
conditions on the rest of these properties. For high thresholds of extremes, it assumes
presences of local clustering, quantified through the extremal index, but only weak
long-range dependence between clusters. In general, the approaches to characterize
between-cluster dependence fall under the following categories: (a) some formulation
of probability mixing conditions, as Leadbetter’s (1983) D(u,,), which require that for
extremes over an adequately high threshold a separation time exists above which they
can be viewed as forming independent clusters, and (b) second-order dependence
properties, suitable to characterize extremal dependence for Gaussian processes, as
Berman’s (1964) condition on the rate of autocorrelation decay. For within-cluster
dependence the natural characterization is the extremal index approach as detailed
above, but other conditional probability approaches, as the ones discussed in Section
2.3.3, have been formulated as well.

The asymptotic properties of extremes provide the theoretical basis for
extrapolation irrespective of knowledge of their parent distribution. In practice
though, issues in terms of statistical estimation from data arise. The main issues relate
to determining the rate of convergence to the asymptotic behaviour, quantifying
estimation bias and uncertainty, and identifying the impact of the threshold for which
dependence or independence is manifested. These are particularly relevant for the
frequency analysis of hydrological data. For instance, it has been argued that the use
of GEV distribution via the blocks method, entails wasteful usage of data, as only the
maximum per block is retained for modelling (Volpi et al., 2019), which is a central
arguments in favour of the peaks over threshold method instead (Pickands III, 1975).
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The peaks over threshold method may increase the sample of observations but in
theory, it too attempts to restrict the presence of persistence by selecting only the
maximum of a certain cluster, in order for the generalized pareto distribution to hold
as an approximation of the distribution of exceedances (Coles et al., 2001; Ferro and
Segers, 2003). In doing so, information on local clustering of data is discarded, without
even considering the ambiguity in defining independent clusters. On the other hand,
even for cases of asymptotic independence where the extremal index equals 0=1, it is
possible that at finite levels of exceedances clustering is observed, with cluster size
decreasing to 1 as the threshold increases; in essence, at sub-asymptotic levels the
threshold is important in determining the behaviour of the process. Also the bias and
the variability of the estimates are highly dependent on the model assumption, thus
without formal modelling it is possible to misinterpret empirical results. Apart from
the functionals of extremes identified at the beginning, aggregate exceedances are also
very important and heavily rely on the assumed model (Smith et al., 1997). In terms of
convergence to the asymptotic distributions, it has been shown to be very slow for
hydrological data (Koutsoyiannis, 2004a).

The latter are important arguments in favour of non-asymptotic methods for
modelling extremes, even though in this case as well, asymptotic results are useful to
infer the properties that should be retained in close-form modelling (Koutsoyiannis,
2020b). Below, we review literature contributions regarding sub-asymptotic methods
for extremes, which share three broad aims: i) modelling of exact (instead of
asymptotic) extremal properties based on the properties of the parent process, ii)
modelling dependent exceedances of a given threshold by multivariate analysis of
their upper joint tail, iii) modelling both dependence and marginal distribution of
extremes through autoregressive maxima models.

In terms of exact results, a number of studies on extremes have been published
in the hydrological literature. De Michele (2019) provides a review of approaches to
derive the exact distribution of maxima without assuming ‘identically distributed’
extremes. With a similar rationale but focused on relaxing the independence
assumption, Lombardo et al. (2019) derive the exact distribution of maxima taken from
low threshold POT with magnitudes characterized by an arbitrary marginal
distribution and first-order Markovian dependence, and negative binomial
occurrences. Volpi et al. (2015) derive the distribution function of the waiting time for
processes with Markovian dependence, while Serinaldi and Lombardo (2020) derive
the probability distribution of the waiting time till the kth extreme also under long-
range dependence. A sub-asymptotic treatment of dependence in rainfall extremes in
the framework of multifractal models is also described in Veneziano et al. (2006b). An
explicit derivation of ombrian models, i.e. generalized intensity-duration-frequency
curves, incorporating persistence has been provided by Koutsoyiannis (2020b), using
the extreme-oriented modelling framework based on k-moments (Koutsoyiannis,
2019¢).

The second type of studies aim at explicitly modelling local clustering of
extremes. To this aim, a lot of studies model the joint distribution of threshold
exceedances using bivariate distributions and typically assuming a Markov-chain
dependence structure (Ledford and Tawn, 1997; Smith et al., 1997; Bortot and Tawn,
1998; Ribatet et al., 2009). Common choices for the joint distribution are the bivariate
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t-tail model, as well as bivariate extreme value models (Ledford and Tawn, 1997;
Salvadori and De Michele, 2010). A marked issue however is the fact that Markovian
dependence may underestimate properties of extremes, e.g. Ribatet et. al (2009) find
that flood durations are under-estimated in the case of first-order Markov chain. On
the other hand, use of higher-order Markov chains increases complexity. A second
approach is based on hierarchical modelling by using a latent stochastic process to
infer parameters of the distribution of threshold exceedances in order to simulate
extremal clustering. Such models for rainfall extremes are proposed by Bortot and
Gaetan (2014, 2016), who also provide a detailed discussion on the degree of extremal
clustering that the models can produce.

As far as autoregressive maxima approaches are concerned, to our knowledge
applications in the hydrological literature are very scarce. The moving-maxima
process is a representation of the max-stable processes introduced by de Haan (1984).
This approach refers to replacing sums by maxima in the linear time series approach
and using a Fréchet distribution for the innovation terms, which lead to a max-stable
process, since all its finite dimensional distributions are max-stable. Moving-maxima
processes bare connections to multivariate extreme value distributions as well as to
stable and moving-average processes; e.g. these are discussed in Hall et al. (2002). A
special class of moving maxima process are max-ARMA processes, whose theoretical
properties are studied by Davis and Resnick (1989). For a first-order moving maxima
process (ARMAX), the extremal index equals 0 = 1-a, while Berliant et al. (2006) show
that for a general type of moving maxima processes, asymptotically it holds that 6 =
a(1) = max;soa;. Although the theoretical properties are well developed (de Haan,
1984; Davis and Resnick, 1989), the statistical applications are not as established in the
hydrological domain. An exception is the work of Tyralis and Langousis (2019)
modelling intensity-duration-frequency curves through max-stable processes.
Notably more applications of max-stable process can be found for the spatial
modelling of rainfall extremes (e.g. Davison et al., 2012).

243  Overview of approaches

The development of extreme value theory has enabled the decoupling of the modelling
of the extremes from that of the parent process. The limiting laws of maxima provide
the basis for theoretically consistent extrapolation to the range of unobserved events
requiring estimation only of the three first moments of the sample maxima. The latter
is convenient because most available records are of short length and cannot support
the any-order estimation of the process’s distribution, while even for longer records,
estimation based on higher-order ordinary moments is very uncertain. This issue has
been resolved only recently, by the development of approximately unbiased higher-
order moment estimators that employ all data and are known as knowable (k-)
moments (Koutsoyiannis, 2019c¢). The inclusion of higher-order moments in the model
calibration may bridge the modelling of nonextreme properties of the parent process
with a faithful representation of its extremes.

Although the decoupling of the distributional modelling of extremes from the
parent process under EVT has been very practical, it has also led to a general disregard
for the links of extremes to the parent process. Consequently, in the modelling of the
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parent process, behaviours of extremes other than their marginal distribution are
usually overlooked, by implicitly assuming independence. On the other hand, in
extreme-oriented modelling approaches, absence of long-range dependence is
commonly taken for granted, whereas short-term clustering, i.e. local dependence, is
treated as a separate behaviour, rather than a byproduct of temporal dependence in
the parent process. In a more subtle way, the attachment to the assumption of
independence is also manifested by the increasing number of trend studies invoking
deterministic causality in case of non-IID extremes (Koutsoyiannis and Montanari,
2015). The deviations of hydrological extremes from the IID assumption, their
implications and modelling are the focus of Chapters 4-8, while Chapter 3 revisits the
second-order structure of the rainfall process.
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In this chapter, the second-order dependence theory is applied to the rainfall process
with the aim to investigate its persistence dynamics. The identification of persistence
in a natural process provides empirical grounds for investigating the long-term
temporal properties of its extremes. While persistence is identified in various natural
processes, it is usually less acknowledged in the rainfall process. Thus, it is revisited
here using a global rainfall dataset.

3.1 Introduction

Since Hurst (1951) brought long-term persistence, also known as long-range
dependence (LRD), into scientific discourse, the interest in this behaviour has been
rising. This is mainly due to its serious implications into the modelling and design
processes in various scientific fields and particularly in water resources (O’Connell et
al.). Another fact contributing to its growing popularity is that LRD has been identified
in many climatic variables, such as temperature (Pelletier, 1998; Koutsoyiannis, 2003),
rainfall (Fraedrich and Larnder, 1993; Pelletier and Turcotte, 1997), wind power
(Haslett and Raftery, 1989) and the North-Atlantic oscillation index (Stephenson et al.,
2000). The Hurst behaviour has also a strong physical basis, as it is derived from the
principle of entropy maximization (Koutsoyiannis, 2011a), a principle which can be
used to determine the theoretical probability distribution model for rainfall
(Papalexiou and Koutsoyiannis, 2012). More detailed discussion on the history and
relevance of the Hurst behaviour can be found in the review paper by O’Connell et al.
(2016).

In this analysis, we aim to investigate the dependence properties of annual rainfall.
Studies regarding LRD in annual rainfall are usually limited in a specific area and/or
utilize datasets of relatively short lengths (Kantelhardt et al., 2006; Bunde et al., 2013;
Zhai et al., 2014). Short record lengths can introduce bias into the estimation of long-
term persistence properties, which in general, need more than 100 years in order to
avoid underestimation (and, in cases of very strong dependence, even more than 1000)
(Koutsoyiannis and Montanari, 2007). A majority of other studies investigate the
dependence structure of rainfall at sub-annual or even smaller scales (Papalexiou et
al., 2011), but in that case, the phenomenon gets complicated due to the combined
effects of seasonal variation and intermittency. On the other hand, paleoclimatic
reconstructions suggest strong LRD behaviour in multi-decadal to centennial time
scales (Pelletier and Turcotte, 1997; Markonis and Koutsoyiannis, 2015). Evidently,
there are still ample grounds for research on the existence of LRD in annual
precipitation.

Herein, we analyze more than one thousand annual precipitation records of
length of a hundred years or more from different areas of the world. To quantify LRD,
we estimate the Hurst coefficient, through the variance-based method (climacogram)
and employ Monte Carlo method to identify a common Hurst coefficient for all the
records. Additionally, we perform a simple test on the autocorrelation structure of the
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first few lags to examine whether the hypothesis of a Markovian autocorrelation
structure is justified or not. Finally, we discuss the effect of time-scale and record
length on LRD estimation.

3.2 Dataset

The instrumental data are obtained from the Global Historical Climatology Network
(GHCN-Daily, https://www.ncdc.noaa.gov/ghend-data-access), which contains daily
data from more than 50 000 land surface stations around the globe. A significant
percentage of these records exhibit the typical issues of most datasets available, i.e.
missing values, short record length and rainfall values of questionable quality, such
as unrealistic outliers. In order to restrict data quality to a significantly high level, we
filter the dataset using certain criteria.

We study only the stations satisfying the following conditions: a) record length
over 100 years, b) missing values less than 20% and, ¢) suspect values with quality
flags less than 0.1%. Initially, in order to construct the annual series we delete all daily
values assigned quality flags, indicating unrealistically large values, and then estimate
the average daily value per year. Notably, because of the existence of missing values
within most records, summing up all daily values of a year would result to smaller
annual estimates than the real ones; to a degree dependent on the number of missing
values. It would be clearly more robust to estimate the daily mean values per year.
This is only performed for the years having less than 20 missing daily values while the
rest are considered missing. Then, all stations having more than 20% missing yearly
values are removed. This screening results in 3477 stations with lengths varying from
100 years to 173 years. Among the 3447 stations there are different combinations of
record lengths and missing values, e.g., 558 stations having 100 years in a sequence
with no missing values, 1474 stations with more than 100 values and only eight
stations without any missing values. We choose to analyze 1265 stations having more
than 100 values and a missing values percentage less than 15%. Obviously, this choice
ensures a higher quality dataset for our analysis.

3.3 Methodology and results
3.3.1 Variance scaling method

The method employed herein is based on the study of the variability of the data
averaged at different timescales. The method is sometimes referred to as aggregated
variance method, but what is actually aggregate is the timescale and not the variance.
Specifically, let X; be a stationary process on discrete time j (referring to years in our

case) with standard deviation ¢ and let:

jk
E X, k=123. (26)
1=(-1)k+1

denote the averaged process at timescale k, with standard deviation o). In the case of

(k) _
X =

1=

an uncorrelated process, the standard deviation of X}k) is obtained by o® = k% In the
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opposite case, i.e. if the process is a Hurst-Kolmogorov process, as introduced in
Section 2.2, the abovementioned law is invalid. Instead one obtains the elementary
scaling property:

o) = k15 (27)

where H is the Hurst coefficient, which for stationary and positively correlated
processes varies in the range (0.5, 1). The value of H = 0.5 denotes time independence,
while smaller values are indicative of anti-persistence. The autocorrelation of the
aggregated process is independent of the scale of aggregation k and is given as follows:

1. . . .
o = py =3[+ D+ G-DH] -1, j>0 29

To apply the method to the data we use the climacogram tool (Koutsoyiannis, 2011b),
which is the double-logarithmic plot of the standard deviation ¢ of the aggregated
time series at scale k versus the time scale k. The H value is estimated as the slope of
the fitted line (least squares regression). In a variant of that method, the estimation
bias of the standard deviation, which depends on the time-scale of aggregation, is also
considered.

Each averaged time series is constructed as follows. For every scale k, the data are
divided into n groups, the number of which is obtained as the fraction of the data
length L versus the scale value k. For example in time scale k = 4, 120 years would be
divided in 30 non-overlapping groups of 4 years. Subsequently, the values within each
group are averaged according to equation (26). However, when missing values are
encountered, the process of averaging may become problematic depending on the
number of missing values; if more than a half of the values is missing, then the estimate
would be quite uncertain (Markonis, 2015). To overcome the issue, we use a simple
criterion on the number of missing values before estimating the averaged series within
each group: a) for scale k = 2 the average value is estimated only when both values
exist b) for scales k > 3 the average value is estimated only when there are at least
three values within the group. According to the latter rule, we estimated the averaged
series for all the scales between kmin and kmax, where kmin = 1 and kmax < L /10 so that
the variance in the maximum scale is estimated from at least 10 values (Koutsoyiannis,
2003). For a 100-year record length this would be the variance of the decadal means.

The results of the algorithm implementation for the instrumental data are shown
in Table 3.1 and Figure 3.1, suggesting evidence of weak long range dependence. More
specifically, it was found that 85% of the data exhibit H > 0.5, yet with notable
variation. For example, only half of the data show H > 0.59, i.e. a more pronounced
dependence structure. A very strong dependence structure, H > 0.80 is reported for
the 2.5% of the records, while for 15% of them we observe lack of dependence. For the
95% interval, H values fluctuate between 0.4-0.8.
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Table 3.1 Summary statistics of the Hurst parameter as estimated from the climacogram
method applied to the 1265 records. Qindicates the empirical quantile

Min Qs Qx Median Qs Qyy Max Mean SD

0.23 040 0.53 0.59 0.65 0.80 0.99 0.59 0.1

120
100
80 |

60 |

Number of stations

40|

20

Figure 3.1 Empirical distribution of the Hurst coefficient H as resulted by applying the
aggregated variance method to the 1265 annual rainfall records.

In order to test the effects of our parametric choices for the value of the minimum
and maximum scale, we examined how the median and the variance of H estimates
vary for different kmin and kmax. As can be seen in Figure 3.2, the variance of the Hurst
parameter estimate becomes larger as the value of the minimum scale kmin increases;
yet the value of the median in the estimate remains the same. Therefore, our choice of
kmin = 1 is well-justified, since greater values of kmin only amplify the uncertainty in H
estimation. In addition, the observation of the same median strengthens our
hypothesis of the LRD structure, because in the alternative hypothesis of short term
dependence, we would notice some change in the climacogram curvature and
correspondingly to the logarithmic slope. The results for the kmax were similar. It can
be seen in Figure 3.3 that the decrease in the number of values in the last scale increases
the variance of the Hurst parameter estimate in this case too. Therefore, the choice of
n > 10 leads to more reliable results compared to using smaller values of n.

62



0.8

0.6

0.4

Hurst coefficient

0.0

Fmin= 1 Kinin=2 Fmin = 3 Kipin= 4 kinin=3

Figure 3.2 Box-plots depicting the sample differences resulting from variations in the value of
minimum scale kmin when applying the climacogram method.
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Figure 3.3 Box-plots depicting the sample differences resulting from variations in the number
of minimum values # in kmax when applying the climacogram method.

3.3.2 Least Square Based on Standard Deviation Method (LSSD)

Koutsoyiannis (2003) demonstrated how the use of the classical estimator for the
standard deviation can introduce significant negative bias in the estimation of the
Hurst parameter by the variance scaling method. This is because the hypothesis of
independence, which is a necessary condition for the use of the estimator, is violated
in the case of processes with strong LRD behaviour. This shortcoming may be
overcome by the use of the Least Square Based on Standard Deviation Method (LSSD)
(Koutsoyiannis, 2003; Tyralis and Koutsoyiannis, 2011b), which performs a
simultaneous estimation of the Hurst parameter H and the standard deviation o using
an approximately unbiased estimator for the latter.

Here, for simplicity reasons we applied the LSSD method (Tyralis and
Koutsoyiannis, 2011) only to the sample of the 558 (44% of the total) stations with no
missing values and then, compared our estimate with the one obtained by the simple
climacogram method for the same sample. As shown in Table 3.2 and Figure 3.4 the
two methods show small deviations from each other. Overall, the value of the bias
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fluctuates between 1-2% with the bias in the estimate of the average being
approximately 1%. The bias is negligible in this case because the estimated Hurst
parameter is not very high.

Table 3.2 Summary statistics of the Hurst parameter as estimated from the climacogram
method and the LSSD method both applied to the 558 records without missing values. Q
indicates the empirical quantile.

Climacogram LSSD
method  method

Mean 0.56 0.58
SD 0.10 0.09
Min 0.28 0.33
Q5 0.37 0.40
Qs 0.50 0.52
Median 0.56 0.57
Qs 0.63 0.64
Qo7 5 0.78 0.79
Max 0.90 0.92
Aggregated Variance method LSSD method
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Figure 3.4 Double histogram depicting the empirical distribution of the Hurst coefficient H
resulting from the climacogram method (left) and from the LSSD method (right), both applied
to the 558 annual rainfall records without missing values.

64



3.3.3 Monte Carlo testing

We also investigate the existence of a theoretical distribution of the Hurst coefficient
that can satisfactorily match the empirical one; i.e. whether there is a unique Hurst
coefficient which could be considered representative for all the records. In order to
produce a theoretical sample of time series exhibiting HK dynamics, we use a simple
algorithm that generates Fractional Gaussian Noise based on a multiple timescale
fluctuation approach (Koutsoyiannis, 2002). We generated 1265 time series that
reproduce the record length, the mean and the standard deviation of the empirical
sample, repeat the same procedure for several theoretical H values and then estimated
the empirical ones. The distribution of the empirical estimates for the synthetic time
series was compared to the distribution of the empirical estimates for the historic time
series used in the analysis. It appears that the value of H = 0.58 (Figure 6) yields the
most satisfactory match. However, it is worth noticing that that 2.5% of the stations,
exhibiting H > 0.8, are outside the range of the theoretical distribution.

empirical time series synthetic time series

120

100

80

60

Number of stations

40

20

Figure 3.5 Paired histogram depicting the match of the empirical (blue) and theoretical
(purple) distribution of the Hurst coefficient H resulting from applying the aggregated
variance method to the 1265 historical records and 1265 synthetic records respectively. The
synthetic records are realizations of a stochastic process characterized by a theoretical Hurst
coefficient H = 0.58.

3.34  Autocorrelation analysis

The estimated Hurst coefficient is not high enough to allow for any certain conclusion
on the type of the dependence structure, since relatively low Hurst coefficients (0.5-
0.6) can be estimated when there is short range dependence or no dependence at all
due to algorithmic inadequacies, sample bias and estimation uncertainty. To this end,
we also employ the autocorrelation function, to further examine the dependence
properties of rainfall. Still one should keep in mind that the classical autocorrelation
estimator, as in the case of standard deviation, is biased downwards (Koutsoyiannis,
2003; Dimitriadis and Koutsoyiannis, 2015). However, since the estimator is biased
downwards, any result in favour of LTP, would mean that in reality, the LTP is even
stronger.
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The autocorrelation coefficients of the first three lags for the instrumental data are
low (Table 3.3).

Table 3.3 Summary statistics of the estimated autocorrelation coefficients for lags 1, 2, 3.
Qindicates the empirical quantile.

p1 P2 03

Mean 0.12 0.03 0.05
SD 011 012 011
Min  -019 -035 -0.32
Q5 -010 -016 -0.15
Qo5 005 -0.05 -0.02
Median 011  0.02  0.05
Q7s 018 010 0.2
Qgs 037 029 027
Max  0.62 059 047

On further investigation, we test whether independence is a plausible scenario for the
dependence structure of our data. We produced 1265 independent, i.e. uncorrelated,
time series of the same sample size and estimated the sample autocorrelation
coefficients (Figure 3.6). It can be seen that for all three lags the value of the median of
the historic data is greater than the one estimated from uncorrelated synthetic data.
This is more obvious in the case of autocorrelation of lag-1 where for the 95% interval
the values of the independent data fluctuate in the range —0.175 to 0.173, while the
historic ones are in the range —0.09 to 0.37. In addition, in all three cases, the historic
samples exhibit significantly fewer negative values than the uncorrelated ones.
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Figure 3.6 Box-plots depicting the resulting sample differences of the autocorrelation
coefficient p between the empirical series and uncorrelated series for lags 1, 2, 3.

The above results could be typical for a Markov process too, also known as AR(1)
process. To address this issue, a simple ad hoc test, which exploits the distinctive
properties of Markov processes, was designed. Under the Markov hypothesis, the
theoretical autocorrelation coefficient for lag 2 would be estimated as p, = p%, where
p1 is the known empirical autocorrelation. Likewise, the Markovian autocorrelation
coefficient for lag 3 would be given as p; = pj. The resulting theoretical estimate is
compared to the empirical one for the same lag; if the empirical value is higher than
the theoretical AR(1) one, then the Markov hypothesis weakens.

We applied this comparison to the 52% of the stations for which all the
autocorrelation coefficients for lags 1-3 are positive (Figure 3.7). It is evident that the
empirical estimates are considerably higher than the theoretical ones resulting from
an AR(1) structure and therefore, the Markov assumption becomes less likely. In
addition, the empirical estimates do not follow the exponential convergence to zero of
the Markovian ones, but instead, remain approximately stable for lags 2 and 3; this is
in agreement with the theoretical behaviour of LRD whose distinctive feature is the
existence of slowly decaying autocorrelation function (Beran, 1994).

67



0.6

0.5
U —
=
2
2
= 0.4 o
5]
o
=
£ 03
=
)
2 I
502
£
: L]
: [

0.1

T T ——
0.0 —— ——
empirical AR(1) empirical AR(1) empirical AR(1)
1 2 3
lag

Figure 3.7 Box-plots showing the sample differences of the autocorrelation coefficient p
between the empirical series and synthetic series generated from an AR(1) model for lags 1, 2,
3.

Having tested the cases of independence and short-range dependence, we finally
examine whether the autocorrelation structure is consistent with that of a FGN model.
In Figure 3.8 the empirical autocorrelation coefficient p; is plotted against the
corresponding estimated Hurst coefficient H as obtained from equation (27). The
diagram shows that the autocorrelation structure is consistent with that of a FGN
model. The deviation between the theoretical and the empirical estimates becomes
greater in the region of high values of H; still this is justified due to the increased
negative bias in the autocorrelation estimation in that case.

68



e empirical

06 - a—theoretical et

autocorrelation coefficient p;

-04 -

-0.6 -

Hurst coefficient H

Figure 3.8 Observed Hurst coefficient H vs. autocorrelation coefficient p1 points of the 1265
annual rainfall records and the theoretical line typical of a HK model.

3.4 Discussion and conclusions

The analysis of the global instrumental dataset shows that there are notable indications
of weak LRD in the annual rainfall. As the Hurst parameter is not very high, the simple
application of the climacogram method induces only 1-2% negative bias in the Hurst
coefficient estimation and therefore, the estimated via Monte Carlo, theoretical
common value of H = 0.58, may be considered accurately representative for
instrumental data.

The study of the autocorrelation function shows that it is consistent with the
autocorrelation of a FGN model, even though for a certain percentage of the stations
the Markov hypothesis could not be falsified. Specifically, the existence of negative
correlations in all three lags examined did not permit the performance of the
abovementioned method in the case of the 48% of the stations. Some studies using
smaller data sets (Potter, 1979; Fraedrich and Blender, 2003; Kantelhardt et al., 2006)
supported the appropriateness of the Markov structure, but they did not investigate
the differences between actual and theoretical auto-correlation in larger lags (Figure
3.7). These differences might be quite small, it has been shown though, that they might
have serious implications when it comes to the estimation uncertainty (Koutsoyiannis
and Montanari, 2007). For instance, in terms of trend significance, the observed
changes in rainfall might be considered quite rarer than they actually are (Cohn and
Lins, 2005). Lastly, it was shown as well, that the autocorrelation function significantly
departs from the case of independence.

Although the above findings are in favour of the existence of a stronger
dependence structure than the one typically assumed in literature (Potter, 1979;
Fraedrich and Blender, 2003; Kantelhardt et al., 2006), it seems that there is a
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discrepancy between smaller and larger time scales (Fraedrich and Larnder, 1993;
Pelletier and Turcotte, 1997; Poveda, 2011; Ault et al., 2013). To this end, the most
important source of uncertainty in the determination of LRD, which is the record
length, should not be overlooked (Koutsoyiannis, 2002; Koutsoyiannis and Montanari,
2007). Although using stations with relatively high —compared to the majority of the
existing rainfall data records— record length, the accurate detection of long range
dependence cannot be guaranteed because this behaviour may require even longer
record length to be revealed. Subsequently, the low estimates of Hurst parameter in
instrumental time series could be attributed to the limited record length available in
some cases and therefore, should be considered characteristic only for this time
horizon of approximately 100 years. This is also suggested by the work of Markonis
and Koutsoyiannis (2015), which emphasizes the influence of time-scale when it comes
to the analysis and reveal of the dependence of a time-series. An additional analysis of
longer-term records is presented in Chapter 6.

It is also important to consider the uncertainty induced due to measurement
errors or false homogenization techniques which may introduce bias to the estimation
of LRD (Steirou, 2011). GHCN-Daily highlights the potential bias provoked by
changes in instrumentation over the years and it is possible that this kind of bias could
also affect the estimation of H.

Ultimately, the high variability of the results is in accordance with the inherent
uncertainty of the phenomenon, apart from algorithmic or data choices. An important
conclusion drawn from the analysis is that simplifying assumptions commonly used
in practice, such as inter-annual independence, may, in cases, significantly, depart
from reality and hence, a thorough and careful study of the dependence properties of
the dataset, as performed here, is recommended, especially when longer time horizons
are of interest.

70



This Chapter is the first of the two dealing with the temporal dynamics of hydrological
extremes induced by seasonality. A novel framework is formulated to address the
question of objectively characterizing and modelling seasonality of rainfall extremes.
The effects of seasonality in the distributional modelling of rainfall extremes are
discerned using extreme value theory. A robust parameterization approach is
proposed to resolve consistency issues reported in the literature. The effectiveness of
the proposed scheme for seasonal characterization and modelling is highlighted when
contrasted to results obtained from the conventional approach of using fixed
climatological seasons. To these aims, a dataset comprising long-term daily rainfall
records (>150 years) is employed.

41 Introduction

Seasonality is a dominant feature of most hydrological processes including extreme
rainfall (Hirschboeck, 1988). It implies intra-annual periodic variability which pertains
to both timing and magnitude of extreme rainfall. An accurate and effective
characterization of seasonality is critical to a wide variety of hydrological applications.
For instance, it is useful in the scheduling of various flood preparedness measures,
including management of stormwater infrastructures (Dhakal et al., 2015) and
reservoir operation (Chiew et al., 2003; Fang et al., 2007; Chen et al., 2010a). Similarly,
seasonality characterization is exploited in advanced schemes of flood-frequency
analysis incorporating causative mechanisms (e.g. Sivapalan et al., 2005; Li et al., 2016)
and may be useful for medium-range flood prediction (e.g. Koutsoyiannis et al., 2008;
Wang et al., 2009; Aguilar et al., 2017), for which inclusion of seasonal extreme rainfall
may increase prediction skill. Modelling of seasonal rainfall extremes — which typically
implies some sort of frequency analysis — may also inform the selection of design
values for related infrastructure. Additionally, the latter provides support to within-
year operation of water resources systems, design rainfall estimation (Golian et al.,
2010; Efstratiadis et al., 2014) and probabilistic assessment of extreme events occurring
in a given season. Nowadays, extreme rainfall seasonality also prompts renewed
scientific interest as a field of trend analyses (Ntegeka and Willems, 2008; Dhakal et
al., 2015; Tye et al., 2016; Wu and Qian, 2017).

Characterization of extreme rainfall seasonality is scarcely dealt with by the
relevant literature. Most of the established methods are devised to identify the
temporal span of a wet season and assess its significance, typically by a priori
identifying a single wet season. For example, directional statistics are typically applied
to identify the high flow season (Cunderlik et al., 2004a; Baratti et al., 2012; Chen et al.,
2013) and have also been applied to characterize the timing of seasonal rainfall
(Parajka et al.,, 2009, 2010a; Lee et al., 2012). However, directional statistics are
inefficient when extremes occur over multiple seasons, which is very likely in the case
of rainfall (Cunderlik and Burn, 2002). Recently, Dhakal et al. (2015) provided an
improvement to the traditional method of directional statistics by adopting a non-
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parametric approach to capture multiple modes in the timing of annual rainfall
maxima. Yet they noted that the proposed method is sensitive to the subjective
selection of threshold values to assess significance of circular density estimates.
Multimodality of the seasonal regime is also dealt with by analyzing the monthly
relative frequencies of extreme occurrences (Cunderlik and Burn, 2002; Cunderlik et
al., 2004a). This approach, however, relies on the subjective identification of the
monthly time step to characterize seasonality. The latter along with the four
climatological seasons are often used when large-scale or global analyses are
performed (e.g. Rust et al., 2009; Villarini, 2012; Serinaldi and Kilsby, 2014; Papalexiou
and Koutsoyiannis, 2016) but lead to disregarding the large spatial variability of
atmospheric patterns and may not align well with local behaviours (Pryor and Schoof,
2008; Dhakal et al., 2015). Moreover, the fixed partitions do not resolve the crucial
question of the identification of the optimal number of seasons, therefore resulting in
over-parameterization of the seasonal model of extremes due to the large number of
seasons that is adopted, particularly in the 12 month model.

A sub-optimal characterization of seasonality could be a reasonable
compromise when one is interested in characterizing the timing of the most extreme
events only. However, technical applications often require the modelling of the
frequency of extremes during the whole course of the year. In this regard, several
previous studies have either considered climatological information or employed
statistical methods along with some degree of subjective judgement to estimate the
optimal number of seasons and their displacement in time (e.g. Durrans et al., 2003;
Chen et al., 2010a; Baratti et al., 2012; Bowers et al., 2012). Coles et al. (2003) adopted a
different approach by treating seasonal temporal limits as unknown parameters to be
identified within a Bayesian framework. Yet, they also identified the number of
seasons a priori through subjective inference.

The above literature review highlights a methodological gap in the objective
identification of the optimal number of extreme rainfall seasons and their duration. To
the best of the authors” knowledge, existing methods are not suitable for directly
inferring multimodality from the seasonal regime and concurrently identifying
segmentation points between seasons in an objective manner.

The research herein presented proposes a two-purpose framework for (a)
objective seasonality identification and (b) modelling of rainfall extremes in order to
effectively estimate the seasonal probability of extreme events. To this end, we
introduce two alternative methods for season identification, which are characterized
by different levels of parsimony in terms of data requirements, therefore providing
two options for practical applications. Our approach employs an information-theoretic
framework (Akaike Information Criterion, AIC) to estimate the optimal number of
seasons. In order to describe the frequency of extremes in each identified season we
use the GEV probability distribution. We discuss the consistency of the model at
different time scales. Finally, in order to demonstrate the efficiency of our framework
we present a comparison with the traditional 4-season approach.

An extended dataset of long daily rainfall records is herein investigated, as
detailed in the next section. The length of the records, the shortest one covering an
observation period of 150 years, allows us to inspect the impact of uncertainty, which
may be relevant for seasonal extreme value analyses (Cunderlik et al., 2004b). To
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reduce uncertainty we propose a robust parameterization approach of seasonal-
annual distributions which is supported by empirical evidence.

4.2 Dataset

Our dataset includes 27 daily rainfall records each one spanning over 150 years.
Eighteen of them are collected from global databases, namely, the Global Historical
Climatology Network Daily database (Menne et al., 2012) and the European Climate
Assessment & Dataset (Klein Tank et al., 2002). Figure 4.1 shows the geographical
location of the stations, while Table A.1 (Appendix A) reports the coordinates of each
station, the observation period, as well as the number of years that are fully covered
by observations after quality control and screening of missing values. For the
extraction of the annual maxima we employ a methodology proposed by Papalexiou
and Koutsoyiannis (2013); accordingly, an annual maximum is not accepted if (a) it
belongs to the lowest 40% of the annual maxima values and (b) 30% or more of the
observations for that year are missing. For seasonal and monthly maxima we compute
statistics only if number of missing values is less than 10% of the total sample (season
or month). The longest series is that of Padua, spanning a period of 275 years, that is
the longest rainfall record existing worldwide (Marani and Zanetti, 2015).
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Figure 4.1 Map of the 27 analyzed stations with daily rainfall records spanning over 150 years.

4.3 A new method for identifying seasonality of extreme rainfall

The methodology that we propose to identify seasons is inspired by cluster analysis
and model selection techniques. Seasons are regarded as groups (clusters) of
consecutive months with similar behaviour of extremes. The question of selecting the
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number of seasons that best describe the dataset is addressed here via a model
selection process under the assumption that different numbers of clusters (seasons)
represent alternative plausible models for the dataset. Two alternative methods for
season identification characterized by different level of parsimony are considered here
and described below.

In what follows, we denote random variables by underlined symbols and their
realizations by plain form, respectively. We also use bold characters for vectors. We
denote season, month and year with the indexes i =1,.n, j =1,...,12, and k = 1,..kmax,
respectively, where 7 is the number of seasons and kmax is the record length in years.
We assume that n is fixed a priori and denote with C; the vector containing the j values
of contiguous months belonging to the same season i, and with s; its size. Accordingly,
we define the following random variables:

* R;jxis the maximum daily rainfall amount of season i, month j and year k,

e R;;is the temporal average of maximum daily rainfall of month j of season i

P 1 kmax .
along the record, namely, R;; = 21 Riik s

. . 1
* R; is the temporal average of the R;; values along the season i, R; = - Yiee; Rij-

For instance, R25,12 for season i=2 defined by ¢, =(5,6,7) denotes the maximum daily
rainfall observed in May of the 12th year of a given record and belonging to the 2nd
identified season of the year, which also includes months June and July; likewise, Rz 5
is the sample average of maximum rainfall observed in all May days of the record,
while, Rz is the sample average of all monthly averages belonging to season 2, in this
case of May, June and July.

We call the first method for season identification the SSD algorithm. It is based
on the computation of Sum of Squared Deviations (SSD) of the R; values from their

seasonal average, R; for all seasons according to the equation:

SSD = Z D Ry~ R (29)

i=1 jec;

This metric is evaluated for each possible clustering combination C; of consecutive
months for the given number of seasons, thus enabling the identification of the lower
value of SSD, which identifies the optimal partition of the year into n seasons. We
require a season to span at least two months and allow the algorithm to group months
across different calendar years. The requirement for a season to span at least two
months implies that the maximum number of seasons is 6, but preliminary
investigations showed that more than three seasons are rarely present in extreme
rainfall. Therefore, we limit our attention to n values ranging in the interval (1-4).

Essentially, the SSD algorithm minimizes the within-cluster variance of the
average value over the years of the monthly rainfall maxima and can be considered as
a simplification of the well-known k-means algorithm (MacQueen, 1967). Since
seasons may include contiguous months only, and the algorithm deals with only 12
data points to cluster —the average over the years of daily maximum rainfall values
for each month— the number of possible combinations is relatively low and the
method is parsimonious.
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In order to identify the optimal number of seasons we define alternative
probabilistic models, with different level of parsimony, to describe the frequency of
occurrence of extreme events in each season and assess their ability to optimally fit the
observed record. Accordingly, we first select a trial value for the number # of seasons
in the range (1-4) and partition them by applying the above SSD algorithm. To describe
the probability distribution of rainfall in each season and the whole year we form a
mixture model with n seasonal components, each described by its own probability
distribution. Hence, according to the law of total probability, the probability
distribution of the seasonal model for a generic seasonal random variable U takes the
form:

fg(”} A1y eee s an) = 2 wifgi(ui; ui) (30)
i=1

where w; are weights adding up to 1. They are obtained as the ratio of the season’s
length in months, s;, versus the whole twelve-month period, i.e. w; = 5,/12; and a; is a
seasonal parameter vector. Here f;; is a seasonal probability distribution for
U describing realizations u; in season i. Note that by applying the law of total
probability instead of deriving the annual probability distribution as the product of
the seasonal ones, we avoid relying on the assumption of independence of the random
variables U;, which was adopted in other studies (Durrans et al., 2003). Therefore, this
is a more general approach also appropriate for the cases of rainfall maxima being
correlated among seasons.

The above step requires identifying and fitting a candidate model for the
fu, probability distribution. We propose two alternative models for the seasonal
probability distribution fy;(u;, 4;) which are characterized by different level of
complexity.

The first option, which we call Average Based (AB) method, identifies the
random variable U;, as the monthly temporal average R;;. Then, we assume that
f R;; (R;j, 4;) is a uniform distribution given by:

1
f Rij (Ri:j’ ai) b (31)

1
where in this case a;contains only one parameter, namely, b; = maxR;; . Preliminary
Jeci

analyses showed that the uniform distribution provides an efficient representation of
the frequency of the R;; realizations, by minimizing the number of involved
parameters. The above approach imposes an upper limit to the average value of the
monthly maximum rainfall depth and sets the lower limit to zero.

The second option, which we call Complete Data (CD) method, identifies the
random variable U;, as the maximum daily rainfall in each month j of the season i for
the year k, which has been previously introduced as R;;;. Then, we assume that
f Rij (Ri;x a;) is described by two alternative probability distributions with a different

tail behaviour, i.e. one characterized by a lighter and one by a heavier right tail, in
order to allow flexibility in fitting the observed rainfall maxima. The first is the two-
parameter Gamma distribution, given by:
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Froy(Rije as) = (32)

where a; = (;,0;) is the parameter vector with & and 0 being shape and scale
parameters, respectively. The second is the two-parameter Weibull distribution:

'ui Ri'j'k h —(Ryj e/ ADH
fupRiwm) =3(37) <™ )
3 14

where a; = (u;,A;) i is the parameter vector with y and A being shape and scale
parameters, respectively. By working on the monthly maximum rainfall instead of
their averages along the season, the CD method allows one to base the estimation of
the probability model on a more extended dataset.

The above methodology allows several modelling options, which differ for the
number of seasons, the application of either AB or CD method and the selection of
either the Gamma or the Weibull distribution in the CD method. The best modelling
option and the related optimal number of seasons is identified by applying the Akaike
Information Criterion (AIC, Akaike, 1973, 1974). The criterion statistic for the pth
candidate model, AICp, is given by:

AIC, = 2m, - 2InL, (34)

where m, is the number of parameters and L, is the likelihood of the pth candidate

p
model. The application of the criterion is straightforward as it only requires estimation

of the likelihood function for the candidate probability models defined by equation
(30). The minimum AIC value identifies the best candidate model by evaluating the
bias versus variance trade off; i.e., the condition in which as the model parameters
increase the bias of the model estimates decreases, yet their variance increases
(Burnham and Anderson, 2002). Hence, AIC provides an implicit interpretation of the
principle of parsimony which is pivotal in model selection (Box and Jenkins, 1970).
Although AIC has a solid foundation in information theory both in mathematical
terms and also from a philosophical point of view, its use is not still widely established
in hydrological applications (Laio et al., 2009). For an insightful review of AIC’s
properties, the reader is referred to Burnham and Anderson (2002).
Therefore, the workflow for season identification is as follows:
1. A trial value is adopted for the number # of seasons in the range (1-4);
2. The n seasons are partitioned by applying the SSD algorithm therefore
identifying the vectors ¢;, i = 1,.., n, of the indices of the months that are

included in each season;
3. AB and CD methods are applied to estimate the probability distribution of R;;

and R;;, respectively, in each season;

4. AIC is computed for candidate models;

The procedure is repeated for the other values of # in the range (1-4);

6. The resulting AIC values are compared therefore identifying the optimal
number of seasons, and their partition, for AB and CD methods.
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7. If nvalues resulting from AB and CD methods are the same, then the procedure
is terminated and the optimal partition of seasons is uniquely identified;

8. If the estimated n values differ, then the user is allowed to select the preferred
partition of seasons based on the suitability of R;; instead of R;;y, for the

considered design problem.

44 Extreme value analysis
441 Fitting the GEV distribution

Once the optimal number of seasons and their partition have been identified, to
estimate seasonal extremes one needs to fit a suitable probabilistic model for the
seasonal block maxima series. The latter is formed by extracting from each identified
season the maximum daily rainfall observed in each year. It is worth noting that
distributions that were previously considered for seasonal partitioning (the Gamma
and the Weibull) are not suited for fitting extreme values and therefore are not an
option for the current target.

Extreme Value Theory (EVT) suggests that the distribution of the maximum of
independent and identically distributed (IID) random variables asymptotically
converges to three limiting laws (Fisher and Tippett, 1928), which are the Gumbel
distribution (Type I), the Fréchet distribution (Type II) and the reversed Weibull (Type
I1I), that can be unified under the single analytical form provided independently by
von Mises (1936) and Jenkinson (1955) and known as Generalized Extreme Value
(GEV) distribution, given by equation (21). As discussed in Section 2.3, in the case a
limiting distribution exists for extremes from any parent distribution of the underlying
stochastic process, then this is the GEV. Therefore, it could be the limiting distribution
also in the case of monthly rainfall maxima described by the Gamma and Weibull
distributions as in the CD method above. Leadbetter (1974) showed that convergence
to GEV is guaranteed even in the presence of short-range correlation in the underlying
stochastic process. In our case, the implication is that GEV emerges as limiting
distribution even if rainfall maxima are weakly correlated. Koutsoyiannis (2004a) has
shown mathematically that GEV still emerges as asymptotical distribution in the
presence of different parent distributions from season to season. In practical
applications, though, in which a maximum value is extracted from a small number of
events, the asymptotic condition is unlikely to hold. In this respect, Koutsoyiannis
(2004a) demonstrated that the convergence of the distribution of maxima to the GEV
with a positive shape parameter (Type II) is good even for a small number of events
and also for parent distributions belonging to the domain of attraction of the Gumbel
(Type I), due to the increased flexibility of the three-parameter distribution. On the
contrary, convergence rates to the Gumbel distribution are very slow even for
distributions belonging to the domain of attraction of the Gumbel family (see also
Papalexiou and Koutsoyiannis, 2013).

Here, we assume that the underlying stochastic process is given by the series of
the monthly maxima of daily rainfall in each season. We aim to fit with the GEV
distribution the seasonal samples that are obtained by extracting from each season
iand each year k the maximum daily value R;; therefore obtaining a block maxima
series, which is assumed to be a realization of the random variable R;,. We also fit the

77



series of the annual maxima Rywhich is assumed to be a realization of the random
variable R;. This approach shall allow one to estimate the extremes for the seasonal
periods and the total annual period and ensures that both the seasonal and annual
approaches refer to the same sample size when fitting the GEV, as the block maxima
sampling method is used, i.e., one extreme event is sampled on a yearly basis for both
the seasonal and annual periods.

442 Investigating consistency of seasonal and annual distributions

A considerable part of related literature (e.g. Buishand and Demaré, 1990; Durrans et
al., 2003; Chen et al., 2010b; Baratti et al., 2012) has focused on the estimation of
seasonal and annual flood frequency distributions and their inter-relationship.
Usually, it is suggested that an independent fitting of seasonal and annual
distributions may lead to inconsistency among them, manifested as a “crossing over”
effect. The latter means that for extremely rare events seasonal quantiles may be higher
than their annual counterparts. To resolve this inconsistency, a variety of methods for
the joint estimation of the seasonal and annual distributions has been proposed.

Durrans et al. (2003) attributed distributional inconsistencies in seasonal-
annual frequency analysis to three possible reasons: (a) the arbitrary parameterization
of seasonal and annual distributions, (b) stochastic dependence among them and (c)
estimation uncertainty. In this respect, we believe that the arbitrary specification of
seasonal samples is also a major reason causing distributional inconsistencies (such a
case is discussed and illustrated later in section 4.5). In our case though, we argue that
the above inconsistency should rather be viewed as an empirical evidence of
estimation uncertainty, which is particularly relevant in extreme value studies (Coles
et al., 2003; Koutsoyiannis, 2004c). This is further supported by observing that the
crossing over effect is manifested in the domain of extremely rare events, where
uncertainty is prominent.

To inspect the impact of estimation uncertainty, we fit the GEV probability
distribution by applying three different methods, namely, maximum likelihood (ML),
method of moments (MM) and a least squares estimation method (LS) for an improved
fitting of the extremes (Koutsoyiannis, 2004d). We further investigate estimation
uncertainty in each of the three methods by computing 95% Monte Carlo Prediction
Limits (MCPL) for the resulting GEV quantiles. MCPL are estimated by applying a
Monte Carlo simulation which is structured according to the following steps: (1) we
estimate the GEV parameters by each method, (2) produce 1000 synthetic GEV series
for each derived parameter set, (3) re-estimate the parameters by the same method, (4)
compute the resulting GEV quantiles for each of them and then (5) identify the 95%
confidence region for each quantile value. The scope is to assess whether the crossing
over falls within the limits of the estimation uncertainty as evaluated from applying a
set of different parameter estimation methods. To further reduce fitting uncertainty,
we propose a simpler alternative to joint parameterization, i.e. the joint estimation of
a common shape parameter among seasonal-annual distributions — since the shape
parameter is the most difficult to estimate accurately — and we discuss how this choice
is supported by empirical evidence.
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45 Results
45.1 Season identification for the observed records

Table 4.1 shows the AIC values resulting from season identification for the available
stations. Following Burnham and Anderson (2004), we denote with AAIC the
difference in the AIC value of each model with respect to the best one. Therefore, the
zero AAIC model is the best model, while models with AAIC<2 and AAIC>10 are
assumed to have good and little support, respectively. An example of seasonal
partition for the case of Florence is shown in Figure 4.2a and Figure 4.2b for 2 and 3
seasons. We refer to this type of figures as c/imatograms, though the term is typically
used for plots depicting both rainfall and temperature climatological regimes.

The results point out that both methods identified the one-season (annual)
model as the best solution for 11 stations (with 6 stations being the same for both
methods). In four stations, the one-season model was preferred by the CD method,
while the two-season solution was indicated by the AB method. On further
investigation, it was found that neither the Gamma, nor the Weibull provided
satisfactory likelihood values for these stations. As a result, the more parsimonious
one-season model was preferred by the AIC. The three-season model is identified as
the best solution for five stations with the CD method, while the AB method did not
select n =3 for any station. This result was expected as the AB method exploits
information from a limited dataset and therefore parsimonious models are likely to
provide better AIC values. The Gamma distribution is selected as the best model in 21
cases and the Weibull for the remaining 6.

IS
=
IS
S

Il wet season b
+ | [dry season
[l transition season

Il et season a
+ [ Jdry season

w
&
[
[

w
=]
T
w
=]
T

- - [
o o al
T T T
= n
o o
T T

o
T

average maximum daily rainfall (mm)
o 8
average maximum daily rainfall (mm)
N
(=1

o
T

0
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
time (months) time (months)

Figure 4.2 Climatograms showing the partition in two seasons (a) and three seasons (b) after
application of the SSD clustering algorithm for the station of Florence.
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Table 4.1 AAIC differences among the seasonal models (one, two or three seasons) under
Average Based (AB) and Complete Data (CD) methods. A zero AAIC value indicates the
model with the smallest AIC value which stands for the best model.

AB method CD method
Stations Uniform distribution | Weibull distribution =~ Gamma distribution

Number of seasons Number of seasons

1 2 3 1 2 3 1 2 3
Bologna 0 0.047 29 2755 2751 3512 0 491 9.04
Palermo 529 0 1.72 0 50.32 41.37 0372 9.6 5.15
Mantova 0 0414 392 2822 2576 1343 0 858 7.12
Milan 0 0.639 3.86 8.633 1075 0 30.72 335 347
Genoa 338 0 0.67 9215 0 6.641 5797 105 18
Florence 1.85 0 3.62 1552 8421 0 4855 548 99
Padua 0 1.058 4914 |0 972 1112 100.19 56.43 65.84
Newcastle 075 0 3.88 60.23 3425 40.68 8414 0 15.7
Deniliquin 0 2.894 641 18.11 163 20.18 0 368 9.11
Melbourne 0 0903 4.58 139.1 76.04 7835 3731 0 5.27
Robe 145 0 5.09 3475 36.71 4045 0 1.7 7.29
Sydney 0 0.556  2.88 3792 4093 4135 0 0.02 224
Jena Sternwarte 4.6 0 3.69 208.1 1232 1316 46.77 0 1.45
Hohenpeissenberg 5.5 0 3.25 85.83 6377 677 0 893 6.95
Armagh 0 0.78 3.71 161.3 1032 1069 3412 0 3.04
Radcliffe 0 0.682 3.68 1296 705 77.79 0 074 0.75
Zagreb 0.5 0 3.68 4295 1799 2394 0 199 2587
Vlissingen 066 0 3.34 78.03 36.79 36.18 0 402 9.84
Eelde 1.79 0 3.55 135.8 61.08 67.77 3338 0 6.24
Den Helder 036 0 3.7 2014 1375 1187 2793 358 0
Helsinki 1.9 0 3.69 1089 483 3558 1.161 O 6.95
Lisbon 818 0 7.07 5826 0 3646 7271 733 3.04
Prague 2.7 0 1.44 1333 64.84 5867 3675 006 O
Uppsala 473 0 3.17 187 7235 58.84 27.02 038 O
Stykkisholmur 0 0.657 4.39 103.1 7599 8257 213 0 6.42
Athens 811 0 2.81 104 19.73 2316 6554 0 1.45
Toronto 0 1.704 5.14 183.5 121.3 1131 1824 0 2.2

To inspect the spatial coherence of the results, we present maps of the two regions of
the dataset having neighboring stations, i.e. Europe and Australia (Figure 4.3). We
group the stations in six clusters of similarity in their seasonal patterns and we also
mark single stations for which similarity falls below the accepted threshold. As
similarity index we define the ratio of the number of the wet season months that the
stations in the cluster have in common versus the span of each wet season and we
require it to be at least 60% for each station in the cluster. More specifically, Clusters 1
and 2 have 67% and 80% similarity, respectively, for both methods, while, Clusters 3,
4 and 5 exhibit 100%-75%, 60%-75% and 80%-67% for the AB and CD methods,
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respectively. On top of the maps, we also plot Képpen maps of climate classification
by Chen and Chen (2013) covering the period 1901-2010, in order to allow a direct
comparison of the observed spatial patterns to the climatological ones. Some
interesting insights can be derived. First, spatial coherence does not fully coincide with
climatological coherence and vice versa, and this is especially true in regions with
complex topography/climatology. For example, in the wider Alpine region, where
climate shows great diversity, the stations are less spatially consistent than in Central
Europe. On the contrary, stations belonging to a Mediterranean climate (Cluster 1)
show consistent patterns. In general, we notice that patterns are coherent on both
levels: neighboring stations show very high similarity (e.g. Cluster 3) and far apart
stations belonging to a climatically homogenous region show medium to high
similarity (see, e.g., Cluster 2).
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Figure 4.3 Spatial and climatological coherence of the identified seasons for the regions of
Europe (a,c,e) and Australia (b,d,f). Figures a,b show the location of the stations on a Képpen
climatological map, while the rest show the stations clustered by similarity. White dots
represent stations having one season; the remaining dots denote stations having at least 60%
overlap of months belonging to the wet season. Red dots denote stations with a lower
percentage of similarity to their neighboring stations.

452  Assessing temporal change in observed seasonality

To demonstrate the applicability of the proposed season identification method in the
inspection of temporal changes in seasonality, we analyze the four longest records of
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the dataset, i.e. the stations of Padua (275 years), Prague (211 years), Bologna (195
years) and Radcliffe (188 years). We split the observation period into equally sized
sub-periods and apply the methodology independently to each period. We employ
four sub-periods for the significantly longer station of Padua and three for the other
records.

Results are shown in Table 4.2. It can be seen that changes, both in the number
and duration of seasons, are likely to emerge within each sub-period. For example,
seasonality in Prague during the 2nd period changed in terms of the span of the wet
season, but a two-season regime was selected for all sub-periods. Results for 3rd and
1st window coincide. These characteristics of the methodology make it useful for
analysis of climatic changes.

Table 4.2 Temporal changes in seasonality identified by application of Average Based (AB)
and Complete Data (CD) methods for non-overlapping sub-periods for the four longest
stations of the dataset. For the longer station of Padua, an additional sub-period is investigated
(4th window).

Number of Seasons

1st window | 2nd window | 3rd window | 4th window
Method Method Method Method
AB CD |AB CD |AB CD |AB CD

Station  Record length

Padua 1725-2013 1 1 1 1 1 1 1 1
Bologna  1813-2007 1 1 2 1 1 1 - -
Radcliffe 1827-2014 1 1 1 1 1 1 - -
Prague  1804-2014 2 1 2 2 2 2 - -
Span of wet season in months for Prague
58 - |59 59 [58 58 |- -

453 Fitting the GEV distribution

Subsequently to the identification of seasons, we fitted the GEV distribution via
maximum likelihood (ML) estimation to each of the seasonal sets (or the annual set if
one season was identified). Table 4.3 contains summary statistics of the GEV fitting for
wet and dry seasons, as well as for the whole year, for the cases where the two- and
three-season model were found prevalent under AB and/or CD methods. Summary
statistics for the transition season (placed between the wet and dry season) in the three
season model are omitted since the sample is small (5 stations). The main differences
in the seasonal distributions lie in the values of the scale and location parameters,
which are in their vast majority (93.8% and 100%, respectively, under AB method and
100% and 100%, respectively, under CD method) higher for the wet season compared
to the dry. What might be less anticipated is that there is limited seasonal variation in
the value of the shape parameter x, which is related to the shape of the tail of the
seasonal maxima distribution. Hence, it is justifiable to represent the two seasons and
the whole year by a common value for the shape parameter, therefore increasing
robustness of the method, which is a desirable feature. Additionally, for the majority
of the stations, the shape parameter takes positive values indicating the
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appropriateness of heavier-tailed distributions for modelling of extremes. It is also
clear that the wet extreme properties are quite close to the annual maxima ones, which
indicates that the annual maxima distribution is dominated by the wet season.

Table 4.3 Comparative statistics of the GEV annual and seasonal parameters, i.e., shape
parameter k, scale parameter o and location parameter 1, as estimated via Maximum
Likelihood method for the stations in which two or three seasons are identified by Average
Based (AB) and Complete Data (CD) methods. The last column of each table shows the
percentage (%) of stations in which the parameter value for the wet season is higher than the
corresponding value for the dry season.

AB method (16 stations) CD method (16 stations)

Parameter Annual  Wet Dry (wet>dry) | Annual Wet Dry (wet>dry)
Season Season % Season Season %, Yy

Mean 0.112 0.091 0.097 62.5 0.115 0.106 0.104 45
K ger?e.“t 93.8 93.8 87.5 - 93.8 93.8 75 -
ositive
o Mean 12.207 12.706  8.747 93.8 12.187 13.238 9.287 100
Y Mean 39.265 35.602 23.772 100 39.652  40.998 34.33 100

The singular cases of the stations of Prague from Czech Republic and Florence from
Italy are plotted in Figures 4.4a and 4.4b. In the second case, there is small deviation
between the wet season and the annual period, while in the first case the two lines are
almost identical. In both cases, the dry-season probability line lies considerably lower.
In the second case, in which the three-season model is preferred by the CD method
(while two seasons were preferred by the AB method), the probability line of the
transition season lies in the space between the wet and dry seasons’ probability lines,
as expected.
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Figure 4.4 Gumbel probability plots of the fitting of the GEV distribution to the annual maxima
(red solid line), to the wet season maxima (blue dashed line) and to the dry season maxima
(cyan dash-dotted line) for the stations of Prague (a) and Florence (b). For the station of
Florence (b), the fitting of the GEV distribution to the transition season maxima (green dotted
line) is also shown.
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454  Assessing estimation uncertainty in seasonal-annual GEV parameterization

The crossing over effect mentioned in Section 4.4 is observed in five cases (Eelde,
Genoa, Hohenpeissenberg, Milan and Zagreb), where we found that the wet-season
probability distribution lies higher than the annual one in the area of extremely rare
events. We focus on the station in Genoa where the effect is more pronounced. We
perform additional parameter estimation by applying the method of moments (MM)
and the least squares algorithm (LS). Figure 4.5a shows results from the application of
the three estimation methods for the annual maximum series along with uncertainty
bounds computed within each method by means of Monte Carlo analysis. Uncertainty
bounds in the area of extremely rare events, where the crossing over effect is also
observed, are large. The larger annual maxima fall within the 95% limits of the annual
maxima GEV distribution only for the LS method. This is due to the better fitting
capability of the LS algorithm for extremely rare events (Koutsoyiannis, 2004d). To
further improve the fitting we also estimate via LS a common shape parameter for the
three distributions (two seasonal GEV and the annual one). In these cases as well, the
choice of a common shape parameter is supported by empirical evidence from the
previous independent fitting. The crossing over effect is significantly mitigated (Figure
4.5b), with a remaining positive difference between the quantiles of the wet season
and annual distribution of 10 mm for the 0.5% annual exceedance probability, which
is considered not significant in view of the large uncertainty in the high-quantile
domain. The results for the other cases also showed that the crossing over effect was
resolved.
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Figure 4.5 Gumbel probability plot of the fitting of the GEV distribution to the annual maxima
by the maximum likelihood method (blue color), least-squares method (magenta color) and
method of moments (yellow color) along with 95% Monte Carlo Prediction Limits (MCPL) for
each method for the station of Genoa (a). The crossing over distance observed in the area of
high return periods, where the wet-season probability line (blue solid line) crosses the annual
probability line (red solid line), is greatly eliminated when a common shape parameter is
employed via the least-squares method (b).

The importance of taking estimation uncertainty into consideration is additionally
showcased by applying ML, MM and LS estimation methods to the entire set of
stations, as shown in Table 4.4. One notices that uncertainty is higher in the estimation
of the shape parameter, as already discussed in literature (Koutsoyiannis, 2004d;
Papalexiou and Koutsoyiannis, 2013). The fact that this result is empirically confirmed
for the long rainfall records considered here is a further confirmation that for practical

applications uncertainty in the estimation of extremes is unavoidable even when
dealing with long records.

Table 4.4 Statistics of the GEV parameters, i.e., shape parameter x, scale parameter ¢ and
location parameter ¢, as estimated for the Annual Maxima series for all stations (27) via
Maximum Likelihood (ML), method of moments (MM) and Least Squares method (LS).

Parameter of the annual

param ML MM LS
Mean 0.099 0.062 0.120
K
Iljf)’;ffl?fe 92.6 88.9 96.3
o Mean 12.638 10.500 12.732
¥ Mean 40,510 42,246 40.295
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455 A comparison to traditional methods of seasonal clustering

We compare our method to the climatological 4-season approach, which divides the
annual period in Winter, Spring, Summer and Fall seasons. First, to highlight that site-
specific season identification is important, we compare the monthly maxima plots for
two stations in Europe for our method and the fixed seasonal partition (Figure 4.6). It
is clear that climatological seasons are an inefficient partition for analyzing the extreme
rainfall properties, and may also be a rather crude method for delineating the
extreme’s properties in multi-site analyses where seasonal differences in climate may
be very pronounced among stations. As an example, seasonality of maximum rainfall
in Jena (Germany) is completely out of phase with respect to Athens (Greece). The
same could be argued for trend studies employing fixed characterizations of
seasonality. For instance, the question of whether winter rainfall has increased is
potentially ill-conceived, as it mostly pertains to a subjective interpretation of
seasonality. A more relevant question is whether rainfall in the major rainy season has
significantly changed, but such a change is unlikely to be identified by considering an
arbitrary partition in seasons.
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Figure 4.6 Partition in seasons resulting from application of the proposed season identification
method versus the fixed 4-season partition for the stations of Athens (a, b respectively) and
Jena (¢, d respectively).
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To demonstrate the effect that a fixed 4-season partition could have on the estimation
of extreme value properties, we focus on the rainfall record of Athens (Figure 4.7). By
applying the 4-season partition one obtains an apparent overfitting, as the seasonal
lines are not clearly separated and even cross each other at several points (Figure 4.7b).
It is evident that an inappropriate characterization of seasonality provides no valuable
and practical information for seasonal planning and decision-making while, in fact, it
obscures the presence of the existing seasonal regime (Figure 4.7a). Additionally, in
the presence of parameter uncertainty and given the short record lengths that are
usually available, adopting subjective characterizations of seasonality for the study of
extreme values entails the risk of disproportionately increasing estimation
uncertainty. The consequences of overfitting are even more obvious in stations with
very low or no seasonality.
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Figure 4.7 Gumbel probability plots of the fitting of the GEV distribution to the annual and
seasonal maxima for the station of Athens resulting from (a) the proposed season
identification method and (b) from the fixed 4-season partition.

4.6 Discussion and Conclusions

An objective methodology is proposed to allow season identification in extreme daily
rainfall and the study of the resulting extreme properties in each season. The
methodology is evaluated on an extended dataset comprising 27 rainfall stations
covering a period of more than 150 years of daily observations. In the following, we
discuss methodological and modelling issues, the results of the extreme value analysis
and their comparison to the no-seasonality approach, as well as relative strengths and
potential limitations of our method.

The season identification methodology herein proposed is based on the SSD
algorithm, a simplified version of the k-means clustering algorithm, whose results are
evaluated by exploiting the model selection properties of the Akaike Information
Criterion (AIC). The method is able to identify the optimal modelling option for the
seasonal extreme rainfall for a given dataset, discerning among the existence of 1 (no
dominant season) to 4 seasons in the extreme rainfall properties and identifying their
temporal span. Since AIC is a measure of relative performance of models, this task
should be performed after thorough consideration of the appropriateness of the
candidate seasonal distributions to be assessed. In that respect, our methodology

88



provides additional flexibility as multiple probabilistic models may be simultaneously
assessed. Overall, the methodology shows good spatial coherence, which makes it
potentially appropriate for regionalization studies, and its flexibility allows one to
inspect temporal changes in a range of ways, which is also a desirable feature
concerning climatic variability and trend studies.

In terms of generated results, the adopted scheme proved to be successful for
the long rainfall records considered here, by both visual evaluation of the plots of the
monthly maximum rainfall values (climatograms) and assessment of the resulting
extreme seasonal distributional properties. For the cases where two or three seasons
are identified, the differences in the distributional properties are reflected mainly in
the value of the scale and location parameters of the GEV which are significantly
higher for the wet season. The shape parameter shows limited seasonal variability,
which implies that the seasonal distributional properties do not differ substantially in
the shape of the distribution tail. Our results also confirm other studies regarding the
prevalence of heavy-tailed distributions for daily rainfall extremes (Koutsoyiannis,
2004d; Villarini, 2012; Papalexiou and Koutsoyiannis, 2013; Serinaldi and Kilsby, 2014;
Mascaro, 2018). Some of these studies have also argued that a positive shape parameter
emerges for extremes caused by multiple types of synoptic patterns, whereas a zero
exponent (i.e. an exponential tail) may occur for a single-type of events. Apart from
pronounced intra-annual variability, a positive shape parameter may be also
portraying increased inter-annual variability in the extremes which has been linked to
the presence of large-scale circulation patterns, i.e. the NAO, for certain stations of our
dataset (Kutiel and Trigo, 2014; Marani and Zanetti, 2015a). In principle, we believe
that our findings are in agreement with previous research and strengthen the
assumption that a heavier-tail behaviour better captures conditions of enhanced
natural variability and complex atmospheric forcing, as revealed by the inspection of
our long and spatially sparse dataset.

In comparison to the no-seasonality approach, in some cases the annual
maxima series are found to be dominated by extreme events occurring in the wet
season. This result is pointed out by the closeness in the estimated GEV parameter
values between the annual and the wet season’s probability distribution of extreme
events. It also indicates that annual frequency analyses may suffice for studying the
annual maxima (AM). Actually, studying the AM series is more in favour of a
conservative design approach, since the former takes into account the rare cases of
extreme events of significant magnitude happening in the dry season. Furthermore,
since the majority of AM in records with pronounced seasonality still stems from the
wet season, strong seasonality is not significantly violating the IID assumption in the
GEV approach. A similar remark was also made by Allamano et al. (2011). However,
for intra-annual hydrological design and management, it is crucial to take seasonal
variability into account. The wet season maxima series contain valuable information
on the timing of occurrence of the most extreme events, although it is likely that in
some cases, their magnitude will be close to the AM estimated one. Yet when dry
periods are of interest, using the AM series instead, i.e. adopting a no-seasonality
approach, is likely to lead to costly overestimation of design values and floodwater
waste.
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A few key strengths of our methodology should be underlined. In general,
estimation uncertainty in extreme studies is a known issue especially for the
estimation of the shape parameter of the GEV distribution. Here, we show how an
alternative choice of estimation methods, improving the model performance in the
domain of extreme events, may resolve inconsistencies deriving from an independent
seasonal and annual fitting. Given the latter, we consider the need for the laborious
joint estimation of seasonal-annual distributions to be questionable and we propose a
simpler procedure based on the estimation of a common shape parameter for the
seasonal-annual parameterization, which is shown to increase robustness of the
statistical model. On the whole, the entire methodology is compared to a conventional
partition in fixed seasons and its advantageous features are highlighted both in that it
enables consistent identification of seasonal regimes at single-site and multi-site levels,
as opposed to arbitrary partitions, and that it consequently allows a more informed
and parsimonious fitting of the GEV distribution to seasonal extremes.

A few limitations should be taken into account. We note that in case where the
Average Based (AB) and the Complete Data (CD) methods diverge, there is some
remaining degree of subjectivity in the choice for the most appropriate scheme. This
constitutes a potential limitation of our method as results may not be fully conclusive.
Yet this may be resolved if an equifinality framework is adopted and both options are
considered. Additionally, it should be noted that the performance of AIC largely
depends on the quality of the considered candidate models. Although the chosen
distributions are representative of a variety of statistical behaviours, it is possible that
there may be exceptions for which they do not perform well. Increasing the set of
candidate distributions is another option to achieve a greater degree of confidence
within a multi-model approach.

Despite these limitations, we believe that our findings have direct applications
both in the theoretical conceptualization of seasonality in extreme rainfall and in
engineering applications. On a methodological level, they contribute to a wider
establishment of model selection techniques, in this case AIC, in hydrological studies
and pave the way for the objective identification of seasonality via automated schemes
which are required for global-scale hydrology.
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It has been shown that the geophysical and hydrological processes governing river
flow formation exhibit persistence at several timescales, which may manifest itself
with the presence of positive seasonal correlation of streamflow at several different
time lags (Aguilar et al. 2017). This Chapter builds upon this idea dealing with the
presence of dependence dynamics in river flow at the seasonal scale, the associated
physical drivers, and the related potential for employing this information to improve
probabilistic prediction of high and low flows. A dataset of 224 rivers from six
European countries spanning more than 50 years of daily flow data is exploited. The
practical benefit of the methodology is demonstrated by updating the frequency
distribution of high and low flows one season in advance in a real-world case. Results
suggest that there is a traceable physical basis for river memory which, in turn, can be
statistically assimilated into high- and low-flow frequency estimation to reduce
uncertainty and improve predictions for technical purposes.

5.1 Introduction

Recent analyses for the Po River and the Danube River highlighted that catchments
may exhibit significant correlation between peak river flows and average flows in the
previous months (Aguilar et al., 2017). Such correlation is the result of the behaviours
of the physical processes involved in the rainfall-runoff transformation that may
induce memory in river flows at several different timescales. The presence of long-
term persistence in streamflow has been known for a long time since the pioneering
works of Hurst (1951a) and has been actively studied ever since (e.g. Koutsoyiannis,
2011b; Montanari, 2012; O’Connell et al., 2016 and references therein). While a number
of seasonal flow forecasting methods have been explored in the literature (e.g.
Bierkens and van Beek, 2009; Dijk et al., 2013), attempts to explicitly exploit streamflow
persistence in seasonal forecasting through information from past flows have been, in
general, limited. Koutsoyiannis et al. (2008) proposed a stochastic approach to
incorporate persistence of past flows into a prediction methodology for monthly
average streamflow and found the method to outperform the historical analogue
method (see also Dimitriadis et al., 2016, for theory and applications of the latter) and
artificial neural network methods in the case of the Nile River. Similarly, Svensson
(2016) assumed that the standardized anomaly of the most recent month will not
change during future months to derive monthly flow forecasts for 1-3 months lead
time and found the predictive skill to be superior to the analogue approach for 93 UK
catchments. The above-mentioned persistence approach has also been wused
operationally in the production of seasonal streamflow forecasts in the UK since 2013,
within the framework of the Hydrological Outlook UK (Prudhomme et al. 2017). A
few other studies have included past flow information in prediction schemes along
with teleconnections or other climatic indices (Piechota et al., 2001; Chiew et al., 2003;
Wang et al., 2009). Recently, it was shown that streamflow persistence, revealed as
seasonal correlation, may also be relevant for prediction of extreme events by allowing
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one to update the flood frequency distribution based on river flow observations in the
pre-flood season and reduce its bias and variability (Aguilar et al., 2017). The above
previous studies postulated that seasonal streamflow correlation may be due to the
persistence of the catchments storage and/or the weather, but no attempt was made to
identify the physical drivers.

The present study aims to further inspect seasonal persistence in river flows
and its determinants, by referring to a large sample of catchments in six European
countries (Austria, Sweden, Slovenia, France, Spain, and Italy). We focus on
persistence properties of both high and low flows by investigating the following
research questions: (i) what are the physical conditions, in terms of catchment
properties, i.e. geology and climate, which may induce seasonal persistence in river
flow, and, (ii) can floods and droughts be predicted, in probabilistic terms, by
exploiting the information provided by average flows in the previous months? These
questions are relevant for gaining a better comprehension of catchment dynamics and
planning mitigation strategies for natural hazards. To reach the above goals, we
identify a set of descriptors for catchment behaviours and climate, and inspect their
impact on correlation magnitude and predictability of river flows.

A few studies have analysed physical drivers of streamflow persistence on
annual and deseasonalized monthly and daily time series (Mudelsee, 2007; Hirpa et
al., 2010, Gudmundsson et al., 2011, Zhang et al., 2012; Szolgayova et al., 2014;
Markonis et al., 2018) but the topic has been less studied on intra-annual scales relevant
to seasonal forecasting of floods and droughts.

To demonstrate the high practical relevance of the identified seasonal
correlations we present a technical experiment for one of the studied rivers (Section
5.7) in which the frequency distribution of both high and low flows is updated one
season in advance by exploiting real-time information on the state of the catchment.

52 Data and catchment description

The dataset includes 224 records spanning more than 50 years of daily river flow
observations from gauging stations, mostly from non-regulated streams. A few
catchments are impacted by regulation. Among the 224 rivers, 108 are located in
Austria, 69 in Sweden, 31 in Slovenia, 13 in France, two in Spain and one in Italy.
Catchment areas vary significantly, the largest being the Po River basin in Italy (70 091
km?) and the smallest being the Hélabdcken River basin in Sweden (4.7 km?). The
geographical location of the river gauge stations as well as their climatic classification
are shown in Fig. 5.1. Most of the examined rivers belong to either a warm temperate
(C) or a boreal/snow climate (D) with a subset impacted by polar climatic conditions
(E), according to the updated World Map of the Képpen-Geiger climate classification
(Fig. 5.1) based on gridded temperature and precipitation data for the period 1951-
2000 (Kottek et al., 2006). More specifically, the majority of French and Slovenian and
approximately one third of the Swedish basins belong to the warm temperate Cfb
category characterized by precipitation distributed throughout the year (fully humid)
and warm summers. The rest of the Swedish catchments are impacted by a Dfc climatic
type, i.e. a snow climate, fully humid with cool summers. The Austrian catchments
belonging to the region impacted by the European Alps have the most complicated
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regime due to their topographic variability. At the lowest altitudes, Cfb is the
prevailing regime, but as proximity to the Alps increases, a Dfc regime dominates and
progressively, in the highest altitude basins, the climate becomes a polar tundra type
(Et), characterized primarily by the very low temperatures present. The characteristics
of all the climatic regimes of the studied rivers are given in the legend of Fig. 5.1. A
summary of the river basins under study in terms of the selected descriptors is also
provided in Table 5.1, showing that the investigated rivers cover a wide range of
catchment area sizes, flow regimes and climatic conditions.

It is relevant to note that 16 of the Austrian rivers are subject to regulation,
which may alter the persistence properties of river flows. This relates to generally
‘mild” forms of regulation, i.e. upstream regulation with a very low degree of flow
attenuation, hydropower operations and flow diversions to and from the basin. A
preliminary examination of these rivers did not reveal any significant change during
time of the flow regime. The presence of regulation does not preclude the exploitation
of correlation for predicting river flows in probabilistic terms, but it may affect the
analysis of physical drivers, as it may enhance or reduce persistence in the natural
river flow regime. Given that detailed information is generally lacking on the impact
of regulation (Kuentz et al. 2017), we assume stationarity of the river flows for all the
catchments herein considered and additionally, assume that river management does
not significantly affect the identification of the physical drivers.
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Figure 5.1 Updated Koppen-Geiger climatic map for period 1951-2000 (Kottek et al., 2006)
showing the location of the 224 river gauge stations.
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Table 5.1 Summary statistics of the river descriptors. Summary statistics for PL, PG and PF
variables are computed only for the subset of catchments with positive values (the total
number of catchments is also reported in brackets). PK is used as a categorical variable (PK is
either higher or lower than 50% of catchment area), therefore sample statistics are not
computed in this case, but the number of stations with PK 2 50% is reported as ‘positive’
presence of karst.

SR

Descriptor A BI (m3 s-1 PL PG PF PK (mm T IDM
(Unit)  (km) O P50 ) %) () O (L (O ()
Min value 4.7 0.29 0.004 0.5 0.1 0.3 - 444 -1.8 2941
Max value 70091 099 0.088 19.5 56.5 100 - 1500 13.7 153.40
Standard

5904.3 0.14 0.018 4.04 15.54 3256 - 288.22 3.59 24.53
deviation
Sample 69 39 18 21

224 224 224 224 224 224
size (69) (108) (108)  (31)

53 Methodology

The investigation of the persistence properties of river flows focuses separately on
both high and low discharges and is articulated in the following steps: (a)
identification of the high- and low-flow seasons, (b) correlation assessment between
the peak flow in the high-flow season (average flow in the low-flow season) and
average flows in the previous months; (c) analysis of the physical drivers for
streamflow persistence and its predictability through principal component analysis
(PCA), (d) real-time updating of the frequency distribution of high and low flows for
a selected case study with significant seasonal correlation by employing a meta-
Gaussian approach. The above steps are described in detail in the following sections.

5.3.1 Season identification

Season identification is performed algorithmically to identify the high-flow season
(HFS) and low-flow season (LFS) for each river time series. For the estimation of HFS,
we employ an automated method recently proposed by Lee et al. (2015), which
identifies the high-flow season as the 3-month period centred around the month with
the maximum number of occurrences of peaks over threshold (POT), with the
threshold set to the highest 5% of the daily flows. To evaluate the selection of HFS, a
metric constructed as the percentage of annual maximum flows (PAMF) captured in
the HFS is used. The PAMFs are classified in the subjective categories of “poor”
(<40%), “low” (40-60%), “medium” (60-80%) and “high” (>80%) values, denoting the
probability that the identified HFS is the dominant high-flow season in the record. If
the identified peak month alone contains more than or equal to 80% of annual maxima
flows, a unimodal regime is assumed and the identification procedure is terminated.
In all other cases, the method allows for the search of a second peak month and the
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identification of a minor HFS, but we do not further elaborate on this analysis here,
because we are only interested in the most extreme seasons for the purpose of
predicting high and low flows.

The method proposed by Lee et al. (2015) has several advantages that make it
suitable for the purpose of this research. Most importantly, it is capable of handling
conditions of bimodality, which is usually a major issue for traditional methods like,
e.g. directional statistics (Cunderlik et al.,, 2004a). A potential limitation is the
assumption of symmetrical extension of HFS around the peak month, along with the
uniform selection of its length (3-month period). The degree of subjectivity in the
evaluation of the second HFS is another limitation, which is not relevant here as we
focus on the main HFS.

The LFS is herein identified as the 1-month period with the lowest amount of
mean monthly flow. An alternative approach of estimating the relative frequencies of
annual minima of monthly flow and selecting the month with the highest frequency
as the LFS is also considered.

5.3.2  Analysis of streamflow correlation and its physical drivers

Correlation analysis

In the case of HFS, a correlation is sought between the maximum daily flow occurring
in the HFS period and the mean flow in the previous months, before the onset of HFS.
For LEFS, correlation is computed between the mean flow in the LES itself and the mean
flow in the previous months. We use the mean flow in the previous month as a robust
proxy of ‘storage’ in the catchment that is expected to reflect the state of the catchment,
i.e., wetter or drier than usual. Since we are interested in seasonal persistence, we
compute the Pearson’s correlation coefficient for HFS lag up to 9 months and for LFS
lag up to 11 months.

Analysis of physical drivers

a. Catchment, geological, and climatic descriptors.

An extensive investigation is carried out to identify physical drivers of seasonal
streamflow correlation, in terms of catchment, geological, and climatic descriptors.
As catchment descriptors, we consider the basin area (A), the baseflow index (BI), the
mean specific runoff (SR), the percentage of basin area covered by lakes (percentage
of lakes PL) and glaciers (percentage of glaciers PG) and altitude as candidates for
explanatory variables for streamflow correlation.

The area A (km?) is primarily investigated, as it is representative of the scale of
the catchment, under the assumption that in larger basins the impact of the
climatological and geophysical processes affecting river flow becomes more
significant and may lead to a magnified seasonal correlation.

The BI is considered based on the assumption that high groundwater storage
may be a potential driver of correlation. BI is calculated from the daily flow series of
the rivers following the hydrograph separation procedure detailed in Gustard et al.
(2009). Flow minima are sampled from non-overlapping 5-day blocks of the daily flow
series and turning points in the sequence of minima are sought and identified when
the 90% value of a certain minimum is smaller or equal to its adjacent values.
Subsequently, linear interpolation is used in between the turning points to obtain the
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baseflow hydrograph. The BI is obtained as the ratio of the volume of water beneath
the baseflow separation curve versus the total volume of water from the observed
hydrograph, and an average value is computed over all the observed hydrographs for
a given catchment. A low index is indicative of an impermeable catchment with rapid
response, whereas a high value suggests high storage capacity and a stable flow
regime.

SR (m3s! km2) is computed as the mean daily flow of the river standardized
by the size of its basin area. It may be an important physical driver as it is an indicator
of the catchment’s wetness. PL (%) and PG (%) are investigated for the Swedish and
Austrian catchments, respectively, as lakes and glaciers are expected to increase
catchment storage thus affecting persistence. Lake coverage data are based on
cartography and are available from the Swedish Water Archive
(https://www.smhi.se/), while glacier coverage data are estimated from the CORINE
land cover database (https://www.eea.europa.eu/publications/COR0-landcover).

The effect of catchment altitude is also inspected using relief maps from the
Shuttle Radar Topography Mission (SRTM) data (http://srtm.csi.cgiar.org/). The data
are available for the whole globe and are sampled at 3 arch-seconds resolution
(approximately 90 meters). Topographic information is available for all catchments
located at latitudes lower than 60 degrees north, while a 1 km resolution digital
elevation model is available for Austria.

As geological descriptors we consider the percentage of catchment area with
the presence of flysch (percentage of flysch PF) and karstic formations (percentage of
karst PK) for Austrian and Slovenian catchments, respectively, where this type of
information is available. A subset of Austrian catchments is characterized by the
dominant presence of flysch, a sequence of sedimentary rocks characterized by low
permeability, which is known to generate a very fast flow response. Karstic
catchments, characterized by the irregular presence of sinkholes and caves, are also
known for having rapid response times and complex behaviour; e.g. initiating fast
preferential groundwater flow and intermittent discharge via karstic springs (Ravbar,
2013; Cervi et al., 2017). Geological features are also presumed to be linked to
persistence properties because geology is the main control for the baseflow index
across the European continent (Kuentz et al. 2017). PK (%) and PF (%) are estimated
from geological maps of Slovenia and Austria, respectively.

As climatic descriptors, the mean annual precipitation P (mm year-1) and the
mean annual temperature 7 (°C) are selected. Corresponding gridded data are
retrieved from the WorldClim database (http://www.worldclim.org/) at a spatial
resolution of 10 arcminutes (approximately 18.55 km at the equator). We note that low
mean temperature regimes are also associated with snow, the presence of which is also
considered in the interpretation of the results. We also adopt the De Martonne index
(IDM; De Martonne, 1926), as a climatic descriptor, which is given by IDM =
P/(T + 10), and enables classification of a region into one of the following 6 climate
classes, i.e., arid (IDM < 5), semi-arid (5 < IDM < 10), dry subhumid (10 < IDM < 20),
wet subhumid (20 < IDM < 30), humid (30 < IDM < 60) and very humid (IDM 2 60).
Additionally, the Koppen-Geiger climatic classification (Kottek et al., 2006) of the
rivers is assessed.
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Principal component analysis

To identify which catchment, physiographic and climatic characteristics may explain
river memory we attempt to regress the seasonal streamflow correlation on the
physical descriptors introduced above. We expect the presence of multicollinearity
among the predictor variables and therefore PCA (Pearson, 1901; Hotelling, 1933) was
applied to construct uncorrelated explanatory variables. In essence, PCA is an
orthonormal linear transformation of p data variables into a new coordinate system of
g < p uncorrelated variables (principal components, PCs) ordered by decreasing
degree of variance retained when the original p variables are projected into them
(Jolliffe, 2002). Therefore, the first principal axis contains the greatest degree of
variance in the data, while the second principal axis is the direction which maximizes
the variance among all directions orthogonal to the first principal axis and each
succeeding component in turn has the highest variance possible while satisfying the
condition of orthogonality to the preceding components. Specifically, let x be a
random vector with mean p and correlation matrix X, and the principal component
transformation of x is then obtained as follows:

y=Clx (35)

where y is the transformed vector whose kth column is the kth principal component (k
=1, 2..p), C is the p X p matrix of the coefficients or loadings for each principal
component and x ’is the standardized x vector. Standardization is applied in order to
avoid the impact of the different variable units on selecting the direction of maximum
variance, when forming the PCs. The y values are the scores of each observation, i.e.
the transformed values of each observation of the original p variables in the kth
principal component direction.

PCA has useful descriptive properties of the underlying structure of the data.
These properties can be efficiently visualized in the biplot (Gabriel, 1971), which is the
combined plot of the scores of the data for the first two principal components along
with the relative position of the p variables as vectors in the two-dimensional space.
Herein, the distance biplot type (Gower and Hand, 1995), which approximates the
Euclidean distances between the observations, is used. Variable vector coordinates are
obtained by the coefficients of each variable for the first two principal components.
After construction of the PCs, a linear regression model is explored for the case of HFS
and LFS lag-1 correlation.

5.3.3  Technical experiment: real-time updating of the frequency distribution of high
and low flows

In order to evaluate the usefulness of the information provided by the 1-month-lag
seasonal correlation for flow signatures in HFS and LFS, we perform a real-time
updating of the frequency distribution of high and low flows based on the average
river flow in the previous month. A similar analysis for the high flows was carried out
by Aguilar et al. (2017) for the Po and Danube Rivers. In principle, this is a data
assimilation approach, since real-time information, i.e. observations of the average
river flow, is used in order to update a probabilistic model and inform the forecast of
the flow signature for the upcoming season.
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In detail, a bi-variate meta-Gaussian probability distribution (Kelly and
Krzysztofowicz, 1997; Montanari and Brath, 2004) is fitted between the observed flow
signatures, i.e., peak flow in the HFS, Qp and average flow in the LFS, Q, and the
average flow in the pre-HFS and LFS months, Q,,,, respectively. The peak HFS flow
and the average LFS flow are the dependent variables and are extracted as the peak
river discharge observed in the previously identified HFS and the average river
discharge observed in the previously identified LFS, respectively. The average flow in
the month preceding the HFS and the LFS is the explanatory variable in both cases. In
the following, random variables are denoted by underscore and their outcomes are
written in plain form.

The normal quantile transform (NQT; Kelly and Krzysztofowicz, 1997) is used
in order to make the marginal probability distribution of dependent and explanatory
variables Gaussian. This is achieved as follows: a) the sample quantiles Q are sorted in
increasing order e.g. Qm,, Qm,--Om, , b) the cumulative frequency, e.g. FQ,, is
computed via a Weibull plotting position, and c) the standard normal quantile, e.g.,
NQ,,, is obtained as the inverse of the standard normal distribution for each
cumulative frequency, e.g., G"'(FQ,, ). Therefore, all sample quantiles are discretely
mapped into the Gaussian domain. To get the inverse transformation for any normal
quantile, we connect the points in the above mapping with linear segments. The
extreme segments are extended to allow extrapolation outside the range covered by
the observed sample.

In the Gaussian domain, a bi-variate Gaussian distribution is fitted between the
random explanatory variable NQ,, and the dependent variables NQp and NQy by

assuming the stationarity and ergodicity of the variables. We define the generic
random variable NQ to represent any dependent flow signature, i.e.; NQp and NQ

in our case. Then, the predicted signature at time ¢ can be written as:

NQ(t) = p(NQyn, NQ)NQ,, (£ - h) + Ne(t) (36)

where p(NQ,,, NQy) is the Pearson’s cross-correlation coefficient between NQ,,, and
p N mr iV Afs Y=

NQg, h is the selected correlation lag with & = 1 in the present application, and Ne(t)
is an outcome of the stochastic process Ne¢, which is independent, homoscedastic,
stochastically independent of NQ,, and normally distributed with zero mean and
variance 1- p? (N_Qm, N_Qfs). Then, the joint bi-variate Gaussian probability
distribution function is defined by the mean (u(NQ,) = 0 and pu(NQyg) = 0), the
standard deviation (6(NQ,) = 1 and o(NQjg,) =1_)0f the standardized normalized
series, and the Pearson’s cross correlation coefficient between the normalized series,
p(N_Qm, N_Qfs). From the Gaussian bi-variate probability properties, it follows that for
any observed NQ ,(f - h), the probability distribution function of NQ¢(t) conditioned
on NQ,, is Gaussian, with parameters given by:

HNQ(8) = p(NQ, NQNQ,, ( — h) (37)
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oNQw(®) = (1= p2(NQu NQs)) (38)

To derive the probability distribution of Q(t) conditioned to the observed
Qu(t = h), we first apply the inverse NQT, i.e., we use linear segments to connect the
points of the previous discrete quantile mapping of the original quantiles into the
Gaussian domain, and accordingly, obtain Q(f) for any NQ(t). Subsequently, we
estimate the parameters of an assigned probability distribution for the obtained
quantiles in the untransformed domain. This is referred to as the updated probability
distribution of the considered flow signature (NQp and NQ in our case). We use the
Extreme Value Type I distribution for the peak flows and calculate the differences in
the magnitude of estimated maxima for a given return period between the
unconditioned and the updated distribution. The latter is conditioned by the 95%
sample quantile of the observed mean flow in the previous month. To model the low
flows we use the lognormal distribution, which was found to exhibit the best fit for the
river in question among other typical candidates for average flows, i.e. the Weibull
and Gamma distribution. The low flows are conditioned by the lower 5% sample
quantile of the observed mean flow in the previous month.

54 Seasonal correlation of high and low flows
54.1 Season identification

Approximately half of the 224 rivers are characterized by at least one high-flow season
with medium or higher significance (PAMF of HFS 2 60%). Among them, very strong
unimodal regimes (PAMF of HFS = 80%) are observed in 63 rivers, the majority of
which are located in Sweden. For 25% of the rivers, a high-flow season of low
significance is found (PAMF of HFS between 40-60%), while for the remaining 25%
the high-flow distribution looks uniform throughout the year. Bimodality regimes are
found with low and moderate significance in rivers located mostly in Austria and
Sweden, but we focus here on the major high-flow season, as we are interested in the
most extreme events. A minor HFS analysis would be perhaps relevant in other
regions of the world where bimodal flood regimes are more prominent, as suggested
by the analysis of Lee et al. (2015).

Regarding the LFS identification, the two considered approaches (see Section
5.3.1) agree for 139 out of 224 stations but the first method, i.e. the 1-month period with
the lowest amount of mean monthly flow is selected for being more relevant to the
purpose of computing mean flow correlations.

5.4.2  Seasonal correlation

LFS correlation is markedly higher than the corresponding HFS correlation for lags 1-
5 and its median remains higher than 0 for more lags (Fig. 5.2). For the case of HFS
correlation, we focus only on the most significant first lag, for which 73 rivers are
found to have correlation significantly higher than 0 at 5% significance level. In Fig.
5.3, the autocorrelation of the whole monthly series is compared to the LFS correlation
for lag of 1 and 2 months, in order to prove that the seasonal correlation for LFS is
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significantly higher than its counterpart computed by considering the whole year. The
latter is also confirmed by the Kolmogorov-Smirnov test for both LFS lags
(corresponding p values, plagi < 2.2 X10 and piagz2 < 2.2 X10-% for the null hypothesis
that the LFS correlation coefficients are not higher than the corresponding values for

the monthly series autocorrelation; Conover, 1971).
HFS LFS
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1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 10 11
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Figure 5.2 Boxplots of seasonal correlation coefficient against lag time for HFS (left panel) and
LES (right panel) analysis for the 224 rivers. The lower and upper ends of the box represent
the 1st and 3rd quartiles, respectively, and the whiskers extend to the most extreme value
within 1.5 IQR (interquartile range) from the box ends; outliers are plotted as filled circles.
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Figure 5.3 Boxplots of lag-1 and lag-2 correlation coefficients for LFS analysis (orange) and the
whole monthly series (white) for the 224 rivers. The lower and upper ends of the box represent
the 1st and 3rd quartiles, respectively, and the whiskers extend to the most extreme value
within 1.5 IQR (interquartile range) from the box ends.

Figure 5.4 shows the spatial pattern of HFS and LFS streamflow correlations. It
is interesting to notice the emergence of spatial clustering in the correlation magnitude,
which implies its dependence on different spatially varying physical mechanisms. For
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example, for HFS, a geographical pattern emerges within France, since the highest
correlation coefficients are located in the northern part of the country, which is
characterized by an oceanic climate and higher baseflow indices.
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Figure 5.4 Spatial distribution of the lag-1 correlation coefficients for HFS (left) and LFS (right)
analysis. Legend shows the colour assigned to each class of correlation for the data.

5.5 Physical interpretation of correlation

To attribute the detected correlations to physical drivers, we define six groups of
potential drivers of seasonal correlation magnitude, which are: basin size, flow indices,
the presence of lakes and glaciers, catchment elevation, catchment geology, and hydro-
climatic forcing. For some of the descriptors the information is only available for a few
countries.

In what follows, we will use the term “positive (negative) impact on
correlation” to imply that an increasing value of the considered descriptor is associated
with increasing (decreasing) correlation. For each descriptor, we also report, between
parentheses, the Spearman’s rank correlation coefficient r, (Spearman, 1904) between
its value and the considered (LFS or HFS) correlation, and the p value of the null
hypothesis 7,=0. Spearman’s coefficient is adopted in view of its robustness to the
presence of outliers and its capability of capturing monotonic relationships of non-
linear type.

Catchment area — descriptor A
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Figure 5.5 shows that there is only a weak positive impact of the catchment area (log-
transformed) on correlation for HFS (r,= 0.17, p = 0.01) but a more significant positive
one for LFS (r;, = 0.27, p = 5.5 X 10-°). The presence of relevant scatter in the plots also
indicates that it is not a key determinant of correlation.

1.00
@ COCX? OOO OOOO @ o
¢ @y, 8Pe0g® g%;ooo o o0
e©? @ e Oo%@o [
0.75 ®, @ % °® °
] % ] ) 0®
e %)o 0.° of o °
° © Sogy! 0® o°° | -
0.50 ® s © © &
° o° g o5 6% &
& @ ¢ 08%e,
= ® o © o
5o e o ag R
% &
5 000 °
% 06 ® o
§ e © .-’ °
04 e .
T ° o oo o ®
E’ e © .} ® “§
02 ® ® Ot! & Lx 1] .o ®
2% ® & ‘ e oo o ® T
® 'oofo‘. % 8 e ® m
00 ° e o .: ® &. ® ® 7]
® ®
'. o...'o.' DS e
® ... o ® .‘ e g@®
-02 o.. ®, ’.
@ o ®
® o
04
3 6 9
In A (km?)

Figure 5.5 Scatterplots of lag-1 HFS (bottom panel) and LFS (top) streamflow correlation
versus the natural logarithm of basin area In A.

Flow indices — descriptors BI and SR

The effect of the Bl and SR is shown in Fig. 5.6. The BI (Fig. 5.6a) appears to be a marked
positive driver for LFS (r; = 0.6, p = 1.8 x 10-23) while its effect for HFS is less clear,
being weakly positive (r; = 0.21, p = 0.001). For SR (Fig. 5.6b), it appears that both LFS
and HFS streamflow correlations drop for increasing wetness (1, = -0.4, p = 4 x 10-10
and r, = —0.28, p = 2.8 X 1075 respectively).
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Figure 5.6 Scatterplots of lag-1 HFS (bottom panels) and LFS streamflow correlation (top
panels) versus baseflow index BI (a) and specific runoff SR (b).

Presence of lakes and glaciers — descriptors PL and PG

Detailed information on the presence of lakes is available for the 69 Swedish
catchments while areal extension of glaciers is known for the 108 Austrian catchments.
Figure B.1 in Appendix B.1 shows that the impact of lake area (Fig. B.1a) on correlation
for LFS and HFS is not significant but positive (r; = 0.10,p =0.399 and r, =0.12,p =
0.347). The results for glaciers show a positive impact for LFS (r; = 0.28, p = 0.081) but
anegative impact for HFS (7, =-0.34, p = 0.032). For a meaningful interpretation, these
results should be considered in conjunction with the seasonality of flows for the
Austrian catchments. Low flows for the glacier-dominated catchments typically occur
in winter months, when glaciers are not contributing to the flow (Parajka et al., 2009).
Thus the observed result for LES more likely portrays the impact of low temperature
(low evapotranspiration) and snow accumulation, the latter generally being a slowly
varying process. For HFS, which typically occurs in the summer months for the
considered catchments, flows are mainly determined by snowmelt, which is associated
to reduced persistence (Appendix B.1; Fig. B.1b).

Catchment elevation

The areal coverage of the SRTM data is limited to 60° N and 54° S and therefore, data
for the northern part of the Swedish catchments are not available. The rest of the rivers
are divided in three regions based on proximity: Region I including the central and
eastern part of the Alps and encompassing Austrian, Slovenian and Italian catchments;
Region II including the western part of the Alps and encompassing French and
Spanish territory; and Region III including the southern part of Sweden. Figure 5.7
shows elevation maps along with the location of gauge stations and magnitude of
correlations. Elevation seems to enhance LFS correlation, which is more evident in the
mountainous Region I (Fig. 5.7). For HFS correlation there is not a prevailing pattern.
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In the case of Austrian catchments, a 1 km resolution digital model is also used to
extract information on elevation. Figure 5.8 confirms that there is a positive correlation
pattern emerging with elevation for LFS. Based on local climatological information, it
can be concluded that the spatial pattern for LFS correlation is reflective of the timing
and strength of seasonality of the low flows in Austria, where dry months occur in
lowlands during the summer due to increased evapotranspiration and in the
mountains during winter (mostly February) due to snow accumulation which is
characterized by stronger seasonality compared to the lowlands flow regime (Parajka
etal., 2016; see Fig. 1). Concerning HFS in the same region, high flows are significantly
impacted by the seasonality of extreme precipitation (Parajka et al., 2010b), which is
highly variable, with the exception of the rivers where high flows are generated by

snowmelt. Therefore, a spatially consistent pattern does not clearly emerge.
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Figure 5.7 Relief maps from SRTM elevation data for the HES and LFS lag-1 correlations of the
rivers. Note that elevation scale is different for each region. Legend shows the colour assigned
to each class of correlation for the data.
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Figure 5.8 Digital elevation model of the Austrian river network depicting the spatial
distribution of lag-1 positive correlation for HFS (left) and lag-1 positive correlation for LFS
(right). Legend shows the colour assigned to each class of correlation for the data.

Catchment geology — descriptors PK and PF

Two different geological behaviours are identified which may impact river correlation.
We first focus on 21 Slovenian catchments (out of 31) where more than 50% of the basin
area is characterised by the presence of karstic aquifers (percentage of karstic areas
PK 250%). Figure 5.9 shows boxplots of the estimated lag-1 correlation coefficient for
both HFS and LFS against rivers where PK < 50%. It is clear that there is a significant
decrease in correlation where karstic areas dominate for both for HFS and LFS.

In a second analysis, we focus on Austrian catchments and investigate the
relationship between correlation and percentage of flysch coverage, PF. Figure B.2 in
the Appendix B.1 shows that there is not a prevailing pattern in either case (r; = 0.13,
p = 0.6 for LFS and r, = -0.19, p = 0.446 for HES).
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Figure 5.9 Boxplots of lag-1 correlation for Slovenian rivers with more than 50% presence of
karstic formations PK and rivers with no or less presence for HFS analysis (left) and LFS
analysis (right). The lower and upper ends of the box represent the 1st and 3rd quartiles,
respectively, and the whiskers extend to the most extreme value within 1.5 IQR (interquartile
range) from the box ends.

Atmospheric forcing — descriptors P and T

Figure 5.10 shows the lag-1 HFS and LFS correlations against estimates of the annual
precipitation P and annual mean temperature T as well as the IDM. LFS correlation
appears to be more sensitive than HFS to the above climatic indices, showing a
decrease with increasing temperature and also a decrease with increasing precipitation
(rs=-0.44,p =3.1 x 1012for P and r;, = -0.57, p = 1.8 X 1020 for T'). HFS correlation is
scarcely sensitive to these variables (7 =
-0.17, p = 0.011 for Pand r, = 0.08, p = 0.208 for T). The IDM (Fig. 5.10 c) shows a mild
decrease of both LFS (r, = -0.06, p = 0.368) and HFS correlation with increasing IDM
(rs = =0.17, p = 0.01), while for the latter there seems to be a clearer trend (lower
correlation with higher IDM) in very humid areas (dark blue points in Fig. 5.10c).
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Physical drivers of high correlation

To gain further insight into the results we select the 20 catchments with the highest
streamflow seasonal correlation coefficients for both HES and LFS periods in order to
investigate their physical characteristics in relation to the remaining set of rivers. Table
5.2 summarizes statistics for selected descriptors in order to identify dominant
behaviours. We also compare the number of rivers with distinctive features, i.e. lakes
Ny (number of rivers with lakes), glaciers Ng (number of river with glaciers), flysch N
(number of rivers with flysch formations) and karst Nx (number of rivers with karstic
areas) for the highest correlation group with those obtained from 1000 randomly
sampled 20-catchment groups from the whole set of considered catchments to assess
whether higher correlation implies distinctive features.

By focusing on HFS, one can notice that the catchments with higher seasonal
correlation are characterized by larger catchment area, higher baseflow index and
temperature with respect to the remaining catchments, and lower specific runoff,
precipitation and wetness. The presence of lake, glacier, karstic and flysch areas do not
appear significantly effective at a 5% significance level. More robust considerations
can be drawn for the LFS: higher seasonal correlation is found for larger catchments
with a higher baseflow index and lower specific runoff, precipitation and wetness.
Decreasing temperature is strongly associated with higher correlation for the LFS. The
presence of lakes plays a significant role both for lag-1 and lag-2 correlations with the
latter also being significantly influenced by the presence of glaciers.

Table 5.2 Differences in the mean values between the descriptors of the 20-highest-correlation-
river group for HFS and LFS versus the remaining rivers (204). Nj, Ng, Ny and Ng columns
contain the absolute number of rivers in the higher correlation group with the specific
descriptor (presence of lake, glacier, flysch and karst ) with * denoting significance at 5%
significance level (two-sided test) and brackets containing the mean value from the 1000
resampled 20-catchment subsets.

Descriptor SR g

A BI M, N Nk Nk T IDM
By ~ (m3 g1 3 % ) - (mm o -
(Units) (km?) -) km-2) -) -) -) -) year_1) °O) -)
HFS lagl +38.7% +9.6% -36.5% 5(6) 5(3) 12 12 -6.7% +11.7% -11.3%
LFS lagl +358% +20.2% —47.3% 17+ (6) 3 (3) 012) 0@ -37.9% -80% -17.3%
LFS lag2 +139.7% +18.9% —40.8% 12+(6) 7«(3) 0(2) 0(2) -265% —642% -8.8%

5.6 Principal component analysis of the predictors and linear regression

We attempt to fit a linear regression model to relate correlation to physical drivers, in
order to support correlation estimation for ungauged catchments. To avoid the impact
of multicollinearity in the regression while additionally summarizing river
information, we apply PCA (Section 5.3.2). Although correlation effects are efficiently
dealt with via the PCA, we avoid including highly correlated variables in the analysis.
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For example, the De Martonne index, precipitation and SR are mutually highly
correlated (all Pearson’s cross-correlations are higher than 0.6) and therefore we only
consider the SR in the PCA because it shows a more robust linear relationship with
correlation magnitude. We select A4, BI, SR and T as the variables to be considered in
the PCA. A log transformation is applied to the basin area to reduce the impact of
outliers. Table 5.3 shows the coefficients estimated for each component (the loadings)
and the explained variance. The first principal component is primarily a measure of
BI; the second principal component mostly accounts for 7 and the third principal
component accounts for A. There is an evident geographical pattern emerging by the
visualization of countries in the biplot (Fig. 5.11). Slovenian rivers cluster towards the
direction of increasing SR and 7, whereas Swedish rivers cluster towards the opposite
direction of increasing Bl and decreasing 7. Austrian rivers, which are the majority,
are the most diverse. The first two components together explain the 70% of the total
variability in the data.

Naturally, the statistical behaviour of the indices reflects the known local
controls for certain rivers. For example, the observed lowest Bl in Slovenia is consistent
with the presence of karstic formations for the majority of the Slovenian rivers, as is
the higher BI in Sweden and Austria, which is related to the presence of lakes and
glaciers in both countries.

In the case of HFS, all the examined linear models (combinations of In A, SR, BI,
P, T, IDM predictors) failed in explaining the streamflow correlation magnitude. On
the contrary, the linear regression model performs fairly well in explaining the
correlation for LFS, with an adjusted R? value of 0.58 and an F-test returning a p value
< 2.2 x10-16. The coefficients for the first three PCs are found significantly different
from zero at a 0.1% significance level and are included in the regression (Table 5.4).
The highest coefficient is obtained for the first PC, which mostly accounts for BI
importance. Diagnostic plots from linear regression for LFS are shown in Fig. 5.12.
There is no clear violation of homoscedasticity in linear regression, apart from the
presence of a limited number of outliers. There is a certain departure from normality
in the lower tail of the residuals, which relates to the fact that the model performs
better in the area of higher seasonal streamflow correlations and overestimates the
lower correlations.

Table 5.3 Loadings of the three Principal Components for In A, SR, Bl and 7. The explained
variance of each PC is denoted in parenthesis.

Predictor  poy (g9 50,) P2 (282%) PC3(17%) PC4 (12.2%)

variables

In A —-0.486 -0.427 0.748 0.145
SR 0.48 0.483 0.652 -0.332
BI -0.619 0.262 -0.11 -0.731
T 0.385 -0.718 -0.04 -0.577
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Table 5.4 Summary of Linear Regression results for the LFS model.

Predictor Estimate Standard t value Pr(>|t]) Adjusted F-statistic
variables Error R2

intercept 0.659 0.009 77.065 <2 x10-16 0.583 104.2

PC1 -0.111 0.007 -16.820 <2 x10-16 p-value:
PC2 0.0318 0.008 3.936 1.1 X104 <2.2x10-16
PC3 -0.039 0.010 -3.754 2.2 x104

= Austria = Italy _ = Spain
= France = Slovenia-+ Sweden

PC2 (28.2% explained var.)
o
e ® e

-2

0 2 4
PC1 (42.5% explained var.)

Figure 5.11 Principal component distance biplot showing the principal component scores on
the first two principal axes along with the vectors (brown arrows) representing the coefficients
of the baseflow index BI, specific runoff SR, natural logarithm of basin area In A and mean
annual temperature 7'variables when projected on the principal axes. Scores for the rivers are
plotted in different colors corresponding to each country of origin and 68% normal probability
contour plots are plotted for the countries.
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Figure 5.12 Diagnostic plots of linear regression for the LFS model. Residuals versus the first
(a), the second (b) and the third principal component (c) and the predicted values (d). Normal
Q-Q plot of the residuals (e). Plot of the predicted values from linear regression versus the
observed ones; red line is the diagonal line 1:1 (f).

5.7 Real-time updating of the frequency distribution of high and low
flows for the Oise River

We apply the technical experiment (Section 5.3.3) for high and low flows to the Oise
River in France and assess the difference in the estimated flood and low-flow
magnitudes. We update the probability distribution of high and low flows after the
occurrence of the upper 95% and lower 5% sample quantile of the observed mean flow
in the previous month, respectively.

The Oise River (55 years of daily flow values) at Sempigny in France has a basin
area of 4320 km? and its gauging station at Sempigny is part of the French national
real-time monitoring system (https://www.vigicrues.gouv.fr/), which is in place to
monitor and forecast floods in the main French rivers. The selected river has a high
technical relevance since it experiences both types of extremes with large impacts. For
instance, a severe drought event in 2005 led to water restrictions impacting agriculture
and water uses in the region (Willsher, 2005), while the river originated an inundation
during the 1993 flood events in northern and central France, which was one of the most
catastrophic flood-related disasters in Europe in the period 1950-2005 (Barredo, 2007).
It is characterized by HFS correlation p = 0.54, which is the 3rd largest lag-1 correlation
for the HFS in our dataset and LFS correlation p = 0.80, which stands for the 70%
quantile of the sample lag-1 correlation for LFS.

A visual inspection of the residual plots is also performed (Fig. 5.13a, b) in order
to evaluate the assumption of homoscedasticity of the residuals of the regression
models given by equation (36). The residuals do not show any apparent trend and the
Gaussian linear model is therefore accepted. Figure 5.13 (c, d) shows the conditioned
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and unconditioned probability distributions of peak and low flows in the Gaussian
domain. As follows from equation (38), the variance of the updated (conditioned)
distributions decreases.

After application of the inverse NQT the conditioned peak flows are modelled
through the EV1 distribution and compared to the unconditioned (observed) peak
flows. The corresponding Gumbel probability plot for conditioned and unconditioned
distributions is shown in Fig. 5.13e. For the return period of 200 years, the updated
distribution shows a 6% increase in the flood magnitude for the Oise River (307.7 m3
s7! to 326.44 m3 s71). Likewise, the conditioned low flows are modelled through the
lognormal distribution. The two cumulative distribution functions are compared in
Fig. 5.13f showing a major departure in the estimated quantiles for the updated
distribution; the occurrence of the predefined 5% quantile flow in the pre-LFS month
induces a decrease of the exceedance probability of an average LFS flow of 15 m3 s-1
from a prior 43% (according to the unconditioned model) to 1%.
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Figure 5.13 Conditioning the frequency distributions for high and low flows for the Oise
River. Plots of the residuals of the linear regression given by Eq. (2) for the HFS (a) and LFS
(b) models. Probability distribution of the unconditioned normalized peak flows NQp (solid
line) and the normalized peak flows NQp conditioned to the occurrence of the 95% quantile
(dotted line) for the HFS (c) and probability distribution of the unconditioned normalized
low flows NQL (solid line) and the normalized low flows NQL conditioned to the occurrence
of the 5% quantile (dotted line) for the LFS (d). Gumbel probability plots of the return period
versus the unconditioned peak flows Qp (black line) and the peak flows Qp modelled by the
EV1 distribution and conditioned to the occurrence of the 95% quantile (red line) for the HFS
(e). Cumulative distribution function of the unconditioned low flows Q. (black line) and the
low flows QL modelled by the lognormal distribution and conditioned to the occurrence of
the 5% quantile (red line) for the LFS (f).
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5.8 Discussion

The methodology presented herein aims to progress our physical understanding of
seasonal river flow persistence for the sake of exploiting the related information to
improve probabilistic prediction of high and low flows. The correlation of average
flow in the previous months with the LFS flow and HFS peak flow was found to be
relevant, with the former prevailing over the latter. This result was foreseen since the
LFS correlation refers to average flow while the HFS correlation is related to rapidly
occurring events. We also aim to investigate physical drivers for correlation and
quantify their relative impact on correlation magnitude. Therefore, a thorough
investigation of the geophysical and climatological features of the considered
catchments was carried out.

We found that the increasing basin area and baseflow index are associated with
increasing seasonal streamflow correlation, yet the latter has a stronger impact. To this
respect, Mudelsee (2007), Hirpa et al. (2010) and Szolgayova et al. (2014a) also found
positive dependencies of long-term persistence on basin area, and Markonis et al.
(2018) found a positive impact too but for larger spatial scales (> 2 x 10* km?2), while
Gudmunsson et al. (2011) found basin area to have negligible to no impact on the low-
frequency components of runoff. Our results additionally point out that catchment
storage induces mild positive correlation, not only for low discharges which are
directly governed by base flow, but also for high flows, which is less anticipated.

Previous studies also pointed out that correlation increases for groundwater-
dominated regimes (Yossef et al., 2013; Dijk et al., 2013; Svensson, 2016) and slower
catchment response times (Bierkens and van Beek, 2009), which concurs with the
impact of the baseflow index found herein as well as with the observed impact of fast
responding karst areas. The latter findings are also in agreement with our conclusion
that correlation decreases with increasing rapidity of river flow formation, which for
instance occurs in the presence of karstic areas and wet soils, explaining why
persistence decreases with high specific runoff, as also confirmed by other studies
(Gudmundsson et al., 2011; Szolgayova et al., 2014).

Other contributions also reported higher streamflow persistence in drier
conditions, either relating to lower specific runoff or mean areal precipitation
estimates (Szolgayova et al., 2014; Markonis et al., 2018). It was postulated that this is
due to wet catchments showing increased short-term variability compared to drier
catchments (Szolgayova et al., 2014) and having a faster response to rainfall due to
saturated soil. A similar conclusion has been reached by other previous studies
reporting that low humidity catchments are more sensitive to inter-annual rainfall
variability (Harman et al., 2011), therefore leading to enhanced persistence. Yet, these
studies refer to generally humid regions and cannot be extrapolated to more arid
climates. A related conclusion is proposed by Seneviratne et al. (2006) who found the
highest soil moisture memory for intermediate soil wetness. These results do not
contrast with our findings, which refer to a wide range of climatic conditions. In fact,
our finding that increased wetness has a negative impact on seasonal memory of both
high and low flows, extends the above results to the seasonal scale and interestingly,
to both types of extremes.
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We also confirm the role of lakes in determining higher catchment storage and
therefore positive correlations for the LFS, which has only been reported for annual
persistence in a few sites (Zhang et al., 2012).

The effect of snow cover for lag-1 LFS correlation is also revealed by the
Austrian catchments. The mountainous rivers, directly affected by the process of snow
accumulation, exhibit winter LFS and higher correlation than the rivers in the
lowlands, which are more prone to drying out due to evapotranspiration in the hotter
summer months. The inspection of elevation data confirmed the role of high altitudes
in increasing LFS correlation, which is likely related to storage effects due to snow
accumulation and gradual melting. In this respect, Kuentz et al. (2017) found that
topography exerts dominant controls over the flow regime in the larger European
region, controlling the flashiness of flow, and being a particularly important driver for
other low flow signatures too. In fact, topography may affect the flow regime directly,
through flow routing, but also indirectly, because of orographic effects in precipitation
and hydroclimatic processes affected by elevation (e.g. snowmelt and
evapotranspiration).

Regarding atmospheric forcing, we find LFS correlation to be negatively
correlated to mean areal temperature and annual precipitation. The former result may
be explained considering that increased evapotranspiration (higher temperature) is
likely to dry out LFS flows while snow coverage (lower temperature) was found to be
associated with higher LFS correlation. An apparently different conclusion was drawn
by Szolgayova et al. (2014a) and Gudmundsson et al. (2011), who reported increasing
persistence with increasing mean temperature postulating that snow-dominated flow
regimes smooth out interannual fluctuations. Yet, it should be noted that they refer to
interannual variability while we refer here to seasonal correlation and therefore to
shorter time scales, which imply a different dynamic of snow accumulation and
snowmelt; latitude may also play a relevant role in this, since in southern Europe the
complete ablation of snow can occur more than once during the cold season, and
sublimation may account for 20-30% of the annual snowfall (Herrero and Polo, 2016),
decreasing the amount of snowmelt and impacting LFS flows in the summer season.

Snowmelt mechanisms are found to increase predictive skill during low-flow
periods in some other studies (Bierkens and van Beek, 2009; Mahanama et al., 2011;
Dijk et al., 2013). However, in the glacier-dominated regime of western Alpine and
central Austrian catchments, it is unlikely that this is a relevant driver of higher
correlation, since low flow occurs in the winter months. Yet the mountainous, glacier-
dominated rivers still show increased LFS correlation compared to rivers in the
lowlands, which agrees well with other studies that have found less uncertainty in the
rainfall-runoff modelling in this regime owing to the greater seasonality of the runoff
process and the decreased impact of rainfall compared to the rainfall-dominated
regime of the lowlands (e.g Parajka et al., 2016).

Although the considerable uncertainty of areal precipitation estimates should
be acknowledged, the contribution of annual precipitation interestingly complements
the negative effect of increasing specific runoff —which is highly correlated to P
estimates— on the correlation magnitude for both LFS and HFS. This outcome confirms
that catchments receiving significant amount of rainfall do show less correlation than
drier regimes as discussed before.
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59 Conclusions and outlook

This research investigates the presence of persistence in river flow at the seasonal scale,
the associated physical drivers and the prospect for employing the related information
to improve probabilistic prediction of high and low flows by exploring a large sample
of European rivers. The main findings are summarized below:

e Rivers in Europe show persistent features at the seasonal timescale, manifested
as correlation between high- and low-flow signatures, i.e. peak flows in HFS
and average flows in LFS, and average flows in the previous month. Correlation
for LFS signatures is found to be consistently higher than HFS.

e Seasonal correlation shows increased spatial variability together with spatial
clustering.

e Storage mechanisms, groundwater-dominated basins and slower catchment
response time, as reflected by large basin areas, a high baseflow index and the
presence of lakes, amplify seasonal correlation. On the contrary, correlation is
lower in quickly responding karstic basins, and increased wetness conditions,
as revealed by high specific runoff.

e Low mean areal temperature is associated with higher LFS correlation owing
to the weaker drying-out evapotranspiration force and the mechanism of snow
accumulation in higher altitudes. Higher mean areal precipitation is associated
with lower LFS predictability, possibly due to the presence of saturated
conditions and increased short-term variability in wetter climates.

e The drivers of LFS predictability are easier to identify and allow for the
opportunity to construct regression models for possible application to
ungauged basins (Section 5.6).

e HFS and LFS correlation may directly apply to the probabilistic prediction of
‘extremes’, i.e. high and low flows, as increased correlation can be exploited in
various stochastic models. Such an application was performed in Section 5.7 in
a data assimilation setting for a river of marked technical relevance.

Regarding the last point, once a significant correlation is identified, it may be
exploited in other model variants as well, e.g. adding more dependent variables of
lagged flow and/or coupling with other relevant explanatory variables, such as
teleconnections or antecedent rainfall, in multivariate prediction schemes. Indeed, the
presence of river memory at the seasonal scale represents a possible opportunity to
improve the prediction of water-related natural hazards by reducing uncertainty of
associated estimates and allowing significant lag time for decision-making and hazard
prevention. Besides the high relevance for extremes, this type of seasonal
predictability could also be of interest to water resources management by, for instance,
exploring the memory properties of a minor HFS.

The inspection of the physical basis, apart from advancing our understanding
of the catchment dynamics and enabling predictions in ungauged basins, is highly
important as it may guide the search for other dependent variables and build
confidence in the formation of process-based stochastic models (Montanari and
Koutsoyiannis, 2012). A large sample of indices was herein inspected, yet more data
are necessary in order to allow for more certain and generalized conclusions
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worldwide. An important note is the effect of regulation, which, due to lack of
objective data, is not completely understood. However, the opportunity of exploiting
correlation is not affected by the presence of regulation, provided that the
management of river flow does not change in time.

We conclude that our results point out that river memory provides interesting
information that holds both theoretical and operational potential to improve the
understanding and prediction of extremes, support decision-making and increase the
level of preparedness for water-related natural hazards.
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This Chapter deals with the propagation of persistence from the parent process to the
occurrence process of its extremes. Clustering of extremes is critical for hydrological
design and risk management and challenges the popular assumption of independence
of extremes. Herein, we seek (a) the links between multi-scale clustering of extremes
and long-term persistence, i.e. HK dynamics, and (b) the possibility to infer the former
from the latter. To this aim, we highlight shortcomings of existing clustering indices
and devise a new probabilistic index, which can reveal clustering, linking it to the
persistence of the parent process. Its application to long-term rainfall records shows
that the occurrence process of rainfall extremes may exhibit noteworthy departures
from independence, which are consistent with the HK dependence structure of the
parent process.

6.1 Introduction

The identification of clusters in series of extreme events is an ongoing research topic
in geosciences, including hydrology, one that is particularly challenging due to the
large estimation uncertainties involved when studying series of rare events.
Regardless of the complications, this question has multiple important implications for
earth sciences which range from understanding natural variability and process
dynamics to correctly applying stochastic models for the purposes of inference and
prediction. This is evident as most relevant hydrological and engineering applications
require settling this issue at the early stage of the analysis, by either assuming
independence (e.g. Coles et al., 2001; Kottegoda and Rosso, 2008) or ‘ensuring’ it
through ‘adequate’” sampling techniques (Ferro and Segers, 2003). Thereby, the
research focus can be uniquely placed on the more straightforward task of
characterizing the probability distribution of extremes. For example, typical flood
guidelines suggest that successive flood events have at least a certain separation lag
time in order to be considered independent for the application of models (Lang et al.,
1999).

In light of concerns for intensification of hydrological extremes due to
anthropogenic forcing, the investigation of clustering receives additional interest
(Ntegeka and Willems, 2008; Tye et al., 2018; Merz et al., 2016; Serinaldi and Kilsby,
2018a), as attribution of trends to an external deterministic forcing presupposes that at
least the presence of natural inherent variability has been beforehand properly
accounted for. In this respect, increasing evidence reporting the presence of
persistence in various hydroclimatic variables (Hurst, 1951b; Koutsoyiannis, 2003;
Montanari, 2003; Markonis and Koutsoyiannis, 2016; O’Connell et al., 2016; Iliopoulou
et al., 2018b; Tegos et al., 2017; Dimitriadis, 2017) gives rise to the question of whether
or not, and to what extent a regular behaviour of the extremes originating from
persistent processes could be misinterpreted as a result of an anthropogenic cause.

This study deals with the investigation of clustering behaviour in records of
maxima with a special focus on long-term daily rainfall observational records. As
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recent studies reported evidence on the presence of persistence in annual rainfall
(Liopoulou et al., 2018b; Tyralis et al., 2018), the question of possible propagation of
persistence to rainfall extremes naturally arises. Therefore, the research objectives can
be articulated as follows: a) what are the links between persistence in the parent
process and clustering of extreme events and can we infer the one from the other? and,
b) what constitutes an informative characterization for clustering?

Typically, the assessment of clustering properties of extremes from a timeseries
implies the selection of a threshold based on which the sampling of ‘extreme” events
is performed. Then, clustering is quantified based on the departure of the properties
of extremes from the ones of a purely random process. This evaluation is performed
either by considering the series of the inter-arrival times of extremes or equivalently,
the series of counts of extreme events over counting windows. There is a direct
correspondence between the two; it is well-known for example, that when the data
come from a Poisson process, their inter-arrival times are exponentially distributed
(Papoulis, A., 1991).

In the hydrological literature, various ad-hoc, sometimes visual and subjective
approaches are used in order to quantify departures of extremes —typically floods—
from independence and characterize clustering. The most systematic usually consist
of some type of ‘window” analysis, where the timeseries is split into subperiods which
are examined for presence of perturbations in the statistics of extreme events, often
corroborated by statistical testing (Marani and Zanetti, 2015b; Ntegeka and Willems,
2008; Willems, 2013). Avoiding the need for selection of time windows to study, Merz
et al. (2016) applied a dispersion index, although mostly focused on a combination of
kernel-based methods coupled with statistical significance tests to identify flood-rich
and flood-poor periods in Germany. Yet, with a few exceptions only (Eichner et al.,
2011; Serinaldi and Kilsby, 2016b, 2018a), the majority of clustering characterizations
for hydrological extremes are not studied in relation to the dependence properties of
the parent process, which is the focal point here.

To evaluate the clustering properties in a more comprehensive framework, two
established indices are used in geophysical timeseries analysis, especially for the
clustering analysis of earthquakes (Telesca et al., 2002) and storms (Vitolo et al., 2009)
and are based on the ‘counts” approach: the index of dispersion and the Allan factor.
Both can be used to formally test the data against the Poissonian assumption
(Serinaldi, 2013; Serinaldi and Kilsby, 2013) and it is reported that their scaling
behaviour can also reveal the fractal properties of the underlying process for ideal rate
fractal processes (Thurner et al., 1997). The latter is related to the asymptotic
dependence property for large time horizons, long-term dependence, quantified by
the Hurst parameter. For revealing the HK dynamics, a number of methods examining
the original series also exist with the climacogram (Koutsoyiannis, 2010), i.e. the
variance of the aggregated process over scales, shown to be the most robust
(Dimitriadis and Koutsoyiannis, 2015).

We briefly review the above methods based on their performance on revealing
the clustering of extremes sampled from synthetic timeseries generated in order to
exhibit various degrees of persistence and different marginal distributions. We assess
their degree of generality and showcase their shortcomings when extremes arrive from
complex processes. We show how the interplay of persistence and moments of order

119



higher than 2 (skewness, kurtosis) can obscure the identification of the latter from
extremes. Accordingly, we propose an alternative characterization of clustering based
on a probabilistic index with distinctive features and test the proposed method on
synthetic and real-world rainfall data. We find that the index exhibits some
advantageous characteristics, namely it is capable of quantifying clustering by
probabilistic means, linking it to the scaling behaviour of the parent process for a range
of distributional and dependence properties. It also enables modelling the
probabilities of threshold exceedances across multiple timescales, which can be used
as a simulation tool, that being an important advance over existing methods that have
mainly an inferential character.

6.2 Dataset

An extended dataset comprising the 60 longest available daily rainfall records is
investigated in terms of its extreme properties. The data used in this study are collected
from global datasets, i.e. Global Historical Climatology Network Daily database
(Menne et al., 2012) and European Climate Assessment and Dataset (Klein Tank et
al., 2002) and third parties acknowledged in the acknowledgments sections. They
present an update of the previous dataset explored in Iliopoulou et al. (2018a) of long
rainfall records surpassing 150 years of daily values. A detailed description of the
dataset is provided in Appendix A.1. The geographic location of the rain gauges is
shown in Figure 6.1. The length of the timeseries enables the investigation of clustering
on extended time horizons from daily to yearly timescales.

180° 90°W 0° 90°E 180°

45°N
0° M

45°s

90°S

160 180 200 220 240 260 280
Record length (years)

Figure 6.1 Map of the 60 stations with longest records used in the analysis.
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6.3 Methodological framework
6.3.1 Definition of notation and mathematical formulation

Let x; be a stationary stochastic process in discrete time i, i.e. a collection of random
variables x;, and x:= {xy, .. x,,} a single realization (observation) of the latter, i.e. a
timeseries. Now for u being a threshold, u € R, we define the process of peaks over the
threshold (POT) consisting of events surpassing the threshold u, i.e,

{Ei/ X;>u

Yi = 0, x;<u (39)

Let also N(t) be a counting process of POT occurrences in time which is an increasing
function of time t. We then define the process z;k): = N(gk)-N((g — 1)k as the number
of occurrences of POT at timescale k and at discrete timeg =1,..,n/k.

We also define by mﬁlk) '= maX;_1yk<j<g{X;} the block maxima series, which is
formed by extracting the maximum order statistic of the observations divided in non-
overlapping equally sized periods of length (timescale) k. In the following, we call the
timescale k as timescale of filtering of the maxima. Figure 6.2 visualizes all the above
at two temporal scales for a realization of a random process with Hurst parameter
H=0.8 and the first four moments following a generalized Pareto distribution.
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Figure 6.2 Explanatory graph of mathematical formulation. (a) Parent timeseries, (b) POT
series, (c) temporal distribution of counts of POT at basic scale k=1, (d) temporal distribution
of counts of POT occurrences at scale k=10 and (e) block maxima series at scale k=10.

6.3.2  Generation of benchmark synthetic timeseries

To evaluate the ability of clustering indices to discern the dependence characteristics
of the parent (extreme generating) process, we first produce a set of synthetic
timeseries with different dependence properties and marginal distributions. For the
generation scheme, we employ a simulation procedure proposed by Dimitriadis and
Koutsoyiannis (2018) which is capable of generating timeseries explicitly reproducing
chosen theoretical moments up to any order together with any (long-term) persistence
structure, i.e. the HK dynamics. We focus here only on processes exhibiting persistence
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as these are the ones assumed consistent with the natural phenomena studied and also
known to produce long-term clustering. For the marginal distribution, we generate
timeseries preserving up to the 4th order moments following the normal, generalized
Pareto and gamma distributions. The higher-order moments of the generated
timeseries follow the entropic distribution. Because the generation scheme preserves
up to a specific number of moments from a distribution, the final shape may be slightly
distorted with respect to the theoretical one, and therefore, we denote the generated
series as type-gamma and type-Pareto, instead of gamma and generalized Pareto,
respectively. For a detailed explanation of the generation scheme, the reader is referred
to the Dimitriadis and Koutsoyiannis (2018). We focus only on the first four moments
as higher-order classical moments cannot be reliably estimated from ordinary sample
sizes (Lombardo et al., 2014).

The properties of these timeseries are chosen in order to cover a range of
statistical and stochastic characteristics in terms of skewness, kurtosis and H
parameter, and therefore, provide a good benchmark sample for testing the indices in
typical but also more ‘extreme’ cases. Their properties are summarized in Table 6.1.We
note that these timeseries are meant as theoretical case studies to test the
appropriateness of the indices and are not to be considered as synthetic series of daily
rainfall, which are the real-world data in question. However, since only the sequence
of counts of extremes is of interest, and not their actual values, it is not necessary to
strictly preserve other properties of daily rainfall, i.e. intermittency, and therefore in
this sense comparison to the synthetic series is allowed. A sample of the timeseries is
plotted in Figure 6.3.

Additionally to the above benchmark timeseries, we generate ensembles of
shorter timeseries having lengths of 150 x 365 values, i.e. equal to the minimum record
length of the rainfall data, and preserving the same moments as the benchmark
timeseries. These series are produced using fewer weights for the SMA scheme, up to
2000, but applying proper weight adjustment scheme (Koutsoyiannis, 2016). They
reproduce two dependence structures, white noise, and HK with H parameter 0.7,
considered a representative value for hydrological processes. The purpose of the
second benchmark sample is to test the methods in ‘realistic’ record lengths and to
evaluate estimation uncertainty by Monte Carlo simulations that require significantly
less computational effort compared to the first benchmark sample, which is generated
using 10¢ weights, i.e. equal to the series length.
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Table 6.1 Distributional properties of the benchmark samples used in the experiments with
length 106 and H values in the range 0.5-0.99.

Distribution Parameters
Mean Variance Skewness Kurtosis

type Shape Scale  Location
Normal - 2.6 1.25 1.25 2.6 0 3
Gamma 0.1 5.1 - 0.51 2.6 6.325 63
Gamma 0.01 16.125 - 0.16 2.6 20 603
Pareto 0.1 1 0 1.11 1.54 2.81 17.83
Pareto 0.2 1 0 1.25 2.6 4.65 73.8
1 Timeseries o % 10° Histograms
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Figure 6.3 Visualization of three timeseries with H=0.8 and different marginal distributions
generated from the 4-moment SMA scheme (Dimitriadis and Koutsoyiannis, 2018). The
legends report the mean, standard deviation, coefficient of skewness and coefficient of
kurtosis of each distribution.

6.3.3 Second-order characterization of extremes

The Hurst parameter is a well-established measure of persistence. It can be estimated
from the slope of the double logarithmic plot of the standard deviation of the averaged
process versus the averaging timescale, i.e. the climacogram (Koutsoyiannis, 2010; see
Section 2.2.1). To test how the estimator is impacted when extremes are used instead
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of the original values, we compute the H parameter for extremes extracted from
windows (scales) of length 1 to N/10 where N is the timeseries length. An example is
provided in Figure 6.4. The first H value (scale = 1) is the value for the original data
(the parent timeseries) and as the scale increases progressively the time series is
filtered to show only the most ‘extreme’ data. For instance, if the basic timescale is
daily, the estimated H parameter at timescale k=365 corresponds to the H parameter
of the annual maxima. To reduce computational time, we perform estimation every 50
scales. The results are shown in Figure 6.4 are for the normal and the other benchmark
timeseries. The impact of skewness and kurtosis on the estimator is striking as in the
case of non-Gaussian timeseries, the H parameter quickly decays to 0.5, as if there was
independence. On the contrary, for the normal timeseries it yields almost a stable
value. To verify that this is not due to the impact of standard deviation bias induced
by dependence, we performed estimation for selected timescales with the unbiased
with respect to standard deviation, LSSV estimator (Koutsoyiannis, 2003; Tyralis and
Koutsoyiannis, 2011b) as well. We also repeat the estimation for the shorter timeseries
and plot the average values at each scale obtained from the Monte Carlo experiments.
The same conclusion can be drawn. The climacogram estimator is severely biased
downward for extremes originating from non-Gaussian processes and falsely
indicates independence after a few scales of filtering. Therefore, we do not consider
the climacogram estimator for the rest of the analysis on empirical data. Since it has
been shown that the climacogram is closely related to other second-order
characterizations, i.e. spectrum and autocovariance (Dimitriadis and Koutsoyiannis,
2015), we also expect similar results from the latter. Furthermore, Barunik and
Kristoufek (2010) have shown that even for the underlying process (the parent), the
sampling properties of the Hurst parameter estimation by some other approaches, i.e.
the multifractal detrended fluctuation analysis and the detrending moving average,
are also greatly impacted by heavy tails.
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Figure 6.4 H parameters estimated from block maxima series at increasing scale of filtering for
(a) benchmark series of length 106 from HK models with H =0.8 following normal and type-
Pareto distributions and (b) average H values from 103 Monte Carlo simulations for HK
models with H=0.7 and three different marginal distributions, type-gamma, type-Pareto and
normal.

6.3.4  Clustering indices: the dispersion index

A well-known measure of clustering of events is the index of dispersion of counts, also

known as the Fano factor (e.g. Thurner et al., 1997), which is defined as the ratio of the

variance of the counts of events versus their mean number at a specific timescale k, i.e.:
E[2]- Elz:)?

(= LK1 72
d Elzd] (40)

For a Poisson point process, the dispersion index is unity for all timescales. According
to the literature (Thurner et al., 1997) the dispersion index exhibits power-law scaling
behaviour which is linked to the underlying persistence structure. Although the exact
form of the equation provided could not be theoretically validated per se at small
scales, we have confirmed the power-law scaling at large scales, which by revising the
original equation (Thurner et al., 1997), can be expressed as:

d® ~ k7 k> ko (41)

where c a real parameter and ky denotes the scaling onset timescale (a minimum time
scale, for which the above scaling law applies). It follows that the exponent 2H — 1 can
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be obtained as the slope of the double logarithmic plot of the dispersion index versus
the timescale for k > ky and therefore the Hurst parameter H, ranging in the (0,1)
interval can be estimated accordingly. An example is provided in Figure 6.5.

We test the dispersion index against samples of Gaussian and non-Gaussian
timeseries exhibiting HK dynamics. Namely, we use (a) the two long benchmark series
(N=109), the normal and the type-Pareto, both exhibiting H = 0.8, and (b) the ensemble
of simulations of shorter length (equal to daily values for 150 years) for three different
distributions, normal, type-gamma with shape parameter #=0.01 and type-Pareto with
a=0.2, all exhibiting H = 0.7. For the second sample, we provide the average value
estimated from the 103 Monte Carlo simulations of the dispersion index at each scale.
Results are shown in Figure 6.5.

At first, it is worth noting that the onset scale, from which scaling arises,
appears to be smaller for the long compared to the shorter timeseries. The related H
parameters are estimated from equation (41) for onset scale k=500, for both cases, in
order to ensure a more robust estimate (yet fitted lines are extrapolated backwards to
scale 365). It can be seen that the index yields satisfactory approximations of H only
for the normal distribution and the long benchmark series (estimated H = 0.77,
theoretical H = 0.8), whereas results are biased downward for the non-Gaussian one
(estimated H = 0.67, theoretical H = 0.8). In the case of the shorter record length, the
bias severely increases as the index yields H parameters falsely denoting
independence (average H = 0.54). There is also a considerable degree of ambiguity
regarding the selection of the onset time, a task that requires visual examination and
subjective judgement. Due to the above reasons, and namely, to the observed
underestimation of persistence for common record lengths, we do not consider the
index for the rest of the analysis. A more sophisticated use of the dispersion index as
well as bias correction methods may be possible but remain out of the scope of the
paper. For more information on a related index, the Allan factor, and its properties for
testing independence the reader is referred to Serinaldi and Kilsby (2013).
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Figure 6.5 Index of dispersion of POT occurrences versus scale (double logarithmic axes) and
estimated H parameters for scales>500 for (a) benchmark series of length 106 from HK models
with theoretical H=0.8 following normal and type-Pareto distributions and (b) average values
from 103 Monte Carlo simulations for HK models with theoretical H=0.7 and three different
marginal distributions, type-gamma, type-Pareto and normal

6.3.5 A new probabilistic index to characterize multi-scale clustering behaviour

The above review highlights the complexity involved in identifying clustering of
extremes and the need to devise an informative and objective characterization able to
reveal persistence even for non-Gaussian series, which are usually the ones of interest
in geophysical studies. To address this, we formulate a straightforward and
assumption-free representation of clustering by estimating the probability of
occurrence of extreme events across multiple scales. The proposed probabilistic index
is defined as follows.

We set a threshold to the original timeseries and select the data surpassing the
threshold as extreme events, hence, forming the Peaks Over Threshold series, y;.
Accordingly, we form the series of counts of the POT events for each scale, z® as
explained in Section 6.1 (see also Fig.6.2). We additionally, define the binary process

(k)

r;’ to denote the event of exceedance of the threshold at each time interval g of size k,

g=1,..,In/k |
(k)
T L (42)
- 0, gf,k) =0
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Then, the probability of exceedance of the threshold for timescale k is obtained as the
frequency of exceedances estimated from all | n/k] intervals:

Ln/k] (k)

gl = 2L =4
P T @)

The latter is the exceedance probability (of the threshold) versus the scale (EPvS) and
its complement, p® =1 —p® is the non-exceedance probability versus scale (NEPvS).
Evidently, at scale k = 1 the EPvS is an estimate of the probability of the threshold
value, pV) = F(u), and the NEPvs is p¥ =1 - F(u). For example, in the previous
applications, the threshold value was selected so that F(u) = 0.05. For a purely random
process, the NEPVS is obtained as:

p® = p* (44)

where p is the probability of non-exceedance at the basic scale k = 1 and equals 1 — F(u).
Therefore, for white noise processes, the probability of occurrence of extremes across
scales is fully determined by the choice of the threshold (controlling its probability at
the basic scale) and the scale. For HK processes though, a different behaviour is
revealed, with the probabilities of non-exceedance of the threshold being larger than
those obtained under independence. This property of HK is discussed and
investigated extensively in the following Section 6.5.

To model the NEPvVS, we revisit a probabilistic model proposed by
Koutsoyiannis (2006) to describe the clustering behaviour of dry spells in rainfall
timeseries. The model derives from an entropy-maximization framework and was
originally proposed to describe the probability dry across different timescales. The
latter, according to our definition, corresponds to a threshold taking the value of 0.
Therefore, in a similar manner to the probability dry, we obtain the probability of non-
exceedance of the threshold at scale k as:

d _ -+ =)oy

pY=p , p=1-F(u) (45)

where u is the threshold parameter and 7, £ € (0, 1). For n =1 and & = 0.5, equation (45)
describes the white noise process. To allow backward extendibility to scale k = 0, the
positivity of the base should be ensured and therefore the following inequality should
hold: £ > 1/2". We apply both the index and the proposed model to the synthetic series
as well as to the rainfall data and assess their performance in characterizing clustering.
We evaluate the index’s ability to reveal dependence by examining its performance for
all the benchmark timeseries and we test its robustness by varying all the involved
factors, i.e. sample size, marginal distribution’s properties and threshold value.

6.4 Linking multi-scale clustering to persistence

We estimate the NEPVS index for the synthetic benchmark timeseries setting the
threshold of extremes to 5%. The benchmark series have length 10° and therefore for a
5% threshold we obtain 50 000 extreme values (POT events). We investigate the
temporal scales 1 to 1000, since the index’s applicability to larger scales is to some
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extent also conditioned by the available sample size (this feature is discussed in Section
6.5.1).

Results from the NEPvS application are demonstrated on a double logarithmic
plot of minus natural logarithm of the non-exceedance probability of the threshold
versus the scale, which for most cases yields a straight line (Fig. 6.6). Some interesting
insights can be derived. As persistence increases, the probability of no occurrences of
extremes in a scale progressively increases (equivalently, its minus logarithm —shown
in the plots— decreases), which is true for all the examined distribution types. As
already mentioned, there is a maximum temporal scale until which the index is
informative. The latter, which we will call the ‘max-discernible’ scale, is the scale for
which the estimated (from the simulated series) non-exceedance probability equals
zero as at least one extreme event is encountered in every one of the | n/k,,, | intervals.
In this case, the minus logarithm of the NEPvS tends to infinity and is not shown on
the plots. For a given number of extremes and thus, sample size, the max-discernible
scale depends on the H parameter; the larger the persistence, the more timescales are
required in order to ‘encounter’ the extremes. This can be explained by considering
that another manifestation of clustering of extremes is the existence of prolonged
periods of time with no extreme occurrences.

It is worth noticing that the marginal properties are irrelevant for the NEPvS of
the white noise process. The latter is also proved in Fig. 6.6 as the lines of all the white
noise timeseries with different marginals are completely identical, for which there is a
theoretical justification. Likewise, for H parameters no far from 0.5 the different non-
Gaussian distributions (Fig. 6.6a) yield negligible differences on the NEPvS plots.
However, notable differences appear for H > 0.7. Specifically, the non-Gaussian
NEPvVS plots evidently differ from the NEPvS of the normal distribution, especially for
large H values, with the latter showing more apparent clustering behaviour.

The NEPvS model, i.e. equation (45), fits perfectly all the range of non-Gaussian
distributions, with a slight exception for the normal timeseries at small scales (k < 50)
and very large H parameter (H = 0.9).
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Figure 6.6 Minus natural logarithm of non-exceedance probability versus scale (NEPvS) index
on double logarithmic axes along with the fit of the proposed model (Eq. 2) for (a) benchmark
non-Gaussian timeseries (type-gamma and type-Pareto) and (b) benchmark normal
timeseries, for a range of H parameters.

Having established that a representation in terms of the minus logarithm of
probability vs. timescale, like that of Fig. 6.6, reflects the presence of persistence for a
range of distribution types, we aim to frame its statistical behaviour for different
configurations of extreme value analysis. For this purpose, the statistical behaviour of
this graph is investigated by means of Monte Carlo simulation starting from the white
noise case, which will serve as a benchmark model for identifying dependence from
the rainfall data.

6.4.1  Sample size impact

We generate two ensembles of 103 white noise timeseries with sample sizes 150 years
(150%365 daily values) and 300 years respectively, thus covering all the range of
observed record lengths of our data set, and we produce the NEPvS plots for both
lengths, shown in Figure 6.7. As expected, the larger sample size produces narrower
Monte Carlo Prediction Limits (MCPL), yet the difference is almost negligible. The fact
that sample sizes of this order of magnitude yield only minimal differences in the
MCPL gives confidence in attributing the differences between the models that are
examined next to other factors instead. The essential change however, between the two
sample sizes is the propagation of the max-discernible scale to a larger timescale for
the longer timeseries (Fig. 6.7). The latter is due to the fact that ‘extremes’ are
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distributed in longer time periods for the longer series, and therefore, the longer the
series the more timescales may be inspected for clustering.
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Figure 6.7 Minus natural logarithm of non-exceedance probability versus scale (NEPvS) index
on double logarithmic axes for white noise timeseries and two sample lengths, 150365 and
300x365.

6.4.2 Threshold impact

The selection of the threshold is the most important choice when analysing records of
maxima. It is generally acknowledged that choosing ‘high” thresholds for the extremes
results to observations that are located far in the right tail of the distribution, and
therefore they are of interest, but simultaneously, increases uncertainty as the sampled
observations are fewer. The exact opposite is true for lower thresholds. Therefore, one
has to seek an optimal threshold compromising this trade-off.

We first evaluate the choice of the threshold by examining four different
thresholds associated with exceedance probabilities 0.5%, 1%, 5% and 10%
respectively, applied for the benchmark case of independence, as seen in Figure 6.8. It
is interesting to note that the main effect of the threshold for the IID case is the
opportunity to apply the index to larger scales if the threshold is increased (smaller
probability of exceedance). This is due to the fact that for the same record length, fewer
extreme events are likely to be more separated in time and therefore, require longer
timescales to be grouped.
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Figure 6.8 Minus natural logarithm of non-exceedance probability versus scale (NEPvS) index
on double logarithmic axes for white noise timeseries (length 150x365) and variations of the
sampling threshold of extremes

We also inspect the impact of the threshold in relation to the H parameter of the
parent process for three distribution types from the benchmark series, type-Pareto
with a = 0.2, type-gamma with 2 = 0.01 and the normal. In this case, we evaluate three
different thresholds, 5%, 10% and 20%. Although the latter threshold would be
considered ‘low” for most extreme value analyses, here it is of interest, as by varying
the threshold we aim to investigate the limits of identifiability of the HK behaviour,
and not to focus on the exact shape of the distribution tail. To this aim, we fit the
probabilistic model introduced in equation (45) to each timeseries and evaluate the
ability to reveal persistence through the identifiability of the fitted parameters, n and
&. In Fig. 6.9, the impact of the threshold is striking within the same distribution with
lower threshold values (e.g. 20%) increasing identifiability of the parameters more
than 10%. Additionally, it can be seen that the 77 parameter is more sensitive to the
normal distribution, while on the contrary the & parameter is sensitive to increasing
skewness and kurtosis.

By performing the above experiments, we have demonstrated the twofold effect
of the threshold: ‘lower” thresholds (higher probability of exceedance) enable better
identifiability of persistence, yet they limit application of the index to less scales, and
vice versa.
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Figure 6.9 (a) Parameter 7 variation for increasing H parameter and different combinations of
the sampling threshold and distribution type. (b) Parameter & variation for increasing H
parameter and different combinations of the sampling threshold and distribution type.

6.4.3 Tail impact

At this stage, for the same threshold (5%), sample size (150 years) and H (0.7)
parameter, we estimate the NEPvS index for the shorter benchmark series
characterized by different marginal properties, and thus distribution tails, so as to
focus solely on the impact of skewness and kurtosis on the index. Results are plotted
in Figure 6.10. Two important conclusions can be drawn: (a) clustering of extremes
and its identifiability is, in this case too, greater for the normal distribution (Fig.6.10a)
and (b) for a specified non-Gaussian distribution, clustering is greater and also more
visible for increasing skewness and kurtosis (Fig. 6.10b). The latter is a significant
advance as the reviewed tools in section 6.3 showed very high downward bias for
increasing higher order moments of the non-Gaussian distributions and practically no
difference among them for the record lengths available (150 years). We also provide
the plots of the fitting of 7 and & parameters computed for the long benchmark series
with H parameters ranging in (0.5, 0.99) as well as their comparison in Fig.6.11 and
Appendix B.2. All three plots confirm the above observations.
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6.5 Clustering in real world rainfall extremes I: identifying clustering
mechanisms in the parent process

Rainfall is a complex geophysical process for the stochastic modelling of which it is
necessary to take into account its mixed-type marginal distribution (due to
intermittency), the presence of cyclo-stationarity (seasonality and also diurnal cycle
for sub-daily scales) as well as its scale dependence structure (Markonis and
Koutsoyiannis, 2016). It is expected that all these mechanisms affect the clustering
process of extremes.

In the following, we investigate their impact separately, although we note that
the interplay among them may not necessarily allow the robust disentanglement of
their effects at the different scales.

6.5.1 Influence of probability dry

The most distinctive feature of the rainfall process is its highly intermittent nature at
fine temporal scales (Koutsoyiannis, 2006). To statistically account for intermittency,
the marginal distribution is formed as a mixed (discrete-continuous) type one, having
a probability mass function concentrated at 0 and a probability distribution function
to describe the nonzero values. Therefore, if p4 is the probability of no-rain, termed
probability dry, then the cumulative distribution function for the whole rainfall record
F,(x) can be defined in terms of the conditional distribution of wet days F,j,.((x) as:

Fg(x) = (1 - Pd)pro(x) +Pa, X >0 (46)

Since the threshold of extremes u is obtained as the quantile with a chosen probability
of exceedance, it is evident that in the case of mixed-type processes, as in daily rainfall,
the same threshold value will have a different probability of exceedance for the whole
process and for the wet process (the nonzero rainfall). By simple probabilistic
statements, it follows that the two exceedance probabilities of the threshold u for the
compound and the wet process, p.(u) and p,, (1), respectively, are related as:

p (1)
P, =1 C_p
d

(47)

where py = 1- p(0) is the probability dry. Therefore, the exceedance probability for
the same threshold is higher for the wet series, which means that depending on the
probability dry, the values surpassing the same threshold may not necessarily belong
to the right tail of the wet series as ‘extremes’. For instance, a threshold u with
associated exceedance probability 5% for the whole rainfall record with probability
dry equal to 80% yields exceedance probability 25% for the wet series, and therefore
the resulting series of POT events would also include lower rainfall values. While this
is not a limitation of the methodology, it should be properly accounted for in order to
(a) ensure that the resulting extremes are indeed towards the right end of the wet series
tail and (b) to make meaningful comparisons among stations with different values of
the probability dry. For this reason, we compute p4 for all stations in order to make
sure that the resulting extremes are surpassing relevant thresholds. As previously
shown, the latter is important since the threshold is the key control on the results.
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6.5.2 Influence of seasonality

Seasonality may be in cases an important attribute of extreme rainfall impacting the
central tendency of rainfall maxima belonging to different seasons and inducing
temporal clustering in the series of extremes (Iliopoulou et al. 2018a). Since our aim is
to focus on the impact of HK dynamics on clustering of extremes, we apply
deseasonalization schemes to the original series in order to smooth out the seasonal
components and reduce associated clustering. By doing so, we may perform Monte
Carlo simulations with one marginal distribution per station for the validation of the
chosen models. We note that a perfect separation of the impact of seasonality from HK
dynamics may not always be possible, as in stations exhibiting strong seasonality we
anticipate interplay between the two.

We consider two different methods for removing seasonality. The first one,
termed M1, is a simple standardization scheme performed on a monthly basis. The
daily values x; belonging to each month m = 1,..,12 are transformed by subtracting the
mean and dividing by the standard deviation of all daily values belonging to the same
month, as follows: y; = (x; - u,)/0,, i € m. This method effectively removes
seasonality from the first two moments of the data. In order to deal with higher order
moments, we apply a second deseasonalization scheme denoted M2, which is based
on the Normal Quantile Transformation (NQT) also applied on a monthly basis. The
daily series for each month m are transformed to standard Gaussian quantiles through
the inverse function of the standard Gaussian cumulative distribution, y; = Gm_1 (F(x))
with their cumulative probability F(x) estimated via their Weibull plotting position.
Consequently, after the transformation, all daily values of each month follow the
standard normal distribution. We found that the two schemes show minimal
differences in the index’s behaviour, with the most apparent ones belonging to the
stations of Athens, Palermo and Lisbon.

In Figure 6.12, we plot three characteristic cases of the NEPvS behaviours found
in the data: a) in a typical station with minimal to no seasonality (Oxford), extremes
are not affected by deseasonalization schemes (Fig.6.12a), b) in a station with
prominent seasonality (Athens, Fig.6.12b), a stronger deseasonalization scheme (M2)
maybe required, and ¢) in an intermediate case (Helsinki, Fig.6.12¢), the seasonal
component in extremes is effectively dealt by with the simpler scheme (M1). The
majority of the stations (40) belong to the third category, while for 17 stations
accounting for seasonality yields minimal to no difference. These findings are
consistent in general with the analysis of Iliopoulou et al. (2018a) on the presence of
seasonality in extreme rainfall.
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Figure 6.12 Minus natural logarithm of non-exceedance probability versus scale (NEPvS)
index on double logarithmic axes for white noise timeseries and seasonal and deseasonalized
series by methods 1 (M1) and 2 (M2) for the stations of Oxford (a), Athens (b) and Helsinki (c).

6.5.3 Rainfall scaling regimes

In order to highlight the motivation behind selecting the daily rainfall as a case study
for the method and establish the ‘target’ persistence structure that we aim to reveal,
we estimate the persistent properties of the previously deseasonalized daily rainfall
series. To this aim, we compute the H parameter through the climacogram as
introduced in Section 2.2.1. All the empirical climacograms are plotted in Figure 6.13.
The estimated average persistence (Table 6.2) is close but even larger than the global
estimate (H=0.6) of Iliopoulou et al. (2018b) concerning annual rainfall. Remarkably,
in many stations we observe a change of the scaling regime, namely an intensification
of persistence, at scales above yearly. A similar result was observed in the work of
Markonis and Koutsoyiannis (2016) for rainfall records at the over-decadal scale. This
behaviour is also evident in the Table 6.2 reporting the estimated H parameters for the
daily and above-yearly scales.
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Figure 6.13 Empirical climacograms of the 60 daily rainfall series used in the analysis along
with theoretical lines for H=0.5, 0.6, 0.7, 0.8.

Table 6.2 Summary statistics (first and third quantiles, Q1 and Q3, mean and standard
deviation, St.Dev.) of the properties of the rainfall dataset. Mean, Variance, Skewness and
Kurtosis are estimated for the wet record.

Statistic  Mean Variance Skewness Kurtosis Prob. Hialy Hannuat Years  Missing %

Dry
Q1 3.68 24.85 2.9 17.28 0.47 0.56 0.55 153 0.75
Mean 498 64.85 3.39 24.03 0.55 0.63 0.67 169.25 2.62
Q3 5.91 64.64 3.54 25.85 0.61 0.7 0.77 173 1.31
StDev. 227 94.15 0.72 10.94 0.11 0.09 0.13 24.66 5.11

6.6 Clustering in real world rainfall extremes II: HK dynamics?
6.6.1  Analysis of daily rainfall extremes in the Netherlands

It should be evident by now that the clustering dynamics of extremes depend not only
on the persistence properties of the parent process but on its higher-order moments as
well. The identifiability of clustering also varies depending on the choice of the
threshold, which may need to be modified for mixed type processes, as discussed
before. In our case, this means that depending on the probability dry of each station
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the chosen threshold will correspond to a different one for the ‘wet” record of each
station. Therefore, a blind comparison of different stations with the obtained MCPL
for a given threshold could be uninformative depending on the variability of
probability dry in the sample of the stations. In order to apply the methodology
effectively in as many stations as possible we assume a climatically homogenous
regions in which the rainfall timeseries can be regarded as realizations of a single
process. For this purpose, we select the region of the Netherlands in which 28 out of
the 60 stations are located and preliminary analysis showed small variability of the
summary statistics. We estimate the average values of the first four moments of the
deseasonalized records for all 28 stations and we also estimate the H parameter
resulting from the analysis of the daily values. We form an ensemble of 103 Monte
Carlo simulations for the average number of years of the sample (160 years) with an
HK-model preserving the first four moments and subsequently, compare its clustering
behaviour with the one observed from the sample of the stations. We also repeat the
Monte Carlo simulation for a white-noise process. We present both analyses in Fig.
6.14. It is evident that the assumed model is consistent with the majority of the
observed records, with only a few stations located at the south-west of the Netherlands
exhibiting even stronger clustering outside of the 95% region of the assumed HK
model. As expected, as the threshold increases evidence of persistence is progressively
‘lost” and the probabilistic behaviour of POT occurrences resembles a purely random
one.
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Figure 6.14 Minus natural logarithm of non-exceedance probability versus scale (NEPvS)
index on double logarithmic axes for deseasonalized series for the 28 rainfall records in the
Netherlands along with 95% MCPL of the fitted model with H=0.7, for four different
thresholds: (a) 10%, (b) 5%, (c) 1% and (d) 0.5%.
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6.6.2  Case study of daily rainfall in Stykkisholmur

As a second case study we select a single station, located in Stykkisholmur (Iceland),
which is the station with the most peculiar behaviour among all those we analysed.
We repeat the Monte Carlo analysis for both a white noise process and a HK process
preserving the first four moments and the H (= 0.65) parameter of the record. Results
are shown in Figure 6.15. It is interesting to note that clustering in this case appears
stronger than predicted by the HK model. The Monte Carlo experiment is repeated for
H = 0.7 to explore the possible impact of estimation uncertainty due to the standard
deviation bias in finite sample sizes (Koutsoyiannis and Montanari, 2007). In this case,
the MCPL approach the observed data for the lower threshold, yet the impact is lower
for the higher threshold. A similar behaviour was found in the station of Uppsala. We
hypothesize that this ‘discrepancy’ between the persistence found in the parent
process and the stronger one implied by the extremes might be explained by the
impact of large-scale atmospheric circulation patterns (as the NAO) on rainfall
extremes, which might need even longer record lengths in order to be effectively
summarized by the second-order characterization provided by the H parameter.
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Figure 6.15 Minus natural logarithm of non-exceedance probability versus scale (NEPvS)
index on double logarithmic axes for the deseasonalized series of Stykkisholmur in Iceland
along with 95% MCPL of the fitted models with H=0.65 and H=0.7, for four different
thresholds: (a) 10%, (b) 5%, (c) 1% and (d) 0.5%.
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6.6.3 Modelling the clustering behaviour of all records

We apply the NEPvS model to both seasonal and deseasonalized timeseries of the
rainfall data of all 60 stations in order to assess its applicability in all cases. We employ
the deseasonalized scheme M1. In Figure 6.16 we plot the boxplots of the estimated
parameters n and & as well as the RMSE for the seasonal and the deseasonalized series
for three different threshold, 1%, 5% and 10%. From the fitted parameters, it is
reaffirmed by this analysis as well that as the threshold decreases the estimates of the
parameters deviate from the ones obtained for the IID case (¢ = 0.5 and 1 = 1). From
the RMSE (Fig. 6.16¢), it can be seen that the proposed model describes very well the
deseasonalized data and fairly well the original observations, and in both cases the
modelling efficiency improves for lower thresholds. Seasonality is associated with
increased temporal clustering in the intermediate scales (approx. 20-150 days), which
manifests with a curvature in the NEPvS plots that the model captures less efficiently
compared to the deseasonalized case, typically producing a straight line plot. Also, it
is evident that results concerning the threshold are not as robust for this case, since the
impact of the threshold on seasonal clustering may vary depending on the specific
seasonal regime. For instance, it is expected that for stations with prominent
seasonality, high thresholds will show increased clustering only in the wettest season,
whereas lower threshold will enable inspection of clustering in more seasons.
However, depending on the characteristics of the seasonal regime and the intensity of
the specific seasons, the temporal mixture of extremes from the different seasons
differs from case to case, and thus, it is not straightforward to discern the impact of
seasonality from a bulk fitting to all cases. On the other hand, for the deseasonalized
cases it is clear that ‘dependence’ emerges as the threshold lowers.
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Figure 6.16 Boxplots of (a) parameter 7, (b) parameter & and (c) RMSE from the fitting of the
model to the seasonal and deseasonalized series by M1 for three different thresholds (1%, 5%
and 10%).

6.7 Discussion

Clustering of extreme events is related to the presence of persistence, or HK dynamics,
in natural processes. Here we approached this relationship with a twofold intention;
first to ‘retrieve’ persistence from records of maxima, and second, to characterize it by
probabilistic means. To this aim, we have introduced the NEPvS index, for which we
also propose a model. The index examines the probabilistic behaviour of POT
occurrences across multiple scales and proved successful in revealing persistence from
extremes from various non-Gaussian timeseries, for which well-known tools
performed poorly.

It seems, though, to be difficult to establish general analytical relationships
linking the NEPVS behaviour to the H parameter of the parent process, which is true
without even considering the uncertainty involved in estimating H from small record
lengths in the first place. As the H parameter is a second-order characterization of a
process, generation schemes reproducing H behaviour but coupled with different
marginal distributions (having different high-order moments), will yield different
behaviours of extremes. For instance, clustering of extremes and its identifiability
appears to be much more prominent in Gaussian processes. The task therefore, of
linking clustering of extremes to the H parameter, without also accounting for the
specific high-order moments of the timeseries seems infeasible. We showed though,
that the threshold is a key determinant in this respect, as lowering the threshold, i.e.
moving towards the central tendency of the data, enables better identification of
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persistence. On the contrary, as the threshold increases, evidence of persistence is
progressively lost and the behaviour of extremes may falsely suggest independence of
the parent process.

Application of the NEPVS index to daily rainfall data showed that there may
exist significant departures from the case of independence, particularly for lower
thresholds, which are dependent on the location and specific climatic region. In
general, the behaviour of rainfall extremes in multiple case studies (28 stations in the
Netherlands and 1 in Iceland) was found by means of extensive Monte Carlo
simulations, to be consistent with HK dynamics characterized by moderate H
parameters (in the range 0.6-0.7). The NEPvS model showed a very good fit to the
probabilistic behaviour of exceedances for the seasonal and deseasonalized
observations across multiple scales for all 60 stations. As a similar version of the model
has been previously proposed to describe the probability dry across multiple scales
(Koutsoyiannis, 2006), this result suggests that there exists a probabilistic law which
effectively describes the multi-level exceedances of rainfall thresholds across scales,
from zero-crossings (wet days) to high-level crossings, as the ones examined here.

From a theoretical point of view, these findings suggest that it is important to
study change and clustering in a consistent stochastic framework examining the whole
process behaviour, in order to better understand the process dynamics and avoid
retaining ‘preconceived’ assumptions, such as IID, which may be inconsistent with the
physical reality. For instance, various trend tests assume IID for the examined process,
while modified tests accounting for persistence (Hamed, 2008), also do not consider
its interplay with the higher order moments. Therefore, it is likely that they fail to
account for extremes from complex processes, leaving aside issues regarding
problematic applications due to misinterpretation of stationarity (Koutsoyiannis and
Montanari, 2015; Montanari and Koutsoyiannis, 2014). Overdispersion in POT rainfall
events has been also studied lately and attributed to a mixture of Poisson models,
representing different climate regimes (Tye et al.,, 2018) as well as seasonality
mechanisms (Serinaldi and Kilsby, 2013). Although, we have found as well that in
some cases seasonality accounts for most of the observed clustering in the rainfall
extremes, by performing multiple MC experiments focusing on the deseanonalized
extremes, we have revealed consistency with HK dynamics. We note though that as
the H parameter for rainfall revolves around the value of 0.6 and rainfall is a heavily
skewed process, it is expected that identifiability of persistence from extremes will be
limited, except if ones lowers the threshold. Nevertheless, this highlights an alternative
scientific hypothesis to be considered in “attribution” studies, which is the emergence
of clustering and overdispersion of extremes from persistence in the parent process.

From a practical point of view, the presence of persistence in the parent process
affects estimation of extreme values, and therefore various design outcomes, in
multiple ways. Although the theoretical definition of return period is still valid under
presence of persistence (Koutsoyiannis 2008; Volpi et al., 2015), the statistical estimates
of distribution quantiles for a specified return period are severely impacted. Other
important implications concern flood risk underestimation under persistence
(Serinaldi and Kilsby, 2016b), as well as underestimation of IDF curves when the
temporal dependence is disregarded (Roy et al. 2018). Therefore, although persistence
of the parent process is less evident in the series of its extremes, and it is highly unlikely
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that it can be fully retrieved except for very low thresholds, its impact cannot be
disregarded when studying extremes, even if the latter appear independent. It is worth
recalling the existence of theoretical arguments concerning the validity of the
fundamental EVT results (limiting distributions etc.) under weak presence of
persistence (Leadbetter, 1983b; see also Section 2.3). However, for scientific
applications, which involve estimation from data of finite, and typically small record
lengths, the presence of persistence in the process induces uncertainty in the
estimation, as the actual information content of the data is lower than that for IID
conditions (Koutsoyiannis and Montanari, 2007). This uncertainty inevitably
propagates into the extreme value estimates.

The existence of clustering also increases the arguments towards the use of the
POT method for sampling of extremes, instead of block maxima approaches which
tend to hide dependence, as also evident in Fig.6.2. As the threshold plays a vital role,
using POT approaches with more than one event per year on average, which is the
common practice, is also equally important. Empirical declustering approaches (Lang
et al., 1999) may as well be non-effective if they do not take into account each process
characteristics. In this regard, we argue that instead of seeking to resort to
independence, often at the cost of reducing the available information (e.g. by
discounting ‘dependent’ data), accounting for dependence is a more viable and
consistent way forward. In fact, the use of all the set of observations has been recently
advocated (Volpi et al., 2019), while the emergence of new types of high-order
moments (Koutsoyiannis, 2019c¢) that exploit the whole set of observations, provide an
improved stochastic framework for applying this principle.

6.8 Conclusions

This research deals with the question of identifying the links between persistence in
the parent process and clustering of extremes, with the specific aim to ‘rediscover’ the
usually ‘lost” persistence when one examines records of maxima. This is achieved by
devising a probabilistic characterization of clustering of extremes. The main findings
are summarized below:

e There is significant influence from both the second-order properties and the
high-order moments of the parent process on the generated extremes, and
therefore characterizations of clustering of extremes need to account for both.

e Identifiability of persistence from records of maxima is in general limited and
weakens as the threshold for extremes increases.

¢ The estimates of the Hurst parameter by the climacogram and dispersion index
analyses are found to be severely biased downward when derived from
extremes originating from non-Gaussian processes.

e A new probabilistic index is proposed to represent clustering based on the
probability of non-exceedance of a given threshold across scales, called the
NEPvVS (non-exceedance probability vs scale) index.

e The NEPVS exhibits scaling behaviour which is described by a proposed model
accurately simulating the probability of exceedance of a threshold at multiple
temporal scales.
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e The index is transparent and can be directly used for statistical testing of
departures from independence. Case-specific Monte Carlo simulations are
needed to validate more complicated models coupling persistence with
different marginal properties.

e The POT approach applied with ‘low” thresholds is a robust and informative
way to reveal the clustering dynamics of extremes, in contrast to the block
maxima method which hinders identifiability of persistence.

e Deseasonalized daily rainfall POT events may show prominent departures
from independence especially at lower thresholds, which may become
important depending on the climatic region. Extensive station-specific Monte
Carlo experiments showed consistency of clustering of extremes for various
examined thresholds with assumed HK models fitted based on the properties
of the parent process.

Further research is required in order to obtain analytical mathematic results for
extremes arising from persistent processes, with the aim of constructing estimators for
any distribution type and dependence structure without the need for Monte Carlo
validations. However, the latter is doubtful as a task, since extremes over scales are
controlled by higher order moments, which are also difficult to estimate correctly from
data (Lombardo et al.,, 2014). Recently proposed moment types with unbiased
estimators across all orders that can also model joint properties of processes could
provide a way to circumvent this (Koutsoyiannis, 2019¢).

We conclude that extremes tend to ‘hide’ the persistence of the parent process,
often falsely signalling independence. Regardless however of the strength of the
evidence, the impact of persistence in the parent process on the estimation of extreme
values is nonetheless present. In this respect, more research should focus on the
stochastic properties of extremes from natural processes, where dependence
mechanisms manifest themselves across various temporal scales and challenge
common assumptions and practices.
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This Chapter examines the applicability of the EVT results, presented in Chapter 2, for
the case of extremes arising from persistent processes. To this aim, the appropriateness
of the GEV distribution for modelling maxima from persistent processes is assessed
through extensive Monte Carlo simulations and the effect of persistence in the
parameterization of the GEV distribution is identified. Manifestations of dependence
in the distributional properties of POT events at the annual scale are also highlighted.
The theoretical results are corroborated by real-world evidence from records of rainfall
and streamflow extremes. The second-order HK stochastic framework is applied for
the modelling of the parent process and its ability to reproduce the empirical extremal
patterns is evaluated.

7.1 Introduction

In Chapter 6, persistence (HK dynamics) is shown to manifest itself in the occurrence
process of extremes across scales. Compared to extremes from a purely random
process, persistent extremes have a lower probability of being encountered at a scale
as a result of clustering. The change in the multi-scale occurrence behaviour of
extremes under persistence implies that the properties of the extremes at a given scale
might also be affected. This is the focus of this chapter.

In a first examination, we investigate the distribution of block maxima under
various degrees of dependence. The relevant theory was outlined in the review section
2.3 of Chapter 2. Here, we specifically aim to assess the validity of the GEV distribution
as an approximation in cases of long-range dependence, and to identify the impact of
the latter in the GEV distribution parameterization, as well. In order to complement
the analysis of temporal properties of extremes in a given scale, we also study the
behaviours of POT events as these are indicative of the short-term clustering
properties of extremes. These local dependence patterns cannot be revealed by the
block maxima approach due to the disruption of short-term clustering by the
indiscriminate sampling of one event per time-window.

Empirical investigation of rainfall and streamflow series is performed to
showcase the hydrological relevance of extremal dependence. Finally, we carry out a
preliminary investigation of the performance of the HK stochastic framework in
modelling stochastic patterns of extremal dependence.

72 Assessing impacts of dependence on block maxima and their
modelling by the GEV distribution

The asymptotic results of the EVT and the set of underlying assumptions were
reviewed in Chapter 2. It was shown that by virtue of equation (23) for a process with
limited long-range dependence in extremes (fulfilment of D(u,,) condition), but with
presence of local dependence in exceedances (non-fulfilment of D’(u,) condition)
quantified by a positive extremal index, the non-exceedance probability of maxima of
a given scale increases compared to maxima derived from an IID process with the
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same marginal distribution. We test this theoretical result by comparing the
probabilistic behaviour of block maxima derived from processes with HK dependence
structure and AR(1) dependence. The HK and AR(1) series have exactly the same
marginal distribution for the normally-distributed processes, while share the first four
moments for the case of the Gamma-distributed processes.

It can be seen (Fig. 7.1) that indeed dependence lowers the exceedance
probabilities of extremes of lower magnitude yet the impact becomes negligible as the
magnitude increases. This behaviour however breaks down for extremely dependent
process (H=0.95) and heavy-tailed processes (Fig. 7.1j, k, 1), in which case the
exceedance probability of larger extremes appears greater. Yet these cases are severely
impacted by estimation uncertainty and therefore this effect is likely the result of
insufficient record length. Gaussian autoregressions (Fig. 7.1a, b, c) appear to only
marginally impact the behaviour of extremes, which verifies the relevant theory
suggesting extremal index 0=1, whereas in the case of autoregressions with non-
Gaussian innovations a considerably higher impact of dependence is observed. This
implies that heavy-tails and dependence have synergistic effects on the behaviour of
extremes.
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Figure 7.1 Exceedance probabilities of maxima from blocks of length n=100, 1000, 10 000 for
timeseries generated from an AR(1) model with standard normal distribution (a, b, ¢) and
gamma distribution (g, h, i) and an HK model standard normal distribution (d, e, f) and

gamma distribution (j, k, 1) for various degrees of dependence.

To gain insights into possible impact of estimation uncertainty on the above
results, we also examine shorter series of length 150 years and we specifically focus on
the annual timescale. Results from 103 Monte Carlo simulations from an HK-process
model with Type-G and Type-P distribution, shown in Fig. 7.2 and 7.3, reaffirm the
previous remarks. In terms of the expected values, the IID process acts as the upper
boundary of the distribution of the exceedance probabilities, yet dependence inflates
the prediction limits (7.2 b and 7.3 b).
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Figure 7.2 Expected values of the exceedance probabilities of maxima from blocks of length
n=365 for timeseries generated from an HK-type model with Type-gamma distribution from
103 simulations (a) and MCPL for the cases of H=0.95, 0.8 and IID(b).
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Figure 7.3 Expected values of the exceedance probabilities of maxima from blocks of length
n=365 for timeseries generated from an HK-type model with Type-pareto distribution from
103 simulations (a) and MCPL for the cases of H=0.95, 0.8 and IID(b).

Before examining the effect of dependence on the parameterization of the GEV
distribution, we first assess the quality of the latter as an approximation for extremes
of persistent processes. Since it is difficult to analytically derive the exact distribution
of maxima in such cases, we employ the empirical ones derived from the long
benchmark series (10¢ length). For the fitting process, we assess both the fits of the
maximum likelihood method and the weighted least-squares (WLS) method, with
weights equal to the empirical quantiles, as the one used in Chapter 3 for fitting the
GEV to seasonal extremes. Results from application to a series with H=0.7 and
different marginal distributions are shown in Fig. 7.4, for block sizes n=10, 100, 1000.
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It is apparent that the fit of the WLS outperforms the maximum likelihood fit for the
smaller block sizes, due to the violation of the independence assumption of the
method. On the contrary, the WLS algorithm yields a very good fit even for cases
where the asymptotic arguments for the GEV certainly do not hold (n=10). A slightly
less good performance is obtained for the case of the lower quantiles from n=10 of the
series with Type-Gamma distribution and shape parameter a=0.01. Yet the latter is
reasonable as the WLS algorithm favours a better fit to the larger quantiles over the fit
to lower quantiles. Therefore, given an adequate fitting method, the GEV distribution
appears flexible enough to model extremes from a wide range of persistent process.
The latter was verified also for the extreme case of series with H=0.95, in which case
the fit of both methods was even better.
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Figure 7.4 GEV fits to maxima from blocks of length n=100, 1000, 10 000 for timeseries
generated from an HK model with H=0.7 and Type-Pareto distribution (a=0.2), Type-Gamma
(a=0.01) and standard normal distribution, by the weighed-least squares method (a, ¢, e) and
the maximum likelihood method (b, d, f).
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To evaluate the effect of dependence on the parameterization of the GEV
distribution, the timeseries of length 150 years (150x365) are employed and the GEV
is fitted to the block maxima of block size n=365. Results from application to three
different distributions with varying degree of HK dependence are shown in Fig. 7.5.
As a first remark, it is interesting to observe that convergence of extremes from the
normal distribution to their domain of attraction, i.e. the Gumbel distribution (shape
parameter 0) is so slow, that it is not satisfied even for the IID series, at this block
length. For the other two distributions, convergence is satisfactory, as in the case of the
Gamma with shape parameter 0.1, the domain of attraction is the Gumbel and indeed
the values of the shape parameter are correctly identified, whereas for the Pareto with
shape parameter 0.2, again the shape parameter of the GEV is close, albeit slightly
underestimated.

Regarding the parameterization of the GEV as dependence increases, the
change is manifested in the values of the location and the scale parameter, as generally
expected, yet not in complete agreement with the extremal index theory. In fact, while
the location parameter indeed decreases with increasing dependence, the scale
parameter, on the contrary increases. The shape parameter remains reasonably stable,
as suggested by Chapter 2 theory, except for the cases of very strong persistence,
where the increase of the shape parameter is balanced by the decrease of the scale
parameter. The insensitivity of the shape parameter to dependence is theoretically
justified as the former relates to the shape of the tail of the process, which is a property
of the marginal distribution. On the contrary the rescaling parameters of the GEV
depend on 1, and thus on the scale. In this regard, the increase in the scale parameter
arises from the increased variance of block maxima from persistent processes, which
is intuitive if one considers the increased variability of the persistent process at
different scales. The decrease in the location parameter is expected as well, as also
shown in the Fig. 7.2-7.3, and directly stems from the clustering dynamics. Extremes
are clustered in years, and only the larger of them is selected as the maximum,
discarding the rest. On the contrary, in an IID process, extremes have a higher change
to be encountered as separate maxima in any given year and hence, to be modelled.
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Figure 7.5 Shape, scale and location parameters from the fitting of the GEV distribution to the
1000 timeseries with normal distribution (a, d, g), Type Gamma distribution (b, e, h) and Type
Pareto distribution (c, f, i) for varying H parameters.

7.3  Conditional properties of peaks over threshold under persistence

Switching the focus to the study of the behaviour of peaks over threshold in a given
scale allows further insights into the effects of persistence. Namely, it enables direct
inspection of clustering properties that are not revealed by the block maxima method,
such as the cluster duration and the number of separate clusters in a year. For this
analysis, we analyze a 500-year segment of the 10¢ Type-Pareto timeseries generated
by the HK model with H=0.8, and subsequently, obtain prediction limits of the
corresponding IID series produced by random shuffling of the original series. The
shuffling technique has the advantage of ensuring that the generated random series
has exactly the same distribution with the original. Therefore any changes in the
extremal properties can be uniquely ascribed to the presence of dependence in the
original series.
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The following properties of POT events are examined: (a) the frequency
distribution of the number of cluster maxima per year, (b) the exceedance probability
distribution of the aggregate annual POT event intensity, (c) the number of annual
POT events versus the mean POT event intensity, and (d) the frequency distribution
of cluster duration. A cluster is defined here by one or more successive POT events
separated from the next POT event by the occurrence of at least one event below the
threshold. The threshold is chosen so at the number of cluster maxima (maxima of
clusters of POT events, including single events) equals the number of years of the
record, as in the annual maxima approach. Analysis of the aggregate intensity is
inspired by the concept of collective risk in financial and insurance literature, which
deals with the properties of sums of random variables (Iglehart, 1969). In hydrological
literature, Serinaldi and Kilsby (2016b) suggested studying the behaviour of
streamflow events under the collective risk viewpoint, treating streamflow POT as
proxies for insurance claims.

Fig. 7.6 shows the stochastic patterns of POT events arising in the case of a long-
term persistent process. In Fig.7.6a, is seen that both the frequencies of zero number of
events and very large number of events tend to be greater under persistence. Fig 7.6b
shows how exceedance probabilities of the aggregate annual intensity are generally
higher compared to the IID case, as a result of clustering of events. Figure 7.6¢c shows
that persistence also increases the positive association between the number of yearly
events and their average intensity, compared to the IID case, where a lack of
correlation is observed. In Fig. 7.6d, it is shown that the probability of observing
clusters of large duration increases in the case of persistence. Recalling the findings of
Chapter 6, it can be concluded that persistence increases the probability of
experiencing large temporal periods with no extremes. On the other hand, it is shown
that should such a period occur, it will probably last longer compared to the IID case,
i.e. persistence induces a ‘when it rains, it pours” dynamic.
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Figure 7.6 Plots of the following functionals of POT events from the original and 1000 shuffled
timeseries (IID): (a) frequency distribution of the cluster maxima per year, (b) exceedance
probability distribution of the aggregate annual POT event intensity, (c) number of POT events
per year versus their mean annual intensity, and (d) frequency distribution of cluster duration.

74  Stochastic modelling of rainfall and streamflow extremal properties

In this section, we employ the previous shuffling methodology in order to trace the
effect of dependence on real-world rainfall and streamflow extremes, derived from the
Bologna daily rainfall series (206 years) and the Po river daily streamflow series (90
years). Further, we set up a preliminary modelling framework and test its effectiveness
in capturing the observed patterns. We do not employ any deseasonalisation scheme
for the rainfall and streamflow processes, since the ‘distinct” effects of seasonality and
persistence have been already investigated in Sections 7.1-7.3 as well as throughout
Chapters 4-6. Rather the aim here is to assess the combined effect of dependence
mechanisms on the extremal properties.

In Fig. 7.7, the annual maxima distributions of the daily rainfall in Bologna and
the daily streamflow of the Po river record are shown. The behaviour rainfall maxima
is within the MCPL range of the shuffled series although there is a tendency to deviate
from the expected IID behaviour. The departure from the latter is however prominent
in the case of the streamflow maxima, where the shift in the distribution is fully in line
with the behaviour of a persistent process. In both cases the WLS fit of the GEV is very
good and superior to the ML fit, which is not shown in the second case, due to being
very poor.
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Figure 7.7 Exceedance probabilities of annual maxima for the original timeseries and the
shuffled series for the Bologna rainfall series and the Po river daily streamflow series.

Proceeding to the second type of analysis, similar conclusions can be drawn. In this
case, the number of POT declustered events (cluster maxima) equals the number of
annual maxima for each record. In the rainfall series, dependence is manifested by an
increase in the cluster duration distribution and thus, in the annual aggregate event
intensity as well, as both deviate from the expected IID behaviour (Fig. 7.8).
Dependence is overall much more prevalent in the streamflow series (Fig.7.9) where
most studied functionals (Fig.7.9b,c,d) of extremes strongly deviate from their shuffled

counterparts.
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Figure 7.8 Plots of the following functionals of POT events from the original Bologna rainfall
series (206 years) and 1000 shuffled timeseries (IID(a) frequency distribution of the number of
cluster maxima per year, (b) exceedance probability of the aggregate annual POT event
intensity, (c) number of POT events per year versus their mean annual intensity, and (d)
frequency distribution of cluster duration.
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Figure 7.9 Plots of the following functionals of POT events from the original Po streamflow
series (90 years) and 1000 shuffled timeseries (IID): (a) frequency distribution of the number
of cluster maxima per year, (b) exceedance probability of the aggregate annual POT event
intensity, (c) number of POT events per year versus their mean annual intensity, and (d)
frequency distribution of cluster duration.

Next, we test the extent to which the observed extremal patterns can be
reproduced by variants of HK-type models accounting for the process second-order
(climacogram-based) multi-scaling properties (including joint moments) and the
distributional properties up to the 4th moment (Dimitriadis and Koutsoyiannis, 2018;
Koutsoyiannis, 2016). First, it is interesting to note the different scaling regimes
between the two series (Fig.7.10). The Bologna rainfall series exhibits two distinct
scaling regimes (two slopes in the climacogram); a weaker dependence structure in
short-time scales and an intensified one in time-scales greater than 3 years. On the
contrary, the climacogram of the Po streamflow series exhibits a strong curvature in
short timescales (less than three months), indicative of short-term dependence, while
approaches a HK behaviour at greater scales. The latter is similar to the first scaling
regime of the rainfall process. Since these series belong to the same hydrological
region, it could be postulated that the observed scaling patterns reflect the propagation
of dependence from the rainfall to the streamflow process. At shorter time scales, the
rainfall dependence dynamics are intensified through the catchment storage
mechanism appearing as ‘river memory’ (see also Chapter 5), whereas in greater time-
scales, the streamflow scaling behaviour approaches the first scaling regime of the
rainfall process. Yet the Po record is not long enough to assess whether this
assumption is supported at greater scales as well.
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The fitted climacogram models are also shown in Fig. 7.10. The streamflow
second-order scaling is captured by a GHK model, with three parameters, H = 0.61,
g = 35.149, A =1.027, while the rainfall process is captured with a FHK model having
an additional parameter to account for the change of the scaling regime, H = 0.92, g =
112, A =0.013, A" = 646.2. A complete presentation of other modelling options is
provided in Koutsoyiannis (2020b).
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Figure 7.10 Standardized climacograms of the Bologna rainfall and Po streamflow along with
the fitted climacogram models and the theoretical climacogram of a White Noise process.

Results on the reproduction of the observed extremal properties by the
synthetic series are shown in Fig. 7.11-7.12. Overall, results suggest that both models,
albeit formally calibrated only on the first four moments and the second-order scaling
behaviour, prove successful in capturing observed patterns of the extremal behaviour
as well. In Fig. 7.12 it is seen that the GHK model satisfactorily reproduces the positive
association between the number of POT events per year and their intensity. A few
discrepancies are yet observed. In the Bologna series, the cluster duration is
underestimated, while for both the rainfall and the streamflow series, the exceedance
probabilities of the aggregate annual intensities are also slightly underestimated in the
tail region of the synthetic series. The former suggests that a stronger short-term
dependence structure could be more appropriate for the Bologna series, while the
latter could be remedied by the inclusion of higher-order moments in the model’s
calibration scheme. In any case, the above results suggest that it is possible to capture
extremal patterns by preserving only essential properties of the parent process, i.e. it
may suffice to model the second-order scaling behaviour along with a certain number
of moments.
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Figure 7.12 Plots of the following functionals of POT events from the original Po streamflow
series (90 years) and 1000 synthetic series from a GHK model: (a) frequency distribution of the
number of cluster maxima per year, (b) exceedance probability distribution of the aggregate
annual POT event intensity, (c) number of POT events per year versus their mean annual
intensity, and (d) frequency distribution of cluster duration.

7.5 Conclusions and outlook

In this Chapter, the distributional properties of extremes from persistent processes are
studied with a twofold goal: (a) to test the sub-asymptotic appropriateness of extreme
value theory and conceptualize the effects of persistence on extremal properties, and
(b) assess the reproduction of the latter by HK-type modelling of the parent process.

Regarding the first goal, it is shown that the sub-asymptotic performance of the
Fréchet distribution for the extremes of persistent process is mainly a matter of the
fitting algorithm. In this respect, the maximum likelihood method yields poor fitting
results, due to its reliance on the independence assumption, but on the contrary,
results from the weighted-least-squares method are very good even for strong
persistence and small block lengths. On the other hand, it is questionable whether the
extremal index theory (Section 2.3.2) is well-suited for persistent processes. In fact, the
extremal index theory is developed for processes producing only short-term
clustering, with limited long-range dependence, and therefore, it is reasonable for
results to not hold for cases of persistence. As a matter of fact, contrary to what the
theory suggests for dependent processes, the scale parameter, related to the variability
of extremes, increases as a result of the increased variability of the persistent process
compared to an IID process. Still in agreement to the theory, dependence decreases
the location parameter of the block maxima distribution, yet it does not affect the shape
parameter, as theoretically expected.
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In terms of block maxima analysis, dependence manifests itself by ‘hiding’ the
extreme-generating potential of the process. Compared to an IID process, in an HK
process, it is much more likely to observe maxima of lower magnitude at a given scale.
On the contrary, the POT analysis exposes both the short-term clustering of extremes
as well as the long-term clustering studied in Chapter 6. In this Chapter, the focus is
placed on the extremal properties on the annual scale. It is found that POT for
persistent processes have a bilateral character compared to IID processes; absence of
POT events in a year is more likely, yet in the case occurrence of extremes is triggered,
a higher cluster duration and greater intensity thereof should be expected.

Regarding flood risk estimation, a direct consequence of the increase in
duration is the increase in the period of time an area is inundated (Dimitriadis and
Koutsoyiannis, 2020). The increase in the aggregate intensity of extreme events in a
given scale also increases the collective risk, which is relevant for insurance practices
against natural catastrophes (Serinaldi and Kilsby, 2016b; Goulianou et al., 2019;
Manolis et al., 2020; Papoulakos et al., 2020). On a higher level, it is argued that the
understanding of temporal risk dynamics is important to any field concerned with risk
planning and preparedness for natural disasters. Furthermore, as estimation
uncertainty is dominant for persistent and heavy-tailed processes, a priori awareness
of their dynamics is essential in order to cautiously interpret empirical evidence and
avoid a false perception of the true extremal properties. This makes the record length
issue for characterizing extremes even more important for dependent processes
(Koutsoyiannis and Montanari, 2007).

The extremal properties of long-term real-world series showed clear deviations
from the IID case and consistency with HK-type of models reproducing the first four
moments and the second-order scaling behaviour. Interestingly, the dependence
patterns of the two series, rainfall at Bologna and streamflow in the Po River, differed
substantially despite belonging to the same hydrological region. The rainfall series
characterized by long-term persistence, but weak short-term dependence, showed less
short-term clustering at the annual scale compared to the streamflow process, for
which the intra-annual clustering patterns were very pronounced. The fitted HK
models successfully captured the variability of the observed extremal patterns, even
though seasonality was not explicitly modelled, but only partially retained through
the second-order scaling.

Overall, the HK framework constitutes both an advantageous framework in
terms of explaining the temporal variability of extremes and a promising direction in
terms of joint modelling of lower and higher-order properties. More research is
required with respect to the latter as improvements are expected from inclusion of
higher moments in the modelling scheme, using k-moments estimation
(Koutsoyiannis, 2019c¢).
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Non-stationarity approaches have been increasingly popular in hydrology, reflecting
scientific concerns regarding intensification of the water cycle due to global warming.
A considerable share of relevant studies is dominated by the practice of identifying
linear trends in data through in-sample analysis. In this Chapter, the problem of trend
identification is reframed using the out-of-sample predictive performance of trends as
the reference point for model selection. A systematic methodological framework is
devised in which linear trends are compared to simpler mean models, based on their
performance in predicting climatic-scale (30-year) annual rainfall indices, i.e. maxima,
totals, wet-day average and probability dry, from long-term daily records. Analysis of
empirical records spanning over 150 years of daily data suggests that future long-term
variability is better captured using local mean models rather than trends. In line with
theoretical findings for persistent processes, it is shown that prediction-wise, simple is
preferable to trendy.

8.1 Introduction

“A trend is a trend is a trend / But the question is, will it bend?
Will it alter its course / Through some unforeseen force
And come to a premature end?”
(Sir Alec Cairncross, 1969, signing as “Stein Age Forecaster”)

In the past decades there has been a plethora of trend analyses in rainfall studies
(Bunting et al., 1976, Haylock and Nicholls, 2000, 2000; Rotstayn and Lohmann, 2002;
Modarres and da Silva, 2007; Ntegeka and Willems, 2008; Kumar et al., 2010), and it
could be argued that relevant studies are still on the rise (e.g. Biasutti, 2019; Degefu et
al., 2019; Folton et al., 2019; Khan et al., 2019; Papalexiou and Montanari, 2019; Quadros
et al., 2019; Rahimi and Fatemi, 2019). A quantitative analysis of the relevant literature
is provided in Section 8.3.1. This boom of trend studies has had various scopes, most
of which are related to global warming assessment (IPCC, 2013). These include historic
climate variability quantification, attribution to deterministic drivers, projections to
the future and impact assessments (e.g. Kumar et al., 2010; Parmesan and Yohe, 2003;
Biasutti, 2013; Rotstayn and Lohmann, 2002). Arguably what is common in the
majority of trend studies, even when not explicitly stated, is the expectation for a
monotonically changing future, which as a result, has initiated a growing discourse on
the appropriate modelling approach.

In climatology and hydrology, there has been an ongoing debate between
stationary vs nonstationary methods, with the former representing a well-established
hydrological practice (Montanari and Koutsoyiannis, 2014; Koutsoyiannis and
Montanari, 2015) and the latter reflecting recent attempts of the scientific community
to find a new way to respond to change and uncertainty under the anthropogenic
climate change scenario (Milly et al., 2008; Craig, 2010; Milly et al., 2015). Yet
deterministic trend modelling has been examined —and mostly criticized, on different
grounds, namely with respect to empirical evidence (McKitrick and Christy, 2019;
Cohn and Lins, 2005), theoretical consistency (Koutsoyiannis and Montanari, 2015),
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modelling efficiency (Montanari and Koutsoyiannis, 2014), and meaningfulness of the
results (Serinaldi et al., 2018, 2020). It has also been argued that the concepts of change
and uncertainty are already well-represented within the stationarity framework
(Koutsoyiannis and Montanari, 2007; Serinaldi and Kilsby, 2018b). In this research, we
examine the trend modelling framework from a new perspective, through the
evaluation of its out-of-sample modelling qualities, namely, its predictive powers for
a given record.

For this purpose, we introduce a validation framework for the evaluation of the
results, adding simpler, mean models in the pool of candidates, and basing the
reasoning of model selection on the statistical out-of-sample performance of the
models. While split-sample techniques (Kleme$, 1986) and multi-model approaches
(Georgakakos et al., 2004; Duan et al., 2007) are certainly not new in hydrology, they
are usually disregarded as concepts in the field of trend modelling, where the research
question typically revolves around explanatory performance, mostly by means of in-
sample measures, as hypothesis testing (Shmueli, 2010). In this work, we extend the
simple split-sample validation by introducing a moving window calibration and
validation approach that progressively scans each record by sliding windows of
climatic-length, i.e. 30 years according to the common climate definition (IPCC, 2013).
In this manner, we obtain a sample of estimates of the models” predictive performance,
instead of a single value.

By shifting the focus to the predictive modelling of linear trend, this analysis
seeks to answer the following key questions: (a) how well are the rainfall statistics of
the most recent climatic period predicted by the linear trend calibrated to the prior 30-
year period? and (b) how do the statistics of the predictive performance of linear trends
compare to the ones derived from application of simple mean models?

The first question is driven by the omnipresent scientific concerns regarding
intensification of extremes due to global warming during the last decades (e.g.
Houghton et al., 1991; Parmesan and Yohe, 2003; Oreskes, 2004; Solomon et al., 2007;
McCarl et al., 2008; Moss et al., 2010; Craig, 2010; Pachauri et al., 2014; Kellogg, 2019).
According to the fifth (latest) IPCC assessment (IPCC, 2013), the expected
intensification mechanism suggests a 6%—7% increase of the global water vapour per
°C of warming, followed by a 1% to 3% increase in global mean precipitation. Recently,
the physical assumptions behind these estimates have been questioned and revisited
in light of global datasets (Koutsoyiannis, 2020a), while the evaluation of hydrological
impacts from increased greenhouse emissions remains an open research subject with
often conflicting evidence (e.g. Hirsch and Ryberg, 2012; Mallakpour and Villarini,
2015; Bloschl et al., 2019). Therefore, the first examination of predictability is
consciously biased in favour of a model capturing the variability of the most recent
period of data.

The second question introduces the abovementioned methodological
framework for validating model predictions, which is applied to the empirical long-
term rainfall records as well as to synthetic series produced in order to mimic the
natural long-term variability of the rainfall process. A discussion on the relevance of
the framework in light of potential deterministic changes is also provided.
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8.2 Dataset

Our dataset is an update of the previous long-term dataset explored in Iliopoulou et
al. (2018a) of long rainfall records surpassing 150 years of daily values. It includes the
60 longest available daily rainfall records collected from global datasets, i.e. the Global
Historical Climatology Network Daily database (Menne et al., 2012), the European
Climate Assessment and Dataset (Klein Tank et al., 2002), as well as third parties listed
in the Appendix A (Table A1). The geographic location of the rain gauges is shown in
Figure 6.1. The length of the timeseries provides rare insights into long-term rainfall
variability and enables the statistical evaluation of the predictive performance of linear
trends from multiple time windows.

83 Overview of literature approaches
8.3.1 A quantitative review on rainfall trends

The aim of this literature review is to evaluate the academic interest in trends of rainfall
variables by means of a quantitative analysis of research papers appearing in Google
Scholar. We base this analysis on the quantification of the occurrence of associated
words in Google Scholar using Python code developed by Strobel (2018), omitting
results related to citations and patents. This analysis was performed on 21/10/2019 and
in order to refer to full calendar years it contains results published till the end of 2018.

precipitation + hydrology + extremes + trends
precipitation + hydrology + extremes

Word ratio =

1

0.8 *— <100results peryear —»

0.6

Ratio

0.4

0.2 ——3-year moving average

1900 1920 1940 1960 1980 2000 2020
Year of publication from Google Scholar

Figure 8.1 Temporal evolution along with three-year moving average of the ratio of the
occurrence of the word ‘trends’ in Scholar items containing the words “precipitation’,
‘hydrology” and “extremes’.

In Fig. 8.1, we show the temporal evolution of the ratio of appearance of the word
‘trends” in items also containing the complete list of words [‘precipitation’,
‘hydrology’, ‘extremes’]. Results have been randomly varying from the beginning till
the mid 20t century, when there were less than 100 results per year fulfilling the
criteria of containing the list in the denominator of the ratio. It can be seen though that
approximately from the 1960 and later on there has been an increasing trend in
relevant publications containing the word ‘trends,” reaching 89% in 2018. Obviously,
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results belonging to a different context than the one assumed might have been
calculated as well but we assume their effect to be analogous both in the nominator
and the denominator of the ratio, thus not significantly affecting the conclusion.

To further refine our search to more technical papers explicitly referring to
rainfall trends we define the following search terms. Word combination A is the full
list [‘precipitation|rainfall trends’, ‘precipitation|rainfall datalrecords’], where the
symbol | refers to ‘or’, and word combinations inside *’ should be found together, i.e.
one possible combination is the list [‘precipitation trends’, ‘rainfall data’]. Word
combination B is an extension of word combination A that also includes the word
‘projections’, while word combination C is an extension of word combination A also
including the word sequence ‘linear trend|trends|modellregression’. The absolute
numbers of the results are shown in Fig. 8.2a, while in Fig.8.2b we show their relative
ratio. Expectedly, the total number of studies containing rainfall trends are rising,
however this is not surprising in terms of absolute numbers, considering the
increasing availability of papers in Scholar over the years. However, the use of the
word “projections” appears to be increasing in relative terms as well. The relative use
of word combination C, related to the linear trend, has slightly increased too over the
years, stabilizing over the past 5-year period to approximately half of the related

publications (Fig.8.2b).
a. b.
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—— A: precipitation| rainfall trends + . .
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Figure 8.2 (a) Temporal evolution of the occurrence of the word combinations A, B and C and
their relative ratio (b).

As a final refinement, we consider words appearing only in the title of papers,
which should limit the results to strictly related papers. Results are shown in Fig. 8.3.
The standard term that is contained in every result is ‘rainfall|precipitation” followed
by the appearance, anywhere in the title, of the single terms, trends|trend, variability,
changelchanges, and non-stationary|non-stationarity/nonstationary|nonstationarity.
Note that we consider also plural terms where applicable, as well as possible
differences in spelling, while this time, we do not require words to be found in a
specific order as in the previous in-text search (for instance, it could be “trends in
rainfall...” or “rainfall trends in the..”). We do not compute ratios over the items
containing in their title the words ‘rainfall|precipitation” because these terms alone are
too generic, and can be found in a variety of studies, a significant part of which are
only loosely related to hydrology (e.g. physics, chemistry, radar technologies etc.).
Instead, to provide a more relevant reference point for comparison, we use two words
semantically “‘uncharged” with the trend concept, which are however widely used in
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combination with the standard terms, namely the words ‘model” and ‘distribution’
(e.g. “a rainfall model...” or “the distribution of the ... precipitation”).

Apparently, the conceptually more inclusive terms ‘changes” and ‘variability’
are ranking first in the related search terms, with the explicit use of the word ‘trend(s)’
ranking third, yielding consistently over the last ten years above 200 results per year
(288 in 2018, as per results appearing on Google Scholar on 21/10/2019). Terms related
to non-stationarity are slowly rising over the past ten years (39 in-title results in 2018),
while being close to zero before 2000. It is interesting to note the evolution of the use
of terms explicitly associated with the temporal properties of rainfall compared to the
terms more related to marginal properties (‘distribution’), or being more of a general
use, perhaps implying both properties (‘model’). The mere use of the word ‘“trend(s)’
has exceeded the use of an all-times classic word for rainfall, i.e. distribution, which
clearly shows a certain shift in academic interest. Likewise, the ever higher-scoring
word ‘model” has been outnumbered in the past three years by the word ‘change(s)’.

All in title: rainfall | precipitation + [...]

700
+ trend(s)
600 + variability I
\
v + change(s) J
* 500 1
a + non(-)stationary | non(-)stationarity
@
: 400 = === + model {(word for comparison) .
7
8 ----- + distribution (word for comparison) K
@ 300 ]
o]
g
200
P

100

1950 1960 1970 1980 1990 2000 2010 2020

Year of publication from Google Scholar

Figure 8.3 Temporal evolution of the occurrence of the word combinations in titles of Scholar
items.

In conjunction, these results suggest that over the last two decades, there has
been a rising scientific interest in the temporal properties of rainfall and their future
evolution, with ‘trends’ taking up a considerable share of this emerging focus.

8.3.2  From explanatory trends to out-of-sample performance

It is well-known that studying the explanatory power of trends in hydroclimatic data
is a very active research field, as confirmed by the above literature analysis. Before
discussing literature modelling strategies for trends, it is imperative to define the
meaning of a trend per se. Although ‘trends’ are frequently used as a synonym of
temporal ‘changes’ (Fig. 8.3 provides a quantitative analysis on the use of both words)
and their notion has sometimes been extended to encompass stochastic stationary
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models (Fatichi et al., 2009; Chandler and Scott, 2011), the general idea behind the
trend concept, is that the expected value of a response variable y is specified as a

deterministic function of time ¢, E [y] = f(t). The function f may take different forms

—the linear model being only the first one adopted, and the most widely used. Indeed,
this definition of a trend can be traced back to the development of the field of
econometrics in the early 20th century, when ‘secular’ trends, meaning long-term
trends, were deemed to be a component of financial timeseries, along with seasonal
variation, cycles and residual elements (Persons, 1922; Mitchell, 1930). Decomposition
of a timeseries into components, one of them being a trend, continued to dominate the
econometrics literature, although even at early times certain critiques were raised
(Slutsky, 1927).

The most established technique to evaluate fitted trends is statistical hypothesis
testing, i.e. a statistical inference technique that estimates the probability of an
outcome as far from what is expected as the observed under the assumption that the
null hypothesis is true (Gauch, 2003). The latter is known as the p-value and is
compared to predefined significance levels, in order to reject or not the null
hypothesis. This is a scientific method for model evaluation, which has been in part
misused. For instance, its misuse in hydrology has been showcased by seminal studies
(e.g. Cohn and Lins, 2005; Koutsoyiannis and Montanari, 2007; Serinaldi et al., 2018)
which have established the fact that for hydrological, non IID data the null hypothesis,
which tacitly contains independence, is a priori wrong, and its rejection, if correctly
interpreted, should point out to the wrong independence assumption. Still, the
common practice has been to misinterpret outcomes in favour of trends. Part of the
statistician community argues against the concept of significance testing (Nuzzo, 2014;
Wasserstein and Lazar, 2016; Amrhein and Greenland, 2018; Trafimow et al., 2018;
Wasserstein et al., 2019), with the main critique summarized in the statement of the
American Statistical Association that “the widespread use of ’statistical significance’
(generally interpreted as p < 0.05”) as a license for making a claim of a scientific finding
(or implied truth) leads to considerable distortion of the scientific process”
(Wasserstein and Lazar, 2016). Other inference techniques for assessing the
plausibility of changes under an a priori assumed model are also used, most notably
change point analysis (Hinkley, 1970), which attempts to identify points of abrupt
changes in the data. This approach too, is very sensitive on a priori hypotheses about
the expected degree of variability in the data (a brief discussion on the issue in
provided in Chandler and Scott, 2011).

With a stronger focus on modelling power rather than confirmatory analysis,
model selection criteria have been developed arising from Akaike’s work (Akaike,
1969). Akaike has contributed to the introduction of information theory into model
selection criteria (Akaike, 1974) which are now established worldwide in model
inference (Anderson and Burnham, 2004) and are increasingly adopted in hydrology
aswell (e.g. Yeetal., 2008; Laio et al., 2009; Iliopoulou et al., 2018a). Information criteria
are useful in that they try to achieve a better out-of-sample performance by prompting
for parsimony when fitting the model to the calibration set. There is a vast literature
on the asymptotic equivalence of information criteria and out-of-sample prediction
measures under specific conditions (Stone, 1977; Shibata, 1980; Wei, 1992; Inoue and
Kilian, 2006), which typically though imply large record lengths.
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A discourse regarding the relative powers of the abovementioned ‘in-sample’
measures compared to the assessment of predictive or out-of-sample performance is
active in numerous scientific fields (Breiman, 2001; Stein, 2002; Inoue and Kilian, 2006;
Yarkoni and Westfall, 2017; Shmueli, 2010), while in fact, it has been argued that the
distinction between the two approaches might only arise due to the different objectives
of each study (Gauch, 2003; Inoue and Kilian, 2005). Obviously, predictive modelling
dominates in operational fields concerned with short-term prediction, as numerical
weather prediction (Lorenc, 1986), and in such domains, it is widely acknowledged
that the model yielding the best predictions, in non-stochastic terms, is not necessarily
the “true’” one (Shmueli, 2010).

The premise of this work is that while explanatory performance of trends has
been thoroughly explored in hydrological studies (e.g. Chandler and Scott (2011)
provide a comprehensive review on the matter), much less attention has been given to
the predictive performance of trend modelling. A simple explanation might lie in the
fact that in many environmental studies trends have been employed as descriptors of
changes or causal effects, and less as models for predictions, in spite of the fact that
they strongly communicate expectations for the future by suggesting causal
mechanisms (e.g. Fig. A2 on the combined use of the word ‘trends” and “projections’).
The second reason could be related to the scarcity of long-term environmental data for
out-of-sample validation. Therefore, our aim is to assess the relevance of long-term
trend modelling in terms of point prediction, not examining elements of stochastic
prediction and categorically, not engaging in the identification of a ‘true” model for the
data. We deem that this shift in point-of-view may provide contrasting insights to
current literature with respect to the relevance of trends for operational applications.

84 Methodology
8.4.1 Out-of-sample validation schemes

Cross-validation techniques are a systematic way to assess predictive power (Stone,
1974; Simonoff, 2012). The procedure typically entails multiple runs of validation
schemes on random partitions of the original dataset and summarizes the model skill
from the sample of all validation scores. Standard cross-validation is not
straightforward to apply for timeseries data where the order of the data must be
respected. Instead the use of a ‘holdout’ set for validation is frequently applied, e.g. in
hydrology this is done by reserving some data for validation, while the rest are used
for calibration (Klemes, 1986). We consider an alternative approach respecting the data
order, by performing calibration and validation in moving-window partitions of the
original dataset, that constantly shift forward in time till the end of the record is
reached. This approach is known as ‘walk-forward” analysis in the field of
econometrics (Kirkpatrick II and Dahlquist, 2010), and it is advantageous in that
instead of a single measure of out-of-sample performance obtained by the ‘split-
sample’ approach, a sample of values is obtained, which can be statistically analysed.
Further, it compensates for hindsight bias providing realistic estimates of historical
predictability of changes by a given model. The statistics of a model’s past
performance can be considered a proxy of its future performance.
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8.4.2  Static calibration and validation

We apply this type of analysis to the rainfall records by formulating two distinct
calibration-validation schemes, which are illustrated in Fig. 8.4. In the first scheme
(Fig.8.4a), we evaluate the models” performance in capturing the variability of the
recent 30-year period of each station based on calibration on the prior 30-year period.
By this ‘static validation” scheme we intend to evaluate whether extremes have
changed in a consistent manner in the second half of the 20th century, as they are
commonly assumed. We also examine the performance of the models in backward
validation, i.e. in predicting observations occurring before the calibration period (Fig.
8.4a). In order to maximize the exploitation of the length of each record, we apply this
evaluation to the most recent period of each station, even if the final dates of all records
do not coincide. We favour separate treatment of each station, since in this case our
focus is placed on the operational exploitation of records for predictive purposes and
less on a summary of the results for a specific time period. However, the majority of
the records span the whole 20th century, and extend beyond, with a few exceptions
that are mentioned in Table Al. In a second examination, we directly evaluate changes
in the predictive performance of each model throughout the past 110 years up to 2009.
Specifically, we compare the prediction errors of each model for the following climatic
periods: 19001929 (calibration period 1870-1899), 1930-1959 (calibration period 1900
1929), 1960-1989 (calibration period 1930-1959), and 1980-2009 (calibration period
1950-1979). The end year (2009) of the last period (overlapping with the previous one
by 10 years) is selected in order to maximize the number of stations having predictions
for all four periods. This results to 52 stations for the AM and 51 for the AT, WDAV
and PD indices.

a. Static Calibration-Validation

|’Backward validation \ Calibration Validation

0 20 40 60 80 100 120 140
Timeseries

b. Dynamic Calibration-Validation

i. Block moving ii. Global moving

‘ Not used-Past I Calibrated Il Validated Not used-Future‘

Figure 8.4 Explanatory sketch showing the two calibration and validation schemes (a. Static
and b. Dynamic) for an example station.
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8.4.3 Dynamic calibration and validation

The second scheme (Fig.8.4b) focuses on the historical performance of the models by
the ‘dynamic’ (else, ‘walk-forward’) validation scheme introduced before. It assumes
a hypothetical observer moving in time and making predictions for the future 30-year
period updating the models as access to new information progressively becomes
available. We formulate two different schemes for making these predictions. In the
first, which we call block-moving calibration and validation, the models are calibrated
on 30-year periods and validated by the next ‘unobserved’ 30 years, and this procedure
is repeated by rolling the calibration and validation origin in time (Fig.8.4bi). New
information is gradually taking the place of the past information, which is discarded
by the 30-year sliding windows. The start of the first moving-window coincides with
the start of each station, while the start of the last calibration moving-window is 59
years prior to the end of the station, so that 30 years of validation data remain available.
This last validation window is the recent 30-year window that is exploited for
validation in the static scheme (Fig. 8.4a). The second scheme of the dynamic
calibration-validation, which we call global-moving, validates the models using
sliding 30-year periods, exactly as in the prior scheme, but calibrates the models on the
whole available record, that is known at each time step to the observer. Therefore, the
origin of the calibration window remains stable, but the window gradually extends in
length as more data are assimilated into the model, while no data are discarded
(Fig.8.4bii). This scheme explores the potential of employing all available information
to make a prediction for the future. Since the validation periods are the same in both
schemes, results between the two can be directly compared.

For the evaluation of the candidate models we estimate the Root Mean Square
Error, a standard and established metric of goodness of fit (Sharma et al., 2019). The
RMSE is defined as the square root of the mean square error of the predicted values X;
with respect to the observed x;:

2 49)

where 7 is the length of the data. We present the sample RMSE distribution of the
models for each station and we summarize the results by computing the average
RMSE for each station and its standard deviation. For the longest uninterrupted record
of the station, we present a comprehensive analysis including the temporal evolution
of the errors.

. 1/2
RMSE = < ?=1(xi - xi)2>

8.4.4 Predictive models

Let x ; be a stochastic process in discrete time i, i.e. a collection of random variables x ;,
and x:= (xy,..,x,) a single realization (observation) of the latter, i.e. a timeseries. We
assume thatin timei < n the hypothetical observer makes a forecast based on a subset
of the historical information. Namely from the entire available information that we
have (the observed series (xy, ..., x,,)) we assume that the hypothetical observer knows
only the subseries x = (xy, ..., X;).

To predict the unobserved periods, past or future, we employ two model
structures. The first is the typical linear trend model, encompassing two parameters, a

slope b and an intercept a2, whose mean u is a deterministic linear function of time t:
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u() =a+bt (49)

The trend model is fitted via least-squares regression. Robust regression
techniques are also explored, namely median quantile regression (Koenker and
Hallock, 2001) and the Theil-Sen slope estimation (Sen, 1968; Theil, 1992), but they did
not yield better predictions, and hence, the least-squares approach, which is also more
rigorous in theoretical terms (e.g. Papoulis, 1990), was retained. For details on the
application and discussion of the results, the reader is referred to the analysis
presented in Appendix B.3.

The second model considered is the mean model, including only one
parameter, the mean of the calibration period, extrapolated to the unobserved periods:

ut)y=a (50)

According to the followed calibration scheme, fitted to block-moving (local) 30 years
or to all the known (global) period, the trend model is termed local trend (L-Trend)
and global trend (G-Trend), respectively, and likewise, the mean model, is termed
local mean (L-Mean) and global mean (G-Mean). In the local models, the period [i —
59,1 — 30] is used for calibration and the [i — 29, 1] for validation, while in the global
models, the period [1,i —30] is used for calibration and the [i — 29,i] period for
validation as in the former scheme. We note that these two seemingly simplistic
predictive models, i.e. the linear model fitted with least-squares and the local average,
can be found in a variety of theoretical results in statistical sciences, for instance use of
(temporally) local data constitutes a central concept in the k-nearest neighbours
technique, as discussed in Hastie et al. (2005), as well as in local regression as discussed
in Chandler and Scott (2011).

8.4.5  Selected indices of rainfall extremes and quality control

We examine four statistical indices of rainfall: annual maxima (AM), annual totals
(AT), annual wet-day average rainfall (WDAV) and probability dry (PD) also
computed at the annual scale. As wet, we consider any day with rainfall surpassing
the threshold of 1 mm, while values below this threshold are counted as dry days taken
into account for the PD estimation. We employ the following criteria for missing
values. For the annual maxima we use a methodology proposed by Papalexiou and
Koutsoyiannis (2013), according to which an annual maximum in a year with missing
values is not accepted if (a) it belongs to the lowest 40% of the annual maxima values
and (b) 30% or more of the observations for that year are missing. For the rest of the
indices, we do not compute the yearly index in years with more than 15% of missing
values. In general, most records have low percentages of missing values (Table Al),
which in most cases are clustered in the beginning of the records. A few records have
consecutive missing periods which might imply a change of instrumentation or
relocation of the gauge. To avoid possible artefacts in trend estimation in static
validation (in backward validation) that may arise from such cases, we analyse periods
containing less than 5% of consecutive missing values of the yearly indices. For the
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dynamic calibration and validation scheme, we fit the models only if there exist at least
27 valid indices in each of the 30-year periods of calibration and validation.

8.4.6 Predictability of climatic changes under natural variability

In order to understand the predictive performance of the considered models under
typical conditions of natural variability, we run similar experiments with synthetic
timeseries reproducing increasing degrees of persistence. We recall that persistence,
also known as Hurst-Kolmogorov dynamics, is associated with enhanced natural
variability at all scales (Koutsoyiannis, 2003), which in turn implies increased
unpredictability at large time horizons, with some potential for predictability at short
time steps due to the presence of temporal clustering (Dimitriadis et al., 2016). This
provides a scientifically relevant comparison to the empirical data as rainfall series are
known to exhibit mild to moderate degree of persistence (e.g. Iliopoulou et al., 2018b;
Iliopoulou and Koutsoyiannis, 2019). Moreover, segments of persistent series resemble
trends and can easily be misinterpreted as such (Cohn and Lins, 2005).

Therefore, we examine both the comparative predictive performance of the four
models for persistent processes, where long-term changes are the rule (Serinaldi and
Kilsby, 2018a), and the effect of available record length on the quality of the model
predictions. The latter becomes relevant in the global-moving scheme, in which the
calibration period varies in length.

8.5 Models’ performance in static validation

Results from the performance of the local mean and local trend models on the last 30
years of each station, as well as on the years preceding the 30-year calibration, are
shown in Figure 8.5 for all studied indices.
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Figure 8.5 Boxplots of the RMSE distribution from the static validation application to all
stations, for the local mean (L-Mean) and local trend (L-Trend) models, for all rainfall indices.
The band inside the box reports the median of the distribution, the lower and upper ends of
the box represent the 1st and 3rd quartiles, respectively, and the whiskers extend to the most
extreme value within 1.5 IQR (interquartile range) from the box ends; outliers are plotted as
points.

The local mean model performs on average better than the local trend model for
all indices in capturing their most recent changes of extremes, while the performance
of the local trend deteriorates considerably with respect to hindcasting the past.
Interestingly, the larger discrepancies of the trends —both in future and past
validation periods, are encountered in the annual maxima, followed by probability
dry. In most of the opposite cases, of trends showing a better performance, the fitted
slope is very mild, thus hardly differing from the local mean. A visual examination of
the plots of the 60 long-term stations, provided in the Appendix B.3 (Fig. B.5-B.8),
suggests a positive answer to the opening question, providing empirical evidence that
climatic trends fluctuate and in fact, abruptly reverse.
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Figure 8.6 Boxplots of the RMSE distribution from the static validation application to the
stations with data in all four prediction periods, 1900-1929, 1930-1959, 1960-1989, 1980-2009,
for the local mean (L-Mean) and local trend (L-Trend) models, for all rainfall indices. For the
boxplots” properties description, see Figure 8.4.

In order to gain further insights into temporal changes of predictability, we compare
the predictive performance of each model (L-Mean, L-Trend) for four distinct climatic
periods, covering the past 110 years up to year 2009. It is observed (Fig. 8.6) that the
error distribution of the L-Trend model does not present pronounced temporal
differences for the indices among these periods, with the exception of PD which shows
a larger, yet not consistent, variability over these periods. Among the four periods, the
L-Trend model performed best in the prediction of the 1960-1989 period, based on
calibration on 1930-1959, a period which however does not include the decades of
pronounced increase in greenhouse emissions (from the 60s and thereafter). The
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predictive performance of trends on the latest period is not markedly different from
the previous periods, if not it is slightly worse for some indices, e.g. the AT. A
particular pattern is neither observed for the L-Mean. As it will be discussed next, these
results seem to be well-within the range of the statistical variability of the predictive
skill of each model, evaluated from the whole record. Finally, in this examination as
well, the L-Mean model proves superior to the L-Trend (only one or two exceptions
are seen).

8.6 Moving-window validation of predictive performance

In this section, we explore the predictive qualities of the models by delving into the
statistical analysis of the whole record, considering the models from the global-
moving calibration as well, namely, the global trend and the global mean.

8.6.1  Anexamination of one of the longest records

As an illustration of the application of the methodology, we first explore the longest
uninterrupted station of our dataset, i.e. the Prague station in Czech Republic (211
years), shown in Figure 8.7. The models’ error evolution pattern is reflective of their
performance. For the majority of time, the mean models are at the lower front of the
errors, with the local mean model showing slightly superior performance. The local
trend model results in higher errors and its predictions may quickly deteriorate, taking
longer to converge to the mean models” predictions in areas of lower errors (Fig. 8.7).
This is attributed to the fact that the trend model projects to the future sensitive
features of the calibration period, i.e. extreme observations or ‘trendy’ behaviour,
which do not have a high chance to survive the end of the calibration period. The more
parsimonious structure of the mean model encapsulates minimal but robust
knowledge of the process behaviour, which is more likely to characterize its future
evolution as well. In the absence of an underlying global trend and as the sample
grows larger, the global trend model converges to the predictions of the mean models,
but its performance remains slightly inferior even towards the end of the record.
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Figure 8.7 Case study of the rainfall station in Prague. Timeseries of annual maxima, annual
totals, annual wet-day average and annual probability dry, error evolution and distribution of
the prediction RMSE for the four prediction models, global and local trend, and global and
local mean.

8.6.2  Application to all records

Figures 8.8-8.11 show the empirical distributions of the models” predictive RMSE for
each rainfall index and for all 60 stations. For most stations the local mean and global
mean models have the lower probabilities of exceeding high errors, contrary to the
local trend model whose error distribution is clearly shifted to the right, in the higher
error area. The distribution of the predictive RMSE of global trend model is located in
between the two, showing in general a better behaviour than the local trend.
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Figure 8.8 Empirical cumulative distribution function (ECDF) for the prediction RMSE of
annual maxima for the local trend, the global trend, the global mean and the local mean model
for the 60 stations.
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Figure 8.9 Empirical cumulative distribution function (ECDF) for the prediction RMSE of
annual totals for the local trend, the global trend, the global mean and the local mean model

for the 60 stations.
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Figure 8.10 Empirical cumulative distribution function (ECDF) for the prediction RMSE of
wet-day average rainfall for the local trend, the global trend, the global mean and the local
mean model for the 60 stations
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Figure 8.11 Empirical cumulative distribution function (ECDF) for the prediction RMSE of
probability dry for the local trend, the global trend, the global mean and the local mean model
for the 60 stations.

A summary of the distributional properties of the prediction RMSE of all stations
shown in Fig. 8.8-8.11, is provided in Fig. 8.12, in terms of the average and the standard
deviation of the RMSE distribution of each station. The average values of the latter also
summarized in Table 8.1. Accordingly, the models” performance can be ranked from
best to worst as follows: (1) local mean, (2) global mean, (3) global trend and (4) local
trend. The local mean model marginally outperforms the global mean with respect to
the average RMSE, yet in terms of the standard deviation of the RMSE distribution
(Fig. 8.12b, d, £, h), it is evident that the local mean model prevails showing smaller
standard deviation of prediction errors, and thus more reliable performance. In this
case, the linear trend model shows markedly inferior performance.
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Figure 8.12 Boxplots of the average prediction RMSE and standard deviation of RMSE as
estimated for each station from moving window application of the local (L-) mean, global (G-
) mean and local (L-) and global (G-) trend for all the indices. For the boxplots” properties
description see Figure 8.4.
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Table 8.1 Averages of the average RMSE and the standard deviation of RMSE of the four
models (local (L-) mean, global (G-) mean, local (L-) trend and global (G-) trend) from all
stations and for all four indices, as shown in Figure 8.12.

Annual Maxima (mm) Annual Totals (mm)
L-mean G-mean G-trend L-trend |L-mean G-mean G-trend L-trend
Average 16.00 16.05 16.73 18.76 149.07 154.18 154.77 174.7
RMSE
St. Dev. 3.04 3.13 3.37 474 21.52 23.02 27.4 45.45
RMSE
Wet-Day Average (mm/d) Probability Dry (-)
L- G-mean G- L-trend | L-mean G-mean G-trend L-trend
mean trend
Average 0.98 1.01 1.11 1.2 0.04 0.05 0.05 0.05
RMSE
St. Dev. 0.18 0.18 0.27 0.39 0.01 0.01 0.01 0.02
RMSE

8.7 Models’ performance under natural variability: an experiment with
synthetic series

Following the rationale outlined in Section 8.4.6, the goal of this experiment is to test
the performance of the predictive models in conditions of enhanced structured
uncertainty, characterized by changes at all scales and ‘trend-like” behaviour for small
periods. As the latter are distinctive features of persistent processes (Koutsoyiannis,
2002), we produce five long-term timeseries from a standard normal distribution with
length N 10000 that reproduce HK dynamics, using the SMA algorithm
(Koutsoyiannis, 2000; Dimitriadis and Koutsoyiannis, 2018). The series are generated
with increasing degree of persistence, quantified through the Hurst parameter H, from
mild persistence H = 0.6 to very strong H = 0.99. In order to explore the impact of
record length we also examine smaller segments of the same timeseries of lengths N =
100 and N = 1000. Because smaller segments are impacted by larger estimation
uncertainty, we plot the average ECDF of the prediction RMSE estimated from non-
overlapping segments extracted from the original timeseries of length N = 10 000.
Therefore, the N = 100 plots correspond to the average of 100 timeseries of length 100,
derived from the 10 000 series. Likewise, the N = 1000 series are the average of 10
timeseries of length 1000. The plots of the ECDF distribution (Fig.8.13) of the
prediction RMSE for the four predictive models are produced employing the same
dynamic validation schemes applied for the real-world stations.

The contrasting performance of the two local models is observed here as well;
local features are better exploited by the mean rather than the trend model, irrespective
of the record size. The latter becomes important when the global models are
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considered. In the absence of a global underlying trend, the increased variability
encountered in small calibration periods (N = 100) leads the global trend model to bad
predictions. When the trend model is calibrated from larger series, the trend
component is smoothed out, and therefore, the prediction performance approaches
the one from the mean models. Regarding the competition between global and local
mean, it appears that it is a function of both the record length and degree of
persistence. For large record lengths and H > 0.7, the local mean model prevails, while
for small record lengths and medium persistence, the two are comparable. In
persistent process, where clustering arises, local information is likely to be more
relevant for prediction, yet for long-term prediction as is the case here, ‘local’ may need
to extend a few steps back in the past, which for small record lengths could be within
the reach of the calibration period employed for the global mean model. Obviously
though, results from the global model become less relevant when the sample is large
and therefore global information extends too far in the past. A thorough treatment of
the theoretical basis and practical formulation of local mean models in relation to the
persistence properties of the parent process is given by Koutsoyiannis (2020b).

We note that the behaviour observed in the N = 100 plots is qualitatively
consistent with the one observed from the rainfall records. Moreover, indices known
for their persistence properties, such as annual totals (Iliopoulou et al., 2018b; Tyralis
et al., 2018) and probability dry (Koutsoyiannis, 2006) show a slight preference for the
local mean model. In other cases where persistence is less manifested, as in annual
maxima (Iliopoulou and Koutsoyiannis, 2019), the performance of the global and the
local mean model in terms of the average RMSE are indistinguishable (Fig. 8.12); the
variance of the errors still being smaller for the latter.
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Figure 8.13 Empirical cumulative distribution function (ECDF) for the prediction RMSE of the

HK timeseries resulting from application of the local trend, the global trend, the global mean
and the local mean model, for segments of the original timeseries with increasing sample size,
N =100, 1000, 10 000 (original). The ECDF for the first two lengths are the averages as
computed from 100 and 10 non-overlapping segments of the 10 000 values.

8.8

8.8.1

In the above controlled experiment, where the generating mechanism of the data is
known, it is evident that among the four ‘false” models, the local mean yields the most
accurate predictions in terms of RMSE, using in-sample data more efficiently by means

Discussion

On parsimony and predictive accuracy
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of its single parameter. The increase in predictive accuracy and statistical efficiency is
tightly associated with the notion of parsimony, which is a dual criterion measuring
the model’s fit to the data as well its simplicity (Gauch, 2003). In these terms, the local
mean model is deemed to be a parsimonious model, since it fits the out-of-sample data
either better or at least equally well to the more complicated trend model.

The reason behind the sometimes interchangeable use of the words parsimony
and simplicity is a certain tendency of simple models to make reliable predictions,
which among other approaches as information criteria discussed in Section 8.3.1, is
also incorporated as a concept in Bayesian analysis assigning higher prior probabilities
to simpler models, and a posteriori favouring the simpler model (Berger and Bernardo,
1992; Berger and Pericchi, 1996, Gauch, 2003 and references therein). More recent
developments from the Bayesian standpoint include constructing penalized
complexity priors (Simpson et al., 2017), while the concept informs variable selection
in linear regression though various techniques as the Lasso and ridge regression
(Tibshirani, 1996). Another demonstration of the relation between predictive accuracy
and simplicity is the possibly better predictive performance in terms of mean square
error of simpler, yet misspecified models, compared to the ones derived from the
correctly structured model (Hocking, 1976); for instance, Wu et al. (2007) provided a
set of conditions for which this holds true in the case of linear models. Therefore,
theoretical arguments are in favour of simpler predictive models, all the more so in the
case of natural processes characterized by a great degree of variability, for which our
understanding is limited. A comprehensive discussion on the connection of simplicity
to wider epistemological and philosophical principles is provided in Gauch (2003).

8.8.2  On alternative climatic predictors of rainfall

It is beyond the scope of the paper to formulate and suggest a good climatic prediction
method for rainfall. Having shown however that past climatic trends of rainfall are not
useful predictors of its future evolution, it is tempting to reflect on a common
alternative option for long-term prediction, namely the use of large-scale climatic
oscillations. The latter are considered a potential source of decadal climatic
predictability (Latif et al., 2006). The predictive skill arising from the use of a climatic
oscillation as a covariate for prediction relies upon two factors; existence of significant
correlation of rainfall with large-scale climatic oscillations, and reliable predictability
of the latter. On the over-decadal climatic scale examined here fulfilment of both
conditions is challenging. There is an increasing number of studies relating climatic
oscillations to decadal rainfall, but both the type of the correlated oscillation and the
specification of the correlation (type, lagged response), are region-specific (e.g.
Krichak et al.,, 2002; Scaife et al., 2008; Lee and Ouarda, 2010; Sun et al., 2015;
Krishnamurthy and Krishnamurthy, 2016; Nalley et al., 2019). Therefore, with respect
to multi-sites analyses, the identification of robust response patterns of decadal rainfall
to climatic oscillations constitutes a nontrivial research subject. Even more challenging
is the predictability of the climatic oscillations themselves on the 30-year scale. For
instance, it is only during the last 5 years, that prediction of the North Atlantic
Oscillation (NAO) has become skillful on the seasonal scale, and at the moment
research efforts are directed towards predictability on beyond annual scales (Scaife et
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al., 2014; Smith et al., 2016). While some progress has been reported in terms of the
decadal predictability of climatic oscillations related to the NAO, as the Atlantic Multi-
decadal Oscillation (AMO), predictability of the actual values of the NAO beyond the
seasonal scale remains very limited (Smith et al., 2016; Yeager and Robson, 2017). A
relevant case study by Lee and Quarda (2010) concluded that predictions of decadal
streamflow extremes using the NAO as a covariate were impacted by large uncertainty
to the point of almost being non-informative. Although a promising research subject,
it appears that in the best case, there is still way to go before attaining hydrologically
relevant climatic predictions based on climatic oscillations, at least to the degree that
this is becoming possible at the seasonal scale for some regions (e.g. Scaife et al., 2014).
Yet the case that this proves to be infeasible cannot be excluded (Koutsoyiannis, 2010).

8.8.3 Can a stationary framework be compatible with a deterministic forcing?

A question that often arises is the relevance of past predictability under the hypothesis
of a climate impacted by monotonic anthropogenic forcing, not existing in the past. In
this case, it could be argued that the examination of the predictive performance in the
past in which stationarity is implicitly assumed, is an irrelevant approach as the past
might no longer representative be of the future. As a first remark, it is worth recalling
that change is not synonymous to non-stationarity, while in the presence of
uncertainty in every real-world system, the choice of a stationary versus a non-
stationary model is done in terms of modelling convenience rather than based on the
existence (or co-existence) of deterministic drivers (Montanari and Koutsoyiannis,
2014; Koutsoyiannis and Montanari, 2015b). De Luca et al. (2019) yet shed further light
on this misconception by the following experiment. They show that artificially
imposed trends —of the projected magnitude of climate scenarios, on the parameters
of a sub-hourly rainfall generator regarding bursts intensity, duration, and number of
occurrences, were masked on coarser temporal scales and as a result, they could be
adequately modelled by a stationary extreme value model. This suggests that the
presence of deterministic drivers in a system does not disfavour stationary modelling.
For there is the possibility that even systematic changes may not be manifested at the
scales of interest to the degree that they warrant a more complicated representation
for the future. Hence, the examination of a stationary framework is justified also in the
presence of monotonic and accelerating forcing, as it aligns with the abovementioned
principle of parsimonious modelling. Therefore, the question shifts from the existence
or not of deterministic drivers, to evaluation of the degree to which observed changes
require a more complicated modelling. In our case, it is assumed that the past is still
representative enough for the future in order to achieve a similar degree of
predictability by the given models, which is not falsified by the examination of the
recent period. The entire question however relies on a simplistic view of complex
systems, i.e. that just one factor (or the change thereof) suffices to determine the
system’s future evolution. In our view, this is not a logically consistent framework for
dealing with complex systems.
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8.9 Summary and conclusions

Under the popular assumption of intensification of the water cycle due to global
warming, a considerable deal of contemporary research in hydrology revolves around
the study of temporal changes of extremes, with the application of trend analyses
being on the rise during the past two decades. While the explanatory analysis of trends
has dominated the relevant studies, assessment of the predictive skill of trend models
has not been equally assessed, despite the apparent significance of such a task for risk
planning. This research reframes the problem of trend evaluation, as a model selection
problem oriented towards identifying the model with the best predictive qualities in
deterministic terms, which is neither equivalent to the ‘true” model nor to the model
better at explaining the in-sample data.

For this purpose, we introduce a systematic framework for evaluating
projections of trends by means of comparing the prediction RMSE to the one obtained
from simpler mean models. We perform a variation of cross-validation, also known as
walk-forward analysis, devising two distinct calibration and validation schemes (Fig.
8.4). In block-moving calibration we fit the linear trend and mean models to 30 years
of data (local trend and local mean) and we validate the results based on the outcome
of their predictions for the next 30 years. This procedure is repeated using sliding
windows till the end of the record is met. In global-moving calibration, we fit the
models to all the known period (global trend and global mean), assuming that in the
beginning, one knows only the first 30 years, and progressively the calibration period
grows larger. In this case too, we evaluate the outcome of the predictions of the models
for the next 30 years, therefore the projections of the four models can be compared in
terms of the statistics of their empirical distribution of errors.

The models compete in predicting the out-of-sample behaviour of four rainfall
indices: annual maxima, annual totals, annual wet-day average rainfall and
probability dry at the annual scale, as estimated from a unique dataset comprising the
60 longest rainfall records surpassing 150 years of daily data. Results show that models
rank from best to worst as follows: local mean, global mean, global trend and local
trend. A separate examination of the latest 30-year period for each station confirmed
the above rank of the models as well. The temporal changes in the prediction error
distribution among four fixed climatic periods, common for all stations covering 110
years up to 2009, are also investigated. Fluctuations of predictability do occur among
the climatic periods, yet no increase in predictability is achieved by the local trend
model for the latest period (1980-2009), compared to earlier periods. Results from both
analyses show that future rainfall variability is on average better predicted by mean
models, since local trend models identify features of the process that are unlikely to
survive the end of the calibration period, either being extreme observations, or “trend-
like” behaviour. These features are smoothed out in longer segments, which is the
reason behind the better performance of global trends. Robust regression techniques
were also employed for the calibration of local trends but perhaps not surprisingly,
did not improve the out-of-sample predictions (see discussion in Appendix B.3).

In an attempt to reproduce the observed behaviour, we generate long-term
timeseries exhibiting long-term persistence or HK dynamics (Koutsoyiannis, 2011b;
O’Connell et al., 2016; Dimitriadis, 2017), and carry out the same analysis. Persistent
processes show enhanced variability and a user unfamiliar with their properties may
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misinterpret segments of their timeseries as trends, which perhaps explains why trend
claims have been that common lately. Results from the synthetic records show
qualitative similarities with the ones from empirical rainfall records, known to exhibit
persistence, depending on the scale and studied index (Koutsoyiannis, 2006; Markonis
and Koutsoyiannis, 2016; Iliopoulou et al., 2018b; Iliopoulou and Koutsoyiannis, 2019).
The local and global mean outperform the local trend model for all degrees of
persistence and sample sizes, while for small record lengths (N = 100) the performance
of the global trend model is notably inferior too. Local and global mean models hardly
show differences for medium degrees of persistence, but the local mean prevails for
strong persistence.

From a systematic investigation of long-term rainfall records, corroborated by
simulation results, we have verified that local trends have poor out-of-sample
performance, being outperformed in their predictions by simpler models, as the local
mean. This empirical finding suggests that the large inherent variability present in the
rainfall process makes the practice of extrapolating local features in the long-term
future dubious, especially when the complexity of the latter increases. This in turn
questions the theoretical and practical relevance of projections of rainfall trends and
the grounds of the related abundant publications.
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9.1 Summary of scientific background and motivation

Scientific interest in hydrological extremes has historically been at the center of
hydrology and engineering studies. At present, amid growing climate change
concerns, this interest has reached all-time high levels (see Section 8.3.1). What is more,
during the past decades, the increasing availability of examples of catastrophic events
and related engineering disasters has called into question traditional risk perception
and modelling approaches. As a result, there is no shortage of scientific efforts to
explain the variability observed in rainfall and streamflow extremes.

In most studies, the assumption of independence of extremes is omnipresent,
although its validity has been challenged for the parent hydrological processes since
the mid 20th century (Hurst, 1951). Yet the process’s extremes are still widely treated
as independent random variables, while it has become common practice to view any
deviations from independence as signals of deterministic drivers. As a result of a priori
resorting to the independence assumption, the modelling focus is dominated by the
study of the marginal distribution of extremes overlooking their temporal variability
and dependence properties. At the same time, the scarce studies that deal with
dependent extremes mostly employ methods of statistics that treat extremal
dependence as a singular behaviour, decoupled from the variability of the parent
process.

The central objective of this thesis is to investigate and model the temporal
dynamics of extremes under the framework of stochastics, without employing the IID
assumptions of statistics that are unlikely to be tenable in real-word conditions. To this
aim, a rare dataset of long-term observational records is compiled. The goal is to
integrate the understanding and modelling of the temporal dynamics of extremes
from seasonal to climatic scales, to that of the parent hydrological process, as an
inherent part of its variability. Such an approach provides novel insights into the
dynamics of hydrological extremes that may enhance risk perception and inform
related mitigation practices. The relevant contributions are discussed below.

9.2 The main contributions

The magnitude of extremes is determined by the marginal distribution of their parent
process, yet their temporal distribution that critically affects our perception of them, is
also controlled by the joint properties of the process. As the assumption of
independence dominates the study of extremes, the latter are seldom studied. This
thesis contributes to the stochastic characterization and modelling of the temporal
dynamics of daily rainfall and streamflow extremes at three scales: (a) the seasonal, (b)
the annual, and (c) the climatic. The respective contributions are presented below.

9.21 On seasonal dynamics

Chapters 4 and 5 focus on seasonal dynamics in the rainfall and streamflow extremes.
In particular, Chapter 4 deals with the change in the distributional properties of
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seasonal rainfall extremes, and Chapter 5 investigates seasonal dependence of
streamflow extremes. The main contributions are:

(@) An objective methodology is proposed to perform season identification in
extreme daily rainfall and model the resulting extreme properties in each
season. The framework employs the Akaike information criterion to resolve the
problem of subjectively selecting an optimal number of extreme rainfall seasons
and their monthly partition.

(b) The effect of seasonality on extreme rainfall properties is discerned. Seasonality
affects the central tendency of rainfall maxima, being manifested by a change
in the scale and location parameters of the seasonal extreme value distributions.
On the other hand, the shape of their probability distribution and its tail do not
substantially vary from season to season. Therefore, a pooled estimation of the
shape parameter of seasonal and annual extremes is suggested to reduce
uncertainty.

(c) Estimation uncertainty in fitting seasonal-annual maxima distributions is
shown to be relevant even for long-term rainfall records. In this respect,
extreme-oriented fitting methods, namely weighted-least squares, are
proposed to resolve inconsistencies that may arise from an independent fitting
of the extreme value distributions to seasonal and annual extremes.

(d) Rivers in Europe are shown to exhibit persistent features at the seasonal
timescale, manifested as correlation between preceding average flows and
anteceding seasonal ‘extreme’ flows, i.e. peak flows in high flow season, and
average flows in low flow season, respectively. This correlation can be explored
to increase seasonal predictability which is generally higher for low flows, but
may be significant for high flows as well depending on the climatic region and
catchment properties.

(e) Seasonal streamflow predictability is found to be enhanced in less humid
climatic regimes and catchments dominated by baseflow and characterized by
slower response times.

9.22  Onlong-term persistence dynamics

Chapters 2-3 and 6-7 deal with long-term extremal dynamics stemming from presence
of persistence, i.e. HK dynamics in the parent process. In particular, Chapter 2 reviews
the existing theory and modelling practices for dependent extremes, Chapters 3
revisits the case for persistence in the annual rainfall process, while Chapters 6-7 deal
with propagation of persistence to the properties of the extremes. Specifically,
Chapters 6 examines the effects of persistence on the multi-scale occurrences of
extremes, whereas Chapter 7 investigates its manifestations in extreme value
modelling. The respective contributions are:
(a) The presence of HK dynamics in the annual rainfall process is validated using
a global rainfall dataset (1265 stations). Persistence is quantified through a
common Hurst parameter equal to H = 0.6. Approximately 2.5% of the stations
show even stronger dependence that cannot be explained by the common H
parameter. Annual rainfall correlations are low but deviate from independence,
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while the decay of the correlation structure is slower than predicted by a
Markovian process.

(b) A rare dataset of long-term daily rainfall records surpassing 150 years is
compiled to gain insights into rainfall historical variability. The
abovementioned second-order scaling behaviour is supported by evidence
from this dataset as well, and further the presence of a second weaker scaling
regime at shorter time-scales (of the order of months to few years), is revealed.

(c) It is shown that extremes tend to ‘hide’ the persistence of the parent process,
often falsely signalling independence. Furthermore, persistence and heavy tails
have synergistic effects on the temporal properties of extremes. As a matter of
fact, persistence of non-Gaussian extremes cannot be retrieved solely by
second-order characterizations, such as the Hurst parameter and the dispersion
index. The latter are only relevant for Gaussian processes, thus of limited
interest to the studied processes.

(d) A new probabilistic index is formulated to reveal extremal long-term clustering
via the multi-scale probability of not exceeding a threshold, termed the NEPvS
index (Non-Exceedance Probability vs Scale). A related two-parameter model
is introduced which captures the scaling behaviour of extreme event
occurrences for processes exhibiting a range of second-order and marginal
properties, including strong persistence and heavy tails.

(e) Evidence of persistence diminishes as the threshold increases and thus, the
examination of lower thresholds is essential for retrieving it. As the threshold
increases, the behaviour of extremes may falsely suggest independence of the
parent process.

(f) The index brings forward the central manifestation of persistence in extremes,
i.e. the increase of the probability of non-occurrence. This means that prolonged
periods of absence of extreme events are more probable for persistent processes
than for IID ones.

(g) On the other hand, persistence also alters the conditional properties of extremes
at a given scale (as in annual POT events) by producing short-term clustering.
Compared to an IID process, dependent extremes show an increase in duration,
and hence, in aggregate intensity, and are characterized by positive association
between their number and intensity. Thus, their temporal dynamics are more
challenging to hydrological design and risk management than those of an IID
process.

(h) Extreme value theory under dependence is reviewed and open questions
pertaining to persistent processes are approached through Monte Carlo
simulations. It is found that the GEV distribution remains a good sub-
asymptotic model for block maxima even for strongly persistent processes. In
such cases, similar to the IID case, convergence to the Fréchet distribution is still
much faster than to the Gumbel, while fitting to the higher-quantile region
improves by the weighted least-squares method.

(i) The extremal index theory formulated for extremes exhibiting local dependence
is found to be only partially relevant for persistent processes, characterized by
both short- and long-range dependence. In agreement to the theory, in a
persistent process the probability of exceedance of extremes is lower compared
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to the IID process which acts as the upper bound of the exceedance probability
distribution. Persistence is reflected in the parameterization of the GEV
distribution in the following way: (i) the shape parameter remains unaltered, as
it is a property of the marginal distribution, (ii) the location parameter is lower,
as a result of clustering, yet (iii) the scale parameter increases —contrariwise to
extremal index theory, as extremes inherit part of the increased variability of
the parent persistent process.

(j) The investigation of temporal properties of rainfall extremes from long-term
records exposes departures from the IID behaviour which are shown to be
consistent to their persistence structure. Evidence of stronger dependence is
found for streamflow extremes.

(k) HK-type models calibrated only the first four moments and the second-order
scaling behaviour of the process, show promising results in capturing both
short-term and long-term clustering patterns of rainfall and streamflow
extremes.

9.2.3  On future projections of climatic rainfall dynamics

Chapter 8 examines the empirical and theoretical grounds for the increasing body of
literature dealing with rainfall trends and their projections to the future. The respective
contributions are:

(a) A prediction-oriented framework is introduced for the evaluation of trends,
formulated as a variant of cross-validation suited for analysis of timeseries. The
framework allows bypassing the caveats of ‘statistical-significance” methods,
by directly considering predictive skill of trends instead of their explanatory
power. It also enables a statistical assessment of hindsight bias in terms of the
ability to foresee climatic trends.

(b) The predictive performance of trend models is compared to the one of simpler
mean models which shows that the process’s mean is on average a better
predictor of the climatic behaviour of rainfall indices (annual totals, maxima,
average and probability dry). The superior performance of the mean model is
also the case for the most recent climatic period.

(c) Itis further shown that persistence favours prediction based on the recent past,
i.e. based on the local mean, rather than the entire past, i.e. based on the global
mean, in spite of the latter being closer to the true mean. The same holds true
for the empirical rainfall records.

9.3 Directions for further research

At present the interest in the temporal variability of rainfall extremes and flood events
is rising as the management of hydroclimatic risk is considered one of the most
prominent challenges for the scientific community. This research investigated the
temporal variability of hydrological extremes harnessing rare evidence from long-
term empirical records. Such evidence was in favour of temporal behaviours differing
from the ones of IID processes, and whose modelling invokes a stochastic approach.
A set of probabilistic frameworks and stochastic tools was developed based on the

193



idea of characterizing and modelling the observed extremal variability using inherent
features of the parent process, highlighting, in particular, the role of the second-order
properties. Further research is needed to improve the understanding of variability and
dependence dynamics in hydrological extremes and identify links to engineering
design and risk management practices. There are several ways in which this research
can be extended on both fronts.

In the first place, the globally increasing availability of hydrological data invites
more studies on identifying dependence structures of extremes occurring at multiple
spatio-temporal scales. In this respect, the probabilistic NEPvS index for temporal
clustering could be applied to identify long-term clustering in other types of
hydroclimatic extremes as well, such as floods and droughts (e.g. Zoukos et al., 2018).
Moreover, the index can be easily extended to the study of multi-variate extremes in
order to characterize multi-scale tail-dependence among different processes. This is
essential to the study of spatial hydrological extremes, e.g. pertaining to modelling of
joint flooding, and could also be of use to the emerging research field of compound
events, i.e. of extreme impacts caused by joint dependent occurrences of less extreme
events (Zscheischler et al., 2018).

More research is required to improve the sub-asymptotic modelling of real-
world extremes by parsimonious modelling of their parent process. It is essential to
extend the investigation of HK-type stochastic models performed herein (Dimitriadis
and Koutsoyiannis, 2018) and identify the properties that are the most essential to an
efficient reproduction of extremal variability, besides the identified second-order
behaviour. In this respect, the recently proposed unbiased estimators of high order
moments, known as k-moments (Koutsoyiannis, 2019¢), offer an alternative way to
deal with the uncertainty involved in characterizing the distribution’s tail. More
insights into the temporal variability of hydroclimatic extremes are expected from
their application (Glynis et al., 2020).

Furthermore, there is vast research potential in exploiting the existing physical
understanding of the rainfall-generating process to improve seasonal prediction of
rainfall and streamflow extremes. There is evidence that weather types and rainfall-
producing mechanisms affect the spatial distribution and probability of occurrence of
extreme rainfall (Mamassis and Koutsoyiannis, 1996; Mamassis, 1997). On this basis,
the formulated frameworks on extreme rainfall and flood seasonality (Iliopoulou et al.
2018; 2019) could be applied to regions dominated by specific weather types and
rainfall-producing mechanisms to investigate causal links. The methodology could
then be refined to probabilistically update seasonal predictions of extreme events
driven by specific weather-types.

In addition, there are still ample grounds for bridging the gap between research
in hydrological dependence and practical applications in the wider fields of
engineering and finance. For instance, it is less acknowledged that temporal
dependence in hydrological extremes may be manifested in the temporal distribution
of insurance claims, affecting the risk management practices of the insurance and re-
insurance sectors (Serinaldi and Kilsby, 2016b; Papoulakos et al, 2020). In this respect,
the observed patterns of extremal clustering could be linked to the temporal variability
of actual insurance claims, revisiting the hydrological basis of current insurance
practices against hydrological hazards.
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More straightforward effects of dependence and temporal patterns of extremes
may be sought on various aspects of hydrological design, including the estimation of
ombrian (IDF) curves, probabilistic flood mapping, and the estimation of return period
and probability of failure of engineering works subjected to water-related uncertainty,
among others (Koutsoyiannis, 2020b; Dimitriadis and Koutsoyiannis, 2020; Roy et al.
2018; Serinaldi, 2015; Volpi et al. 2015). The present work calling into question the
practice of using projections of rainfall trends for long-term planning (Iliopoulou and
Koutsoyiannis, 2020) could also be extended to other hydroclimatic processes, such as
floods, seeking for robust alternatives in view of high climatic unpredictability.

Last but not least, a promising avenue to achieve an improvement in holistic risk
perception and mitigation is to investigate stochasticity in the evolution of societal
vulnerability to hydrological extremes. Diverse types of spatial information on the
human-water interface are becoming increasingly available and drive research dealing
with human vulnerability indices and the spatio-temporal evolution thereof (Ceola et
al., 2014; Sargentis et al., 2020). In this respect, combining historical evidence on the
temporal variability of hydrological extremes to that of human vulnerability may
provide original insights into the evolution of hydrological risk.
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Appendix A

A.1 History and acknowledgments for dataset compilation

The long-term rainfall dataset was manually compiled with the aim to assemble the
longest-term rainfall records available at the time. The first version was compiled in
2015 and included 27 rainfall records of over 150 years of daily data, which were
explored in the analysis of Chapter 4. The dataset was updated in 2018 to its latest
version including 60 rainfall records, which were used in the analyses of Chapters 6-
8.

We greatly thank the Radcliffe Meteorological Station, the Icelandic
Meteorological Office (Trausti Jénsson), the Czech Hydrometeorological Institute, the
Finnish Meteorological Institute, the National Observatory of Athens, the Department
of Earth Sciences of the Uppsala University and the Regional Hydrologic Service of
the Tuscany Region (servizio.idrologico@regione.toscana.it) for providing the
required data for each region respectively. We are also grateful to Professor Ricardo
Machado Trigo (University of Lisbon) for providing the Lisbon timeseries, to Professor
Marco Marani (University of Padua) for providing the Padua timeseries and to
Professor Joo-Heon Lee (Joongbu University) for providing the Seoul timeseries. All
the above data were freely provided after contacting the acknowledged sources. The
remaining timeseries are publicly available by the data providers in the ECA&D
project (http://www.ecad.eu), and in the GHCN-Daily database
(https://data.noaa.gov/dataset/global-historical-climatology-network-daily-ghen-
daily-version-3).

Table A1l contains the essential information on the long-term rainfall stations,
including name, geographic coordinates, record length and the respective data
sources. A map depicting the location of the gauges is included in Chapter 6 (Fig. 6.5),
while summary statistics for the rainfall records are provided in Table 6.2. The longest
record in the dataset is the Padova rainfall data (289 years) followed by the Chuk-woo-
kee rainfall data from Seoul (241) years.

Table A.1 Properties (name, source, latitude, longitude, start year, end year, record length and
missing values percentage) of the 60 longest stations used in the analysis sorted by decreasing
length. For the global datasets, the European Climate Assessment dataset (ECA;
http://www.ecad.eu ) and the Global Historical Climatology Network Daily database
(GHCND; https://data.noaa.gov/dataset/global-historical-climatology-network-daily-ghcn-
daily-version-3), the station identifier is also reported. Asterisks () in the “end year” column
denote data that have been continued from a second source. The country of each station is
abbreviated in parentheses aside its name.

Name Source Lat [Lon [Start [End | Record | Missing
year |year |length | %
PADOVA (IT) Marani and Zanetti (2015) [ 45.87 | 11.53 [ 1725 [ 2013 | 289 5.04
CHUK-WOO-KEE, Jhun and Moon (1997) | 37.53 | 127.0 | 1777 | 2017 | 241 0.00
SEOUL (KR) and Korea 2 *
Meteorological Agency
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Name Source Lat [Lon [Start [End [ Record | Missing
year |vyear |length | %
HOHENPEISSENBE | ECA: 48 [ 47.80 | 11.01 | 1781 | 2017 | 237 25.56
RG (DE) HOHENPEISSENBERG
DE
PALERMO (IT) GHCND:ITE00105250 38.11 [ 13.35 | 1797 [ 2008 | 212 17.16
PRAGUE (CZ) Czech 50.05 | 14.25 | 1804 | 2014 | 211 0.20
Hydrometeorological
Institute
BOLOGNA (IT) GHCND:ITE00100550 4450 [ 11.35 | 1813 [ 2018 | 206 0.00
and Dext3r of ARPA *
Emilia Romagna, Rete di
monitoraggio RIRER
(http://www .smr.arpa.em
r.it/dext3r/)
]gll\l}h'(%DSET)ERNWARTE GHCND:GMO000004204 [ 50.93 | T1.58 [ 1826 | 2015 | 190 5.47
RADCLIFFE (UK) Radcliffe Meteorological [ 51.76 | -1.26 | 1827 | 2014 | 188 0.05
Station (Burt and
Howden, 2011)
UPPSALA (SE) Department of FEarth [59.86 | 17.63 | 1836 | 2014 | 179 0.02
Sciences of the Uppsala
Universi
TORONTO (CA) GHCND:CA006158350 43.67 29 40 1840 | 2015 | 176 5.97
GENOA (IT) GHCND:ITE00100552 4441 893 11833 [2008 | 176 0.00
ONNEN (NL) ECA 2491 ONNENNL [53.15 | 6.67 [1846 | 2018 | 173 1.10
SAPPEMEER (NL) ECA:2507 SAPPEMEER | 53.17 | 6.73 [ 1846 |2018 | 173 1.10
NL
WOLTERSUM (NL) | ECA:2553 WOLTERSUM | 5327 [ 6.72 [ 1846 [2018 [ 173 1.14
NL
GRONINGEN (NL) [ ECA:147 GRONINGEN [ 53.18 [6.60 | 1846 [201I8 [ 173 1.10
NL
RODEN (NL) ECA:516 RODEN NL 53.15 [ 643 | 1846 [2018 | 173 1.10
EELDE (NL) ECA:164 EELDE NL 5312 [ 658 1846 [2018 | 173 1.10
HELSINKT (FI) fmmsh Meteorological | 60.17 | 24.93 | 1845 | 2015 | 171 0.33
nstitute
MANTOVA (IT) GHCND:ITE00100553 45.16 [ 10.80 | 1840 2008 [ 169 5.75
DEN_HELDER (NL) EI%A:146 DEN_HELDER | 52.93 [ 4.75 [ 1850 |2018 | 169 1.13
DE_KOOY (NL) ECA:145 DE_KOOYNL [52.92 1478 |1850 [2018 | 169 1.13
ANNA_PAULOWN | ECA:521 52.87 483 [ 1850 |[2018 | 169 1.13
A (NL) ANNA_PAULOWNA
NL
CALLANTSOOG ECA:2382 5285 [470 | 1850 |[2018 | 169 1.13
(NL) CALLANTSOOG NL
RITTHEM (NL) ECA:2503 RITTHEM NL [51.47 |3.62 [1854 |2018 | 165 1.16
VLISSINGEN (NL) ECA:T66  VLISSINGEN [ 51.44 |3.60 [ 1854 |2018 | 165 1.16
NL
SCHOONDIJKE (NL) ET%A:572 SCHOONDIJKE [ 51.35 [ 355 [1854 [2018 | 165 1.16
"'S_HEERENHOEK ECA:2350 5147 377 | 1854 [2018 | 165 1.16
(NL) 'S_HEERENHOEK NL
BRESKENS (NL) ECA:2377 BRESKENSNL | 51.40 [ 355 [ 1854 | 2018 | 165 1.16
MIDDELBURG (NL) [ ECA:2474 5148 [3.60 | 1854 [2018 | 165 1.16
MIDDELBURG NL
ARMAGH (UK) GHCND:UK000047811 54.35 [-6.65 | 1838 2001 | 164 0.26
OXFORD (UK) GHCND:UK000056225 51.77 1-1.27 [ 1853 2015 | 163 0.42
HVAR (HR) ECA:1686 HVAR HR 43.17 [ 16.45 | 1857 [2018 | 162 7.74
MELBOURNE GHCND:ASN00086071 - 1449 [ 1855 [ 2015 | 161 129
EESC);IONAL OFFICE 3781 |7
STYKKISHOLMUR | Icelandic Meteorological | 65.08 | - 1856 | 2015 | 160 1.00
dIS) Office 22.73
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Name Source Lat [Lon [Start [End [ Record | Missing
year |vyear |length | %
GRYCKSBO_D (SE) g](EZA:6456 GRYCKSBO_D | 60.69 | 15.49 | 1860 | 2018 | 159 0.62
FALUN (SE) GHCND:SW000010537 60.62 | 15.62 | 1860 | 2018 | 159 0.89
VAEXJOE (SE) GHCND:SWE00100003 56.87 | 14.80 | 1860 [ 2018 | 159 413
FLORENCE (IT) Regional Hydrologic | 43.80 | 11.20 | 1822 [ 1979 | 158 2.00
Service of the Tuscany
Region
SYDNEY GHCND:ASN00066062 | - 151.2 | 1858 | 2015 | 158 0.48
OBSERVATORY 33.86 |1
HILL (AS)
DENILIQUIN GHCND:ASN00074128 - 1449 | 1858 | 2014 | 157 1.37
WILKINSON ST (AS) 35.53 | 5
ZAGREB GRIC (HR) | GHCND:HR000142360 45.82 [15.98 | 1860 [ 2015 | 156 1.54
ROBE GHCND:ASN00026026 | - 139.7 | 1860 | 2015 | 156 3.66
COMPARISON (AS) 37.16 | 6
GABO ISLAND | GHCND:ASN00084016 | - 1499 | 1864 | 2018 | 155 3.36
LIGHTHOUSE (AS) 3757 |2
NEWCASTLE GHCND:ASN00061055 - 151.8 | 1862 [ 2015 | 154 2.55
NOBBYS  SIGNAL 3292 | 0
STATIO (AS)
OVERVEEN (NL) E}%A:2497 OVERVEEN [ 5240 [ 4.60 | 1866 |[2018 | 153 1.25
HOOFDDORP (NL) | ECA:151 HOOFDDORP | 5232 [4.70 [ 1866 |20I8 [ 153 1.25
NL
ROELOFARENDSVE | ECA:540 5222 1462 | 1866 |2018 | 153 1.29
EN (NL) %(BELOFARENDSVEEN
SCHIPHOL (NL) ECA:593 SCHIPHOL NL [52.32 | 479 [1866 | 2018 | 153 1.25
AALSMEER (NL) ET(IZA:BSl AALSMEER | 52.27 [ 477 | 1866 |2018 | 153 1.25
HEEMSTEDE (NL) EI%A:2430 HEEMSTEDE [ 52.35 [ 4.63 | 1866 | 2018 | 153 1.25
LIJNDEN_(NH) (NL) | ECA:2466 5235 [ 475 | 1866 |2018 | 153 1.25
LIJNDEN_(NH) NL
LISSE (NL) ECA:2467 LISSE NL 5227 1455 1866 [2018 | 153 1.29
NIJKERK (NL) ECA:2484 NIJKERK'NL [52.23 | 547 [1867 [201I8 | 152 0.75
VOORTHUIZEN ECA:2542 5218 [5.62 | 1867 |2018 | 152 0.75
(NL) VOORTHUIZEN N
PUTTEN_(GLD) (NL) | ECA: 551 [ 5.62 | 14.00 [ 1867 |2018 | 152 0.75
PUTTEN_(GLD) NL
ATHENS (GR) RIa}’?onal Observatory of | 37.97 [23.72 | 1863 | 2014 | 152 0.66
thens
ELSPEET (NL) ECA:2404 ELSPEET NL  [52.28 | 578 [1867 | 2018 | 152 0.75
LISBON (PT) Kutiel and Trigo (2014) 39.20 [ -9.25 | 1863 [2013 | 151 1.06
MILAN (IT) GHCND:ITE00100554 4547 19.19 [ 1858 12008 | 151 0.12
NEW_YORK_CNTR | GHCND: USW00094728 | 40.78 | - 1869 | 2018 | 150 0.51
L_PK_TWR (US) 73.97
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Appendix B

SUPPLEMENTARY MATERIAL TO CHAPTERS 5, 6 & 8

B.1  Supplement to Chapter 5
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Figure B.1 Scatterplots of lag-1 HFS (bottom) and LFS (top) streamflow correlations versus
percentage of lakes PL of the Swedish catchments (a) and percentage of glaciers PG of the
Austrian catchments (b).
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Figure B.2 Scatterplots of lag-1 correlation vs percentage of flysch area coverage PF for HFS
(bottom) and LFS (top) analysis for the Austrian catchments.
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B.2  Supplement to Chapter 6
(a). Type-Pareto, @ =0.1 en m¢ (b). Type-Pareto, a=0.2
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Figure B.3 Plots of 7 and & parameters versus the H parameter and polynomial fitting for the
(a) type-Pareto with a=0.1, (b) type-Pareto with a=0.2, (c) type-gamma with a=0.1 and (d)
type-gamma with a=0.01.
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Figure B.4 Plots of  and & parameters versus the H parameter and polynomial fitting for the
normal distribution.
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B.3

RAINFALL TRENDS PERFORMANCE IN RECENT CLIMATIC PERIOD

Supplement to Chapter 8

In Fig B.5-B.8, we illustrate the

projections of the local trend and

Rainfall maxima (mm)

static validation scheme showing results from the

the local mean model for all rainfall indices.
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Figure B.5 Local trend vs the local mean in projecting annual maxima for the 60 longest rainfall
stations.
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. —— 30-year calibration period -=-- L-Trend
Annual Total Rainfall -
—— Validation - -- L-Mean
—— Backward validation
RADCLIFFE BOLOGNA CHUKWOOKEE NIJKERK ONNEN OVERVEEN
200 - 1382 -~ 2000 = = 1000 1000
800} 800
600) 600) ]
400 1000 600) 600
400
RITTHEM SAPPEMEER VOORTHUIZEN WOLTERSUM GRYCKSBO HVAR
800 - 1000) 1000) 1000 809 \
600 500! 1000
400 800) 800 800)
200 500 600 600 400} L 500
18 19; 20
NEW_YORK PUTTEN PALERMO ‘GABO_ISLAND HOOFDDORP NEWCASTLE_NOBBYS
2000 1200
1500 “|1000} - 1000 1500
800) 800)
1000 500 aoo| 1 1000
-
JENA_STERNWARTE MANTOVA HOHENPEISSENBERG ARMAGH FLORENCE ZAGREB
800 1000] 1200
1400 1000) 1200
— 700 800} - 1000
E 600 1200 300 800) 1000!
600 800
g oo _ 1000) e 1
£ 4w 400 200! 600) 600)
o
o STYKKISHOLMUR ATHENS HELSINKI LISBON PRAGUE UPPSALA
B 200 1500 800
2 1000 800 = 600)
= 80 600 600 1000]
& 600 400] 200
c 49% 200] 400) 500)
©
hd DEN_HELDER TORONTO DENILIQUIN_WILKINSON MELBOURNE ROBE_COMPARISON SYDNEY
1000 1200) 800, a0 = 800) = 2000 T = -
800 = - 1000 600 — 0 00| 1500 -
600 800 400 200 1000
500l 200 400|
18 1 18 1
PADOVA MILAN GENOA VLISSINGEN FALUN VAEXJOE
1500 1500 2500 = 800
2000 o = 800
1000 600/ 600}
1000 1500) 400 600
500 500 1000 = 200] 400 400
18 18!
OXFORD DE_KOOY GRONINGEN RODEN ANNA_PAULOWNA ROELOFARENDSVEEN
1000 1200
00 - 1000) 1000) 1000 1000
800
00 uq 800) 800 800} 800
100 600 600 600 600 600
1850 1900 1850 2000 1850 1900 1950 2000 850 1800 1950 2000 1850 1900 1950 2000 1850 1900 1950 2000 1900 1950 2000
SCHOONDIJKE EELDE SCHIPHOL 'S_HEERENHOEK AALSMEER BRESKENS
1000 1000 1200, 1000 1200 1000
- - 1000 _ 1000 ggg =
500 800) 800 5001 500| 00
500 600) 600} 200
18 18 1
CALLANTS00G ELSPEET HEEMSTEDE LIJNDEN LISSE MIDDELBURG
1000] 1200) 12 1200 1000
1000 4 = 1000) 1000} 1000 -
800 800) 800) 800 300 500
600 500) 600 800) 600)
1850 1900 1850 2000 1900 1950 2000 1900 1950 2000 1200 1950 2000 1900 1850 2000 1850 1900 1950 2000
Year

Figure B.6 Local trend vs the local mean in projecting annual totals for the 60 longest rainfall

stations.
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Figure B.7 Local trend vs the local mean in projecting wet-day average rainfall for the 60
longest rainfall stations.
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—— 30-year calibration period --- L-Trend
—— Validation - - - L-Mean
—— Backward validation
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Figure B.8 Local trend vs the local mean in projecting probability dry for the 60 longest rainfall
stations.

FITTING ALGORITHMS: LEAST-SQUARES VS ROBUST REGRESSION

We explore the effect of the linear trend definition and fitting algorithm on the results
of the local trends, as trends in small segments are expected to be more sensitive to the
choice of the fitting algorithm (Santer et al., 2000). The first algorithm is the widely
used ordinary least-square estimation (OLS), which fits equation (48) to the data, by
minimizing the sum of the squares of the differences between the observed data and
the predictions of the linear model. Secondly, two alternative trend calibration
approaches are explored that place less weight on influential observations (“outliers”)
and thus belong to the range of ‘robust regression” techniques. The first is the least
absolute deviations (LAD) method, which estimates the regression coefficients by
minimising the sum of absolute deviations of the predicted from the observed values,
and is a special case of quantile regression, fitting the trend line to the median of the
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observations, rather than the mean (Chandler and Scott, 2011). The second is the non-
parametric method of Theil-Sen slope estimation (Sen, 1968; Theil, 1992), which
estimates the slope b of the linear model as the median of the pairwise slopes of all
sample points. Among the different approaches that exist for the intercept coefficient,

we follow Conover (1980) and estimated the intercept as a = 5 — bx( 5, where y4 5 and
Xo5 are the sample medians.
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Figure B.9 Boxplots of the average prediction RMSE as estimated for each station from movin,
window validation of the local trend using Least Squares regression (LS), least absolute

deviation regression (LAD) and the Theil-Sen regression. For the boxplots’ properties
description see Figure 8.5.
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