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“Ocean acidification (OA): The other CO2 problem” [1] 

Stochastic analysis of time-series related to ocean acidification | Vagenas et al. 2021 

The phenomenon: OA is described as the constant increase of atmospheric carbon dioxide (CO2atm) 
which reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry[1]. 

Objective: We perform time-series analysis focused on temporal changes in month and annual time lag, in 
order to detect the interaction between each variable element along with the  seasonality effect.  
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Data (Time-series) specifications: 

 

Variables 

1) Aquatic measurements:   Hawaii Ocean Time series (HOT) [2] 
 
CO2aq: The mean surface seawater CO2 partial pressure, in µatm,  
calculated from DIC* and TA** at in situ temperature. 
 
PH: The mean surface seawater pH, calculated from DIC and TA  
at in situ temperature, on the total scale. 
 
Temperature: The mean surface in situ seawater temperature, in °C.  
 

2) Atmospheric measurements:  (Mauna Loa, Hawaii) [3]  
 
CO2atm: Surface CO2 in-situ measurements (ppm) 

 

Location: North Pacific Ocean (Hawaiian Archipelago) 

 
Year Range 
October 1988 – October 2018 (30 years) 

 
Time-step (Δt) 
Monthly measurements 
 

 

St. ALOHA-XXII: 
22.45’ ° N,  

158 ° W 



Methodology (2) 

Stochastic analysis of time-series related to ocean acidification | Vagenas et al. 2021 

Time series procedures-functions (Analysis steps): 

 

1) Linear Interpolation 
 

 
 
 

2) Cross- correlation function (CCF) 
CCF (𝑟𝑥𝑦) at a  discrete time k was calculated according to the formula of[5,6]: 

 

𝑟𝑥,𝑦
𝑘

=
  (𝑥𝑖(𝑠+𝑡)−𝑥𝑖 )(𝑥𝑗(𝑠)−𝑥𝑗)

𝑚𝑖𝑛(𝑛−𝑡,𝑛)
𝑠=𝑚𝑎𝑥(1,−𝑡)

𝑆𝐷𝑥𝑆𝐷𝑦
 

 
The statistical significance of the CCF was approximately approached with the 95% confidence intervals (CI95%) of the 
CCF, estimated as follows[6]: 

CI95%=−
1

𝑛
±

2

𝑛
 

 

where n is the number of data points used in the calculation of the CCF, and the CI95%  equations which are depicted as 
dashed blue lines in the CCF plots. We utilized the simplified tool of CCF since it represent one of the most informative 
indicators in terms of directionality[7]. In cases where significant time dependence was observed, Monte-Carlo 
simulation (MCS) was applied to determine the 95% confidence intervals through the fundamental stochastic 
Markovian process AR(1) depicted as purple dot-dashed lines.  

 
 

 
 
 
 
 

 

Step standardization at y (NA value), at a given x, was operated with the use of the following formula[4]: 
 

𝑦 𝑥 = 𝑦𝑖 + 𝑦𝑖+1 − 𝑦𝑖

𝑥 − 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖 
 ,   𝑥𝑖 < 𝑥 < 𝑥𝑖+1 

ci,j =CCF function 

n=sample size 
t=time lag 
SD=st. deviation 

Xi=predictor variable (x) 
Xj=response variable (y) 
xj =expected value of x 

xi =expected value of y 
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Time series procedures (Analysis steps): 

 
3) Moving Average  (Rolling Monthly Average) 

 

A simple (unweighed) moving average (MA) was calculated successively for complete annual time series (Jan-Dec) for 
monthly (q=2 month) and annual (q=12 month) time step: 

 

MA𝑞(𝑖) =
𝑋𝑛−𝑘+1+𝑋𝑛−𝑘+2+⋯+𝑋𝑛

𝑞
 =

1

𝑞
 𝑥𝑖

𝑛
𝑖=𝑛−𝑞+1  

 

4) Annual differencing - Δ (Rolling Annual Difference) 
 
Annual differencing Δ (𝑥 ) was calculated successively for complete annual time series as follows in order to eliminate 
periodicity[7]: 

 

𝑥 𝑘,𝜈  ≔  𝑥𝑘+𝜈  − 𝑥𝜈 

 

5) Seasonality effect (SE) at various time lags (q)[7] 

 

SEq(i)=  𝛸𝑡(i)– MA𝑞(i) 
 
 

 

q=rolling grade (months) 
n=sample size 
Xi=x value 
k=dynamic variable (initial k=0) 
x=random variable 

ν=time step differencing 

𝛸𝑡=Time series 
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Time series procedures (Analysis steps): 

 
 

6) Empirical climacogram (Monthly & Annual) & Hurst parameter 

Climacogram (GR: κλίμαξ~climax; EN: scale) is defined as the variance of the averaged process at discrete time scale κ: [8] 

 

𝜌𝜅  ≔  var  
𝑋𝜅 

𝜅𝜎
=

𝛾𝜅
𝛾1

 , 𝛾𝜅  ≔  var  
𝑋𝜅 

𝜅
= 𝛾1𝜌𝜅  ,  𝑋𝜅  ≔  𝑥1  +  ⋯ + 𝑥𝜅   

 

𝛾(𝜅) = 
𝛾(1)

𝜅2−2Η
 

 
 

The selection of climacogram for the estimation of the Hurst parameter was applied since it functions as the most 
statistical reliable tool towards the stochastic explanation of geophysical processes, compared to the widely-used  
auto-covariance and power spectrum[9]. 

 

Classification of temporal phenonomenona based on Hurst[8]  

 

γ =variance (var) 
κ=time scale 
Η= Hurst parameter 
γ(κ)=climacogram 

ρ(κ)= dimensionless climacogram 

 

· 𝐻 >
1

2
: 𝒑𝒆𝒓𝒔𝒊𝒔𝒕𝒆𝒏𝒄𝒆 

 

· 𝐻 =
1

2
: 𝒘𝒉𝒊𝒕𝒆 𝒏𝒐𝒊𝒔𝒆 (𝒑𝒖𝒓𝒆𝒍𝒚 𝒓𝒂𝒏𝒅𝒐𝒎 𝒑𝒓𝒐𝒄𝒆𝒔𝒔) 

 

· 𝐻 <
1

2
: 𝒂𝒏𝒕𝒊 − 𝒑𝒆𝒓𝒔𝒊𝒔𝒕𝒆𝒏𝒄𝒆 
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CO2aq 

Temperatureaq 

Time-series Analysis (1) 

In the original time series of the ocean carbon 
dioxide (natural logarithm transformation[7]) and 
temperature measurements it is apparent that 
during the last 30 years there is a discrete increasing 
trend of CO2aq, while temperature exhibits a more 
erratic behavior. Both processes appear to be under 
a strong seasonal  effect, a behavior that will be 
further analyzed in the following sections. 

In the CCF plot between the original observations of aquatic 
CO2aq (𝑥) and temperature (𝑦) the highest positive value has 
been attained at lag zero (+0.53) and it keeps a decreasing 
periodic positive and negative peak in a sequence of 6 and 
12 lag (months), respectively. There is a significant cross-
symmetric behavior around lag zero and the periodic peaks 
indicate a seasonal phenomenon[5]. Additionally, causality 
cannot be explained through the above graphs[7]. 
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Time-series Analysis (1) 

With the application of a 2-month moving average (2 month 
lag) on the aquatic CO2aq(x) and temperature (y), the 
seasonal periodicity is still apparent with the highest 
positive value recorded at lag zero (+0.52). 
 
 
 
 
 
 
 
 
 
 
 
The annual (12-month) moving average showed an 
interesting behavior, with an increasing and exclusively 
significant CCF at negative lags, with the maximum 
observed at  the lag -45 (~4 years) with a positive value of 
+0.34.  



Time-series Analysis (1) 
CO2aq~ Temperature 

In order to verify whether if the CCF values occur at 
larger lags, we investigated the behavior in a larger 
lag-window (+120,-120) and we concluded that, 
indeed, the time lag range (months) from -37 to 47 
(3y-4y) had the highest  CCF observations in both 
processes.  

Apparently, with the application of a MSC in a AR(1) 
model based on the statistical characteristics of 
annual CO2aq and temperature, the observed 
directionality was not statistical significant at 95% 
of confidence intervals. 

Monte-Carlo CI95% 
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CO2aq 

PHaq 

PH~CO2aq 
Time-series Analysis (1) 

In the original time series of the ocean carbon 
dioxide (natural logarithm transformation [7]) and pH 
measurements there is a clear reflecting mirroring 
effect between the interaction of both variables. 

In the CCF between the original observations of 
aquatic pH (x) and carbon dioxide (y) the highest 
negative value has been attained at lag zero (-0.99) 
and it keeps a decreasing negative periodic peak in a 
standard sequence of 12 lag (months). There is a 
significant symmetric  behavior around lag zero and 
the periodic peaks indicate a synchronous seasonal 
interaction of processes.  
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PH ~ CO2aq 
Time-series Analysis (1) 

At a next phase, the 2-month moving average on the aquatic 
pH (x) and carbon dioxide (y) resulted in significant negative 
correlations with the maximum CCF value recorded at lag zero 
(-0.99). Additionally, there is a seasonal periodic cycle with 
subsequent decreasing negative peaks towards larger positive 
and negative lags. 
 
 
 
 
 
 
 
 
 
The annual (12-month) moving average sustained the 
symmetric negative correlation at lag zero (-0.99), a consistent 
behavior with the previous analyses.  



Stochastic analysis of time-series related to ocean acidification | Vagenas et al. 2021 

CO2aq  (μatm) 

CO2atm(ppm) 

CO2aq ~ CO2atm 
Time-series Analysis (1) 

The highest positive value n the CCF analysis between the 
original observations of aquatic (x) and atmospheric (y) 
carbon dioxide, was recorded at the 4th lag (+0.81) and 
therefore, there is a positive periodic peak in a sequence 
of an annual lag (12 months). Regarding larger time lags, 
the interaction is characterized as significant symmetric 
behavior around the fourth lag and once more, the 
periodic peaks indicate the presence of a seasonal 
phenomenon[5].  

Based on the of the aquatic and  atmospheric 
carbon dioxide (natural logarithm transformation[7]) 
measurements, a common increasing process 
occurs. Atmospheric observations demonstrated a 
steady positive escalation while aquatic carbon 
dioxide time series exhibited a similar, though 
variant, behavior.     
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CO2aq ~ CO2atm 
Time-series Analysis (1) 

Similarly, the 2-month moving average (2 month lag) on 
the aquatic (x) and atmospheric (y) carbon dioxide 
exhibited significant seasonal periodicity around the 4th 
lag, with the CCF calculated the maximum CCF value 
(+0.81).  
 
 
 
 
 
 
 
 
 
The annual (12-month) moving average between both 
processes showed a typical symmetric positively 
correlated interaction at zero lag (+0.96). Hence, the 
annual correlation is slightly greater than the effect of 
the monthly observations. 
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CO2aq 

Temperatureaq 

Time-series Analysis (2) ΔCO2aq~ ΔTemperature 

With the elimination of the periodicity effect on the processes, the annual difference (f.e. 1st PH value: PH_Oct1989- 
PH_Oct1988), ocean carbon dioxide and temperature measurements showed that there is not a clear pattern in the 
succession of events. This can be validated with the CCF plot, indicating that the highest value recorded at lag zero 
(+0.34) with a non significant pattern alongside the zero point, thus highlighting the erratic behavior of temperature in 
the original time series. 
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CO2aq 

PHaq 

Time-series Analysis (2) 
ΔPH ~ ΔCO2aq 

Contrarily, the Δ-transformed time-series  of aquatic pH and carbon dioxide difference, resulted in the same 
reflected mirrored behavior of the time series. Furthermore, the cross-correlation of both variables strongly support 
the original time-series behavior with a clear symmetric pattern. The maximum value (lag zero) of the CCF was 
recorded at -0.98. 
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CO2aq (μatm) 
CO2atm (ppm) 

Time-series Analysis (2) ΔCO2aq ~ ΔCO2atm  

The differences between the CO2aq and  CO2atm, demonstrated a clear pattern of a negligible statistical significance 
between the two processes, except an allocated time-lag grouping at -40 to -45 time lag (months) which was 
partially-rejected through the MSC CI95% thresholds. Since temperature showed an interesting behavior in the 
previous section we tested its difference (Δ) related with the ΔCO2atm and it appeared that there’s a validated and 
statistical significant directionality of TCO2atm with a ~2.5 year lag. 

Monte-Carlo CI95% 

ΔCO2atm ~ ΔTemperature 

Monte-Carlo CI95% 

CO2atm (ppm) 
Temperatureaq 



Seasonality effect 
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CO2aq 1 Annual MA 
CO2aq 2 Annual MA 

CO2aq 5 Annual MA 

Tempaq 1 Annual MA 

Tempaq 2 Annual MA 

Tempaq 5 Annual MA 

CO2aq 1 Annual MA 

CO2aq 2 Annual MA 

CO2aq 5 Annual MA 

CO2atm 1 Annual MA 

CO2atm 2 Annual MA 

CO2atm 5 Annual MA 

Time-series Analysis (3) 

CO2aq 1 Annual MA 
CO2aq 2 Annual MA 

CO2aq 5 Annual MA 

PHaq 1 Annual MA 

PHaq 2 Annual MA 

PHaq 5 Annual MA 

Since seasonality was highlighted as a crucial component in the behavior of the phenomenon, we extracted gradual 
increasing annual (1;2;5 years) moving averages (MA) from the original time-series, and we estimated the monthly 
average effect on the observations units. In the case of aquatic temperature and CO2aq, both variables had a common 
phase with the highest positive peak between August-September and lowest in February. Correspondingly, pH had the 
exact opposite phase compared to the CO2aq with the highest peak in February and lowest in September.  
The, exclusively seasonal effect, 4-month phase lag of the air-ocean CO2  transferability was confirmed since the 
highest peak of CO2atm appeared to be in May and the lowest between September-October.  
 
It is worth mentioning that the different applied moving average (MA) extractions appeared to show equal behavior, 
with the 5th MA having a slight divergence during summer months (June-August). 
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Time-series Analysis (4) 

Finally, we implemented the empirical climacogram for 
all the variables during the examination of processes 
on the phenomenon of OA (log transformed 𝛾𝜅 axis). 
Hurst parameter was estimated according to the 
power type slope of the annual scale (1-4 years) so as 
to exclude the non-desired effects of periodicity in 
monthly scale. Overall, the 4 parameters showed 
H>1/2 which demonstrates temporal persistence[7,10].  
 
 
 
 
 
 
 
 
More specifically, the annual H parameter for aquatic 
pH, CO2aq, CO2atm obtained from the 30 year range 
time-series exhibited large values approximate to 1 
(H>0.98). However, aquatic temperature presented a 
less similar behavior on annual scales as an irregular 
stochastic process.  



Main findings –Conclusions 
 

- Analyses of time-series related to OA concluded that the increase of pCO2aq was similar to the pCO2atm
[11]. In the 

present analysis we discovered an interannual 4 month phase difference between both variables which was 
eliminated after the extraction of seasonality through appropriate procedures. The annual differences thereof 
exhibited a ~4 year lag with directionality CO2atm CO2aq which however is statistically non-significant (tested by 
MCS).  

- An interesting observation was the detection of a statistically significant, assesed through stochastic simulation,  
~2.5 year lag in the annual differences (Δ), in the processes of TaqCO2atm. The directionality is consistent with the 
results of a previous study on atmospheric Tatm CO2atm with a ~1 year lag in an annual scale[7]. 

- The relationship between pH and CO2aq resulted in a reflecting-mirrored interaction, which is confirmed by previous 
studies [1,12]. Regarding the observed seasonality, pH seasonal variation appeared to be in agreement with previous 
analysis in the region[1].  

- Strong persistence (H>>1/2) was detected in all the examined variables, which indicates strong clustering 
(grouping) of similar values, enhanced change and uncertainty, a quite common behavior in natural processes[7,10].  

- A negative effect of OA is the possibility that it can impact aquatic populations of shell-forming organisms[1,14]. 
These ocean chemical alternations may cause progressive negative feedback response, starting from the population 
level to marine ecosystems as a whole. 

- The present study was focused on a single site dataset. However, there exist site-specific differences on a global 
scale[11,12], along with a variability of biological responses and vulnerability to OA related with the latitude location 
of each case-study [1,13]. Except the geospatial variance, the interaction of impacts has been found to be diverging 
during the life-history (development) stages of an organism[14].   

- Based on the findings of this work, it appears that there may exist an interesting interdisciplinary research arena in 
the interaction between trends and seasonality effects on the response of marine biota. This evolutionary concept 
of adaptivity, described as the “phenotypic plasticity” [15], may function towards the mitigation of the severe effects 
of environmental stressors related to OA. 
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