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ABSTRACT

The aim of this study is the introduction of a promising strategy for hydrological
calibration, which utilizes synthetic data as drivers to identify model parameters and
evaluates the adjusted model structure against the full historical sample. These synthetic
time series incorporate the marginal properties and dependence structure of the observed

data across multiple time scales.

One of the main advantages of this methodology against conventional split-sample
approaches is the estimation of more robust and “stable” parameter sets. This is due to the
model being trained over a much longer dataset and extended hydroclimatic conditions.
Another important advantage of this methodology is that the defined modelling scheme
is evaluated against the full set of the observed data, hence the validation data set is also

extended.

In order to prove that the proposed calibration framework is independent of the chosen
model, five lumped hydrological models of varying complexity were used for the testing
of the calibration scheme. Initially, a proof-of-concept was employed on a representative
catchment and across two time scales, monthly and daily, by using for each scale analysis
two hydrological models with alternative parameterization. The proposed calibration
technique performed equally well as the classical split-sample scheme at the monthly time

scale, whereas it demonstrated slightly lower performance at the daily scale.

After proving the functionality of the stochastic calibration for this case study, this strategy
was tested against a large set of catchments of the MOPEX database, at the monthly scale,
to further reinforce the validity of the recommended methodology. From this large scale
analysis it is deduced that the stochastic calibration outperformed the split-sample
approach in more than half of the examined cases, regardless of the chosen hydrological
model. In addition, stochastic calibration proved to be independent of the model

structure’s complexity.

Keywords: Hydroinformatics, Hydrological Models, Stochastics, Stochastic Calibration
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EXTENDED ABSTRACT (IN GREEK)

=ekaBapilovtag Tig VTOOEGELG EpYACiag GTOV TPOGIHOPLG RO TOV TAPAUETPOV
TOV VOPOAOYIKOV HOVTEAMV:

1N évvota tng oToY oo TiknG fadpovounong
Ewcayoyn

>t Biproypaeio amavidvtor dtdeopes pEO0d01 fadpovounong VOPOAOYIKMDY LOVTEA®DV
pe mo kKAaootkn avtn tov Vit Klemes, katd tnv onoia 1o 1otopikd deiypa dtoywpiletat
oe 0V0 empPEPOVG OEeT OedOUEVOV. AVOALTIKOTEPO, TO TNPAOTO GeT (mEPind0g
Babpovounong) otdxo Exer T pvOpon  TOv  VIPOAOYIKOD  HOVTEAOL  OTIG
VOPOUETEMPOLOYIKEG OLVONKES TOL EMKPATOOLV KATA TNV TEPIOSO 0LTH, UE TNV
KOTAAANAN TPOCAPULOYT] TOV TOPAUETPOV TOV, €VA TO O€LTEPO GET (mEPindog
emaAnOgvong) e&ummpetel oTOV EAEYXO TNG AVOTAPAYOYNG TNG TOPATNPNUEVNG

andKPLGNG TOL VOPOAOYIKOD GUGTNLATOS KATA TN XPOVIKN ALTT TTEPLOSO.

"Extote, évog omuavtikdg aptOpdg emotnuovikeov gpgvvov €xet oegayxbei oe pa
npoondfeta Peltiooons tneg nebdo0v, AALA Kot AVTILETOTIONG SLOAPOPOV LEIOVEKTNULATOV

OV gvEYEL M xpNoN TNS LeBGS0V, 0dNYDOVTOS £TGL G OLAPOPES TAPAAAAYES TNG.

‘Oc0ov apopd Ta LELOVEKTALLATA TNG LEOOSOV Loy WPIGLLOV TOV IGTOPIKOV GET dESOUEVMV
ce mepLtOdovg Pabpovounong kot emaAnbevong, tétota pmopovv va Bewpnbodv ta

axoé6rov0a:

=  To delypa tng enainbevong eumepiéy et mTOAVTIHT VOPOAOYIKN TTANPOPOPia, N Omoia
navta npEnel vo OueLacTel Yo TOVG GKOTOVS TNG £maAnBgvong tov Badpovounuévoo

LOVTELOV.

= Axopn, Aoyo mhavig acvpeoviog LetaEl Tng amdooons Tov puOiGrévov LOVTELOL
Katd TNV mepiodo Pabpovounong kar emarlndevong, vidpyel avAayKn yio ETIULNKLVON
TOV Ypovikov opilovta Tng pvdpIong, dcTe TO HOVTEAO v givar axkpiPéotepa
Badpovounuévo otnv vEPoAoyIKN dilarta TG mEPLoXNg Herétng. NoTdc0, avtd dev
elva TAVTA EPIKTO, APOV T IGTOPLKA dEOOUEVA OEV EIVAL TAVTA OVTITPOGHOTEVTIKA TOL
VIPOLOYIKOV KOOEGTDTOG TTOL KVPLAPYEL OTN TEPLOY N, ELOIKA GE TEPITTMOGELS TTOV TO

HLNKOG TOV TAPATNPNCEDV Elvar pikpO.

» EmmAéov, n gpoappoyn tng nebodov amortei to 610 UNKOG TOV TOPATNPNUEVOV
YPOVOGELPDV Y10 TG VOPOLOYIKEG dtepyacieg 16000V kat 6660V 61O povTéLO. ()G ek

TOVTOV, OTOLAONTTOTE TTEPTIOO0G dEOOUEVMV dEV AVIKEL GTO KOV dLACTNLO LETPT|CEDV
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petalo Tov peyeddv e1c6oov kot €£6d0v, Oa mpémet va ayvonfei. Avtd 10 TPOPANHA
avTipetoniletor cvyva KATd TNV VOPOAOYIKY LOVTEAOTOINGT, APOV T delyloT

pnetpnioewv Bpoxng cvviBwmg Eemepvodv ekeiva TG OTOPPONGS.
Me0Oodoroyikn mpocéyyion tng pebodoroyiag tng otoxactikng fadpovounong

>to mAaicto TG mTopovOUS UETATTUYLOUKNG SIMAMUATIKNAG EpYaciag TapovctdleTal Kot
epoppoletor po véa pnebodoroyio Padpovounong véporoyiKdOV HOVIEA®Y, OLTH TNG

OTOYX A0 TIKNG Padpovounonc.

H xouvotopa avty texvikn Babpovounong emvondnke amd tovg A. Evotpatidong, L.
Toovkardg kat [1. Koooiépng, pe okond va avTipet®omiotobv To OERata TG KAUGOIKNG
pnebodov PBabpovounong mov anaptOpundnkav napamdve. Svykekpipéva, n pebodoroyia
avtn] ypnowonotel ovvletikd dedopéva €660V Kar €EGS0V, HEYAAOL UNKOVG
(exkatovTddmv M YAddov eTtdv) Yo TN oStadikacia tng Pabpovounong, evod 1o
pLOpopévo povtéro emoAnBedetar yio T0O GOVOAO TNG TEPLOSOV TOV 1GTOPIKAOV
nopatnpioemv. Ot GUVOETIKEG YPOVOCEIPES TTapdyovTal LE YPNON €VOG GTOYACTIKOD
pLovtéAlov, To omoio Oa npémel va eEacparilel TNV avamapaymyn OANG TNG GTATICTIKNG
TANPOPOPIOG TTOL TEPLYPAPEL TO TANPES VOPOAOYIKO KAOECTOC TOVL E€MKPATEL GTNV
meployn nerétng. H mAnpogopio avty) eumeptéyetal oTIC IGTOPIKEG YPOVOGELPES, AALE
givat SUGKOAN AVIYVEVGIUN, EWOIKE GTNV TEPITTMGCT Y POVOCELPDOV LLIKPOD LNKOVS, OTTOL N
OLGKOAI EVTEIVETOL AOY® TOV OTL £VA TUNLLA TOV OEGOUEVAOV AVTAOV OECUEVETAL Y10 TOVGS

oK0mov¢ TNG emain O evong Tov povTéLOL.

Katd ocvvénetn, to petovektipata mov mnydlovv katd tnv €appoyn tng pedosov
Ol WPIGLLOV TOV IGTOPIKOV dEIYLATOG EEAAEIPOVTAL, EPAOGOV TA CNULAVTIKA LEYAAVTEPOV
pnKovg cvvlhetikd dedopéva mov dratifevtal Yo Tovg oKOmovg TG pYOLong, 0dnyoHv
TEAKA OE TO «EVUPMOTA» GET TAPAUETPOV Kot TEPLGSOTEPO oTabepn kavdTNnTO
TpOPALeYNS TOL povTELOL. EmimpocBétme, n mpocapprocpévn oty meptoxn LeEAETNG SOUN
TOV LOVTEAOL emaAnOeveTat mia e xpion OAOL TOL IGTOPIKOV SEIYLLATOC, LLE ATOTEAECLLA
Vo empUnKOVETOUL Kot 1 TEPiodog enainfevong. Aedopéveov Tov cuVONKOV aVTOV, TO
OIAANLO CYETIKA LLE TO TTOLO TUNUA TOV dedopévav Ba deopevTel yio TN dtadikacio TNG

Badpovopnong kat oo yia TNV enain0evon, dev vpicTATAL TTLA.
‘Ocov apopd TN Tapaywyn TOV GTOXAGTIKMOV YPOVOGEPDOV, TO vevduvo povtéro Oa
mpénel va TNpel TG €ENG TPOodtaypapéc:

= [lepiekTikn avomopdoTacn Kot TPOCOUOIMOT TOV VOPOUETEMPOLOYIKAOV dESOUEVOV
€16600v kar €EO600V, avamapdyovtag OAO TO OCTATICTIKG YOPAKTNPLOTIKE TV
IGTOPIKAOV TOPATNPNCED®V, e avdfeon KATAAANAOD LOVTELOL AVAAOYA LLE TO €100G

NG JEPYNCTIOG TPOG TPOCOUOIMOT Kot TNG TTPOG €EETACT YPOVIKNG KAILAKAS. AVTO
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ETMLTLYYAVETOL LE YPNON CYNUATOV CTOYOUCGTIKNG TPOCOUOIMGNS 7OV AouPdvovv
VIOYN TIG KUPLEG 1OLOUTEPOTNTEG TMOV VOPOUETEMPOAOYIKMOV SLEPYAGLOV, NTOL WUT-
YKOOVGLOVY] OTOTIGTIKY] GUUTEPLOOPE, TEPLOOIKOTNTA, OLAAEITOLGA EVUOM KOl WUN
avTIoTPEYILOTNTA. AKOUT|, OE TEPITTOGT OKPAI®V YEYOVOT®V (TT.X., TANUUVPGOV), Oa
mpénel va 600l 1dtaitepT ELPACT GTN LOPOT TNG OVPAG, N omtoia kafopilet To péyedog

KOl TN VY VOTNTA TOV OKPAi®V YEYOVOTMV.

" AvamopdoTtocn ToV avtoovuoyeticenV (Bpayvmpdfecumv kot pakporpodecumv) Kot
TOV ETEPOCVOYETIGEWY, OL OTOLEG ATOTEAOVV GTATIGTIKA LETPA YId TG GYECELS AITIOV

Kot 0Tiotod LETAED TOV O1EPYAGIAOV TOV VOPOLOYIKOD KUKAOV.

*  DTOTIOTIKY] GULVEMELD GE MOAAONTAEG XPOVIKES KAINOKES, MOTE va dtac@aiicOel
aAvVOTOPAY®YN TNS TOAVOTIKNG KOt GTOYXAGTIKNG CUUTEPLPOPAS TMV OLEPYATIDOV TTPOGS
povtelomoinon Oxt HOVO oTNV KAIpHoOKo TNG LOPOAOYIKNG Tpocopoioonsg (m.y.,

nuepnota N unviaia), cALE Kot o€ LEYAAVTEPEG YPOVIKA KATHOKES ()., ETHOLA).
Ydporoyikd povtéla PeEAETNG

[Ipokeipévovr va e€etaotel M ASLTOVPYIKOTNTO TOV  TPOTELVOUEVOL TANLGIOV
Babpovounong, mpaypatonotnOnkav avalvcelg pe xpnon evos aptdpod véporoyIK®V
LOVTEA®V LETAPANTHG TOAVTTAOKOTNTOC, TO OTTOi0 €iTE avanTOY O KoV o€ TEPIPAALOV TNG
YAOGoA TPOYpapRaTIGHod R yia tovg okomovs Tng epyaciag, €ite £Yovv MoM

TPOYPOULLATIGTEL 6€ YA®ooa R.

Kaféva amd avtd ta povtéda givat £va adtapéptoTo EVVOLOAOYIKO TTPOGOULOIMLLE, TO OTTOL0
Kavelr xpnom &voc GeT HAONUATIKOV €EICMOEMV Yo TNV TEPLYPOOT TOV KOPLOV
VOPOAOYIKDOV UNYXOVIGULOV TOL AOUPAvOvV ydpa oe KAIpHAKO VOPOAOYIKNG AEKAVTG
anoppong. ()g dedopéva 16660V 10 KABE LOVTELO déxeToL TN HEOT PPoxOTTTOON KL TN
duvnTiky €EATUIGOdATVOT, OE YXPOVIKN KAipoka mMuépag 7 WNvo, avairoyo RE TO

VOPOAOYIKO LOVTENO.
Ta povtéra avtd eivar ta eENG:

= Zygos4P: éva povtéro vdatikod teoluyiov 1ecodpmv mapapétpmy, mov £xet factoTel

G€ Lo ATAOTTOIMUEVT EKSOY T TOV VIPOAOYIKOV LOVTEAOV «ZVYOG»

= Zygos6P: 1o povtéro avtd yapaktnpiletor and £t mapapétpouvs Kot PacicTnke 61N
dOUN TOV TTPONYOOUEVOL LOVTEAOV, EPAPLOLOVTAG LEPIKES TPOTTOTOLCELG

= GR2M: 10 povtého oavtd avikelr otnv owoyévelro tov poviélov GR, éva oet
EVVOLOLOYIKAOV  adPOUEPDOY  VOPOAOYIKOV HOVIEA®V TOL  avomtiuyOnkav yio
ovykekpipnévo PApa mpocopoiwong 1o kaBéva. To ovykekpipévo HOVTELO €xel

avortuy 0el yio unviaio PRRLe TPOGOLOIMGNG Kot XPNOILOTOLEL SVO TAPAUETPOVG.
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= GR4J: akopn €va povtéAo mov avikel otnv opdda tov poviédAov GR, 1o omoio eivar

Eva NULEPNOLO VOPOAOYIKO LOVTEAD TECGAP®V TOPAUETPOV

= GR6J: éva akOpn nuepnoto vdpoA0YIkO HovtéLo TG oepdg GR, mov amoteAeitor and
€€1 mopapéTPoug Kot TPOEKLYE UETA and OlOPKEIG TPOTOTOINCELS EKEIVOL TV

TEGCAPOV TOPALETPOV

Og pétpo a&oddynong Tng KOANG MPOGUPUOYNS TOV HOVTEAOL YPNOIUOTOIRONKE O
deiktng anddoong Nash-Sutcliffe (NSE). ‘Ocov apopd tov arydpitOpo BeAtiotonoinong
vy T dradikacio tng pvOpiong, yio ta povtéda tng kotnyopiog GR €ywve ypnon
EVOOLOTOUEVOL aAYOPiOLOL BEATIOTOTOINGNG GTOV KMIIKA TOV HOVIEA®V, O OTOi0g
GLVOVALEL TOTIKN Kot OALKY TPOcEyyion ovalnTnong tov PEATIGTOL GET TIUOV TOV
TapaApETPOVY, EVA Yo Ta POVTEAL TNG KaTNYopiog Zygos £ytve xpnon Tov eEEAMKTIKOD
alyopiOpov oavémTnong-aniokov, &€voc LPPLOIKOL GYAUATOS 7OV  GLVOVLAlEL T

TAEOVEKTNLATO TOV LEBGSOV TOTIKNAG Kot OAKAG avalTnong.
Epoppoyn pebodoroyiag oe meproyn HeAETNG

[lpokeipévov va e€etactel M 1ox0G TNG mpotewvopevng pebodov, emriéybnke pia
GUYKEKPILEVT AEKAVT ATOppPOT|G, avTn Tov Totapov Loing (Zxfqpa 1), éxtaocng 3900 km?

Kot LEGOL TOTOYPAPIKOD VYOUETPOL 148 m.

Aexdvn Amopporg . Loing
2°00"E 2°40'0"E 3°20'0"E £00'E

YIIOMNHMA
— Ydépoypapiko AIKTvo

48°40'0"N
48°40'0"N

1 Aexavn Amopponc

48°0'0"N
48°0'0"N

2°0'0"E 2°40'0"E 3°20'0"E 0'0"E

47°20'0"N
47°20'0"N

Syfpa 1| Aekavn anoppong w. Loing kot v8poypa@ikd diktvo
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I'o Tnv Aekdvn avtn givar dtabéorpa dedopéva 58 etmv (amd 01/08/1958 éwg 31/07/2016)
oe nuepnota KAipaxka (Synpa 2), Guvendg emAEYETOL 1] AVAALGT Vo TpaypLoTorotn Oel yia
000 cevapta: £va dmov 1 pebodoroyia epappdletor oe pnviaia KAipako, covadpoilovtag
To nuepNota dedopéva oe KAipoka unva, Kt éva e nuepnota kKAipaxka. I'ia tnv avdivon
ce unviaia KAipoka €ytve xpnon tov poviéAwv Zygos6P kat GR2M, eved yia avtn oe

nuepnota kKAipaka eEetdotnkay ta povréia GR4J kar GR6]J.

\,P,ogc’;o%f}&okiP&%qiP&%q;o%%zw%‘biwgqiP&%"’iwg°;o%°;o%\"°

0.0 200

1o LT VAR T RN o D
g 240 T T T irs0 g
= 360 140 E
3 13
S 480 120 &
= g
£ o o 2
s 720 80 g
% 84.0 6.0 §
2 960 40

108.0 41 | ' N ‘ M 2.0

120.0 Uik 0.0

SxfApa 2 | Iotopuxéc ypovosepég Bpoxfs kat amoppong o€ nuepniota kAipaka (11 Avyodbotov
1958 £wg 31" IovAiov 2016)

Y€ KaBe avaivon apyikd TpaypaTtomToloNTAV 1 TPOSUPLOYT KABe vOPOLOYIKOD LOVTELOV
pe xpnomn s pebodoroyiag dtaxmptopod Tov 16Toptkov delyatog o dV0 iceg meptddovg,
n tpdOTN Yoo Pabpovounon kar n devtepn yio emain0gvomn. ‘Enetta, akodlovbovoe n
GTOYX Ao TIKN fadpovouncn Tov kabe v3POAOYIKOD LOVTEAOV, YLO TNV OO0 Ot GVVOETIKEG
APOVOGELPEG PPOoYNG Kot amoppong mapdyOnkav pe xpon TOL GTOYACTIKOD HLOVTEAOV
anySim, ev®d ovTn TG dvvnTikNG e€atpicodianvong ektipnOnke pe Pdon tig péceg

pUnviaieg Kot MUEPNGLES TIULEG TTOV TTPOEKLY AV OTTO TNV AVTIGTOLYT IGTOPLKT YPOVOGELPA.

>t0 IxMnpa 3 moapovcidletor £va evOEIKTIKO TOPAdELypa TNG avdAvong ce unviaio
KApaxa (avdivon pe to vIPOAOYIKO POVTEAO ZygosbP), émov o cvvteieostiig NSE
mpoékvye 160G pe 0.84 yia yprion Kot TovV V0 TEYVIKOV puduiong, eved oto Synua 4
TOPOVGLALETOL VA EVOEIKTIKO TAPAOELYLA TNG AVAAVONG GE EMITEOO NUEPT|OLOG KAILOKOGS
(avdAivon pe to véporoyikd povtého GR4J), yia 10 onoio mpoékvye cuvteAestng NSE icog

pe 0.81 yia tnv mepintoon g otoyactikn Padpovounong kot 0.90 yia tnv nepintoon
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™G Padpovounong pe totopikd dedopéva (N TIUN avth aeopd POHVO TNV TEPIOSO

enaAn0gvong Kt Oyt OAO TO 1GTOPIKO delypa).
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Syfpo 3 | Ontik emiokdénnon g svpeoviag petald tov mapotnpnuévav (observed) kat

povteronompévav (modelled) Tipdv anoppong pe xprnon e pebodoroylog TG 6TOXUoTIKNG
Babpovounong kot Tov vVépoAoYIKoy poviélov Zygos6P

1 0 . 0 1 1 1 1 1
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Syfpo 4 | Ontik emiokdénnon g svpeoviag petald tov tapotnpnuévav (observed) kat

povteronotnpuévov (modelled) Tipdv amoppong pe ypfion g pebodoroyiag Tng GTOYAGTIKNAG
Babpovounong kot Tov vdporoykov poviélov GR4J
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SOUTEPACULATIKG, TO ATMOTEAEGUATO TNG OVAALGNG o€ unviaio KA{pako yio ta 600
VOPOLOYIKA LOVTELQ TTOV EEETAGTNKAY, ATOSEIKVOOLV OTL TO TPOTEIVOLEVO HEBOSOAOYIKS
mA0icto puOpoNg e ovvleTikd dedopéva Asttovpyet ££i60V KOAD [Le TO KAAGGIKO GY L0
Babpovoéunong mov anattei TOV SLaY®PIGUO TOV IGTOPIKAOV YPOVOCGEIPDY GE OESOUEVA
Babpovounong ko enadROevong. EmmAéov, ot puOpiocpéves Tipég Tov TopaléTpmv TOV

LOVTEL®V BPIioKOVTAL GE GULE®VIA.

>INV TEPIMTMOON TNG AVAAVONG CE MUEPNGLO KAINLOKA, TO OTOTEAEGHATO Yo TA VO
VOPOAOYIKA LOVTELA VDITOJELKVOOLV OTL TO KAAGGIKO GY MO ATTOdidEL EAAPPDOG KAALDTEPO
and avTd TNG 6TOYXACTIKNG Padpovounons, wsTdco ywpic N AmdKAIGN QLT VO AKVPAOVEL
TIC TPOOTLTIKEG TNG LEBGSOV GE avTn TN Ypovikn KAipaka. ‘Opmg, 0o tpénet va onuetmOet
0Tt Kot yio o 0vo eEetalopeva povtéra muepnotag kAipaxkog vanpée pa oacOnn

andkiion LETAED TOV TILOV TOV TAPOUETPOV TOV TPOEKVY AV ot KAB e pEO0do pHOpiong.

Eniong, Ta amoteléopata avTng TS apyLkng otepedivnong arotelovv pia tpdTn Evoetén
0Tt M €poppoyn tov peBodoroyikod TAMGIOV TNG OTOYACTIKNG Pabpovounong sivor

aveEapTNTN TNG TOALVTAOKOTN TG TNS SOUNG TOV LOIPOAOYIKOV LOVTEAOV.
Epoppoyn pedodoroyiag o€ peydin kAipokao

To enduevo oTddlo TNG OLEPEHYNONG APOPOVGE TNV EPAPUOYTN TNG TPOTELVOUEVNG
pnebodoroyiag oe éva LEYAAO GET AEKOVAV OTTOPPONG, GE LN VIO KAIILOKA TTPOGOLOI®OONG.
Jvykekpipéva, 1 LeAéTn avtn mpaypatonotOnke emiéyovrog 100 Aexdveg and tn fdon
dedopévov MOPEX (MOdel Parameter Estimation EXperiment), ot omoieg cuvodevovtav
and To OVTIoTOLX0 GET OEOOUEVOV TOV VOPOLOYIKOV dtepyacidv. H tomobecia twv

EMAEYUEVOV AEKAVAOV atopponG o€ OAN TNV éktacn tov HITA gaivetar oto Iynpa 5.

‘Onmg Kot GTNV TPONYOVUEVT AVAALOT, €yive YpNomn &vog aptOpold vOPOAOYIK®V
povtérmv, mpokeipevov va evioxvlel mepartépo n vndBeon 6Tt n Pabpovounon pe
ovvletikd doedopéva eivar aveEApTNTN TNG TOAVTAOKOTNTAS TOV ROVTEAOL PBpoxNg-
anoppong mov emiéyetat. Eidikotepa, Ta poviédia mov emAéyOnkov yio Tov 6Komd avtd
ntov ta GR2M, Zygos4P kot Zygos6oP. Snpet@vetat 0Tt Kot GE AVTT TNV AVAAVOT), Y10 TNV
nepintowon poOpiong Tov HoVIEA®V HE SLax®PIoUd TOV OTOPLKOV OEIYUATOS GE GET

Babpovounong kat emain0evong, To 6ET AVTA eivat ica.
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Emleypéveg Askaveg tng facng MOPEX
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Sxyfpa 5 | Teoypaeikn ancikdvion tov 100 emdeypévov Aekavdy amoppong Tng Pdong
dedopévav MOPEX

‘Exovtag ®g yvopova Tnv omoTeAECUATIKN ovykpion tng emidoong (NSE) tov
VOPOAOYIK®OV povTEL@V peTald tov egetalopevov pefodwv Padpovounong, ya tnv
TEPIMTOGN TNS GTOXAGTIKNG Padpovounong emiéyetal g LETPO GUYKPIGNG 1| ETTLOOCN
v To dtdoTnpa enaAnBevons Tov toToPKoL deiyratog, n omoio emAEyOnke Katd TN
pnefodoroyio TPOGAPROYNG TOV HOVIEAOVL Gt oTOopikd dedopéva. H amdépacn avtn
mnydalet amd to yeYovds 0Tt M mepiodog emarnBevong Tov Selylatog mapaTnpoE®V
mepLEyel o pova dedOREVO GTA OO0, Kot OTIS dV0 TePmT®oelS Padpovounong, to
EKACGTOTE LOVTELO BPOYNS-amOppON G deV €Y el TPOCAPLOGTEL. AVTIOETWOS, GTNV TTEPITTOON
™G pOOuiong tov povtéhov pe tnv kKAoooikn néBodo Pabpovopunong, n emidoon Tov
LOVTEALOVL KATA TNV TePiodo puOpIoNg eivor LEPOANTTIKY, AOY® TNG LILEPTPOGUPLOYNG

TOV LOVTEAOVL GTA OEQOUEVA OVTNG TNG TTEPLOSOV.

Evdewtikd mapovstalovtat ota akdrovba dtaypdppata (Syfqpa 6) Ta anroteléopoto tng
avdivong pe To povtéro ZygosdP. Jvykekpiéva, n mpocéyyion mov £xel mpotadel yio
BaBpovopunon pe cuvOetikd dedopéva, 001 yNGE 6€ KOADTEPT EMIOOON VL0 EVA GNLAVTIKO
10000TH TOV e€etaldpevov Aekavov (67%), oe avtifeon pe tn pébodo Padpovopunong

OV TO LOVTELO TTPOGAPUOLETAUL GTA IGTOPLKE dESOUEVAL.
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Syfpa 6 | Avoypdppate dtacmopdg xouning (apiotepd) kar vyning (de&id) enidoong (NSE) yia
T0 PovTéLO Zygos4P, pe epappoyn tng pefodoroyiag poOpiong pe fdon ta 16topikd dedopéva
(Split-Sample Cal.) kot Tng oToxacTIKNG Padpovopnong (Stochastic Cal.)

Amnd ta anoteléopata TNG AVAALGNG LEYAANG KAILOKOS GLUVAYETAL TO GUUTEPACLLA OTL Y10
v miswoynoeia tov egetalopevov vdpocvotTnudtov, m  HEO0d0G GTOYACTIKNG
Badpovounong anodidet karvtepa and avtn TG Padpovounong pe ta 1etopikd dedopnéva,
aveEdptnta and TO VIPOAOYIKO HOVTEAO ToL emA&yxOnke, kabiotdvVTag €TtoL TNV
BaBpovounon pe ocvvBetikd dedopéva ave&dptnTn amd TNV TOALVTAOKOTNTA TNG OOUNG
TOV VOPOAOYIKOV LOVTELOV.

‘Ocov agopd TNV andkiion LeTAED TOV ECTIUNUEVOV TILOV TOV TOPALETPOV amd KAOE
pa and tig 6vo pebodoroyieg Pabpovounong, avth anodeiydnke oroéva kot 7o

oNUavTiKn, 060 1 dopn Tov ££eTALOUEVOL LOVTELOD YIVOTAV TTLO TOAVTTAOKT).

OlokAnpovovtag, and TNV Tapamdve JOtepedvnen To mPOoTELVOUEVO HeBOSOAOYIKO
TAQLG10 KpiveTal oG Aettovpyikd. [lap” dAa avtd Oa mpénet va diepevvnOel mepartépm Kot
KATO1Eg TPADTES KATELOVVTNPLES YPARUES HISOVTOL AVAAVTIKA GTO TEAOG TNG TTAPOVGOG
epyaciag.

Aééetc — KAerora: YponAnpoeopikn, YOporoyikd MovtéAda, STOXOGTIKG, >TOXUCGTIKN
Babpovounon

Page | xviii



INTRODUCTION

1.1  Study Objectives

The aim of this study is to investigate the validity of a promising strategy regarding
hydrological calibration, given synthetic forcing data, which are generated to preserve the
essential statistics of the parent (i.e. historical) time series (probabilistic properties and
dependence structure). To this end, the so-called stochastic calibration methodology is
initially tested in the Loing river basin, as a proof-of-concept case study. During the
research process, it was of significant importance to demonstrate that calibration with
synthetic data is independent of the chosen model and time scale, thus (i) a number of
different hydrological models were employed and (ii) across two different time scales,
monthly and daily. Then, the study is extended to 100 catchments across USA, to further
fortity the applicability of the proposed framework on a large scale.

1.2 Thesis Outline

To achieve these objectives, this study is structured as follows:

Chapter 2 contains a literature review in order to document the various outlines proposed
for hydrological calibration, as well as the insight offered by several scientists, aiming

toward a more improved calibration scheme.

Chapter 3 provides information about this new calibration approach and its advantages
over conventional methods discussed in Chapter 2. The generation of the stochastic time
series is a key part to the success of the method; hence, certain emphasis is placed on the

requirements of the stochastic model.

Chapter 4 demonstrates the theoretical structure of the modelling tools used in this study,

along with the calibration methods used, are also presented in this chapter.

In Chapter 5, the potential of the proposed calibration scheme is explored in the context
of a real-world case study, by testing several lumped conceptual hydrological models of

varying structure and across two time scales, monthly and daily.
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Moreover, Chapter 6, entails a large-scale analysis, where the methodology is applied in
100 catchments of MOPEX database at a monthly time scale, by employing three different
hydrological models.

Finally, Chapter 7 summarizes the findings of the study conducted and concludes with

recommendations for further research.
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2

OVERVIEW OF CALIBRATION APPROACHES IN HYDROLOGICAL
MODELLING

Hydrological models are calibrated by adjusting model parameters according to the
characteristics of the area of interest. Afterwards, an evaluation process should follow to

secure the predictive capacity of the identified model structure.

Traditionally, for this two-step procedure the modeller considers the temporal allocation
of the available observed data in two sub-periods (i.e., calibration and validation period).
This widely used practice among hydrologists was publicized by V. Klemes [1986] and it
is known as the split-sample test. Specifically, Kleme$ formalized a four-level testing
scheme for temporal and spatial data distribution: (i) the split-sample scheme, (ii) the
proxy-catchment test, (iii) the differential split-sample test, and (iv) the proxy-catchment

differential split-sample test.

As stated above, the split-sample approach is the most common scheme implemented for
the calibration/validation procedure. This method is applied to catchments that adopt the
concept of stationarity, which renders model parameters as time-invariant. If the available
sample of data is of sufficient length to such a degree that allows for providing half of them
for the calibration process, it should be divided into two equal segments, one for
calibration and one for validation. Should the results from the two processes be in good
agreement, the model structure is deemed acceptable for simulating the catchment’s

response.

Provided that the length of the available dataset is not adequate for a 50/50 splitting, this
should occur in two different ways. For example, the first 70% of the available records
should be allocated for calibration, while the remaining dataset for validation, then the last
70% of the whole sample for calibration and the first 30% for validation. In case the model
performance for each validation period is similar and at the same time adequate, then the
model meets the requirements to simulate measured runoff for the specific basin. In the
opposite case, which seems to be rather common due to the length of data, the model

should proceed to one of the following tests to qualify.

The proxy-catchment scheme should be applied for model calibration, in case the available
data are insufficient for using the split-sample approach, or for ungauged catchments

[Klemes, 1986]. Specifically, if the runoff at the outlet of an ungauged river basin is to be
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modelled, the modeller should select two gauged basins (e.g., A and B), in proximity with
the one of interest. Model calibration should be implemented on basin A and validated
against basin B, and vice versa. This will eventually result in two sets of adjusted model
parameters; therefore, the modeller should first ensure that both sets lead to acceptable
and similar model performance and then decide which one is best for use, depending on
higher model performance, but also by comparing simulated data with any available

historical data of the ungauged basin.

Another calibration approach introduced by Klemes [1986] is the differential split-sample
test, a method recommended whenever it is required to model streamflow in a gauged
basin under different conditions from those prevailing over the observed flow data.
Depending on the nature of the change for which the flow should be predicted, like a
climate change scenario or change of environmental conditions, this test may differ.
Specifically, Kleme$ demonstrated the potential risk of using a model for simulating

climate change effects without first undergoing a differential split-sample analysis.

Regarding the simulation of the impacts of a possible climate change, two periods with
different values of the climate variables of interest, such as high and low average
precipitation, should be selected. If the model is meant for simulating streamflow in a wet
climate scenario, it should be adjusted using data from the part of the historical records,
for which dry hydroclimatic conditions dominate, and assessed by data from the wet part
of the available time series. This aims towards evaluating model transferability over time
under various climate conditions. In case the model is intended to simulate flows for a dry

climate scenario, the opposite process should be applied.

The fourth approach that Klemes suggested was the proxy-catchment differential split-
sample test, which is a combination of the latter two approaches described above. This
method is considered as the most difficult of the four for the evaluation of a hydrological
model, since it is used in case studies for which there are no available data for calibration
and the model is intended to predict time-variant conditions, such as possible climate
change scenarios. Moreover, this test should be applied for calibration in cases where the
model is supposed to be both geographically and climatically (or land-use-wise)

transposable.

In particular, if a model is intended for evaluation of the impact of climate change in an
ungauged basin C, the test should have the following form: two gauged basins, A and B,
with characteristics similar to those of basin C, are selected and temporal samples with
different climatic variables of interest are identified in the observed data for each
catchment, e.g., wet and dry hydrological regime. Then, for the dry climate case, the model

is calibrated against the dry subset for the first test catchment and a validation test is run
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using the contrasting set (e.g., the wet period data for the second catchment). Then, the
model is calibrated on the wet sample for the second catchment and validated on the dry
sample of the first test catchment. The model is considered adequate if the validation run

errors for both catchments are acceptable and do not differ significantly.

Regarding the split-sample scheme, robustness of the optimized parameter set can be
questioned when model performance for calibration period is significantly higher than
that of the validation period. The selection of training data that are not representative of
the dominant hydrological conditions, often results to this case, due to the over-fitting of
the model structure to this period. As a consequence, the allocation data for model training

and the length of those data is a pivotal decision.

A certain number of variants of the split-sample scheme have therefore proposed. Arnold
et al. [2012] suggest the use of a long calibration dataset in order to include varying
hydroclimatic conditions, whereas another strategy proposes that data should be allocated
in such a manner as to encompass “unusual” events [Singh and Bardossy, 2012]. What is
more, the role of quality and quantity of the data to be used for model parameters
adjustment has been first explored by Gupta and Sorooshian [1985], while presenting a
suitable method for data selection. Attention has also been paid to the potential role of
“soft” data and how these can contribute to the calibration process in conjunction with the
“hard” data (e.g. observations) [Seibert and McDonnell, 2002].

Another variant for the split-sample approach is the odd/even method. Namely, the
calibration procedure occurs on the odd years of the sample, while the validation dataset
consists of the even years, or vice versa. This form of the split-sample test was developed
in an effort to encapsulate any non-stationary trend information in the resulted parameter
set. Notable applications of the method were accomplished by Arsenault et al. [2017],
Essou et al. [2016] and Gowda et al. [2012], the last of whom secured that, by using this
method on a dataset characterized by a wet first half and a dry last half, the model

structure would be adjusted on the whole range of the available measured runoff values.

Deduced from the above discussion, the validation process is an integral part of the
described operation. Thus, a data segment should always be allocated for this phase,
resulting to important hydrologic information being entirely ignored. Consequently,
hydrological researchers tried to face this challenge by proposing a general calibration
scheme, either by testing all possible combinations of calibration-validation periods across
sliding windows (e.g., Coron et al. [2012]) or by testing model performance in different
sub-periods (e.g., Gharari et al. [2013]), for the purpose of providing a consistent
performance in time. The studies of Singh and Bardossy [2012] and Arsenault et al. [2018]

went so far as to attempt an unconventional practice, to completely forego the validation
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run and calibrate the model over the entire dataset. Another study regarding calibration
against the full length of the available data was conducted by Razavi and Tolson [2013],
who implemented a procedure to deal with demanding run time of computationally
expensive hydrological models by calibrating against the full dataset, using surrogate-

based methods on shorter periods.

Concerning the forecasting of the performance of a calibrated model, in which case the
aforementioned forms of the differential split-sample test are deemed the appropriate for
model calibration, a strong reliance of model parameters on the hydroclimatic conditions
of the calibration period has been identified [Coron et al., 2011]. Moreover, there are well-
grounded doubts whether a short sample of observations can provide an adequately
calibrated model in order to predict sufficiently the impact of the altered climate
conditions [Thirel et al., 2015b]. Several researchers (e.g., Brigode et al. [2013]; Coron et al.,
[2014]; Duethmann et al. [2020]) tried to improve model performance when projecting
under different climate scenarios, by using longer data segments for calibration, but

eventually with hardly any improvement on the robustness of these models.

The above mentioned drawbacks of the presented calibration tests show that there is a
clear need for a new scientific approach which will combine calibration with longer

datasets, while these data embed a wide range of plausible hydroclimatic conditions.
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THE CONCEPT OF STOCHASTIC CALIBRATION

3.1 Methodology

For the classical split-sample strategy applied to hydrological calibration, a deterministic
hydrological model is used to transform the hydrometeorological processes (precipitation,
evapotranspiration, etc.) of a river basin to its response processes. The model is using a set
of parameters to simulate the hydrological behavior of the catchment, and their values are
identified through calibration. To this purpose, a specific time period is chosen from the
observed records and the model parameters are adjusted according to performance criteria,

for the modelled streamflow to better approximate the observed one.

Subsequently, the predictive capacity of the model is assessed on the remaining of the
observed data (validation process), to ensure the model’s adequacy for reproducing the

hydroclimatic conditions of a period different than that of calibration.

The deterministic hydrological calibration-validation scheme is presented in Figure 3.1.
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Figure 3.1 | Schematic representation of the classical split-sample scheme

Given that the available historical data may often not be representative of the catchment’s
hydrological regime and long-term hydroclimatic changes (a common pitfall in the case of

data-scarce catchments), the typical split-sample structure may be proved to be deficient.

Moreover, discrepancies between the evaluation criteria for calibration and validation

samples may indicate weak parameter identification. Thus, there is a need to extend the
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temporal horizon chosen for calibration, so that the model can be trained over longer
periods and capture the catchment dynamics to a greater extent. However, a part of the
whole dataset must be allocated for validation purposes, hence precious hydrologic

information encapsulated in the associated dataset is sacrificed.

As can be seen in the previous outline of this approach (Figure 3.1), only the overlapping
periods of the observed input and output data can be exploited for model calibration and
validation, ergo the remaining period of data is not accounted for. This is a commonly
encountered scenario, since the length of rainfall records often exceeds that of the runoff

observations.

In conclusion, the separation strategy, as well as the length of the calibration period, can
pose a serious problem for hydrological modelling applied based on the split-sample

rationale.

Therefore, a new calibration approach for parameter identification was devised
[Efstratiadis et al., 2021], which utilizes stochastic simulation, hence called stochastic
calibration. The proposed framework for stochastic calibration is a simple conceptual
approach on the basis of the conventional calibration-validation logic. Specifically, model
calibration is accomplished by using long synthetic data as inputs, while the adjusted
model structure is validated against the full historical records. The conceptual scheme of

stochastic calibration is provided below (Figure 3.2).
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Figure 3.2 | Schematic representation of the conceptual structure of stochastic calibration

For the implementation of this strategy, an additional component is required, which

precedes the calibration procedure. A stochastic model generating synthetic time series,
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stochastically resembling the observed ones. Within those synthetic data should be
reproduced all statistical information regarding the full hydroclimatic regime of the basin.
Such information is integrated in the realized input and output data and is usually hard
to identify within the, typically short, period of observations. What is more, this is further
intensified since a significant part of this information is accounted for validation purposes

within the split-sample calibration scheme.

Therefore, the drawbacks stemming from the application of the classical split-sample
scheme are thereby eliminated, since the substantially longer synthetic sample, that is
expected to describe the full hydroclimatic regime, distributed for model calibration will
eventually lead to more robust parameters and stable predictive capacity. Furthermore,
the predictive capacity of the model is now evaluated against the full set of observed data,
hence the validation dataset is also extended. Given these conditions, the dilemma of

which part of data to allot for calibration and which for validation, does not exist anymore.
3.2  Insights to the Stochastic Simulation Prerequisites

Throughout the hydrological simulation of hydrosystems, deterministic models are often
proved incompetent to forecast hydrometeorological processes, thus all fluxes are handled
as random variables and they are generated with the aid of stochastic models. It is a
frequently encountered practice to replace the historical time series, which are usually of
short length, with synthetic ones, being used as drivers for deterministic models employed
in water resources planning and management applications. The conjunctive use of
deterministic and stochastic models does not pose any restrictions regarding the temporal
horizon of interest, since the historical records, which usually have an insignificant
probability of realization in the future due to their short length, are substituted by longer
data (e.g., with length of hundreds or thousands of years), statistically equivalent to the
historical ones. Moreover, it is feasible to draw safe conclusions about the reliability of the

system with satisfactory accuracy.

The principal requirement for generating statistically consistent synthetic inflows is the
preservation of all the essential statistical characteristics of the observed data, at multiple
time scales, in terms of the marginal statistics up to third order (i.e., mean, variance,
skewness) and the joint second order properties (auto- and cross-correlations) [Matalas
and Wallis, 1976].

However, for the stochastic calibration approach, this prerequisite is not sufficient, since
these properties of the parent data describe partially only the marginal and dependence
patterns of the hydrological processes to be reproduced, whereas, in case of some quite

common circumstances, limited dependence patterns may appear in the synthetic data,

Page | 9



which are unrealistic and inconsistent with the historical records; a case known as envelope
behavior [Tsoukalas et al., 2018b].

Therefore, a consistent, and at the same time robust, stochastic calibration framework
should satisty the following specifications throughout the synthetic data generation

procedure:

1. Concise representation and simulation of the hydrometeorological inputs and outputs,
by reproducing all the probabilistic aspects of these time series, instead of a blind
reproduction of the statistical characteristics of the observed data. This is achieved by
assigning a suitable distribution model to each process, according to variable type and
time scale of study [Tsoukalas et al., 2019, 2020]. This requires stochastic simulation
schemes which consider the main peculiarities of hydrometeorological processes, i.e.,
non-Gaussianity, intermittency, periodicity and time-irreversibility ([Efstratiadis et al.,
2014]; [Tsoukalas et al., 2018a, 2019, 2020]; [Kossieris et al., 2019]; [Koutsoyiannis, 2020]).
What is more, should the purpose of hydrological simulation be the simulation of
extreme events (e.g., floods), it is important to assess the tail behavior of the
distribution models, that is, the upper part of a probability distribution, which governs

both the magnitude and frequency of extreme events.

2. Representation of auto-dependencies (short- or long-range) and cross-dependencies,
which constitute statistical indicators of the cause-effect relationships across the
hydrological cycle. Specifically, short-range dependence entails an exponential
autocorrelation structure which decreases after few time lags, a phenomenon
traditionally referred to as “memory”, whereas long-range dependence, also known as
“long-memory” or long-term persistence, signifies an auto-dependence structure that
strongly extends for a large number of time lags. The latter relates to particular patterns
of similar extreme events (wet or dry) which tend to present a clustering behavior
across all scales [Koutsoyiannis, 2013]. Regarding the cross-dependence, those
determine the statistical interdependencies between the input and output
hydrometeorological processes; hence a large cross-dependence value corresponds to

a strong relation of the output process to the input one.

3. Multi-scale consistency, to ensure the reproduction of the probabilistic and stochastic
behavior of the modelled processes not only at the scale of the hydrological simulation

(e.g., daily, monthly), but also at higher (coarser) time scales (e.g., annual).

Page | 10



4

HYDROLOGICAL MODELLING TOOLS

In order to test the functionality of the proposed framework for stochastic calibration, a
number of conceptual hydrological models with conceptual structure of varying
complexity have been either developed or used. Each one of them is a bucket-type model
with a lumped schematization, which uses a set of mathematical equations to simulate the

main hydrological mechanisms at the catchment scale.

Both hydrological models Zygos4P and Zygos6P were configured in R-environment (the
code developed for both models is presented in Appendix A: R script for “Zygos4P” and
“Zygos6P” hydrological models), whereas the aforementioned GR models have been

already implemented within the R-package airGR [Coron et al., 2017; Coron et al., 2021].

The conceptual structure of each of the five models used in this study, as well as the
equations which regulate each one of them, are presented in the following sections 4.1 -
4.5.

4.1 Hydrological Model Zygos4P

For the purposes of this study, a four-parameter lumped water balance model was devised,
based on a simplified version of Zygos model [Kozanis & Efstratiadis, 2006], with
conceptual structure shown in Figure 4.1. The input data are areal precipitation (P), in the
form of rainfall, and potential areal evapotranspiration (PET). Moreover, the initial
conditions of the model should be determined in order to run the water balance model,
those being expressed through the level of the soil moisture reservoir (Sp) and the
groundwater reservoir (Gy) at the beginning of the simulation. All different hydrological
fluxes are expressed in units of water depth per unit time (i.e., mm/month or mm/day),

while storages are expressed in terms of water depths (i.e., mm).
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Figure 4.1 | Schematic representation of the conceptual structure of the Zygos4P

The proposed model structure defines four parameters:

the impervious area percentage v, representing the rainfall part which flows

directly on the soil surface, without infiltrating in the soil;

the capacity K [mm] of the soil moisture reservoir, which corresponds to the

maximum storage potential of the unsaturated zone;

the groundwater recharge coefficient «, reflecting the percentage of water which is

channeled into the saturated zone from the unsaturated zone;

the groundwater runoff coefficient 4, which is the release rate of groundwater to

the hydrographic network as base flow.

The model scheme conceives direct runoff, Q,(t), as a percentage v of the rainfall, P(t),

while the remaining rainfall fulfils by priority the PET demand at the specific time step t,

thus producing direct evapotranspiration, ETy(t), i.e.:

Qu(t) = v P(t) (4.1)
ETy(t) = min[ PET(t) ; P(t) - Qu(t) ] (4.2)

The remainder enters to the soil moisture reservoir, which represents the unsaturated zone

of the soil. Therefore, its current storage is increased to:
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S(t) =S(t-1) + I(t) (4.3)
where I(t) is the infiltrated through the soil quantity.

As regards the processes in the unsaturated zone, the upward vertical outflow of the
reservoir corresponds to the evapotranspiration through the soil, ET4(t), whereas the
downward vertical outlet results from the water percolating until it reaches the saturated
zone of the soil, which is modelled by approximating the zone as a second linear reservoir
(groundwater reservoir). The soil evapotranspiration is dependent on the filling rate of the
soil reservoir and is estimated via the empirical law of Thornthwaite:

_PETD(t)

ET, () =S(t)(1-e & ) (4.4)

where PETD(t) = PET(t) — ET,(t) denotes the potential evapotranspiration deficit to be

covered by the available soil moisture.
Percolation, PERC(t), is controlled by percentage «:

PERC(t) = x S(t) (4.5)
In case the available soil moisture storage surpasses the capacity of the soil reservoir, K,
the excess amount of water is transformed into saturation runoff, Q4 (t), by means of

overflow, i.e.:

Qq(t) =max[ S(t) -K; 0] (4.6)
As mentioned above, the percolation component feeds the groundwater reservoir, thus
rising its storage to:

G(t) = G(t — 1) + PERC(t) 4.7)
It should be noted that this is an unconstrained reservoir in terms of capacity and features

a single horizontal outlet. This outlet models the base flow, Qy(t), which is controlled by

percentage A:

Q) = 4 G(t) (4.8)

The total runoff, Qgy(t), is calculated by summing all three runoff components (i.e., direct,
saturation and base runoff), while the actual evapotranspiration losses, ET,.(t), are

estimated as the sum of the direct and soil evapotranspiration:
Quinn(t) = Qo(t) + Qu(t) + Qy(t) (4.9)
ET,.(t) = ET(t) + ET(t) (4.10)

Finally, based on the water conservation law, the storage in each of the two reservoirs is
updated at the end of each time step according to the following equations, as they serve

as the initial conditions for the following time step:
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S(t) = S(t — 1) + I(t) - ET4(t) — PERC(t) — Q4(t) (4.11)
G(t) = G(t - 1) + PERC(t) — Qy(t) (4.12)
4.2  Hydrological Model Zygos6P

Adopting the structure of Zygos4P scheme, a six-parameter lumped model was also

developed (see Figure 4.2) by implementing three modifications.
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Figure 4.2 | Schematic representation of the conceptual structure of the Zygos6P

First, in order to enhance the model efficiency, a different approach was used to estimate
direct evapotranspiration ET,(t) and direct runoff Q(t). Specifically, the latter is
considered a function of the soil moisture storage at the beginning of each time step, i.e.,

S(t - 1), and is calculated according to an empirical formula. Analytically:

{[P® = 0]
ETy(t) = min[ ————P(t) ; PET(t) ] (4.13)
Q.0 - (P - ET, ) (X2’ (114)

where ilP® 0] indicates the number of time steps t that a rainfall event occurred; N is the

length of the rainfall data sample; and v is a dimensionless model parameter, regulating
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the direct runoff process.

Second, in this scheme, there is an elevation threshold, H [mm], for the groundwater
reservoir, so that base runoff occurs. Thus, base runoff, Q,(t), is determined as a fraction,

1, of the groundwater storage above the threshold H, i.e.:
Qu(t) =max[ A (G(t)-H);0] (4.15)

Third, the same reservoir is conceptualized with an additional (vertical) outflow, which
corresponds to underground losses, L(t), to the sea or to the underground part of the
adjacent river basins. These losses are calculated as a percentage a of the current

groundwater storage:
L(t) = a G(t) (4.16)
Except for the aforementioned components, all of the remaining hydrological processes
are calculated in an identical way to that of the Zygos4P scheme.
Eventually, the above model contains six parameters, i.e.:
* the dimensionless coefficient v, regulating the direct runoff;

* the capacity K [mm] of the soil moisture reservoir, which corresponds to the

maximum storage potential of the unsaturated zone;

* the groundwater recharge coefficient «, reflecting the percentage of water which is

channeled into the saturated zone from the unsaturated zone;
* the threshold H [mm] of the groundwater reservoir for base flow generation;

* the groundwater runoff coefficient 4, which is the release rate of groundwater to

the hydrographic network as base flow;

* the fraction a of the groundwater storage that outflows to the sea or to adjacent

aquifers.
4.3 Hydrological Model GR2M

The GR2M model belongs to the family of the GR models, a set of conceptual lumped
hydrological models developed for specific time steps. The GR2M is a monthly time step
model, which has been continuously developed to improve its efficiency. For this study,
it was selected the most recent version of GR2M model [Mouelhi et al., 2006]. The model

inputs are catchment rainfall (P) and potential evapotranspiration (PET).
The GR2M model uses only two parameters:

* the maximum capacity X1 [mm] of the production store;
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* groundwater exchange coefficient Xo.

The conceptual scheme of this lumped model consists of two reservoirs, as illustrated in
Figure 4.3. The first reservoir, denoted as S, represents soil moisture of the basin and
controls the production function with a maximum capacity Xi, whereas the routing

reservoir, denoted as R, controls the transfer function with a capacity of 60 mm.
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Figure 4.3 | Schematic representation of the conceptual structure of the GR2M model

At each time step, a fraction of the given rainfall, P, contributes to the soil moisture store.
The new level of the production store, S;, is estimated as follows:
S+ X 1@

S = S
1+(p X_1

(4.17)

where ¢ = tanh( P / X1 ).

In case the soil reaches its saturation point (X1), rainfall excess, P;, moves to the routing

store and is obtained as:
P,=P+S-S, (4.18)

Moreover, because of evapotranspiration losses, which are considered equal to PET, the
soil reservoir reaches a new level, S,, which is calculated as:

S -y
(3

1

2 (4.19)
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where y = tanh( PET / X1 ).

Additionally, the production store releases a quantity P,, through percolation, attaining

the following reservoir level at the end of this time step:

g.— %2
= 31173 (4.20)
1+ |
P,-S,-S (4.21)

The percolated amount, P,, is then combined with the rainfall excess, P;, forming the net
fraction, P, of the monthly rainfall, which is transferred to the routing store and added to

the prior water content R. Analytically:
P3 = Pl + P2 (422)
R, =R + P, (4.23)

Subsequently, a groundwater quantity is acquired or lost by the routing store due to water
exchanges between the underground part of the catchment and its external environment.
Specifically, in case the value of model parameter X; is positive, the routing store is
supplied with water by the surrounding underground environment of the catchment,

while in the opposite case there is a loss. Thus, the new routing store level is defined as:
R,=X2 Ry (4.24)

Finally, the routing store releases the total runoff Qg,, at the catchment’s outlet, which is

calculated as:

__RS (4.25)
Qsim = R, + 60 '
The routing store level is updated at the end of the specific time step to:
R= RZ - Qsim (426)

4.4 Hydrological Model GR4]

The GR4J [Perrin et al., 2003], another model of the GR family, is a four-parameter daily
lumped hydrological model. The model requires daily areal rainfall (P) and potential
evapotranspiration (PET) as inputs. The schematic representation of GR4] model structure

is given in Figure 4.4.
The GR4J model is controlled by the following four parameters:

* the maximum capacity X1 [mm] of the production store;
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* intercatchment groundwater flux Xz [mm/day];
* the maximum capacity X3 [mm] of the routing store;

* time base X4 [days] for Unit Hydrographs.
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Figure 4.4 | Schematic representation of the conceptual structure of the GR4] model

As in the aforementioned model, the basin is vertically subdivided into two reservoirs
(production and routing). The computational process begins with the deduction of the net
rainfall (Py) and net evapotranspiration capacity (ET,) for the specific day. For this
purpose, an interception storage of zero capacity is used where the model transforms the

daily inputs into these quantities as follows:
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Py =max[ P-PET; 0] (4.27)
ETy=max[ PET-P ;0] (4.28)

In case Py is different from zero, a fraction P, of this amount supplies the production store,
which is calculated as a function of the store current level, S, its maximum capacity, X,

and the amount of net rainfall, Py:

2
p o <1_(§i1) Jo (4.29)
1+

where ¢ = tanh( P, / X1 ).
The remaining quantity of net rainfall, P — P;, is directed towards the routing store.

In the other case, when ET, is different than zero, the value of the actual
evapotranspiration ET subtracted from the production store, is calculated as a function of

the store current level, S, its maximum capacity, Xi, and the net evapotranspiration

capacity, ETy:
s
ET; = M (4.30)
1+(1- X_1) i
where y = tanh( ET / X1).
Then, the water level of the production store is updated to:
S;=S+P;-ET; (4.31)

and a part of this quantity leaks from the reservoir as percolation, Perc, computed as:

4q-1/4
Perc = s{ 1— [1 + (g%) ] } (4.32)

Thus, the reservoir’s content is eventually updated to:
S=5; - Perc (4.33)
The water amount P, to reach the routing store is given by:
P, = Perc + (P - D) (4.34)

This amount (Py) is then split into two flow components:

* 90% of it, which is routed by a unit hydrograph UH; with time base equal to the

value of model parameter Xg;
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* 10% of it, which is routed by a unit hydrograph UH, with a time base equal to 2 X4.

The ordinates UH; (i) and UH,(i) for each of those unit hydrographs are obtained from the
corresponding S-curves (cumulative proportion of the input with time), whose ordinates

are denoted as SH; and SH,, respectively.

For each time step t, the outputs Qy and Q; of the two unit hydrographs UH; and UH,,

respectively, are calculated as follows:
Qu(t) = 0.9 ¥k — [ UH,(K) - Pt~k + 1) ] (4.35)
Qi) = 0.1 Yl [ UHy(K) - Pe(t—k + 1) ] (4.36)

wherel =int[ X4 ]+ 1and m =int[ 2 X4 | + 2.

Similarly to the case of the GR2M model, a model parameter X: is used in order to simulate
the groundwater exchanges between the catchment and its external environment. As in
GR2M, a positive value of Xz corresponds to water imports, whereas a negative value to

water exports. Therefore, a groundwater exchange term F is calculated as:

R\7/2
F-X;(5) (4.37)
X3
where R is the routing store level and X3 is its maximum capacity.
Then, the content of the routing reservoir is updated to:
Ri=max[| R+Qy+F;0] (4.38)

The routed runoff Q, is estimated as:

R4 /4
Q=R { 1- [1 + (—1) ] } (4.39)
X3
and the routing store level at the end of the time step is:
R=R,-Q, (4.40)

Like in the case of the routing reservoir, the flow component Q; interacts with the basin’s
outside environment, losing or gaining the same water quantity, F, hence the direct runoff

component is obtained as:
QD = maX[ Q1 +F ; 0 ] (441)

Finally, the delayed outflow Q, combined with the direct runoft Q,, form the total runoff

Q. at the catchment’s outlet, i.e.:

Page | 20



Qsim = Qr + Qp (4.42)
4.5 Hydrological Model GR6]

The GR6] [Pushpalatha et al., 2011], is one more lumped hydrological model of the GR
family, driven with daily areal precipitation (P) and potential evapotranspiration time
series (PET) and controlled by six parameters. The conceptual structure of the GR6] model

is illustrated in Figure 4.5.

Potential Model Parameters:
Evapotranspiration, PET Rainfall, P X1 :Production store capacity [mm]
?,‘ Xo :Groundwater exchange coefficient [mm/day]
Interception 3 X3 :Routing store capacity [mm]
Store Actual Evapo- % 7 . X4 :Time parameter for Unit Hydrographs [days]
transpiration, ETg Xs :Groundwater exchange threshold
*> P Xs : Exponential store depletion coefficient [mm]
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1 1
1 1
1 1
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Figure 4.5 | Schematic representation of the conceptual structure of the GR6] model
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The GR6J model is a modified version of the GR4] model, which was proposed for the
improvement of modelling efficiency and specifically to achieve better low-flow
representation. The modifications were progressively applied to the GR4] model. Le
Moine [2008] has suggested a new groundwater exchange function, thus adding an
additional parameter to the GR4] model, while Pushpalatha et al. [2011] introduced an
exponential routing store, parallel to the existing one of the GR4] version, and controlled

by a new parameter.

In particular, the GR6] model structure until the estimation of the two flow components
Q; and Q resulted from the two unit hydrographs (see Figure 4.5), remains the same as
in the case of the GR4] model, hence the mathematical equations developed by Perrin et al.
[2003] to describe the hydrological processes until that point (i.e., Eq. (4.27) to Eq. (4.36))
continue being valid for the GR6] model.

The water exchanges function F was modified to encapsulate possible changes in the
direction of the groundwater exchange within the simulated year, based on the
comparison of the current routing reservoir level (R;) with the value of a dimensionless

threshold parameter Xs, i.e.:
R
F=X; (== Xs) (4.43)
X3
where X, and Xj; are the respective model parameters presented in the section 4.4.

In addition, the flow component Qs is divided into two parts. Sixty percent of it is directed
towards the routing store, whereas the remaining 40% of the component is routed through

the exponential store. The content of the routing and the exponential store are updated to:
R1 = maX[ R+0.6 Qg + F, 0 ] (444)
E;=E+04Q, (4.45)

The routed runoff Q is calculated by Eq. (4.39) and the routing reservoir level R at the end
of the daily time step is updated according to Eq. (4.40).

As mentioned above, the exponential store is controlled by a model parameter, Xs, which
acts as a base level in the reservoir. The routed runoff Qy is estimated as a function of the

current store level E; and this parameter.

Finally, the direct runoff Qp is computed as stated in Eq. (4.41) and the total runoff Qg is

obtained as follows:

Qsim = QE + QR + QD (446)

Page | 22



Therefore, the six parameters of the GR6] model are:
* the maximum capacity X1 [mm] of the production store;
* intercatchment groundwater flux Xz [mm/day];
* the maximum capacity X3 [mm] of the routing store;
* time base X4 [days] for Unit Hydrographs;
* groundwater exchange threshold Xs;

* the exponential store depletion coefficient X¢ [mm].
4.6  Calibration Algorithms and Criteria

Not all of the above hydrological models share a common calibration algorithm.

Specifically:

* The parameter sets for both Zygos4P and Zygos6P models are estimated for all the
study catchments using the Evolutionary Annealing-Simplex (EAS) optimization
method [Efstratiadis & Koutsoyiannis, 2002], a hybrid scheme that merges the
strengths of both local and global search. EAS optimization algorithm has already

been implemented in R by P. Kossieris.

* The calibration of all three of the GR models was employed with the technique
proposed by Michel [1991], an algorithm that also combines a local and a global
approach and is already implemented in airGR R-package [Coron et al., 2017;
Coron et al., 2021].

To evaluate the model performance, the measure used was Nash-Sutcliffe efficiency
coefficient (NSE) [Nash & Sutcliffe, 1970]:

Z{\I: l(Qobs(t) B Qsim(t))2
2N 1(Qabs = Qobe)”
where Qps(t) and Qs (t) are the observed and simulated discharges, N is the length of

NSE=1— (4.47)

the sample, and the overbar indicate mean value of the runoff records for this period.

Table 4.1 summarizes the parameters of each hydrological model, along with their ranges

of variation, as obtained from the literature or specific applications of the models.
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Table 4.1 | Parameters of conceptual rainfall-runoff models and their corresponding ranges of

variation
Model Parameter Unit Range Reference
v - [O ’ 1]
K mm [0, 1000]
Zygos4P
K = [0 ’ 1]
Ranges deduced after
4 - [0,1] numerous simulations
v - [0.1,2.5]
Zygos6P H mm [0, 300]
a - [0 7 1]
X1 mm [0, 1500]
GR2M Mouelhi et al., 2006
X2 —-ormm/day [-10,10]
X3 mm [1,500]
GR4]J Perrin et al., 2003
Xa days [0.5, 8]
X5 - [-4, 4] Le Moine, 2008
GR6]
X mm [0.5, 20] Pushpalatha et al., 2011
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5

PROOF OF CONCEPT

To assess the validity of the stochastic calibration scheme, it was initially implemented on
a specific study basin, the Loing river basin, by examining two cases: one that the scheme
is employed at a monthly time scale, and another at a daily time scale. For this comparative
analysis between the split-sample scheme and the stochastic calibration, a code was
developed in R-environment. For brevity purposes, only the code regarding the “Zygos6P”
model is presented (Appendix B: R script for Monthly Time Scale Analysis with
“Zygos6P” model).

5.1 Study Area and Data

The Loing catchment covers an area of 3900 km? and has a mean elevation of 148 m
[Rebolho et al., 2018]. The geographical representation of the basin is displayed in Figure
5.1. The boundary and hydrographic network of the catchment were taken from European
Catchments and Rivers Network System (ECRINS). The mapping of the catchment was
conducted using the ESRI software ArcGIS.

Loing Catchment

2°0'0"E 2°40'0"E 3°20'0"E 4°0'0"E

LEGEND
— Hydrographic Network i

48°10'0"N
48°40'0"N

[1 Loing Catchment

48°0'0"N
48°0'0"N

47°20'0"N
47°20'0"N

2°40'0"E 3°20'0"E 4°0'0"E

Figure 5.1 | Geographical representation of the Loing catchment
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The available hydrological data (precipitation, potential evapotranspiration, runoff) are of
daily time scale and extend over a period of 58 years (from 01/08/1958 to 31/07/2016)
(Figure 5.2). The data were obtained from a previous study conducted by Rebolho et al.

[2018] in the same catchment.
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Figure 5.2 | Historical daily rainfall and runoff time series (August 1%, 1958 to July 31, 2016)

5.2  Case Study A: Monthly Time Scale Analysis

For this specific study case, the hydrological models Zygos6P and GR2M were chosen to
model monthly runoff at the outlet of the basin. Thus, the daily observed data are

aggregated at the monthly scale and the resulting time series is depicted in Figure 5.3.

For each model calibration, the classical split-sample scheme is initially employed, by
dividing the historical records into two equal subsets of length 29 years each, for

calibration and validation.

Regarding the synthetic time series, these were generated via the anySim R-package
[Tsoukalas et al., 2020], specifically designed for the simulation of non-Gaussian behavior,
which characterizes hydrometeorological processes, apart from other significant
peculiarities (periodicity, intermittency, and auto- and cross-dependence). This stochastic
time series generator abides by the requirements regarding stochastic simulation (Section
3.2) and it will be demonstrated below for this case study. For the sake of brevity, the

respective process will be omitted for the case of generation of daily synthetic data.
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Figure 5.3 | Historical monthly rainfall and runoff time series (August 1958 to July 2016)

Table 5.1 displays the key statistics of historical rainfall and runoff data (mean, standard
deviation, skewness, auto- and cross-correlations), to be reproduced within the synthetic

time series that are used in stochastic calibration.

The stochastically simulated time series extend over a time horizon of 1000 years are

presented in Figure 5.4.

Table 5.1 | Key statistical information of observed rainfall and runoff data and their lag-0 cross-

correlation coefficient at the monthly and annual time scales

Rainfall [mm] Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual

Mean 67.5 66.6 69.1 618 53.0 553 535 683 574 567 570 564 7225
St. deviation 369 270 302 296 282 305 312 315 262 307 299 356 1323
Skewness 0.603 0.554 0.488 0.508 0.537 0.856 0.558 1.019 0.458 1.111 0.217 0.865 0.131

Lag-1 correl. 0.162 -0.016 -0.173 0.035 -0.058 0.197 0.102 -0.031 0.296 0.135 0.108 -0.231 0.126

Runoff [mm]

Mean 79 107 170 222 213 201 161 136 96 66 58 54 1564
St. deviation 50 73 105 138 127 113 99 72 88 36 36 23 66.2
Skewness 1.769 2310 1.177 0.962 0.820 1.345 1.659 0.95 5.284 1.402 2.404 1.044 0.357
Lag-1 correl. 0.713 0.786 0.576 0.672 0.514 0.717 0.683 0.746 0.438 0.455 0.833 0.703 0.483

Lag-0 correl. 0.616 0.392 0.610 0.681 0.748 0.758 0.625 0.436 0.394 0.532 0.330 0.202 0.841
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Figure 5.4 | Synthetically generated rainfall and runoff time series (randomly selected window
of 1000 years)

Figure 5.5 summarizes the ability of the stochastic model to preserve the lag-0 cross-

correlation among the two simulated processes (rainfall and runoff).

Rainfall vs Runoff
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Figure 5.5 | Comparison of the monthly historical and simulated lag-0 cross-correlations

Furthermore, Figure 5.6 illustrates that the synthesis scheme ensured the reproduction of
dependency patterns that are much extended than the observed ones. These are expected

to represent the full hydroclimatic regime of the basin, which cannot be traced in the case

Page | 28



of the observed data, due to their limited length. Actually, while using the split-sample

calibration approach, only half of this information is accounted for.
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Figure 5.6 | Auto-dependency patterns among runoff data between subsequent months (left) and
cross-dependency patterns between rainfall and runoff (right), derived from the observed data

(split into two periods) and the synthetic ones (12 000 values)
It should be noted that for the estimation of the evapotranspiration input data were
employed the mean monthly values of the historical sample.

Consequently, according to the stochastic calibration framework, the chosen models are
titted against the synthetic time series of length 1000 years, and their structure is validated

against the full sample of observations (58 years).
Table 5.2 summarizes the results of the monthly time scale analysis using Zygos6P model.

Table 5.2 | Results summary for Zygos6P hydrological model calibration, employing the split-

sample approach and stochastic calibration at a monthly scale

Model performance o
. Optimized Zygos6P parameter values
evaluation

Split-Sample | NSEc,; NSEy, NSEg, v K [mm] K H [mm] a y)

Approach 0837 0836 0836 1763 235.0 0.184 60.8 0120 0142

Stochastic NSE y K [mm] K H [mm] a A

Calibration 0.836 1835 234.2 0.180 442 0157 0173

NSEc,;: Nash-Sutcliffe efficiency metric in calibration period

NSEy,;: Nash-Sutcliffe efficiency metric in validation period
Abbreviations

NSEy,;: overall Nash-Sutcliffe efficiency metric

NSE: overall Nash-Sutcliffe efficiency metric
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It is evident that the results of calibration using the split-sample approach are in good
agreement with those of the stochastic calibration scheme; a fact also confirmed by visual
inspection of Figure 5.7 and Figure 5.8, where in both cases modelled runoff

approximates well the runoff observations.
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Figure 5.7 | Visual inspection of the agreement between observations and model predictions

(Split-Sample approach — Zygos6P)
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Figure 5.8 | Visual inspection of the agreement between observations and model predictions

(Stochastic Calibration approach — Zygos6P)

Page | 30



As far it concerns the respective analysis with GR2M hydrological model, the results are
given in Table 5.3. Once more, the results for the two calibration approaches converge.
Figure 5.9 and Figure 5.10 represent the fitting of simulated values with each approach
to historical data.

Table 5.3 | Results summary for GR2M hydrological model calibration, employing the split-

sample approach and stochastic calibration at a monthly scale

Model performance Optimized GR2M

evaluation parameter values

Split-Sample NSE.,; NSEy NSE . X7 [mm] X
Approach 0817 0.776 0.798 3954 077
Stochastic NSE X7 [mm] X
Calibration 0.798 3994 077

NSEc,;: Nash-Sutcliffe efficiency metric in calibration period

NSEy,,: Nash-Sutcliffe efficiency metric in validation period

Abbreviations ) o ]
NSEry,;: overall Nash-Sutcliffe efficiency metric
NSE: overall Nash-Sutcliffe efficiency metric
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Figure 5.9 | Visual inspection of the agreement between observations and model predictions

(Split-Sample approach - GR2M)
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Figure 5.10 | Visual inspection of the agreement between observations and model predictions

(Stochastic Calibration approach - GR2M)

5.3  Case Study B: Daily Time Scale Analysis

To demonstrate the potential of the stochastic calibration scheme at a daily scale, the daily
observed data of the Loing catchment are employed (Figure 5.2). Because of the fine time

scale, the hydrological models GR4] and GR6]J are preferred for this analysis.

As in the monthly scale analysis, the split-sample scheme was initially applied,
considering the first 29 years of historical records for calibration and the remaining 29

years for validation.

The generation of synthetic data of length 1000 years for the daily rainfall and runoff
occurred again in accordance with the requirements discussed in section 3.2, whereas the
evapotranspiration input data for each model were estimated as the mean daily values of

the parent data.

Subsequently, the selected hydrological models are calibrated against these modelled

processes, and their structure is then validated against the full historical records (58 years).

The results of the daily scale analysis with GR4] model are given in Table 5.4. Contrasting
model efficiency for the two calibration schemes, the split-sample procedure leads to better
results, whilst there is an evident divergence between optimized parameters for each case.
The performance of the model from the application of each calibration methodology can

also be noticed in Figure 5.11 and Figure 5.12.
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Table 5.4 | Results summary for GR4J hydrological model calibration, employing the split-

sample approach and stochastic calibration at a monthly scale

Model performance o
Optimized GR4] parameter values

evaluation
Split-Sample | NSEc,; NSEy, NSEp,; X;[mm] X;[mm/d] X;[mm] X,[days]
Approach 0.848 0.895 0871 520.1 -0.70 359 4.20
Stochastic NSE X7 [mm] Xz [mm/d] X;[mm] X;[days]
Calibration 0.805 10116 -048 388 4.39
NSE_c,;: Nash-Sutcliffe efficiency metric in calibration period
NSEy,: Nash-Sutcliffe efficiency metric in validation period
Abbreviations ) o ]
NSEry,: overall Nash-Sutcliffe efficiency metric
NSE: overall Nash-Sutcliffe efficiency metric
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Figure 5.11 | Visual inspection of the agreement between observations and model predictions

(Split-Sample approach — GR4J)
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Figure 5.12 | Visual inspection of the agreement between observations and model predictions

(Stochastic Calibration approach — GR4]J)

From the corresponding analysis with GR6] hydrological model emerged results (Table

5.5), which denote that the conventional approach achieves a better performance, but then

its outperformance is significantly restricted, rendering calibration with stochastic data

still competent. Figure 5.13 and Figure 5.14 contrast historical data against simulated

ones for each calibration scheme.

Table 5.5 | Results summary for GR6] hydrological model calibration, employing the split-

sample approach and stochastic calibration at a monthly scale

Model performance

Optimized GR6] parameter values

evaluation

X1 X2 X3 Xy Xs Xs
Split-Sample | NSEca  NSEva NSEree (001 |mm/d] [mm] [days] [] [mm]
Approach 7000 0802 0858 2421 163 8854 440 022 149
X7 X2 X3 Xy Xs Xs
Stochastic NSE [mm] [mm/d] [mm] [days] [-] [mm]
Gl 0.815 2966  -2.38 521 438 041 3.04

NSEc,;: Nash-Sutcliffe efficiency metric in calibration period

. NSEy,,: Nash-Sutcliffe efficiency metric in validation period

Abbreviations

NSEry,: overall Nash-Sutcliffe efficiency metric

NSE: overall Nash-Sutcliffe efficiency metric
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Figure 5.13 | Visual inspection of the agreement between observations and model predictions

(Split-Sample approach — GR6])

10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0

20 I | .

o L] . ¥

0.0

o Obslerved |
-+ Modelled (Stochastic Calibration)

Mean Daily Runoff [mm]

w0 o N 9% «/ &l P 9P > A0 A
Q‘b’?&% p > o™ d 2V “ \%’OC& Q\’?&% o> i g g ¥ “ \\'OC& 09’\&

Dates

Figure 5.14 | Visual inspection of the agreement between observations and model predictions

(Stochastic Calibration approach — GR6]J)

5.4  Summary

In regard to the monthly time scale analysis, it is evident that the proposed methodology
for calibration against synthetic rainfall-runoff data is functional. Specifically, the Zygos6P

and GR2M hydrological models performed equally well for calibration against historical
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data (split-sample approach) and against synthetic data (stochastic calibration approach).

Moreover, the model parameter values for each calibration method are in agreement.

Concerning the daily time scale analysis, for the application of the split-sample scheme the
overall efficiency metric (NSEr,,) for the two daily hydrological models (GR4] and GR6])
is slightly higher than the respective efficiency metric (NSE) that was estimated for the
stochastic calibration case. Hence, the convergence between the above-mentioned metrics
indicate that the stochastic calibration framework has certain potentials for application
also to the daily scale. On the other hand, it is also worth noticing that the optimized
parameter values against the synthetic rainfall-runoff data are quite different with respect
to the ones derived by calibrating against the half of historical data, especially for the case
of GR6] model.

In addition, the results of this initial investigation constitute some first evidence to assume
that the implementation of the stochastic calibration framework is independent of the

chosen hydrological model.
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6

LLARGE-SCALE ANALYSIS

The next research step regards the implementation of the proposed framework for
hydrological calibration in a large set of catchments at a monthly scale. Specifically, this
study was conducted by selecting 100 catchments from the MOPEX database,
accompanied by their respective datasets of hydrological processes. The location of each

watershed across the USA is visible in Figure 6.1.
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Figure 6.1 | Geographical location of the 100 selected MOPEX watersheds

The MOPEX (MOdel Parameter Estimation EXperiment) is a project developed for the
enhancement of a priori parameter estimation methodologies for hydrological models and

land surface parameterization schemes [Schaake et al., 2006].

For the selection of the optimal set of 100 catchments for this large-scale experiment, a

combination of criteria was taken into account. Specifically, the selection criteria were:
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* the percentage of stream flow missing values and

= cross-correlation between rainfall and streamflow.
6.1  Analysis Setup

The spatially averaged rainfall, evapotranspiration and streamflow data are provided for
each of the 100 catchments at the daily time interval, thus the processes are aggregated at

the monthly scale.

As in the previous research, several different hydrological models were used, to further
fortity the assumption that hydrological calibration with stochastic inputs is independent
of the chosen rainfall-runoff model structure. Specifically, for this study GR2M, Zygos4P
and Zygos6P models were used, the structure of which has already been presented in
sections 4.1 — 4.3. It should be noted that also for this analysis, for the case of the split-

sample approach, half of the total historical sample is used for the calibration procedure.

Aiming towards an efficient comparison between model performance for each calibration
methodology, it was decided to present graphically the model efficiency (NSE) over the
period of the historical sample, which is allocated for validation purposes. This decision
stemmed from the notion that the validation period of observed records contains the only
data over which, in both calibration methodologies, the rainfall-runoff model has not been
trained. On the contrary, in the case of the split-sample calibration approach, model
efficiency over the calibration period of historical data is biased, since the selected model

has been over-fitted on this period.
6.2 GR2M Model Analysis

The results for model calibration with this two-parameter hydrological model indicate that
in 62% of cases model calibration with synthetic data outperformed the one which was
implemented with a real-world calibration dataset. This conclusion is also reflected in
Figure 6.2. For the sake of completeness, it should be pointed out that, when inspecting
the performance of GR2M model over the calibration period of the historical sample, the
case of model training with simulated data managed to do better just for one catchment,
which can be attributed to the model being over-fitted on the calibration subset of the
observations. As far it concerns the overall model efficiency, it was estimated that for 42
out of the 100 examined catchments the stochastic calibration methodology achieved better

results than the split-sample approach.
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Figure 6.2 | Scatter plots of poor/low (left) or good/high (right) model performance (NSE) by
employing the Split-Sample approach and the Stochastic Calibration (GR2M model)

The scatter plot for model parameter X: (Figure 6.3) depicts that the adjusted values
inferred from the stochastic data are substantially differentiated from the data-driven ones,

whereas in the case of model parameter X; there is a significant convergence between the

values emerged from the two procedures.
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Figure 6.3 | Scatter plots of GR2M model parameters estimated through Split-Sample approach

and Stochastic Calibration

6.3  Zygos4P Model Analysis

In the case of the Zygos4P model, the calibration approach with synthetic data ensured a
better model performance for a significant proportion (67%) of the basins, in contrast to

the calibration method that the model is fed with historical inputs (Figure 6.4).

Furthermore, Figure 6.5 demonstrates that the optimized K, x and /1 parameters inferred
from the stochastic data and the respective ones derived from the classical method present

a strong divergence pattern, while the v parameter values for the two methodologies are

generally in agreement.
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6.4 Zygos6P Model Analysis

In order to further benchmark the performance of the proposed framework, another
investigation was conducted, this time by using the six-parameter model Zygos6P. The
results of the analysis are given graphically in Figure 6.6 and it can be concluded that the
calibration scheme with stochastic data achieves a better approximation (60%) of the

hydrologic response of each basin than the conventional calibration approach.
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Moreover, from the presented scatter plots in Figure 6.7 it can be noticed that there is a

strong disperse of the points around the bisector of each plot, which denotes that, overall,

the adjusted parameter values according to the split-sample approach do not agree with

the corresponding values resulted from stochastic calibration.
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6.5 Conclusions

After reviewing the results of 100 different test-cases and while keeping in mind the
proposed comparison aspect between the two tested calibration methodologies, it seems
clear that the stochastic calibration outperforms the conventional split-sample approach
for each model case, as the former presents better NSE index values for the majority of the
examined catchments. Hence, this evidence emphasizes the applicability of the proposed

method, in spite of the model complexity.

Additionally, it is evident from each model analysis that some parameter values estimated
by the stochastic calibration procedure differ substantially from the ones stemmed from
the data-driven approach. Concerning the GR2M model analysis, values for X1 parameter
vary significantly for the split-sample calibration approach and for the stochastic
simulation approach. Regarding the analysis using the Zygos4P model, parameter values
for K, x and 4, derived from the use of the two calibration methodologies, disagree in most
of the tested cases, with this divergence being stronger in the case of parameter A. Finally,
discrepancies between the parameter values, estimated by each calibration methodology,

appear in each parameter in the case of the Zygos6P model.

However, it worth mentioning that during this large-scale experiment, the use of the long
stochastic inputs in conjunction with the optimization algorithms, used for the calibration
process, pose a serious barrier in the application of the proposed framework, in terms of

computational effort.
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7

DISCUSSION AND SUGGESTIONS FOR FUTURE RESEARCH

7.1  Summary and conclusive remarks

The purpose of this research was to introduce a stochastic-simulation framework for
hydrological calibration, as well as to present its strengths against conventional split-

sample approaches.

Initially, a monthly-scale analysis was employed by means of proof-of-concept, and the
results highlighted that this novel methodology proved equally sufficient as the classical
split-sample scheme in terms of model performance, for both of the two chosen
hydrological models, with the resulting parameters from each method and model being in

agreement.

On the other hand, the daily-scale analysis, which was performed for the same case study
and for a four-parameter and six-parameter model, demonstrated that the split-sample
scheme performed slightly better than the stochastic calibration, though without
invalidating the potentials of the method at this time scale. However, it should be noted
that there is a noticeable difference between the model parameter values derived from

each calibration approach.

Next research steps occurred in the direction of a large-scale experiment, involving a set
of 100 catchments of the MOPEX database and three hydrological models of varying
complexity. The results denote that for most of the tested cases the stochastic calibration
framework is capable of outperforming the split-sample approach, regardless of the
chosen model for hydrological simulation, therefore rendering calibration with the use of

synthetic inputs and outputs independent of the hydrological model complexity.

Regarding the divergence between the estimated parameter values, stemmed from each
calibration methodology, it proved to be more remarkable as the tested hydrological

model structure progressed to be more complex.
7.2 Proposals for Future Research

Undoubtedly, this is just a first attempt to align efficient hydrological calibration with

stochastics, and calls for further studies. More specifically:

* It may not always be efficient to characterize the different aspects of model
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performance for a particular rainfall-runoff model with only one performance
metric. Thus, more criteria for model evaluation should be compared, in order to

evaluate the predictive capacity of each method.

It is also worth exploring the potentials of stochastic calibration by employing
rainfall-runoff models of more complex structure, since more parsimonious mode

structures were selected for this investigation.

Another suggestion would be to further test the applicability of the approach
explored in the present research at the daily time scale, by employing an extensive
benchmarking experiment, such as the one that was undertaken in this study for
the monthly time scale.

As mentioned before, a challenging issue is the significantly time-consuming
computational process in the case of a large-scale analysis, due to the use of
substantially long synthetic data (length of thousands of years). A combination of
the hereby presented methodologies with state-of-the-art global optimization
methods (e.g., [Tsoukalas et al., 2016]), such as machine learning and surrogate-
based optimization techniques, will yield interesting results, as regards

computational effort.
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APPENDICES

Appendix A: R script for “Zygos4P” and “Zygos6P” hydrological models

Appendix Al: “Zygos4P” Model

BHAHBHHH B AR B HHRHH BB H BB RH B AR AR B AR LR R LR AR R AR R R H BB R B HHBHH B R H R R H LR R LR RSB HRHH
# FUNCTION : Zygos4P Hydrological Model #
BHAHBHHH B AR HHRHH BB H BB RFBRH R AR AR R R LR AR R AR R R H LB H LB HHBHH B HH R R H LR R LR RSB
zZygos4pP = function(Pars , P , ET_pot , Q.obs, Cal_Per) {

# A monthly Tumped hydrological model with 4 parameters

HABBHAFHHRRRHHFARRRA#H INPUT DATA ##HHAHBHH#HFHAR S HHHHRH

# P [mm] : Precipitation #
# ET_pot [mm] : Potential Evapotranspiration #
# Q_obs [mm] : Observed Runoff #
# Pars : Model Parameters #
# cal_pPer [months] : Chosen cCalibration Period #

HARBHHHARBHHHARRRRHATRRR A AR BB HAHRRR S HATRR RS AR

HAHAHAHAHHHRHH###E MODEL PARAMETERS & RANGES ######H##H#H##H##H#

# v : surface runoff coefficient | 0 -1 #
# K [mm] : Upper soil water storage capacity | 0 - 1000 #
# k : Groundwater recharge coefficient | 0 - 1 #
# Tamda : Groundwater runoff coefficient | 0 -1 #

HARBHHHARRHHH AR AR R A ATRRRHH AR R R HARRRRH AR R H AR BB R HHAAR S

v = Pars[[1]]
K = Pars[[2]]
k = Pars[[3]]
Tamda = Pars[[4]]

#### PREALOCATION OF ARRAYS ####

# S_1ini [mm] : Soil Moisture at the start of the current month

# S_ini(1) [mm] : Initial Soil Moisture, equal to K/5

# G_ini [mm] : Groundwater Storage at the start of the current month
# G_ini(1) [mm] : Initial Groundwater Storage, equal to 200 mm

# S_fin [mm] : Soil Moisture at the end of the current month
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# G_fin [mm] : Groundwater Storage at the end of the current month
# Qdir [mm] : Direct Runoff

# ET_dir [mm] : Direct Evapotranspiration

# INFIL [mm] : Infiltration

# ET_soil [mm] : Soil Evapotranspiration

# ET_act [mm] : Actual Evapotranspiration

# PERC [mm] : Percolation

# Q_soil [mm] : Upper Soil Runoff

# Q_base [mm] : Baseflow

# Q_sim [mm] : Simulated Runoff

# dq [mmA2] : Squared Differences of Q_obs and Q_sim

# dQ_obs [mmA2] : Squared Differences of Q_obs and mean value of Q_obs
t_max = length(P)

S_ini = matrix(data = 0, nrow = t_max, ncol = 1)

S_ini[l] =K / 5

G_ini = rep(S_ini)

G_ini[l] =0

S_fin = G_fin = Qudir = ET_dir = INFIL =

ET_soil = ET_act = PERC = Q_soil = Q_base =

Q_sim = dQ = dQ_obs = rep(S_ini)

#### MODEL ####

for ( t in 1l:t_max ) {

### SOIL SURFACE PROCESSES ###

Qdir([t] = v * P[t]
ET_dir[t] = minC (1-v) * P[t] , ET_pot[t] )
INFIL[t] = P[t] - Qdir[t] - ET_dir[t]

### SOIL UNSATURATED ZONE PROCESSES ###
S = S_ini[t] + INFIL[t]

ET_soil[t] =S * (1 - exp(- ( ET_pot[t] - ET_dir[t] ) / K ))
S =S - ET_soil[t]

PERC[t] =k * S

S = S - PERC[t]

Qsoil[t] =max(S - K, 0)

Ss_fin[t] =S - Qsoil[t]
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### SOIL SATURATED ZONE PROCESSES ###

G = G_ini[t] + PERC[t]
Q_base[t] = lamda * G
G_fin[t] = G - Q_base[t]

if ( t == t_max ) { break }

else {
S_ini[t+l] = s_fin[t]
G_ini[t+1l] = G_fin[t]
}
}
ET_act = ET_dir + ET_soil

Q_sim = QJdir + Q_soil + Q_base

#### NASH - SUTCLIFFE EFFICIENCY (NSE) ####

### CALIBRATION PERIOD ###
for (i in 1l:cal_Per ) {
dqli] ( Qobs[i] - Q_sim[i] )A2
dQ_obs[1i] ( Q_obs[i] - mean( Q_obs[1:cal_Per] ) )A2
}
NSE_Cal = 1 - sum( dQ[l:cal_Per] ) / sum( dQ_obs[1l:cal_prer] )

### VALIDATION PERIOD ###
j = cal_per + 1
for (i in j:length(P) ) {
dqli] ( Qobs[i] - Q_sim[i] )A2
dQ_obs[i] ( Qobs[i] - mean( Q_obs[j:Tength(P)] ) )A2
}
NSE_val = 1 - sum( dqQ[j:Tength(P)] ) / sum( dQ_obs[j:Tength(P)] )

### WHOLE PERIOD ###
for (i in 1:1ength(P) ) {
dqli] ( Quobs[i] - Q_sim[i] )A2
dQ_obs[1i] ( Qobs[i] - mean( Q_obs[1:Tength(P)] ) )A2
}
NSE_Tot = 1 - sum( dqQ[l:Tength(P)] ) / sum( dQ_obs[1l:Tength(P)])

#### MODEL OUTPUT ####

column.names = c('NSE_Calibration','NSE_validation', 'NSE_Total')
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resultsTable = array(c(format(NSE_Cal, digits = 4, width = 11,
justify = 'centre'),
format(NSE_val, digits = 4, width = 10,
justify = 'centre'),
format (NSE_Tot, digits = 4, width
justify = 'centre')),
dim = c(1,3), dimnames = Tist('value',column.names))

7,

seq(from = 1, to = t_max, by = 1)
c('simulated_Runoff', 'Actual_ET',
'Soil_Moisture', 'Groundwater_Storage')

row.names
column.names

array(c(format(Q_sim, digits = 3, width = 10,
justify = 'centre'),

operationTS

format(ET_act, digits = 3, width = 7,
justify = 'centre'),

format(s_fin, digits = 3, width = 11,
justify = 'centre'),

format(G_fin, digits = 3, width = 14,

justify = 'centre')),
dim = c(t_max,4), dimnames = list(row.names,column.names))

class(operationTS) = 'numeric'
output = Tist(resultsTable , operationTS)
print(resultsTable, quote = FALSE)

return( output )

Appendix A2: “Zygos6P” Model

HARRARRAHRAARHARRARRAHRAHRRARRHHRAHBHHRHAG R AR RHRHHGRHRRARBAHRRHRAARRARRAHH
# FUNCTION : Zygos6P Hydrological Model #
HARRARRAHRAARHARRARRAHRAHRRARRHHRAHBHH R R AR AR RHRHH G HARRARRAHRRAHRAAGRARRAHH

Zygos6P = function(Pars , P , ET_pot , Q.obs, Cal_Per) {

# A monthly Tumped hydrological model with 6 parameters
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HEBBHHHHRBHHHHRRRAHHE INPUT DATA #HHHHBHHHHRRBHHHHRRS

# P [mm] : Precipitation #
# ET_pot [mm] : Potential Evapotranspiration #
# Q_obs [mm] : Observed Runoff #
# Pars : Model Parameters #
# cal_per [months] : Chosen cCalibration Period #

HERBHHHHRBHHHHRRRBHHHRR B H R AR BB HHRRRHHHHRR R R AR

HAHAHAHHHHHAHA##S MODEL PARAMETERS & RANGES #########H########

# v : Surface runoff coefficient | 1-2.5 #
# K [mm] : Upper soil water storage capacity | 0 - 1000 #
# k : Groundwater recharge coefficient | 0-1.0 #
# H [mm] : Threshold in the 2nd reservoir | #
# above which baseflow occurs | 0 - 300 #
# a : Losses coefficient (vertical | #
# downflow from the 2nd reservoir) | 0 -1.0 #
# lamda : Baseflow coefficient (horizontal | #
# downflow from the 2nd reservoir) | 0.01 - 1.00 #

HERBHAHHRBHHHHRRRRHAHRRR AR R AR BB HHHRRR AR AHRB B HHHRB R RS AR RS HH

v = Pars[[1]]
K = Pars[[2]]
k = Pars[[3]]
H = Pars[[4]]
a = Pars[[5]]
Tamda = Pars[[6]]

#### PREALOCATION OF ARRAYS ####

# S_ini [mm] : Soil Moisture at the start of the current month

# S_ini(1) [mm] : Initial Soil Moisture, equal to K/5

# G_ini [mm] : Groundwater Storage at the start of the current month
# G_ini(1) [mm] : Initial Groundwater Storage, equal to 1.1 * H

# S_f1in [mm] : Soil Moisture at the end of the current month

# G_fin [mm] : Groundwater Storage at the end of the current month
# Q_dir [mm] : Direct Runoff

# ET_dir [mm] : Direct Evapotranspiration

# INFIL [mm] : Infiltration

# ET_soil [mm] : Soil Evapotranspiration

# ET_act [mm] : Actual Evapotranspiration

# PERC [mm] : Percolation

# Q_soil [mm] : Upper Soil Runoff
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# Q_base [mm] : Baseflow

# Q_sim [mm] : Simulated Runoff

# dq [mmA2] : squared Differences of Q_obs and Q_sim

# dQ_obs [mmA2] : squared Differences of Q_obs and mean value of Q_obs

t_max = length(P)

S_ini = matrix(data = 0, nrow = t_max, ncol = 1)
S_ini[l] =K / 5

G_ini = rep(S_ini)

G_ini[l] = 1.1 * H

S_fin = G_fin = Q.dir = ET_dir = INFIL =
ET_soil = ET_act = PERC = Q_soil = Loss =
Q_base = Q_sim = dqQ = dQ_obs = rep(s_ini)

#### MODEL ####

for ( t in 1l:t_max ) {

### SOIL SURFACE PROCESSES ###

ET_dir[t] = min(C 0.5 * P[t] , ET_pot[t] )

Qdir[t] C P[t] - ET_dir[t] ) * ( s_ini[t] / K )Av
INFIL[t] P[t] - ET_dir[t] - Qdir[t]

### SOIL UNSATURATED ZONE PROCESSES ###
S = S_ini[t] + INFIL[t]

ET_soil[t] = S * (1 - exp(- ( ET_pot[t] - ET_dir[t] ) / K ))
S =S - ET_soil[t]

PERC[t] =k * S

S = S - PERC[t]

Qsoil[t] =max( S - K, 0)

s_fin[t] =S - Qsoil[t]

### SOIL SATURATED ZONE PROCESSES ###

G = G_ini[t] + PERC[t]
Q_base[t] = Tamda * max( G - H , 0 )
G = G - Q_base[t]

Loss[t] =a*G

G_fin[t] = G - Loss[t]

if ( t == t_max ) { break }
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else {
S_ini[t+1l] = s_fin[t]
G_ini[t+1] G_fin[t]

ET_act ET_dir + ET_soil
Q.sim = Qdir + Q_soil + Q_base

#### NASH - SUTCLIFFE EFFICIENCY (NSE) ####

### CALIBRATION PERIOD ###
for (i in 1:Cal_Per ) {
dqli] ( Quobs[i] - Q_sim[i] )A2
dQ_obs[1i] ( Qobs[i] - mean( Q_obs[1l:cal_Per] ) )A2
}
NSE_Cal = 1 - sum( dQ[1l:cal_pPer] ) / sum( dQ_obs[1l:cal_prer] )

### VALIDATION PERIOD ###
j = cal_per + 1
for (i in j:length(P) ) {
dqli] ( Qobs[i] - Q_sim[i] )A2
dQ_obs[1i] ( Qobs[i] - mean( Q_obs[j:Tength(P)] ) )A2
}
NSE_val = 1 - sum( dQ[j:Tength(P)] ) / sum( dQ_obs[j:Tength(P)] )

### WHOLE PERIOD ###
for ( i in 1:Tength(P) ) {
dqli] ( Qobs[i] - Q_sim[i] )A2
dQ_obs[i] ( Qobs[i] - mean( Q_obs[1:Tength(P)] ) )A2
}
NSE_Tot = 1 - sum( dqQ[1l:Tength(P)] ) / sum( dQ_obs[1l:Tength(P)])

#### MODEL OUTPUT ####

column.names c('NSE_Calibration', 'NSE_validation', 'NSE_Total')

resultsTable = array(c(format(NSE_Cal, digits = 4, width = 11,
justify = 'centre'),
format (NSE_val, digits = 4, width = 10,

justify = 'centre'),
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format (NSE_Tot, digits = 4, width = 7,
justify = 'centre')),
dim = c(1,3), dimnames = Tist('value',column.names))

row.names

seq(from = 1, to = t_max, by = 1)
c('simulated_Runoff', 'Actual_ET',
'Soil_Moisture', 'Groundwater_Storage')

column.names

operationTS = array(c(format(Q_sim, digits = 3, width = 10,
justify = 'centre'),

format(ET_act, digits = 3, width = 7,
justify = 'centre'),

format(s_fin, digits = 3, width = 11,
justify = 'centre'),

format(G_fin, digits = 3, width = 14,

justify = 'centre')),
dim = c(t_max,4), dimnames = list(row.names,column.names))

class(operationTS) = 'numeric'
output = Tist(resultsTable , operationTS)
print(resultsTable, quote = FALSE)

return( output )

Appendix B: R script for Monthly Time Scale Analysis with “Zygos6P” model

Appendix B1: Main Script

HEHHHHBHRH AR HRHRR AR HRH AR AR HRHRHRRHRHRR AR H R AR AR AR AR HR AR H R R AR HHR AR H RS AR HH
# MAIN SCRIPT #
HEHRHHBHRH AR HRHHR AR ARG HRHRH AR AR HR AR HRHRHRRHRHRRHRH ARG AR HRR AR ARG AR ARH AR A RS

setwd('C:/Users/User/Documents/R/HydroR/MSc_R_Code"')
historical_data = read.csv('C:/Users/User/Documents/R/HydroR/MSc_R_Code/
Loing_monthly_data.csv', header = TRUE)

synthetic_data = read.csv('C:/Users/User/Documents/R/HydroR/MSc_R_Code/
Loing_month_stoch_sim2.csv', header = TRUE)
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message('\n")

C = as.character( readline(prompt = 'Please enter desired calibration scheme ("SS"
for split-Sample & "SC" for Stochastic
Calibration) : \n\n') )

if (C == 'ss') {
Date = as.DateChistorical_data$pate, format = '%m/%d/%Y')
P = historical_data$pP # Precipitation
ET_pot = historical_data$PET # Potential Evapotranspiration
Q_obs = historical_data$Qobs # Observed Runoff

message('\n")

p = as.integer( readline(prompt = 'Please enter desired calibration sample as a
percentage (%) of the whole length of data
records : \n\n') )

cal_pPer = as.integer( round( (p/100) * length(P) ) ) # Calibration Period
# [in months]

message('\n")

message(sprintf('calibration Period : %.1f percent of the whole Tength of
data records.', p))

message('\n")

1} else {
Date = as.Date(synthetic_data$Index, format = '%m/%d/%Y"')
P = synthetic_data$Rainfall # Precipitation
ET_pot = synthetic_data$PET # Potential Evapotranspiration
Q_obs = synthetic_data$Flow # Observed Runoff

cal_pPer = as.integer( length(P) ) # calibration Period [in months]

message('\n")
message('Calibration Period : whole length of synthetic data')
message('\n")

#### MODEL CALIBRATION USING OPTIMIZATION ALGORITHM 'EAS' ####
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n==~6 # Number of Model Parameters
m = 100 # Population Count

Model Parameters

xup = c( 2.5, 1000, 1.0, 300, 1.0, 1.00 ) Outer Upper Boundaries of

xmin = c( 0.1, 100, 0, 0, 0, 0.01 ) # Inner Lower Boundaries of
# Model Parameters

xmax = c( 2, 300, 0.3, 100, 0.2, 0.30 ) # Inner Upper Boundaries of
# Model Parameters

xTow = c( 0.1, 100, 0, 0, 0, 0.01 ) # outer Lower Boundaries of
#
#
#

Model Parameters

maxeval = 1000
ratio = 0.99
pmut = 0.5
beta =2
maxclimbs = 5
ftol =0

X = eas(n, m,
xmin, xmax, Xlow, Xxup,
fn = ObjFun,
maxeval, ftol, ratio, pmut, beta, maxclimbs,
P = P, ET_pot = ET_pot, Q.obs = Q_obs, Cal_per = cal_Per,
Change_Sing = TRUE)

sol
PARS

x[["bestpar']]
c(sol[1],s01[2],s01[3],s01[4],s01[5],s01[6])

#### MODEL EFFICIENCY & TIME SERIES ####

if (C == 'sc') { # SC: validation against the whole historical sample
Date = as.Date(historical_data$pate, format = '%m/%d/%Y')
P = historical_data$pP # Precipitation
ET_pot = historical_data$PET # Potential Evapotranspiration
Q_obs = historical_data$qQobs # Observed Runoff
cal_Per = as.integer( round( (p/100) * length(P) ) ) # Calibration Period
# [in months]
}
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output = Zygos6P(PARS , P , ET_pot , Q.obs , cal_rer)

# output : List of 2 tables

# output[[1]] : NSE Results for calibration, validation and Total Data Records
# output[[2]] : Time Series for Simulated Runoff, Actual ET, Soil Moisture &
# Groundwater Storage

resultsTable = output[[1]]
output[[2]]

operationTsS

message('\n")
message ('~ Optimal values for Model Parameters ~ \n\n')

message('------- Model Parameters ------- \n")

message(sprintf(' v = %5.3f \n', PARS[1]))
message(sprintf(' K = %5.1f mm \n', PARS[2]))
message(sprintf(' k = %5.3f \n', PARS[3]))
message(sprintf(' H = %5.1f mm \n', PARS[4]))
message(sprintf(' a = %5.3f \n', PARS[5]))
message(sprintf(' Tamda = %5.3f \n', PARS[6]))
message('-—--———-————— -~ \n\n')

print(resultsTable, quote = FALSE)

Appendix B2: Objective Function
HHHH LR B HH AR BB HH AL BB HH A BB BB H BB BB HH R BB HH AL BB HH AR BB HH AR BB HH AR BB HH AL BB HH LR RS HHH
# FUNCTION : Objective Function #
HHHH LR B HH AR BB HH AL BB HH AR BB B H BB BB HH R BB H AL BB B R AR BB HH AR BB HH AR BB HH AL BB R AL BB HHHH
ObjFun = function(Pars , P , ET_pot , Q.obs , Cal_Per, Change_Sing) {
output = zZygos6P(Pars , P , ET_pot , Q.obs , cal_prer)
resultsTable = output[[1]]
NSE_Cal = as.numeric(resultsTable[1])

if ( Cchange_Ssing == 1 ) { NSE_Cal = - NSE_cal }

return(NSE_Cal)
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