European Geosciences Union General Assembly, Vienna, Austria & Online | 23–27 May 2022 HS5.2 – Innovation in Hydropower Operations and Planning to Integrate Renewable Energy Sources and Optimize the Water-Energy Nexus

Towards energy autonomy of small Mediterranean islands: Challenges, perspectives and solutions

<u>Athanasios Zisos</u>, Maria-Eleni Pantazi, Marianna Diamanta, Ifigeneia Koutsouradi, Anna Kontaxopoulou, Ioannis Tsoukalas, Georgia-Konstantina Sakki, and Andreas Efstratiadis

> Department of Water Resources & Environmental Engineering National Technical University of Athens, Greece

Motivation: Ensuring energy autonomy for Sifnos island

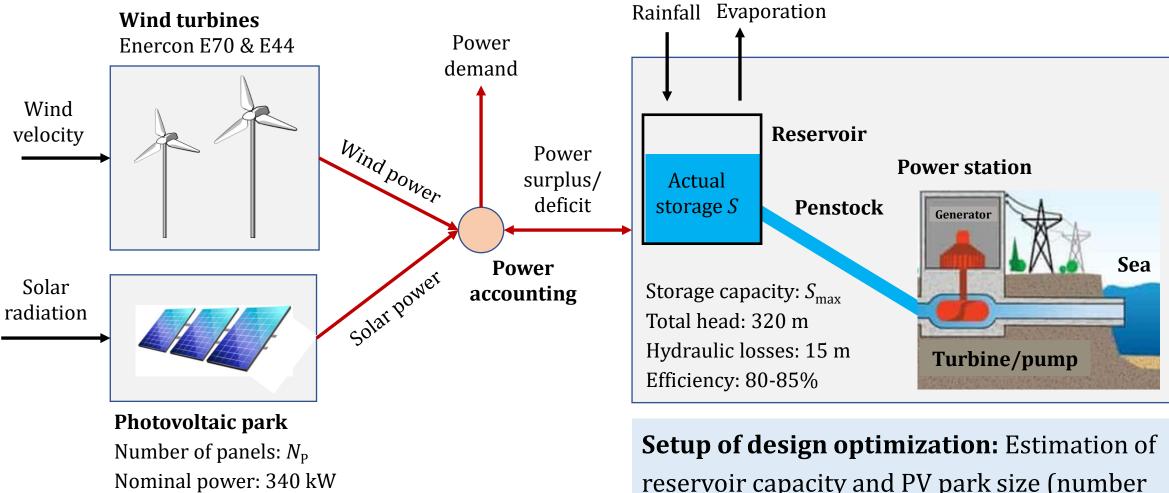
Source: Wikipedia

General characteristics:

- Located in the western Cyclades complex
- Area: 74 km²
- Permanent population: 3 203 inhabitants
- Up to 100 000 tourists during summer
- Major geological formation: Dolomitic marble

Source: Google Earth

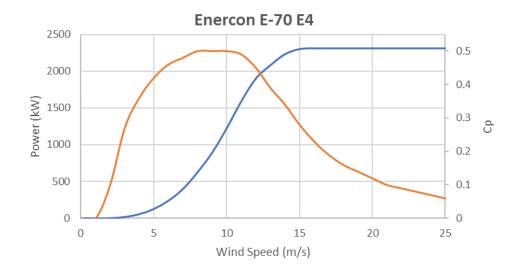
Profile of current energy supply system:

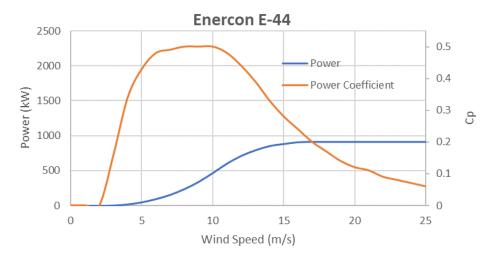

- Non-interconnected island
- Energy production from a 9.0 MW oil power station
- Small share from renewables (1.2 MW wind, 0.2 MW PV)
- Total annual energy demand (2021): **17.3 GWh**
- Peak energy demand (summer period): **5.4 MW**
- Projected peak demand: 8.0 MW

Research objective: Design of a hybrid power system based on seawater pumped-storage and two renewables (solar, wind)

Further info: Katsaprakakis & Voumvoulakis (2018)

Conceptual scheme of proposed hybrid power system

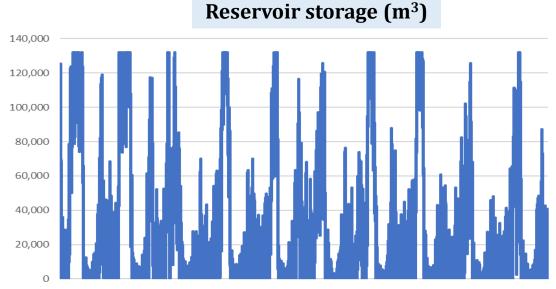

Panel area: 1.94 m²

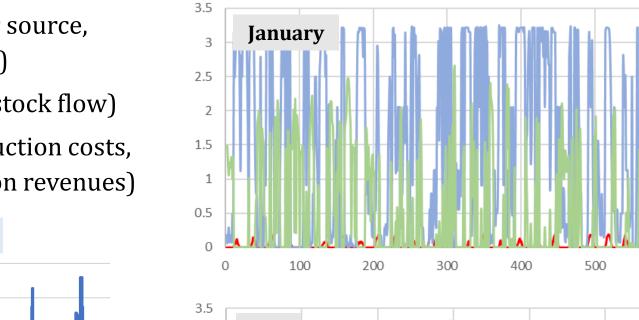

Zisos et al., Towards energy autonomy of small Mediterranean islands: Challenges, perspectives and solutions

reservoir capacity and PV park size (number of panels) in order to maximize the anticipated net profit and system's reliability

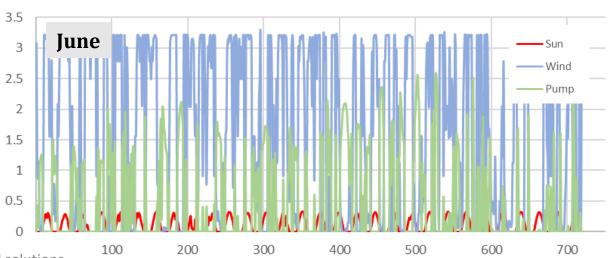
Stochastic simulation-optimization approach

- System driven by inherently uncertain processes, i.e., meteorological and socioeconomic.
- Stochastic simulation-optimization approach (Sakki *et al.*, 2022), by using the anySim model (Tsoukalas *et al.*, 2020) to provide synthetically generated hourly data for:
 - Wind velocity
 - Power demand (socioeconomic process)
- Application of a **typical annual profile** for other meteorological processes (solar radiation, rainfall, evaporation).
- System design optimization under **multiple input data** scenarios of 10 years length.
- Preliminary investigations impose the use of a suitable turbine mix to maximize the available wind potential (key challenge: avoid energy losses due to often cut-offs).





Outcomes of simulation procedure


System outputs:

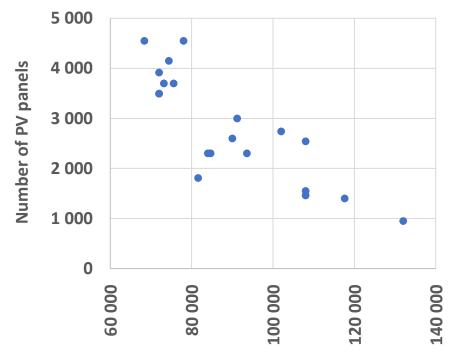
- Energy fluxes (power generation per source, power consumption due to pumping)
- Water fluxes (reservoir storage, penstock flow)
- Financial fluxes (depreciated construction costs, maintenance costs, energy production revenues)

Sharing of energy production (MWh)

600

700

Zisos et al., Towards energy autonomy of small Mediterranean islands: Challenges, perspectives and solutions


Optimization under uncertainty

- Investigation of two optimization settings:
 - **Setting A**: Minimization of system's failure probability (= frequency of power deficits) •
 - **Setting B**: Full depreciation of investment costs for given time horizon •
- The two settings provide substantially different results, yet setting B ensures a more economic design (impressive reduction of reservoir size, reduction of PV panels), with minimal decrease of reliability.
- Multiple combinations of optimized design variables, induced by wind and power demand uncertainty.

Summary results of the two stochastic optimization settings (mean
values of synthetic scenarios, standard deviations in parentheses)

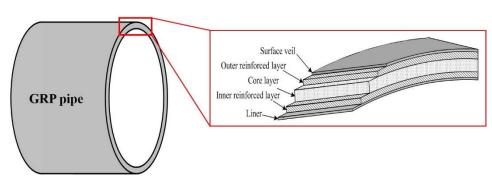
	Setting A	Setting B
Number of solar panels	3 587 (562)	2 825 (1 085)
Reservoir capacity	443 340 (170 019)	89 313 (17 914)
Reliability (%)	82.81 (1.22)	78.58 (1.51)
Investment costs (10 ⁶ €)	30.60	19.60

Zisos et al., Towards energy autonomy of small Mediterranean islands: Challenges, perspectives and solutions

Reservoir capacity (m³)

Other engineering challenges & provided solutions

<u>Pipe erosion:</u>


- Pipe material: GRP
- Significant reduction of friction losses
- Increased durability to UV radiation
- Achieving flow velocity within safety limits (0.6 – 6.0 m/s)

Tank waterproofing:

- Application of HDPE geomembranes
- High resistance in tension,
 puncture, environmental
 stress cracking and chemicals

Erosion of electromechanical equipment:

- Stainless steel equipment
- High resistance in seawater erosion

Source: Yoon and Oh (2015)

Source: Plastika Kritis S.A.

References

- Katsaprakakis, D. A., and M. Voumvoulakis, A hybrid power plant towards 100% energy autonomy for the island of Sifnos, Greece. Perspectives created from energy cooperatives, *Energy*, 161, 680-698, doi:10.1016/j.energy.2018.07.198, 2018.
- Sakki, G.-K., I. Tsoukalas, P. Kossieris, I. C. Makropoulos, and A. Efstratiadis, Stochastic simulationoptimisation framework for the design and assessment of renewable energy systems under uncertainty, *Renewable and Sustainable Energy Reviews*, 2022 (submitted; preprint available at https://ssrn.com/abstract=4109850).
- Tsoukalas, I., P. Kossieris, and C. Makropoulos, Simulation of non-Gaussian correlated random variables, stochastic processes and random fields: Introducing the anySim R-Package for environmental applications and beyond, *Water*, 12(6), 1645, doi:10.3390/w12061645, 2020.
- Yoon, S. H., and J. O. Oh, Prediction of long term performance for GRP pipes under sustained internal pressure, *Composite Structures*, 185-189, 134, doi:10.1016/j.compstruct.2015.08.075, 2015.