
Abstract: Long-range dependence (LRD) estimators are traditionally applied in the lag domain (e.g., through the autocovariance or variogram) or

in the frequency domain (e.g., through the power-spectrum), but not as often in the scale domain (e.g., through variance vs. scale). It has been

contended that the latter case introduces large estimation bias and thus, corresponds to "bad estimators" of the LRD. However, this reflects a

misrepresentation or misuse of the concept of variance vs. scale. Specifically, it is shown that if the LRD estimator of variance vs. scale is properly

defined and assessed (see literature studies for the so-called climacogram estimator), then the stochastic analysis of variance in the scale domain

can be proven to be a robust means to identify and model any LRD process ranging from small scales (fractal behavior) to large scales (LRD, else

known as the Hurst-Kolmogorov dynamics) for any marginal distribution. Here, we show how the above definitions can be applied both in spatial

and temporal scales, with various applications in geophysical processes, key hydrological-cycle processes, and related natural hazards.
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1. Definitions of Long-Range Dependence (LRD)

The LRD process is often defined through the discrete autocovariance function c (vs. lag τ) or

power-spectrum s (vs. frequency w) of a stationary (spatial or temporal; continuous or

discrete) process satisfying (i.e., Kolmogorov, 1940; Mandelbrot and Wallis, 1968; Beran, 1992):
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where H is the so-called Hurst parameter (Hurst, 1951).

Note that:

1) in the above expressions the LRD process is defined through the lag or frequency domain,

2) the LRD process is often assumed to be Gaussian in literature (e.g., consider the fractional-

Gaussian-noise, fGn; arising from the increment process of the fractional Brownian motion;

Mandelbrot and van Ness, 1968),

3) if the LRD process is applied for the whole range of lags or frequencies (e.g., for a continuous

fGn, we get �(ℎ) = ��� 2� − 1 ℎ/� ����, where h is the continuous-time lag, a a time-scale

parameter, and �� the process variance at ℎ = �), then at zero lag the variance tends to infinity

(and thus, resulting to a physically inconsistent process; Koutsoyiannis, 2021).



2. ‘Bad Estimator’ of Long-Range Dependence

Several estimators have been tested based on the power-spectrum (e.g., through the
periodogram) and maximum-likelihood (see discussion and comparisons in Beran, 1992),
R/S (Hurst, 1951; Mandelbrot and Taquu, 1979), autocovariance (e.g., Mandelbrot and
Wallis, 1968) or even preliminary attempts at the scale domain, stating that (Beran, 1988):

Each method presented several limitations,
and since, no clear superiority of any method
was achieve, it was concluded that (Beran, 1992):



3. Resurrection of the ‘Bad Estimator’

“If we confess our sins, He is faithful and just to forgive us our sins and to cleanse us from all 
unrighteousness.” (John 1:9)

After identifying the limitations of the previous methods (e.g., see discussion and
comparisons in Dimitriadis and Koutsoyiannis, 2015), a proper definition of the “variance
of the averaged process vs. scale” estimator can be introduced, and also, baptized (at the
scale domain) to the so-called climacogram (Koutsoyiannis, 2010), by linking it to the concept
of scale (i.e., climax in Greek), so as not to be confused with the already established term in
literature of scale(o)gram. The definition of the climacogram unbiased estimator is
(underline quantities denote random variables and ∧ for estimation):

where κ = k/Δ is the dimensionless scale, k the continuous-scale, Δ the time-space resolution of

the continuous-process x, [n/κ] the integer part of n/κ, n the length of the discrete-process xi
with mean μ, and xi

(κ) is the i-th element of the averaged sample of the process at scale κ, i.e.,

with .



4. Definition of LRD with the new estimator

The definition of the LRD (through the Hurst parameter) can be now defined as:

where for any function f(x) we set .

Note that based on the above climacogram estimator, other estimators can be also defined
as for example the climacogram-based variogram v(k) := γ(0) — γ(k), and the climacogram-
based spectrum (Koutsoyiannis, 2021),

with similar properties to the classical variogram and power-spectrum, respectively, but
with more robust corresponding estimators.



5. Global-scale application (I)

Application of the above estimators to an hourly and daily resolution massive database of 
global-scale ground stations of key hydrological-cycle natural processes (i.e., near-surface 
temperature, dew-point, relative humidity, sea level pressure, wind-speed, precipitation 
and streamflow; more details and sources in Dimitriadis et al., 2021).

Note that, in total, approximately 50 × 1010 data values are extracted and handled from over 
2 × 105 stations.



6. Global-scale application (II)

The LRD behaviour is traced in all processes and compared to the white-noise climacogram 
as well as to a laboratory-scale experiment of grid-turbulence for illustration.



7. Global-scale application (III)

The Hurst Parameters through the climacogram estimator and the 5% and 95% quantiles (in 
parentheses) are shown below.



8. Concluding Remarks

1) The estimator for the LRD based on the variance at the scale domain is not a ‘bad
estimator’ and should be further investigated.

2) As compared to the classical lag and frequency domains, the second-order temporal and
spatial statistics is suggested (see definitions, discussion and applications in Koutsoyiannis,
2021, and references therein) to be analyzed and studied in the scale domain (through the
climacogram metric), which shows great potential (as compared to the lag and frequency
domains, through the autocovariance and power-spectrum, respectively).

3) The LRD behaviour is traced (after estimated through the more robust estimator of
climacogram) in key hydrological-cycle processes (this is also verified from other studies in
literature; see review and references in Dimitriadis et al., 2021).

4) Interesting stochastic similarities of the second-order dependence structure ranging from
hourly to climatic scales are revealed when using the climacogram metric.

Thank you!
For questions please also consider sending an email to initiate a fruitful discussion.
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