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A stochastic approach to causality
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Background

Causality: a philosophical puzzle

Aristotle (384-322 B(C)

That which when present is the cause of
something, when absent we sometimes consider to be
the cause of the contrary. == Probabilities
David Hume (1711-1776)

Custom alone makes us expect for the future, a
similar train of events with those which have appeared

in the past. == Only subjective?

Immanuel Kant (1724-1804)
All alterations occur in accordance with the law
of the connection of cause and effect. ~ wm% (Qpjective
It is really this necessitation that first makes possible
the representation of a succession. =) |rreversibility

Causality: contemporary approaches
Patrick Suppes (1922-2014)

An event By [occurring at time t'] is a prima facie cause of the event At [occurring at

time t| ifand only if
)t' <t
(i) P(B,1) > 0,
(iii) P(A,|B,) > P(A,).
¥ Brian Skyrms (1938-)
o Alternative third condition: Conditional

P(A.|B,") > P(A.|B,") ~ probabilities

=) Probabilistic
law

w v David Cox (1924-2022)

. (iv") there is no event C,» at time t"" < t' < t which “screens off” B,/ from A, such
that P(A,|B,/C,") = P(4,IC,). =) AvOid spurious
correlations

We seek necessary conditions of causality accounting for its
being law-governed and irreversible, These conditions must
define the conditional dependence of effect upon cause in
probabilistic terms, while excluding spurious correlations as far
as possible.

However:

Descriptions in terms of probabilities of events are fine for
events defined sufficiently broadly (e.g. flood/no flood) and for
reproducible events that are controlled in the lab.

For more precise quantifications in open systemes, it is better to
seek causal links between time-series.

Clive Granger (1944-2009)

Time-series {X,} has information useful to predict {Y;} or
“Granger-causes” Y;.
The null hypothesis of no-Granger causality is:
by =bpy1 ="=by =0
where:
Vi=ao+XiZia; Y + Z?=p b Xe—i + Wy
This is tested with an F-test.

But causality is not best defined as what, additionally to a signal’s
correlation structure, improves forecasting.

Alternative time-series proposal

Motivation

O As starting point, we take the key requirements that causality
(i) is law-governed and (ii) defines an irreversible temporal
order. For quantities X and Y for which time-series of
observations are available, the first causes the second only if:
0y(t) = fn(0x(t — h))Ah
where h = 0 (irreversibility) and Ah represents the time during
which the causal effect is brought about and f; is some function
that will define the causal law and for which, assuming a single

cause: f,(0) =0

¢ By Taylor expansion:
oy(t) = 6x(t — h) d—]::‘ (0)Ah + o(6x(t — h))Ah

and if we define g(h) = %:‘ (0), we obtain:
dy(t) = 6x(t — h)g(h)Ah + o(6x(t — h))Ah

¢ Representing the negligible terms as random terms W (h),
we get: Y(t) =X(t—h)g(h)Ah + W (h):Ah

¢ Assuming now that X over a range of past times causes Y, by

Integration

f: @
G

Y(t) = jooX(t —h) g(h)dh + V(t)
0

—/

Function g is the Impulse Response Function (IRF).

Necessary conditions

The task is to identify function g such that
+ 00
Y(t) = j X(t—h)g(h)dh +V(t)

— O

Var(V)

The explained varianceise = 1 —
Var(Y)

O (X,Y) is potentially causal if g(h)=0 for any h<0 and e is non
negligible;

0 (X,Y) is potentially anti-causal if g(h)=0 for any h>0 and e is non-
negligible (= (Y, X) is potentially causal);

O (X.,Y) is potentially hen-or-egg (HOE) causal if g(h)#0 for some
h>0 and some h<0, and e is non-negligible;

O (X,Y) is non-causal if e is negligible

—a-=Potentially causal == Potentially anticausal

/(9 -4 Potentially hen-or-egg causal | =====Noncausal

Plot of the
IRF g as a
function of

lag h

0
Time lag

Additional requirements for potential causality
0g(h) =0forallh e H

O The smoothness of the IRF, defined as E = fj;o(g”(h))z dh
must be smaller than some pre-defined value E

¢ Var(V) must be minimal

Estimation

Y(t) = me(t —h) g(h)dh + V (t)

— O

is discretised as:

+00
Yt — EXt_j g] + Vt

This is estimated through the following estimator:
+)

Vi = zxt—j gj + Uy
—J
where u,, ensures that the estimation is unbiased.

O The IRF is estimated by minimizing the sample variance of
¥+ — V¢ While keeping the roughness index smaller than E|,.

var(Ye—Ye)
var(Yt)

This also yields: é = 1 —

Artificial examples (1)

Construction

We construct artificial systems by using the equation:
+1y

Yt Z aiXt—i + Ut
i=—I
with U,~N (0, 0.5%), where I; and Iy vary according to the
application and X, is a Filtered Hurst Kolmogorov process. o

(D Systems #1 - #3 show the role

Causal system #1 played by the above additional
- requirements in identifying

the IRF

{I, = 0; Iy = 20; no constraints;
J = 20}

Left: x > y (e = 0.94) ’
Right: y— x (e = 0.97) | il

*;V'v i

10 20

Causal system #2

{I, = 0; Iy = 20; non-negativity;
no roughness constraint; /] = 20}
Left: x > y (e = 0.94) o« ———=
Right: y—= x (e = 0.94) |

Artificial

Causal system #3
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examples (2)

{I, = 0; Iy = 20; non-negativity;
roughness constraint ; | = 20}

Left: x > y (e = 0.94)

0.3

Right: y— x (e = 0.94) ..[

0.2

0.15

0.1

0.05

0

IRF, theoretical

-20

Causal system #4:

-10 0 10

{I, = 0; Iy = 20; non-negativity;
roughness constraint; ; | = 20; e’}

Left: x > y (e = 0.32) [ ..

Right: y = x (e = 0.43d> :

In system #4, y is
exponentiated.

------ Median

Although e is not large,
causality is detected.

Causal system #5

-10 0 10 20

Time lag

In system #5, the+20
window is too small to
capture the full causal

(I, = 0; I, = 1024; non-negativity; | | effect which spans 1024

roughness constraint; | = 20}

0.4

time steps.

0.025

Left: x > y (e = 0.57) ..

Right: y— x (e = 0.50) |

0.25

w
e 02
0.15
0.1

0.05

0

IRF, theoretical
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0.005

0
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Real examples

Precipitation and runoft

{non-negativity; roughness () x and y are 3-hr precipitation and

constraint; | = 20; 40}
Left: x — y untransformed
(e =0.17; 0.26)

Right: x — y transformed
(e = 0.68;0.71)

runoff. Because they are non-
linearly related, a nonlinear
transform raises e. Note also the
impact of window size (+20, +40).
Clear potential causality.
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Atmospheric Temperature

and ENSO
{non-negativity; roughness
constraint; | = 20}

Left: ENSO - T (e = 0.39)
Right: T — ENSO (e = 0.30)

0 x and y are monthly ENSO and

atmospheric temperature (left)

and vice-versa (right).

Again, there is clear evidence of
potential causality ENSO - T
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Conclusions

We have proposed conditions that need to be fulfilled to
claim that there is causality in non-oscillatory open systems.

These are necessary but not sufficient and there is a degree
of subjectivity in the conclusions since no statistical test has

been developed

More information and examples are found in our papers
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