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A B S T R A C T   

Complex environmental optimization problems often require computationally expensive simulation models to 
assess candidate solutions. However, the complexity of response surfaces necessitates multiple such assessments 
and thus renders the search procedure too laborious. Surrogate-based optimization is a powerful approach for 
accelerating convergence towards promising solutions. Here we introduce the Adaptive Multi-Surrogate 
Enhanced Evolutionary Annealing Simplex (AMSEEAS) algorithm, as an extension of its precursor SEEAS, 
which is a single-surrogate-based optimization method. AMSEEAS exploits the strengths of multiple surrogate 
models that are combined via a roulette-type mechanism, for selecting a specific metamodel to be activated in 
every iteration. AMSEEAS proves its robustness and efficiency via extensive benchmarking against SEEAS and 
other state-of-the-art surrogate-based global optimization methods in both theoretical mathematical problems 
and in a computationally demanding real-world hydraulic design application. The latter seeks for cost-effective 
sizing of levees along a drainage channel to minimize flood inundation, calculated by the time-expensive hy-
drodynamic model HEC-RAS.   

1. Introduction 

Simulation models of detailed spatial and temporal resolution have a 
pivotal role in environmental sciences, also gaining increasing popu-
larity in engineering practice. Such models provide the capability to 
represent complex physical phenomena, accounting for the spatiotem-
poral dynamics of all processes of interest, as well to describe their in-
teractions with infrastructures and societal factors. Their utility is 
further enhanced when these are coupled with optimization methods 
(Maier et al., 2014). At a conceptual level, combined 
simulation-optimization schemes (Tsoukalas et al., 2016) can be 
employed to address both decision-making applications (e.g., optimal 
design, planning, management and real-time control of environmental 
systems) and inverse modeling problems as well, aiming to identify 
optimal model configurations so that the observed responses are faith-
fully represented. As their name suggests, these use simulation models to 
evaluate the system’s performance, expressed in terms of an objective 
function of a nonlinear (global) optimization problem, with no analyt-
ical solution or derivative information. 

The literature is particularly rich in such efforts and advances, which 

have been summarized in the review works of Labadie (2004), Fowler 
et al. (2008), Nicklow et al. (2010), Reed et al. (2013), Ahmad et al. 
(2014) and Kumar and Yadav (2022), which emphasize on water re-
sources management, as well as by Duan (2003) and Efstratiadis and 
Koutsoyiannis (2010), which focus on hydrological calibration. 

The major obstacle encountered in model-based optimization prob-
lems is the required computational workload, which is dictated by the 
computational cost (e.g., time) of the underlying simulation model. 
State-of-the-art simulation models have the ability to describe the pe-
culiarities of environmental systems with great accuracy and detail (e.g., 
in terms of geometry, boundary conditions and spatiotemporal dy-
namics), yet this comes at a price. Another common category of time- 
demanding models involves stochastic simulation schemes that are 
driven by long synthetic data, in order to quantify their probabilistic 
performance with satisfactory accuracy. In all these cases, the compu-
tational time for a single model execution may require from a few mi-
nutes up to several hours. On the other hand, depending on the problem 
dimensionality and the irregularity of the response surface, a typical 
global optimization algorithm may need to evaluate the objective 
function (and hence call the simulation model) thousands of times, in 
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order to converge to a satisfactory solution. These two issues combined, 
result in termination of the optimization procedure after days or even 
weeks, which makes the optimization task infeasible and, sometimes, 
even prohibitive. 

Among the different strategies proposed by the research community 
(e.g., Razavi et al., 2010) to deal with the time issue, including parallel 
computing, computationally efficient search algorithms, opportunistic 
avoidance of model evaluations, a particularly interesting one with 
proven effectiveness, is the use of surrogate modeling techniques. Sur-
rogate models (also known as meta-models) offer an elegant 
software-based solution, where low-computational-cost approximation 
models are used to represent the actual (and time-expensive) simulation 
model’s response surface and thus guide the optimization procedure. In 
particular, the surrogates aim to aid the search procedure, by replacing 
the actual simulation model to some extent and proposing promising 
solutions that will possibly lead to a much faster convergence of the 
optimization. Under this premise, the simulation procedure is called in 
limited cases, in order to evaluate the objective function wherever 
suggested by the surrogate model. 

From a historical perspective, one of the first works that popularized 
such approaches is attributed to Jones et al. (1998), who introduced the 
so-called Efficient Global Optimization (EGO). EGO embeds a Kriging (i. 
e., Gaussian process) method as a surrogate model to the core of the 
optimization procedure. Among others, this has the role of locating 
potentially good solutions that are worth evaluating through the actual 
simulation model. 

After the seminal publication of EGO, several optimization schemes 
incorporated the idea of using surrogate modeling techniques, thus 
resulting to a vast list of algorithms, where numerous alternative Ma-
chine Learning models are employed as surrogate models, such as 
Polynomials, Radial Basis Functions (RBFs), Random Forests (RFs), 
Support Vector Machines (SVMs), Artificial Neural Networks (ANNs), 
etc. (e.g., Müller et al., 2013; Liu et al., 2014; Golzari et al., 2015; 
Mallipeddi and Lee, 2015; Awad et al., 2018). The use of 
surrogate-assisted approaches spans over multiple types of optimization 
problems, also including discrete, constrained and multiobjective 

optimization. Emphasis was also given to time-demanding problems 
with many control variables, also referred to as high-dimensional expen-
sive black-box (HEB) problems. Running advances for HEB problems 
include the so-called Knowledge Transfer assisted Efficient Global 
Optimization (KT-EGO) algorithm, which extends the classical version 
of EGO to handle high (i.e., >20 variables) dimensions (Wang et al., 
2022). Other recently published methods aim at providing hybrid 
schemes that combine different search and/or surrogate strategies. For 
instance, Dong et al. (2018a) introduced the Multi-surrogate-based 
Differential Evolution with Multi-start Exploration (MDEME) algo-
rithm, which uses Differential Evolution, enhanced by three surrogate 
models (i.e., Kriging, Radial Basis Function, Quadratic Polynomial 
Response), while Pan et al. (2021) proposed the so-called Surroga-
te-Assisted Hybrid Optimization (SAHO), that employs two different 
optimization techniques (i.e., Teaching–Learning-Based Optimization, 
Differential Evolution), combined with RBF metamodels. 

The idea of surrogate-based optimization has also found fertile 
ground in the domain of water resources and the environment (e.g., 
Wang et al., 2014; Tsoukalas and Makropoulos, 2015a; Tsoukalas and 
Makropoulos, 2015b; Shaw et al., 2017; Xia et al., 2021; Lu et al., 2022), 
starting from the pioneering work by Regis and Shoemaker (2004). 
Since then, this approach managed to address real-world optimization 
problems of significant complexity. For instance, Yazdi and Salehi 
Neyshabouri (2014) introduced a framework to solve high-dimensional 
problems for optimizing flood control detention dams. Wu et al. (2015) 
proposed the so-called Surrogate-based Optimization for Integrated 
surface water-groundwater Modeling (SOIM) algorithm for water man-
agement optimization problems. Xi et al. (2017) proposed a 
surrogate-assisted approach to efficiently calibrate agricultural- 
hydrological models on a limited budget. Recently, Sun et al. (2022) 
developed the so-called Multi-Objective Adaptive Surrogate 
Modelling-based Optimization for Constrained Hybrid problems 
(MO-ASMOCH), which is designed to handle problems consisting of both 
continuous and discrete control variables. 

The focus of this research is to provide improved surrogate-based 
solutions for handling time-demanding global optimization problems 
(where term “global” is used to denote nonlinear, single-objective, un-
constrained optimization problems with continuous variables). This 
kind of problems is very common in the domain of water resources and 
the environment, where the objective function is typically defined 
through a computationally expensive simulation model and the result-
ing response surface is, in general, multimodal. For convenience, we also 
consider that the problem is configured in single-objective terms, 
meaning that the system’s performance is expressed via an overall scalar 
metric, and, more specifically, by means of a “cost” function to mini-
mize. We highlight that this overall metric may aggregate several 
criteria (potentially, conflicting), and embed as well (few) external 
constraints, by means of penalties. On the other hand, the vast majority 
of constraints that are associated with internal modeling procedures (e. 
g., description of physical processes), are exclusively handled through 
the underlying simulation model, thus the optimization problem is by 
definition formalized as unconstrained. Regarding the search space (also 
known as decision or feasible space), it is formalized as a hypervolume, 
by assigning lower and upper boundaries to the problem’s variables 
(according to the problem type, these may be referred to as control 
variables, decision variables, design variables or parameters). 

Table 1 contains a list of state-of-the-art (i.e., published during the 
last decade) surrogate-based algorithms for the case of our interest, i.e., 
global optimization. It is interesting to notice that very few of them are 
publicly available, while only three utilize more than one surrogates 
across the exploration-exploitation procedure. In an attempt to fill this 
gap, we introduce and provide as open-source software, in Python 
environment, the so-called Adaptive Multi-Surrogate Enhanced Evolu-
tionary Annealing Simplex (AMSEEAS) algorithm. Its key novelty is the 
use of multiple surrogates that cooperate to enable significant im-
provements across the search space. As the search evolves, the most 

Table 1 
State-of-the-art surrogate-based algorithms for unconstrained single-objective 
optimization (publicly available algorithms are highlighted with bold).  

No Algorithm Publication Multiple 
Surrogates 

Publicly 
Available 

1 KT-EGO Wang et al. (2022) Yes Yes 
2 SATLBO Dong et al. (2021) No No 
3 SAHO Pan et al. (2021) No No 
4 PODS Xia et al. (2021) No Yes 
5 – Müller (2020) No No 
6 TURBO Eriksson et al. (2019) No Yes 
7 IDEASM Awad et al. (2018) No No 
8 MDEME Dong et al. (2018a) Yes No 
9 HSOSR Dong et al. (2018b) Yes No 
10 ASMO- 

PODE 
Gong and Duan (2017) No No 

11 MSSR Dong et al. (2016) No No 
12 SOP Krityakierne et al. 

(2016) 
No Yes 

13 SEEAS Tsoukalas et al. (2016) No Yes 
14 GSAMP Dong et al. (2015) No No 
15 AMGO Jie et al. (2015) No No 
16 ESMDE Mallipeddi and Lee 

(2015) 
No No 

17 SOIM Wu et al. (2015) No No 
18 GPEME Liu et al. (2014) No No 
19 OPUS-RBF Regis (2014) No No 
20 ASMO Wang et al. (2014) No No 
21 LHO- 

RBFNN 
Yao et al. (2014) No No 

22 DYCORS Regis and Shoemaker 
(2013) 

No Yes 

23 SBPSO Tang et al. (2013) No No  
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effective surrogates are applied more frequently, on the basis of a self- 
adaptive probabilistic selection scheme. AMSEEAS builds upon two exist-
ing optimization schemes, i.e., the Surrogate-Enhanced Evolutionary 
Annealing Simplex (SEEAS) by Tsoukalas et al. (2016) and the Evolu-
tionary Annealing Simplex (EAS) by Efstratiadis and Koutsoyiannis 
(2002). 

A brief overview of EAS and SEEAS, and a more detailed description 
of AMSEEAS, are given in Section 2. To evaluate its effectiveness and 
efficiency, the proposed algorithm is thoroughly benchmarked against 
its forerunner (i.e., SEEAS), as well as other state-of-the-art surrogate- 
based global optimization algorithms. The comparison is realized, 
initially, via testing all algorithms on a set of mathematical test func-
tions, with complex response surfaces and multiple local optima (Sec-
tion 3). Furthermore, to evaluate the proposed algorithm’s performance 
on a real-world problem of significant difficulty, AMSEEAS is tested on a 
hydraulic design problem, where the evaluation of the cost function 
requires the use of a time-expensive hydrodynamic model (Section 4). 
The overall analyses illustrate the advantages of AMSEEAS in terms of 
providing systematically better solutions under a limited computational 
budget. 

2. Optimization methodology 

2.1. Evolutionary Annealing Simplex 

EAS is a heuristic global optimization algorithm, developed by 
Efstratiadis and Koutsoyiannis (2002). Its main rationale is finding an 
effective way to combine the strengths of the downhill-simplex local 
optimization method (Nelder and Meadf, 1965) with simulated 
annealing (Kirkpatrick et al., 1983), also incorporating fundamentals of 
evolutionary algorithms, namely the concepts of an evolving population 
and the genetic operators (Ryan, 2003). 

In this respect, it combines the flexibility of simulated annealing to 
escape from local optima, with the ability of the Nelder-Mead method to 
locate areas of attraction quickly and accurately. This is accomplished 
through the introduction of a “temperature” variable, T, which de-
termines the randomness assigned to the search procedure. At early 
stages, temperature is desired to have large values, thus making the 
system “warm”, so that randomness can play a major role to favor the 
exploration across the entire feasible space. In contrast, as the search 
evolves, the algorithm is capable of finding areas of attraction and the 
system gets “colder” (since its temperature decreases), thus the search 
becomes more deterministic and exploitation can begin. 

At each iteration cycle, the generation of new solutions is realized by 
randomly selecting from the population so far sub-sets of n+ 1 points in 
the n-dimensional search space (thus each sub-set defines a simplex) and 
employing appropriate geometrical transformations. In order to deter-
mine the simplex vertex to be replaced, the associated population 
members are not being compared exclusively by their objective function 
value, but a randomness term, related to the current system tempera-
ture, is added. In early iterations, randomness is often the most crucial 
component in the comparison, and, thus, the solution being chosen for 
replacement may not be the actually worst simplex vertex. Nonetheless, 
the best vertex (i.e., the solution with the lowest objective function 
value) is not part of this comparison, in order not to accidently discard a 
good solution. Next, the algorithm seeks for improved solutions, based 
on a stochastic formulation of the standard Nelder-Mead sequence 
(reflection, expansion, contraction, shrinkage), also introducing addi-
tional transformations. If these movements fail to detect improved 
points, then a mutation mechanism is activated, which ensures diversity 
among the population members and eventually helps the algorithm 
escape from possible local optima. 

2.2. Surrogate-Enhanced Evolutionary Annealing Simplex 

SEEAS is a heuristic population-based global optimization method, 
originally developed by Tsoukalas et al. (2016) and is essentially an 
extension of EAS, in a sense that a surrogate model (SM) is incorporated 
to assist the search procedure, in particular a cubic RBF with linear 
polynomial tail, which is an interpolation method. SEEAS also uses and 
maintains an external archive, which includes all population members 
so far, for which the value of the real objective function is computed. 
Every time a new function value is obtained through the simulation 
model, the associated point enters the archive, too. All data in the 
archive are used whenever the interpolation is applied, so that the 
metamodel can approximate the response surface of the real model more 
accurately and make useful predictions, that will help the convergence 
towards the global optimum. As the number of objective function 
evaluations increases, the archive enlarges, as well, and the updated 
surrogate becomes progressively more accurate in its predictions. 

In fact, the SM in SEEAS has a double role, namely locating, auton-
omously, new promising points, where the objective function will be 
evaluated, and providing guidance on the execution of the simplex 
transformations (as employed in EAS), by indicating promising di-
rections. The RBF comes with an Acquisition Function (AF), which is a 
well-known technique used in Surrogate-Based Optimization (SBO) in 
order to balance exploration and exploitation. The AF in SEEAS uses self- 
adjusting weights, that are updated in every iteration according to the 
current number of objective function evaluations and the maximum 
allowed one. 

The generation of the initial population is employed via the Latin 
Hypercube Sampling (LHS) technique (Giunta et al., 2003), which is an 
established statistical method, that ensures sufficient sampling across 
the search space. A typical iteration step is carried out as follows: 
Initially, the SM is fitted to the data of the current external archive. Next, 
an internal global optimization algorithm (i.e., the original version of 
EAS) is used to optimize the updated SM, by using as objective function 
the AF emerging from the fitted RBF. The arising global minimum is a 
candidate solution to enter the population. If this point is better than the 
worst solution in the current population, then it replaces it and enters 
the population, otherwise it is rejected. In any case, it enters the external 
archive, thus improving the available information about the geometry of 
the search space. Afterwards, the search procedure is based on the ge-
netic operators of EAS. In this respect, a simplex is randomly created 
from the existing population and executes the standard simplex move-
ments. A key difference with EAS is that all movements except for 
shrinkage (i.e., reflection, expansion, contraction) are supported by the 
metamodel. For instance, after defining the direction of reflection, 
multiple new candidate points are produced along this, and the SM is 
applied to dictate which one should be chosen and evaluated through 
the actual simulation model. The rest elements of EAS are maintained as 
in the original algorithm, in particular, the mutation operator and the 
self-adjusting annealing schedule, which controls the system’s temper-
ature, and eventually the randomness of the search procedure. At the 
end of the iteration, there is at least one new point obtained, that enters 
the population, replacing one of its preexisting members. The search is 
terminated either by reaching a maximum allowed number of function 
evaluations or by fulfilling a given convergence criterion. 

For a detailed description of SEEAS, regarding the mathematical 
equations of the RBF, AF and the analysis of the surrogate-enhanced EAS 
operators, interested readers are encouraged to refer to Tsoukalas et al. 
(2016). 
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2.3. Adaptive Multi-Surrogate Enhanced Evolutionary Annealing Simplex 

The proposed algorithm is an improved version of SEEAS. The 
notable difference between the two algorithms is that AMSEEAS is not 
limited to the incorporation of a single metamodel, namely the RBF 
surrogate. Its rationale stands on the fact that there is a wide variety of 
metamodels, listed in the literature, that are able to be embedded within 
optimization algorithms in order to assist the search procedure, and that 
there is no specific metamodel clearly superior to the rest ones. In fact, 
the performance of a specific SM depends on the available data (i.e., 
points in which the real objective function value is computed) and the 
peculiarities of the response surface of the underlying optimization 
problem (dimensionality, complexity, multimodality). In cases where 
the metamodel does not fit well to the existing data, thus providing poor 
predictions, there is, consequently, an increased risk to sacrifice a sub-
stantial number of function evaluations, practically without any 
improvement. That being said, it is possible, in some occasions, to apply 
a surrogate-based approach but actually have the opposite effect from 
the desirable one, which is the drastic decrease of the computational 
effort induced by the objective function calls. In this vein, a more 
effective policy would be detecting whether a surrogate exhibits a good 
behavior or not, and, if so, completely discarding it from the search 
procedure. 

In the AMSEEAS setting, multiple metamodels coexist and operate as 
a group, as the optimization evolves. However, the implementation of 
many SMs does not necessarily guarantee a better convergence 
behavior. The key challenge is ensuring that all surrogates cooperate 
effectively, support each other and exploit each other’s advantages. In 
this mindset, AMSEEAS incorporates five SMs in the core of EAS, 
namely: i) a cubic RBF with linear polynomial tail, ii) a Random Forest, 
iii) a Support Vector Machine, iv) a Gaussian Process with a rational 
quadratic kernel, and v) a Gaussian Process with a Matérn kernel. These 
five metamodels emerged, among many others, after extensive analysis 
and experimentation with different optimization problems. 

As mentioned in the previous section, the surrogate model in SEEAS 
has a double role. The first one is providing, on its own, new promising 
points for real objective function evaluation and the second one is 
supporting the simplex movements. Regarding the second role, 
AMSEEAS maintains the same principles and uses the same surrogate as 
SEEAS (i.e., cubic RBF with linear polynomial tail), exclusively, which 
seems to co-operate well with the downhill simplex method. 

Regarding the first role, the novelty introduced in AMSEEAS involves 
the creation of a virtual roulette, which is responsible for deciding which 
out of the five surrogates is activated in every iteration. This is imple-
mented by assigning different probabilities to the five SMs at the 
beginning of each iteration. In particular, the metamodels that are more 
likely to make better predictions get a higher probability of being chosen 
by the roulette for activation. On the contrary, metamodels that seem to 
have poor fitting on the data are excluded from the roulette spinning, 
only for this iteration, to avoid wasting an objective function evaluation. 
Finally, metamodels with marginally satisfactory fitting get a low 
probability of being selected. Under this premise, either one specific 
surrogate will be activated (i.e., as chosen by the roulette) or none, when 
all five metamodels demonstrate too poor fitting on the existing data 
and, hence, are all excluded from the roulette. The assignment of 
probabilities is determined by a well-known goodness of fit criterion, 
namely the Nash-Sutcliffe efficiency (NSE): 

NSE = 1 −

∑n

i=1

(
yi

m − yi
o

)2

∑n

i=1

(
yi

o − yo
)2

(1)  

where yo is the mean actual value, yi
m and yi

o are the ith modeled and 
actual values, respectively, and n is the size of data. The NSE values 
range between − ∞ and 1. When NSE = 1, the model perfectly fits the 
observations, whereas if NSE = 0, the model has the same predictive 
skill with the mean actual value. Negative NSE values indicate a very 
bad fitting, with worse predictive skill than the mean, yo. 

Based on the aforementioned analysis, the threshold determining 
whether a surrogate will participate in the roulette spinning or not, in a 
given iteration, is the value of NSE = 0. This is reasonable, since the fact 
that a metamodel’s fitting corresponds to a negative NSE value is a 
strong indicator that the particular SM will probably waste an objective 
function evaluation, if chosen by the roulette. On the other hand, met-
amodels with positive NSE values will be part of the roulette wheel and 
have a non-zero probability of being selected, which is proportional to 
their NSE value. In particular, considering m total surrogates 
(1 ≤ m ≤ 5) with positive NSE values (i.e. NSE1, NSE2, .., NSEm), we 
compute their sum (NSEsum = NSE1 + NSE2 + …+ NSEm) and their 
corresponding probabilities are calculated as p1 = NSE1/NSEsum, p2 =

NSE2/NSEsum, …, pm = NSEm/NSEsum. 
In order to estimate the NSE values at each iteration, the total data so 

far in the archive are split into a training and a test set. The training set 
contains a randomly determined 80% of points, and the test set contains 
the remaining 20%. The five surrogates are fitted to the same training set 
and then make their predictions in the same test set, including the rest 
available points. 

Provided that at least one of the five surrogates has a positive NSE 
value, the roulette mechanism is activated to select the surrogate to be 
next used for predicting and providing a new promising point, for 
evaluating the real objective function. Contrarily, if all metamodels have 
a negative NSE value, the roulette mechanism remains deactivated, and 
the iteration continues by “jumping” to the surrogate-assisted genetic 
operators of SEEAS. 

The roulette mechanism contains an additional functionality, i.e., 
permanently eliminating surrogates, once they reach a specific 
threshold. More specifically, once a metamodel is chosen by the roulette, 
it indicates the next point, where the real objective function value will 
be calculated. If this point is better than the worst point in the current 
population, it replaces it, otherwise it is ignored. So, if a surrogate makes 
a bad prediction (i.e., it generates a worse point than the whole current 
population), then a penalty counter is initialized. When this counter 
reaches a given maximum value, then the associated metamodel is 
considered unable for providing any more assistance. Hence, it is 
permanently removed from the system, allowing for the rest of the 
metamodels to continue enhancing the optimization procedure. How-
ever, if all metamodels reach that maximum penalty value, then the 
roulette mechanism is discarded, and the search evolves by only 
employing the surrogate-assisted genetic operators of SEEAS. 

A demonstration of the incorporation of multiple metamodels and 
the corresponding virtual roulette mechanism is illustrated in Fig. 1. 
Since the cubic RBF with linear polynomial tail has a negative NSE value 
(i.e., NSE = − 0.050), it will abstain from the roulette for this particular 
iteration, whereas the rest of surrogate models will participate in it. 
Since the Random Forest metamodel exhibits the highest NSE value (i.e., 
NSE = 0.916), it also gains the highest probability (i.e., 46.97%) of 
being chosen for prediction. 

The proposed algorithm includes two final extensions. The first one 
refers to the sampling method used to generate the initial population. 
The default method is the LHS technique, however our extensive in-
vestigations with test functions (see Section 3) showed that, in some 
cases, the algorithm performs much better when the Symmetric Latin 
Hypercube Design (Ye et al., 2000) is employed. The second extension 
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refers to a local search strategy, in an attempt to further improve the best 
solution emerging at the end of each iteration cycle. More explicitly, 
after finalizing the surrogate-assisted genetic operators, the current best 
population solution is acquired and a search across its neighborhood is 
conducted. In this respect, a large number of points around the optimal 
one is generated and evaluated through the cubic RBF with linear 
polynomial tail, in order to indicate the most promising one for 
employing a real objective function evaluation. If this is better than the 
current worst point in the population, it replaces it, otherwise it is 
rejected. Nevertheless, the new point enters the external archive. 

Flowcharts of both SEEAS and AMSEEAS are presented in Fig. 2. 

3. Benchmarking of optimization algorithms with mathematical 
test functions 

3.1. Problem setup 

In order to assess the performance of AMSEEAS with respect to other 
well-established surrogate-based global optimization methods, we 
initially evaluate them against a number of standardized optimization 
tests, involving mathematical functions that exhibit different 
complexities. 

AMSEEAS is benchmarked against five state-of-the-art surrogate- 
based global optimization algorithms that are listed in Table 1, specif-
ically the ones that are publicly available, namely PODS (Xia et al., 
2021), TURBO (Eriksson et al., 2019), SOP (Krityakierne et al., 2016), 
SEEAS (Tsoukalas et al., 2016), DYCORS (Regis and Shoemaker, 2013). 
In our tests, we also include the classical MLMSRBF method (Regis and 
Shoemaker, 2007), since it has gained significant popularity over the 
time, as indicated by the associated number of citations (more than 
400). Regarding TURBO, we consider two different configurations of it, 
depending on the number of trust regions used, which is a critical input 
argument of the algorithm. Thus, we evaluate two versions, herein 
referred to as TURBO-1 and TURBO-M, with 1 and M = 5 trust regions, 
respectively. Under this premise, eight algorithms are eventually 
participating in the benchmarking. 

In order to ensure fair comparisons, we use the same population size 
for all algorithms, equal to m = 2× (n + 1), where n is the number of 
control variables, as proposed by Regis and Shoemaker (2006). More-
over, in all cases, the generation of the initial population (also referred 

to as Design of Experiment, DoE) is employed via the LHS technique, and 
the default values for all algorithmic inputs and hyperparameters are 
set, as suggested in the associated publications. As far as the computa-
tional workload of the core optimization procedures (e.g., random 
sampling, geometrical transformations, building of surrogates, check of 
termination criteria), is minimal, we consider that the simulation is by 
far the most time-consuming stage and, thus, the total computational 
time of the search procedure is mainly determined by the total number 
of function evaluations. 

The benchmarking “suite” consists of six well-recognized mathe-
matical functions, the global minimum of which is known a priori and is 
equal to zero. The six functions are listed in Table 2. 

For each optimization problem shown in Table 2, we consider two 
different dimensions, by setting the number of control variables equal to 
n = 15 and n = 30, as well as two different computational budgets, in 
terms of maximum allowable function evaluations (MFE), which are set 
equal to MFE = 500 and MFE = 1000. In 15-D and 30-D problems, the 
population size is set equal to m = 32 and m = 62, respectively. These 
assumptions are realized in order to have a much more detailed overall 
view of the algorithms’ capabilities and assess their performance, not 
only in cases where the complexity of the problem increases, but also in 
cases where the simulation phase is so time-consuming, that only a few 
hundred objective function evaluations can be executed for obtaining a 
satisfactory solution, in a reasonable time. 

As a result, a total of 6 × 2 × 2 = 24 different optimization problems 
arise. Each problem is executed 30 times by starting from independent 
populations, so that sufficient samples can be collected and then 
assessed. In every algorithm run, the best approximation to the global 
minimum is retrieved (i.e., closest convergence to zero). Afterwards, we 
compute the median value across the sample of 30 optimized sets in all 
24 optimization problems and across the eight competing algorithmic 
schemes. 

In order to draw valid conclusions about all algorithms’ capabilities 
and compare their performances, we apply the concept of stochastic 
dominance (Levy, 1992). In this respect, for each algorithm and each 
test problem that runs 30 times from different initial populations, we 
collect the associated optimal values and plot their empirically-derived 
cumulative distribution function (CDF). To contrast the performance of 
two algorithms, A and B, in a given problem, we compare their CDFs, 
symbolized ΦA and ΦB, respectively. Algorithm A is considered 

Fig. 1. Real response surface of the 2-D Lévy function in the domain [-10, 10] and approximated ones with the five surrogate models. The sample data contains 200 
points, where 160 are used for fitting purposes and 40 for NSE evaluations. 
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stochastically dominant over B, if ΦA(q) > ΦB(q) for all q and vice versa, 
where q is a random quantity to minimize. If, however, the two CDFs are 
intersected, then we compare their median values and thus consider as 
dominant the algorithm with the better performance at this point, given 
that the difference at their medians is statistically significant. To ensure 
statistical significance, we apply the non-parametric Wilcoxon 

signed-rank test (Woolson, 2008). The null hypothesis of the test is that 
the data in ΦA and ΦB are samples from continuous distributions with 
equal medians, while the confidence level is set equal to 95%. If the null 
hypothesis is not rejected, then the two algorithms are considered 
equally good. 

Fig. 2. Flowcharts of SEEAS and AMSEEAS.  
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3.2. Results 

Table 3 and Table 4 depict the performance of the eight competing 
algorithms in terms of median of the optimized function values found for 
30 independent runs over the six test problems in the 15-D and 30-D 
space, respectively, and under the two budgets (i.e., 500 and 1000 

maximum function evaluations). 
For each optimization problem, the empirical CDFs of all algorithms 

are presented in Appendix A (Figure A1 to Figure A6). Whenever 
required, we also employ the Wilcoxon signed-rank test between the 
algorithms providing the best (i.e., lowest) median values, in order to 
help us draw clear conclusions about the algorithm exhibiting stochastic 
dominance in the particular problem. The summary results of these tests 
are presented in Table 5, where n is the number of control variables and 
H indicates the rejection or not of the null hypothesis (i.e., if H = 0, the 
null hypothesis is not rejected and, thus, both algorithms are considered 
equally good). The rejection or not of the null hypothesis on a particular 
problem depends on the value of W, which is the outcome of the Wil-
coxon test. If W < Wcrit, the null hypothesis is rejected (Wcrit is equal to 
137 and denotes the critical value of W for a two-tailed test with a 
sample size of 30 and 95% confidence level). 

As an example, in Fig. 3, we demonstrate one case where the CDF 

Table 2 
Definition of the six mathematical optimization problems.  

Problem Test Function Parameters Bounds 

OF1 Sphere [ − 5.12,5.12] 
OF2 Ackley [ − 32.768,32.768] 
OF3 Griewank [ − 600,600] 
OF4 Zakharov [ − 5,10] 
OF5 Rastrigin [ − 5.12,5.12] 
OF6 Lévy [ − 10,10]  

Table 3 
Median of best solutions in 15-D test problems (optimal results are highlighted with bold). 

Table 4 
Median of best solutions in 30-D test problems (optimal results are highlighted with bold). 
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plots are sufficient for evaluating which algorithm is dominant in the 
particular problem (i.e., 15-D Rastrigin case with MFE = 500), and one 
case where the Wilcoxon signed-rank test is essential to detect the 
dominating method (i.e., 30-D Rastrigin case with MFE = 500). 

The aforementioned analyses clearly indicate the superiority of 
AMSEEAS, in most of examined problems. In 15-D configurations, the 
proposed algorithm dominates in five (OF1, OF2, OF4, OF5, OF6) and 
two (OF1, OF5) problems, for MFE = 500 and MFE = 1000, respec-
tively. As the number of control variables and thus the complexity of the 
optimization problem increases, AMSEEAS performs even more effi-
ciently. In particular, it achieves best performance in five (OF1, OF2, 
OF4, OF5, OF6) problems, for both computational budgets. 

Overall, AMSEEAS is stochastically dominant in 17 out of 24 prob-
lems, PODS in 5, whereas SEEAS in 3. The rest algorithms exhibit less 
satisfactory performance. That is, TURBO-1 and DYCORS are optimal in 
only one case each, while TURBO-M, SOP and MLMSRBF remain sub- 
optimal across all problems. 

It is important to highlight that all algorithms perform poorly against 
OF4 (Zakharov) and OF5 (Rastrigin), as none of them exhibits satisfac-
tory convergence to the global minima, especially in the 30-D space. 
This is not surprising, as these functions produce complicated response 
surfaces, thus making it extremely difficult for the metamodels to fit the 
data and offer useful predictions. 

Table 5 
Summary results of Wilcoxon signed-rank tests to locate the preferred algorithm(s) for each optimization 
problem (the preferred algorithm(s) is (are) highlighted with bold). 

Fig. 3. Empirical CDFs for test function OF5 (Rastrigin) with 15 (left) and 30 variables (right), with MFE = 500.  
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3.3. Convergence behavior analysis 

In order to extend our analysis regarding the proposed algorithm’s 
effectiveness, we examined one additional issue, referred to the 
convergence speed towards the global optimum, in terms of objective 
function evaluations. Briefly, in every run (out of 30, in total) of each out 
of 24 optimization problems, we retrieved the best approximations to 
the associated global optimum, as the objective function evaluations 
increase towards their maximum allowed limit (i.e., MFE = 500 or 
1000). Subsequently, we computed the median values of the best solu-
tions so far, in order to plot and evaluate how fast the optimization 
evolves in each case. The resulting convergence curves are presented in 
Appendix B (Figure B1 to Figure B6). In Fig. 4, we present, for illustra-
tion purposes, the resulting convergence curves of all competing algo-
rithms in a particular optimization problem. 

As the figures indicate, in some optimization problems (i.e., Sphere, 
Zakharov) AMSEEAS exhibits faster convergence towards the global 
optimum, even from the first few hundreds of function evaluations, thus, 
clearly outperforming the rest optimization methods. Besides that, even 
when AMSEEAS is initially evolving relatively slowly (i.e., Ackley, 
Rastrigin, Lévy), afterwards its behavior is remarkably improved. For 
instance, in the 30-D Lévy cases, while SEEAS outperforms AMSEEAS at 
the early stages of the optimization procedures, after approximately four 
hundred evaluations the latter converges much faster. Another note-
worthy case is the Zakharov function, for which the performance of 
SEEAS and other surrogate-based approaches is rather poor (see dis-
cussion by Tsoukalas et al., 2016). However, the multi-model approach 
coupled with the roulette and penalty mechanisms, that are introduced 
in the AMSEEAS version, made the algorithm clearly more effective. 

4. Real-world benchmarking in a computationally demanding 
hydraulic design problem 

Since the application of surrogate-assisted methods in practice in-
volves HEB problems, in order to obtain a more comprehensive picture 
of the proposed algorithm’s capabilities, we also test how AMSEEAS 
performs in such a real-world problem, by comparing it to its precursor, 
i.e., SEEAS. 

4.1. Study area and optimization problem definition 

The optimization problem involves a hydraulic design study in the 
context of a broader flood risk assessment analysis, which is described in 
detail in the recent work by Efstratiadis et al. (2022). The area of 

application is the lower course of Trachones stream, which crosses 
highly urbanized suburbs of Athens, Greece. Its total drainage area is 
approximately 24 km2 and it extends in the south of Athens, between the 
foothills of Mount Hymettus and the coast. 

The design optimization task refers to the sizing of levees along the 
open parts of the lower drainage network, which is conceptually 
configured by means of 27 lateral weirs that are represented in the HEC- 
RAS environment. We remark that the three out of 27 Lateral Structures 
are internal and act as Side Channel Spillways, by transferring flow from 
one channel section to another. These levees do not produce overflow 
and, thus, are not part of the design variables set. 

The control variables of the design optimization problem are the 
elevations, hi, of 24 out of 27 individual levees, which are allowed to 
receive non-negative values up to 1.0 m. Two conflicting criteria are 
considered, namely the total overflow occurring from the major channel 
segments over their associated levees and the total construction cost. In 
this respect, as the elevation increases, the expected overflow decreases, 
however the construction cost increases, accordingly. As explained 
latter, for a given configuration of the drainage system, the overflow 
over the levees is estimated through a hydrodynamic model, driven with 
a specific design flood event. On the other hand, the construction cost of 
each levee is estimated by: 

Ci = c Lihid (2)  

where Li is the length of each individual levee, d is the crest width (same 
for all levees), which is set equal to 2 m, and c is an indicative unit 
construction cost, which is, for convenience, set equal to 30€/m3. 

The objective function to minimize is expressed in dimensionless 
terms as follows, 

f (h1, h2,…, hn)=

TOV
TOVmax

+ TC
TCmax

2
(3)  

where TOV =
∑n

i=1Vi and TC = c(
∑n

i=1Lihid). Specifically, TOV denotes 
the total overflow, TC stands for the overall construction cost of levees, 
Vi is the overflow of each individual weir, i, and n = 24 is the number of 
control variables. Similarly, TOVmax is the maximum potential total 
overflow, which refers to the ‘do nothing’ solution (i.e., zero increase of 
elevation in all 24 lateral structures, and hence zero cost) and is equal to 
3272.6× 103 m3, while TCmax denotes the maximum overall construc-
tion cost, by assuming that all 24 individual levees are elevated by 
hmax = 1.0 m and is equal to 515.9× 103 €. The above formulation of the 
objective function makes the optimization task independent of the un-
certainty induced by the subjective assignment of input arguments d and 
c. 

The hydrodynamic simulations are performed with the HEC-RAS 6.1 
software, under one-dimensional analysis with 5 m spatial resolution 
and a computational time step of 30 s. The coupling of HEC-RAS with the 
optimization algorithms is implemented in a Python environment, by 
utilizing the HEC-RAS Controller (Goodell, 2014), which is part of the 
HEC-RAS application programming interface (API). The Controller in-
corporates a wealth of procedures, that allow the manipulation of 
HEC-RAS externally by setting input data, retrieving input or output 
data, and performing common functions, such as opening and closing 
HEC-RAS, changing plans, model running and plotting output data. 
Similar works employing the aforementioned API (e.g., for automation 
purposes) are those of Siqueira et al. (2016), Leon and Goodell (2016) 
and Dysarz (2018). 

Regarding the hydrodynamic modeling procedure, since the longi-
tudinal slopes of the stream branches are quite significant and the flow 
velocities are high, the so-called Local Partial Inertia (LPI) technique 
(Fread et al., 1996) is used for improving the stability of the numerical 
solution, by setting a Froude number threshold equal to 0.01. For the 
Manning’s coefficient parametrization, the computational domain is 
classified into three specific friction zones, i.e., cross-sections con-
structed by concrete, gabions, and natural terrain, for which we apply 

Fig. 4. Convergence curves for test function OF1 (Sphere) with 30 variables 
and MFE = 500. 
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0.016, 0.025, and 0.030 s
/

m1 /

3, respectively. 

The input flood event corresponding to the one-dimensional hydro-
dynamic model boundary conditions is selected from the set of sto-
chastic weather scenarios produced by Efstratiadis et al. (2022) and 
refers to a return period of 500 years and a 90% confidence level. 

This challenging problem reveals the actual value of SBO techniques, 
since to evaluate the objective function, a time-demanding HEC-RAS 
simulation needs to be executed first. Specifically, by using a 3 GHz Intel 
Core i9 processor with a 32 GB of RAM, a single run lasts 2 min. 
Consequently, to obtain an optimized design within a reasonable time 
period, only a few hundreds of function evaluations are “allowed”. 

4.2. Performance comparison of the algorithms 

As the computational workload is quite heavy, we consider a 
maximum allowed number of objective function evaluations equal to 
MFE = 500, while to extract sufficient statistical outcomes, we repeat 
the optimization procedure with SEEAS and AMSEEAS for a total of ten 
times. We remark that the computational time is almost fully dictated by 
the simulation stage, which in turn mainly depends on the execution of 
HEC-RAS. Provided that both algorithms are allowed to “call” the 
simulation 500 times, each optimization run requires approximately 17 
hours. 

In contrast to theoretical test functions, the global minimum of this 
highly complex engineering design problem cannot be known a priori. 
On the other hand, by setting all design variables equal to zero, it is easy 
to detect that the ‘do nothing’ solution results in a total overflow equal 
to 3272.6 × 103m3 and a zero cost, thus an objective function value 
equal to 0.50. 

The key results obtained with SEEAS and AMSEEAS are shown in 
Table 6. These indicate that AMSEEAS ensures much better performance 
in comparison to SEEAS, while the outcomes of the latter are actually 
worse than the ‘do nothing’ scenario. 

The superiority of AMSEEAS over SEEAS is shown even more clearly 
if we plot the CDFs of the associated optimal objective function values. 
As shown in Fig. 5, AMSEEAS is considered stochastically dominant over 
SEEAS. 

In Fig. 6 we also plot the convergence curves of the two algorithms, 
to evaluate how fast, in terms of number of objective function evalua-
tions, does the convergence procedure evolve. Once again, it is clear, 
that AMSEEAS outperforms SEEAS during the entire search procedure. 

Finally, in Table 7 we compare the optimized control variables (in 
terms of elevation increase) of the overall best solution found by each 
algorithm, out of the ten optimization trials. 

The layout of the best design solution of each algorithm is demon-
strated in Fig. 7. A colorized scale ranging from blue to red is used to 

Table 6 
Optimal solutions found by SEEAS and AMSEEAS after ten independent runs of 
the design optimization problem.  

Run SEEAS AMSEEAS 

Total 
overflow 

(1000 m3) 

Total 
cost 

(103 €) 

Objective 
function 

value 

Total 
overflow 

(1000 m3) 

Total 
cost 

(103 €) 

Objective 
function 

value 

1 2947.2 151.0 0.5965 2956.8 28.5 0.4794 
2 2895.1 131.5 0.5698 2957.5 23.9 0.4750 
3 3140.0 105.3 0.5818 2903.9 33.6 0.4762 
4 3128.9 116.9 0.5914 2795.4 55.8 0.4811 
5 3043.0 135.7 0.5965 2961.0 23.9 0.4756 
6 3081.2 139.0 0.6055 2902.6 32.2 0.4746 
7 3066.8 131.2 0.5957 2957.0 23.7 0.4747 
8 3193.6 128.6 0.6126 2902.8 32.6 0.4751 
9 3027.8 132.3 0.5908 2914.2 40.2 0.4842 
10 2957.1 159.2 0.6061 2904.2 32.0 0.4748 

Mean 3048.1 133.1 0.5947 2915.5 32.6 0.4771  

Fig. 5. Empirical CDFs of the optimal function values for the two algorithms.  

Fig. 6. Convergence curves of the two algorithms.  

Table 7 
Comparison between the overall optimal design variables found by SEEAS and 
AMSEEAS.  

Lateral structure Elevation increase (m) Elevation difference (m) 

Optimal solution 

SEEAS AMSEEAS 

1 0.00 0.00 0.00 
2 0.09 0.00 0.09 
3 0.27 0.00 0.27 
4 0.00 0.13 − 0.13 
5 0.00 0.00 0.00 
6 0.53 0.28 0.25 
7 0.81 0.00 0.81 
8 0.00 0.00 0.00 
9 0.00 0.00 0.00 
10 0.80 0.00 0.80 
11 0.00 0.00 0.00 
12 0.41 0.00 0.41 
13 0.00 0.00 0.00 
14 0.00 0.00 0.00 
15 0.00 0.00 0.00 
16 0.00 0.00 0.00 
17 0.00 0.00 0.00 
18 1.00 0.96 0.04 
19 0.00 0.00 0.00 
20 0.18 0.00 0.18 
21 0.00 0.00 0.00 
22 0.00 0.00 0.00 
23 0.00 0.00 0.00 
24 0.00 0.00 0.00  
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highlight the amount of additional elevation among the levees of the 
area in each case, with the blue values referring to the lowest possible 
elevations (0.0m – 0.2m) and the red values to the highest ones (0.8m – 
1.0m). It is evident, that the best solution found by SEEAS requires 
higher elevation of the individual levees in comparison to the AMSEEAS 
one, which justifies the huge difference in the construction costs. In 
particular, the solution proposed by AMSEEAS is cheaper by 75.51%, 
while resulting in only 0.26% more total overflow than the SEEAS 
solution. 

5. Conclusions 

Global optimization problems are usually handled through objective 
functions, the values of which are available after the execution of a black 
box simulation model. However, several of the models used in envi-
ronmental sciences require high computational effort, thus introducing 
significant barriers to the optimization procedure. The conflicting as-
pects of model accuracy and computational hardware requirements, led 
to the search for new ideas and tools to achieve satisfactory solutions 
within reasonable time. In this respect, SBO techniques are a well- 
established approach for such challenging problems. 

This study introduces the Adaptive Multi-Surrogate Enhanced 
Evolutionary Annealing Simplex (AMSEEAS) method, key novelty of 
which is the effective co-operation of multiple surrogate models, to 
ensure flexibility against objective functions and associated response 
surfaces of different characteristics. A virtual roulette is introduced to 
decide which SM should be activated in every iteration. The probability 

of each metamodel being selected by the roulette for prediction, depends 
on how accurately it fits existing data. Each metamodel comes with a 
penalty counter, which increases whenever the metamodel makes a bad 
prediction. These counters can permanently discard surrogates when 
reaching a specific threshold. 

To assess the efficiency and effectiveness of the proposed algorithm, 
we initially benchmarked it against six state-of-the-art surrogate-based 
global optimization methods, in six characteristic theoretical mathe-
matical problems with alternative settings (i.e., two alternative di-
mensions and two computational budgets, thus resulting to 24 
optimization problems, in total). The results emerging from this analysis 
are encouraging, as AMSEEAS proves its robustness, by outperforming 
the other algorithms in most of problem settings. In particular, 
AMSEEAS is considered stochastically dominant over its competitors in 
17 out of 24 problems. 

Next, we contrasted AMSEEAS against SEEAS, i.e., the original 
method on which the proposed algorithm is based, in a highly chal-
lenging real-world problem, from the field of hydraulic design of flood 
protection works. A key barrier to such problems is the computational 
burden induced by the use of detailed hydrodynamic models (in this 
case, HEC-RAS), to assess the performance of a specific design in terms 
of flood hazard (and eventually, flood risk), while also keeping the cost 
of the proposed hydraulic infrastructures, to a minimum. Additional 
challenges are induced by the problem dimension, since in the examined 
case we were looking for optimizing 24 design variables, that represent 
the levee heights across the open channel network. Within our analysis, 
we detected the optimal solutions found by AMSEEAS and SEEAS, from a 

Fig. 7. Map of study area showing the lateral structures’ elevations proposed by the best solution of SEEAS (up) and AMSEEAS (down).  
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set of ten independent runs and under a limited computational budget of 
only 500 function evaluations. The design proposed by AMSEEAS en-
sures a substantially decreased construction cost with respect to SEEAS, 
and at the same time a low flood inundation risk, marginally only 
exceeding the estimated inundation hazard that results from the optimal 
design by SEEAS. 

Our extended analyses with the mathematical problems and the 
hydraulic design application, as well, indicate that AMSEEAS is a robust 
and efficient optimization algorithm, able to handle computationally 
challenging HEB problems in practice, without compromising neither on 
simulation model sophistication nor on proper probabilistic treatment of 
complex environmental problems. This is due to the fact that the pro-
posed method does not simply incorporate multiple surrogate models to 
support the optimization procedure. The introduced mechanisms 
behave in a completely stochastic manner and result in the adjustment of 
the exploited metamodels on the given objective function to minimize. 
Depending on the characteristics and irregularities of the response sur-
face, some metamodels might be of actual assistance, while others might 
have the opposite behaviour and “undermine” the convergence process 
by pointing towards directions other than the region of interest. How-
ever, the inclusion of the virtual roulette and penalty mechanisms en-
sures that all inappropriate surrogates for a given problem will abstain 
from the search procedure, while the more appropriate ones will be 
given the chance to assist it, up until they stop producing useful infor-
mation. This strategy assures that the number of wasted objective 
function evaluations is limited to a minimum extent and that the genetic 

operators of SEEAS get the most proper assistance on any given opti-
mization problem. Eventually, this strategy seems to be a very promising 
one, towards ensuring adaptation of the search procedure to response 
surfaces of varying characteristics. 

Software and data availability 

A Python implementation of EAS, SEEAS and AMSEEAS and the rest 
of our work are available online at https://github.com/spyrostsat 
/AMSEEAS. 

Acknowledgements 

The research leading to these results has received funding from the 
European Union’s Horizon 2020 research and innovation programme, 
from the EU Horizon 2020 Green Deal call, under grant agreement No 
101037084, for the research project IMPETUS “Dynamic Information 
Management Approach for the implementation of Climate Resilient 
adaptation packages in European regions“. The research and its con-
clusions reflect only the views of the authors, and the European Union is 
not liable for any use that may be made of the information contained 
herein. The authors would like to thank the Editor, Dr. Saman Razavi, 
and the three reviewers, Dr. Jeremy White and two anonymous ones, for 
their constructive comments, suggestions and critique, which helped to 
provide a significantly improved manuscript.  

Appendix A. Empirical CDFs for mathematical test functions

Fig. A1. Empirical CDFs for test function OF1 (Sphere) with 15 (a, b) and 30 variables (c, d), with MFE = 500 (a, c) and MFE = 1000 (b, d).   

S. Tsattalios et al.                                                                                                                                                                                                                               

https://github.com/spyrostsat/AMSEEAS
https://github.com/spyrostsat/AMSEEAS


Environmental Modelling and Software 162 (2023) 105639

13

Fig. A2. Empirical CDFs for test function OF2 (Ackley) with 15 (a, b) and 30 variables (c, d), with MFE = 500 (a, c) and MFE = 1000 (b, d).  

Fig. A3. Empirical CDFs for test function OF3 (Griewank) with 15 (a, b) and 30 variables (c, d), with MFE = 500 (a, c) and MFE = 1000 (b, d).   
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Fig. A4. Empirical CDFs for test function OF4 (Zakharov) with 15 (a, b) and 30 variables (c, d), with MFE = 500 (a, c) and MFE = 1000 (b, d).  

Fig. A5. Empirical CDFs for test function OF5 (Rastrigin) with 15 (a, b) and 30 variables (c, d), with MFE = 500 (a, c) and MFE = 1000 (b, d).   
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Fig. A6. Empirical CDFs for test function OF6 (Lévy) with 15 (a, b) and 30 variables (c, d), with MFE = 500 (a, c) and MFE = 1000 (b, d).  

Appendix B. Convergence curves for mathematical test functions

Fig. B1. Convergence curves for test function OF1 (Sphere) with 15 (a, b) and 30 variables (c, d), with MFE = 500 (a, c) and MFE = 1000 (b, d).   
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Fig. B2. Convergence curves for test function OF2 (Ackley) with 15 (a, b) and 30 variables (c, d), with MFE = 500 (a, c) and MFE = 1000 (b, d).  

Fig. B3. Convergence curves for test function OF3 (Griewank) with 15 (a, b) and 30 variables (c, d), with MFE = 500 (a, c) and MFE = 1000 (b, d).   
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Fig. B4. Convergence curves for test function OF4 (Zakharov) with 15 (a, b) and 30 variables (c, d), with MFE = 500 (a, c) and MFE = 1000 (b, d).  

Fig. B5. Convergence curves for test function OF5 (Rastrigin) with 15 (a, b) and 30 variables (c, d), with MFE = 500 (a, c) and MFE = 1000 (b, d).   
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Fig. B6. Convergence curves for test function OF6 (Lévy) with 15 (a, b) and 30 variables (c, d), with MFE = 500 (a, c) and MFE = 1000 (b, d).  
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