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Importance of design rainfall at the regional scale

 Design rainfall estimation at a regional scale is the cornerstone of hydrological design against flooding,
particularly essential:
= for ungauged areas—but even for gauged ones;
= for hydrological analyses at large areas, i.e., studies of regional flooding and construction of large-scale
flood protection works—but even for small spatial scales, e.g., urban stormwater networks.

U

Spatial generalization of estimation is essential, as often rainfall data for at-site analysis are missing.

O

Design rainfall estimates are conveniently provided in the form of a mathematical relationship linking
temporally averaged rainfall intensity to timescale of averaging and return period, usually known by the
misnomer ‘intensity-duration-frequency’ (idf) curves or better named ombrian curves.

We aim to revisit design rainfall estimation for Greece:

¢ benefitting from new advances in the field of regional estimation and ombrian curves
(Koutsoyiannis, 2022);
*»» exploiting new data recorded during the past decade.

For first time we have produced a geographically distributed model for the entire Greek territory.




Ombrian curves: a parsimonious regional approach

Spatial generalization of ombrian curves is particularly complex due to the need to account for spatial
dependence together with the increased variability of rainfall extremes in space.

Broadly, the construction of regional ombrian curves can follow two different approaches:

(a) the at-site, independent fitting approach, followed by spatial interpolation methods to map the
parameters over the whole region.

(b) the regional, simultaneous fitting approach, which consists of appropriately pooling the data
together and obtaining a single model valid over the entire area, which is, in essence, the
inverse approach to (a).

> We devise a parsimonious approach to regionalizing the rainfall estimates at the
Greek territory without resorting to uncontrolled interpolation.




Overview of theoretical framework (I)

d Koutsoyiannis (2022).developed.a new 100 Empirical from hourly series h
framework for ombrian modelling — — —Empirical from daily series . 2 h
that can be applied at any timescale, Ombfian model | . | s ass ; g R
however large or small. — |

d The example shown is for Bologna, = 10 , ;

Italy (a station with 206 years of data), E
for timescales from 1 h to 16 years. =

O For large timescales the mathematics g
are somewhat involved. 3 1
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Overview of theoretical framework (ll)

[ Under some simplifying assumptions the rainfall intensity x for small timescales k (of the order of
minutes to a few days) and return period T is given by the following relationships, resulting from the full-
scale ombrian model with some simplifying assumptions:

o for return period estimated from a full series or of rainfall exceedances over threshold:

b(T) (T/B) —1 )
X = = A ) >0 Theoretically equivalent
a(k) 1+ k/a)" : for all Tandx:‘orqthe same
o from series of annual maxima (where 4 = 1 year): = parameter values; giving
(—(B/AD)In(1 - 4/T) % -1 virtually same values for T
x =4 (1+k/a)" ’ ¢>0 > 10 years
1 The simplified model parameters are: )
= A acharacteristic rainfall intensity (scale parameter) in units of x (e.g., mm/h); 5
= [ atime parameter, related to the mean distance of wet periods, in units
of the return period (e.g., years); L 5 parameters with
" « atimescale parameter in units of timescale (e.g., h) with a > 0; physical meaning
"= 7 adimensionless parameter, expressing persistence, with 0 < n < 1;

= ¢ > 0 the tail index of the process distribution. -




Two-step fitting procedure

An attractive feature of this simplification, related to the separable function x = b(T)/a(k), is that it allows the
parameters to be estimated by a convenient, two-step procedure.

 First step:

The timescale parameters (of the expression a(k)) obtained by Koutsoyiannis et al. (1998) optimization
procedure.

J Second step:

The distribution parameters (of the expression b(T)) are obtained by the newly introduced method of K-
moments (Koutsoyiannis, 2020), which has the following important properties:

v’ Intuitive formulation, as the K-moment of order p equals the expected value of the maximum of p;
independent stochastic variables identical to x, i.e., K, = E[max(gl,gz, .,gp)];

v Unbiased (knowable even for very large orders);

v’ Can be readily assigned an empirical return period;

v Account for the effect of (spatial and temporal) dependence in the estimation of the return period.




Greece’s rainfall network

O From the initial set of 940 stations, and after
meticulous quality control processing, we
compiled a final dataset of 783 stations,
comprising:

4600000

4500000

= 503 daily rain gauges, 130 of which at
locations where there is also a rain recorder;

= 280 rain gauges (rain recorders) with sub-
daily resolution.
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[ The stations are distributed over 651 geographical
locations.
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1 The longest available record (in Athens) covers
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Non-conventional rainfall data

O From satellite-based information, we investigated the
usefulness of the IMERG data set (half hourly time
step at 0.1° spatial resolution, period 2000-today),

O From the reanalysis information we investigated the
usefulness of the ERAS data set (daily time step at
0.25° spatial resolution; period 1950-today).
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Data processing remarks

(J On the use of the Hershfield factor:

" |n our method, a fixed, rather than a moving, time window is used to extract the maximum for each scale. It is
obvious that the maximum extracted from a fixed time window is less than or equal to that extracted from a moving
time window, and it is known that the difference between the two is a function of the temporal resolution D of the
raw data.

= Application of a correction factor, known as Hershfield factor, distorts the properties of the &(k) series, replacing it

with the series mt(k): = max(gﬁj("),j =0,..k— 1). In a consistent stochastic framework, we should do not
J

employ such a factor.

J On the exploitation of different sources of rainfall data:
= The fitting of the timescale parameters (of the expression a(k)) is performed using sub-daily or even sub-hourly
data, available from tipping-buckets and automated censors.
» The fitting of the distribution parameters (of the expression b(T)) is performed using in priority the daily rainfall
records due to:

(a) the greater spatial density of the rain gauge network compared to that of rain gauges;
(b) the longer duration of rain gauge observations compared to those of rain gauges; and
(c) the greater reliability of rainfall measurement during storm events.




Spatial variability characterization & Regionalization

Independent at-site procedure
O First, we perform a spatially-independent fitting of the ombrian curves for each location.

O Then, we assess the resulting patterns of variability, and we identify the parameters exhibiting random spatial variation
and the ones robust spatial patterns.

Regionalization procedure

1. We perform a combined (simultaneous) estimation of the parameters exhibiting random variation in space using the
most reliable and relevant data for each case, e.g. we exploit the longest sub-hourly records for the estimation of the a
parameter and the longest daily records for the estimation of the tail-index parameter €.

2. With the common parameters now fixed for all stations, we re-estimate the other parameters and assess their
geographical variation.

3. In case that systematic patterns are identified, we model their geographic variation using both spatial smoothing and
interpolation models, and evaluate their performance based on the accuracy of the fit and cross-validation metrics.

4. The best spatial model per parameter is chosen and a map with 5 km resolution is produced with the spatially varying
parameters over Greece.




Spatial smoothing and interpolation approaches

Inverse Distance Weighted (IDW)
The Inverse Distance Weighted (IDW) method is simple with low computational requirements. The IDW estimate for a

given point Z,, is obtained as:
n

= z w;z; (x; ;) with weights w; obtained as:
i=1
n
d—a
W; = n a ZWL' =1
Zl 1dul i—1

The values of a and n are identified as the ones yielding the lowest cross-validation errors.

Bilinear surface smoothing (BSS)
Bilinear Surface Smoothing (BSS) is a flexible spatial interpolation method that adjusts a bilinear surface at known points
(x;, y;) through linear regression with adjustable weight factors (Malamos and Koutsoyiannis, 2016a,b).

The method is based on compromising two opposing objectives, namely, to minimize the fitting error and the roughness
of the fitted bilinear surface.

Additionally, it is possible to integrate, in an objective way, the effect of an explanatory variable available at a spatially
denser data set (Bilinear Surface Smoothing with an Explanatory variable-BSSE). In this case, two bilinear surfaces are
combined in the same regression model in order to improve the accuracy of the interpolation at the given points.




Regionalization of timescale parameters —a ()

1 We find that the estimation of the parameter o greatly depends on the temporal resolution of
the measuring instrument. Specifically, in stations with fine temporal resolution (5 or 10 min)
resulting values of the parameter a are small—and vice versa.

W This is interpreted as an artificial statistical effect rather that as representing some physical

reality.
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Regionalization of timescale parameters — a ()

[ To compensate for the great sensitivity of the a parameter to time resolution of the data, we
identify a single value of this parameter for all of Greece, by the following procedure:

= We select the 53 stations with the longest records having temporal resolution 30 min or finer,
distributed over all water districts.

= We re-estimate the parameters of the equation a(k), a and n, through optimization in which
we set as a constraint that the value of the o parameter is the same among all stations.

[ As a result of this methodology, the common value of @ = 0.18 h is obtained, which is used in all
further analyses.




Regionalization of n (l)

The map shows point estimates of the n

2 parameter conditional on a common a
) parameter, « = 0.18 h:
) * Presence of clusters of low and high
values of the n parameter in space.
: . . .
 Emergence of an inverse relationship n

with the altitude (i.e. lower values of
_ the parameter are more likely at high
altitudes).
&

‘1—5'5’“’"
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Regionalization of n (ll)

| ' We use the BSSE smoothing model with the altitude
: P : (derived from SRTM) as an additional explanatory variable.
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Regionalization of distribution parameters — ¢ (l)
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The parameter £ (tail index of the distribution) was
estimated individually per station and per
instrument, and simultaneously with the
optimization of the other parameters of the rainfall
curves.
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* We observe the large spatial variability of the
parameter estimates, which reflects both the
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Regionalization of distribution parameters — ¢ (ll)

* If we assume that the entire variability of ¢
estimates is a statistical effect, then:
 We can unify (merge) all records at a
certain timescale after standardizing
® Empirical, ©=0 - with the mean;

'  We can estimate a unique value of ¢

from the unified record.

* We have used 61 stations across the Greek
territory which have at least 60 years of
complete daily timeseries.

* These form a large sample of 299 481
(standardized) nonzero daily rainfall
values.

* The resulting ¢ is estimated to 0.18 if the
different stations are assumed
independent (@ =0) or larger if

100

Theoretical, € =0.18

= = = = Theoretical, £ = 0.23

A Empirical, @ =-0.04

Standardized daily rainfall depth
o

1 dependence is assumed (£ = 0.23 for
0.01 0.1 ! 10 100 1000 10000 g = -0.04, where O denotes bias; see
Return period (years) Koutsoyiannis, 2022 for details).
* The minimal value if £ =0.18 is finally
chosen.
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Regionalization of distribution parameters — ¢ (lll)

Monte Carlo simulation results (70 simulations with Pareto distribution, each corresponding to 70 years of rainfall):

* Show the large variability of the estimated value of £ (¢,), spanning from ~-0.1 to ~0.5, when the true value is &=
0.18.
* Verify the consistency of the assumption of a single £ = 0.18 for the entire Greece.

40 e Theoretical 1
Simulated, median A% ’
= = =Simulated, 90% prediction limits A"} r 08
A Simulated, single series, large €. ,A,‘A' ' A,
20 ® Simulated, single series, small & ‘}b‘ /
0.6 /
~ /
X = r
0.4 /
10 /
0.2 ”n Normal distribution, N(0.15,0.12)

@® Empirical distribution for § = 0.18
= == Normal distribution, N(-0.02,0.08)
A Empirical distribution for § = 0.01
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Investigation of alternative options for regionalization of parameters 8 and A

In addition to the direct regionalization of parameters 8 and A, we investigated the use of alternative quantities linked
to characteristic rainfall intensities, since the statistical behaviour of the latter is more robust and better suitable for
regionalization (no boundary issues and better spatial coherence).

Specifically, we express parameters 8 and A as functions of either the rainfall intensities x; and x, corresponding to
return periods T; = 2 years and T,= 100 years, respectively, or equivalently, of x; and the ratio r;, := x,/x, as follows:

—n1/€
p = (M) T3, rr == (Tz/T1)"E; Ty = Xp /%1

ry—1
, — T

A=b2—Lx,  b=00+k/a)"
TT_l

After examining the correlations between the alternative parameters sets, we chose to use the pair of parameters x;

and r,., since they are found uncorrelated with each other and thus the pair’s information content is not affected by
redundancy.

The intensities x; and x, are modelled at the 24 h scale (k = 24 h).




Regionalization of x,

In the case of the x; parameter, the best statistical
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Regionalization of 7,

In the case of the 7,, parameter, the best statistical
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Regionalization of distribution parameters—6 & A
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Assessment of regionalization accuracy

0.9 . . . .
A generally good agreement of the point and spatial estimates is
0.8 evident, especially considering the fact that the n results are obtained
t . . . .
207 from a spatial smoothing model (BSSE) rather than interpolation. The
g relative dispersion of the results in this parameter is justified as it is
v 0.6 . . . .
o estimated from sub-daily rain gauge data characterized by greater
g 0.5 oo y = 0.5393x + 0.3153 uncertainty. This explains why a smoothing (rather than interpolation)
S 04 o R = $.5676 method was chosen for this regionalization.
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Final parameterization

The following generalized form of ombrian curves is derived for rainfall intensity x (mm/h), return period T (years) and
temporal scale k (h): (T/B )g _1

X = T k)T

with the following five parameters

= characteristic timescale o =0.18 h

= tailindex £ =0.18,

» three spatially varying parameters n.[—], B (years)and A, (mm/h) :
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At-site verification: mean % deviations and RMSE

. From the analysis of the daily rain gauges,
80

_ . ‘ . o it follows that the median of the average
SE< w . e 5 deviation for the 24 h scale is +9.05% while
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At-site verification: maximum 24 h depth deviation
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We assess the deviations of each record’s maximum 24 h rainfall depth to the one obtained for the same return
period (assigned through K-moments).

The agreement between the two is very satisfactory (R?=0.68) given the large spatial extent of the analysis and

considering that the record’s maximum value is a statistical quantity governed by high uncertainty, especially for a
large tail index (¢ = 0.18).
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Impact of regionalization on return period estimates

To inspect the impact of regionalization on design rainfall estimates for various return periods, we compare the
deviations between the estimates using regional parameters and the ones obtained using the local (at-site) parameters.
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For all scales, the deviations consistently tend to increase towards larger values as the return period increases. This is due
to the use of the high single value of the parameter £ in the regionalization, the influence of which is stronger in large
return periods. In the very short return periods (of the order of 2 years), the spatially generalized rainfall model leads to
slightly smaller rainfall estimates (for T = 2 years, median -3.55% at 1 h and -5.22% at 24 h). This fact is partly attributed
to the non-use of Hershfield factors for the daily rain gauge data which greatly affect the spatial generalization of the

distribution parameters.
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Mapping characteristic design rainfall depths
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Ombrian curves at the catchment scale

R The ombrian curves for any region within the
Greek territory are derived based on the two
constant-value parameters and the three
P regionally varying parameters which are

E / obtained as a weighted average of the grid
\ points falling within the area.
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Inspection of long-term variability — Benchmark series (Bologna)
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All time maximum Annual value
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Temporal distribution of records of average daily rainfall
in 62 stations in the country
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Temporal distribution of records of maximum daily rainfall
in 238 stations in the country
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Climate trends over the last two 30 years: linear trends and
differences of two consecutive 30-year climatic periods
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Conclusions

** The approach followed incorporates an advanced framework for regional frequency analysis
employing knowable (K-) moments that allow:
v' reliable high-order moment estimation; significantly increasing the number of moments that
can be justifiably employed in regional analyses of extremes; and
v handling of temporal and spatial dependence, which is non-negligible.
¢ The detailed climatic analysis:
v did not locate any element that would justify any type of nonstationary analysis;
v’ yet it suggests the presence of changes that can be modelled within a stationary framework
of Hurst-Kolmogorov dynamics.
** The final product is a powerful tool, easy to apply for engineering tasks, covering the entire
territory of Greece.
** The methodology can be readily applied to other countries or parts thereof.
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Stochastics of Hydroclimatic Extremes is a real monument in stochastics! It is a summary of the
lifetime dedication by Demetris Koutsoyiannis to the science of environmental extremes, it is a
demonstration of the value of stochastics itself to gain a better understanding of why and how
extremes happen. The perspective adopted in the book is that of a scientist who is able to cross and
transform disciplines by proposing an innovative synthesis of knowledge. This book is indeed
presenling new concepls, new theorelical interpretations and new opportunilies for engineering
design, for the sake of mitigating the impact of extremes and adapting modern society to
environmental variability.

It is fascinating that the book is self-produced and openly available to readers. Like any self-produced
creation of the humankind, this book has a unique and independent history that is rooted in the
intimate personality of the author. Itis a creation thal does not require Lo adhere Lo any format

other than those suggested by the author’s vision and creativity. For this reason, its value is
incommensurably high, it is a real Cool L.ook at Risk as Demetris says.

1 believe time will highlight Stochastics of Hydroclimatic Extremes as a transforming masterpiece
which will bring illuminating ideas to the reader.
Alberto Montanari

Head of the Dept. of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna
President of the European Geosciences Union

This is a book that could not only transform your career, but also the entire fields of environmental
statistics and stochastic hydrology. This seminal contribution is not like other books you have read
which tend to summarize existing knowledge. Rather; it condenses existing knowledge in short order
and spends nearly all its Lime on new knowledge, much of it never before published, communicaling
effectively both the theoretical and practical aspects of analysis of a wide range of hydroclimatic
extremes. The style of presentation itself is novel and compelling, so that [ could not resist reading it
from cover to cover.

1f you think you understand how to apply probability and statistics to predict future extreme events,
think again, because very quickly you will be convinced that extremes arise from spatial and temporal
stochastic processes, and are neither independent nor identically distributed (iid) events, nor do
most of our common probability distributions used for flood and drought frequency analysis capture
the type of thick tails which are so convincingly documented in this book.

1 predict that many of the novel concepts, examples and techniques introduced here, many for the
first time, will find their way into widespread acceptance in hydroclimatology, over time. Foremost,
the reader will appreciate Lhe value of viewing extreme events as realizations of slochastic processes
rather than a series of iid annual maxima/minima. The climacogram provides a new window into the
structure of stochastic processes and may be more fundamental than the correlogram. I can’t wait to
test out the so-called Parcto-Burr-Feller distribution and the novel knowable moments (K-moments)
which appear to have clear advantages over ordinary moments for describing distribution tails.

It is remarkable that after a long career in hydrology, after reading Lhis book, I gained many new
insights into common statistical methods as well as new methods documented here for the first time.
How I wish my career were just beginning, and thus could have applied all the wonderful ideas and
methods in this book during my carcer. This is literally a treasure for young scholars interested in the
probabilistic behaviour of hydroclimatic extremes.

Richard M. Vogel

Professor Emeritus an: Professor, Dept. Civil and Environmental Engineering, Tufts University

Demetris Koutsoyiannis

| { Stochastics of Hydroclimatic Extremes

Stochastics of Hydroclimatic

A Cool Look at Risk

2 Edition
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Open Academic Editions
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