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Abstract: This paper examines the impacts of three different potential evapotranspiration (PET)
models on drought severity and frequencies indicated by the standardized precipitation index
(SPEI). The standardized precipitation-evapotranspiration index is a recent approach to operational
monitoring and analysis of drought severity. The standardized precipitation-evapotranspiration index
combines precipitation and temperature data, quantifying the severity of a drought as the difference
in a timestep as the difference between precipitation and PET. The standardized precipitation-
evapotranspiration index thus represents the hydrological processes that drive drought events more
realistically than the standardized precipitation index at the expense of additional computational
complexity and increased data demands. The additional computational complexity is principally due
to the need to estimate PET within each time step. The standardized precipitation-evapotranspiration
index was originally defined using the Thornthwaite PET model. However, numerous researchers
have demonstrated the standardized precipitation-evapotranspiration index is sensitive to the PET
model adopted. PET models requiring sparse meteorological inputs, such as the Thornthwaite
model, have particular utility for drought monitoring in data scarce environments. The aridity
index (AI) investigates the spatiotemporal changes in the hydroclimatic system. It is defined as
the ratio between potential evapotranspiration and precipitation. It is used to characterize wet
(humid) and dry (arid) regions. In this study, a sensitivity analysis for the standardized precipitation-
evapotranspiration and aridity indexes was carried out using three different PET models; namely,
the Penman–Monteith model, a temperature-based parametric model and the Thornthwaite model.
The analysis was undertaken in six gauge stations in California region where long-term drought
events have occurred. Having used the Penman–Monteith model as the PET model for estimating
the standardized precipitation-evapotranspiration index, our findings highlight the presence of
uncertainty in defining the severity of drought, especially for large timescales (12 months to 48
months), and that the PET parametric model is a preferable model to the Thornthwaite model for
both the standardized precipitation-evapotranspiration index and the aridity indexes. The latter
outcome is worth further consideration for when climatic studies are under development in data
scarce areas where full required meteorological variables for Penman–Monteith assessment are not
available.

Keywords: drought; standardized precipitation-evapotranspiration index; aridity index; parametric
PET model; California

1. Introduction

Drought is a severe natural hazard characterized by lower-than-normal precipitation
that when extended over seasonal or longer timescales results in water resources that are in-
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sufficient to meet the needs of human activities or environmental demands [1]. Aridity is a
permanent characteristic of a region’s climate regime; droughts are temporary phenomena.
While a normal part of the climate regime, the spatial extent and severity of a drought event
will vary on seasonal and annual timescales, especially in arid and semi-arid regions. Un-
like other natural hazards, there is not a single universally accepted definition of a drought,
and numerous drought indexes have been proposed over recent decades to provide a
standardized definition of the phenomenon. The phenomenon has caused negative impacts
on numerous natural, human and social activities and, over the past decades, numerous
modelling approaches have been developed to quantify the severity of the phenomenon.
Modelling choices comprise approaches using meteorological, hydrological, agricultural,
comprehensive, remote sensing-based and combined drought indexes [2,3]. A detailed
historical background on the drought indexes is presented by Heim (2002) [4], where the
reader can find the historical evolution of drought indexes from rainfall-based approaches
to more complex models that combine precipitation with evapotranspiration that seek
to describe the phenomenon in terms of the relevant processes of the hydrological cycle.
The standardized precipitation index (SPI) is widely used to characterize meteorological
drought over a range of timescales. The standardized precipitation index quantifies pre-
cipitation as a standardized departure from a selected probability model. A limitation
of the standardized precipitation index is that sensitivity to soil moisture, groundwater
and reservoir stores is a function of the timescale selected; hence, the severity of droughts
indicated by the standardized precipitation index is dependent on the timestep rather than
solely on hydrological and climate processes.

The standardized precipitation-evapotranspiration index is a recent drought index [5].
It was first introduced as a multi-timescale (from monthly to 36 months) index incor-
porating rainfall and potential evapotranspiration models, with the latter variable mod-
elled using a Thornthwaite temperature-based model. The standardized precipitation-
evapotranspiration index appears to be a robust climate-meteorological drought index
when considering its application globally over the last decade [6–10]. By integrating
the potential evapotranspiration with the precipitation, the standardized precipitation-
evapotranspiration index enables more advanced identification of drought types and
drought impacts on diverse climatic systems than using only precipitation as a drought
explanatory variable.

The aridity index describes the long-term functioning of the atmosphere; more specifi-
cally, it is the process of receiving and releasing water from the underlying surface hydro-
logical system [11]. The index is also known as the Budyko index [12]. The standardized
precipitation-evapotranspiration index [5] was introduced as a simplified drought monitor-
ing tool for use by national agencies in detecting droughts.

Numerous authors have reported, in global evaluations of applications, that the
standardized precipitation-evapotranspiration index was the adopted model that was
most sensitive to estimate the potential evapotranspiration (PET) variable within the
SPEI assessment [13–15]. The Thornthwaite PET model, despite its structural simplicity,
fails to provide accurate results when used as an input to the standardized precipitation-
evapotranspiration index. Ortiz-Gómez et al. (2022) [16] stated that drought events detected
with the standardized precipitation-evapotranspiration index are more intense when the
Thornthwaite model is used to calculate evapotranspiration instead of the Hargreaves–
Samani model. Ogunrinde et al. (2020) [17] concluded that the standardized precipitation-
evapotranspiration index estimated using the Hargreaves PET model (SPEI-H) and the stan-
dardized precipitation-evapotranspiration index estimated using the Penman–Monteith
(SPEI-P) show higher correlation for all timesteps than the SPEI-Thornthwaite model. Shi
et al. (2020) found that differences in projected increases of drought frequencies were found
among the different PET models estimated by machine learning-based methods [18] when
the standardized precipitation-evapotranspiration index was assessed.

Because of the sensitivity of the standardized precipitation-evapotranspiration index
to PET, numerous researchers have investigated simplified assessments of PET over the past
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eight decades, mainly focusing on developing parsimonious PET models that can quantify
evapotranspiration. The Penman–Monteith model, which is the most well-established PET
model, is complex to apply due to high input data demands [19]. The model requires
temperature, radiation, wind velocity and humidity for its development [20].

The aim of this study is to provide new insights into the sensitivity of the selected
potential evapotranspiration inputs for assessing the drought severity in the context of the
standardized precipitation-evapotranspiration and aridity indexes; associated deficiencies
can appear when undefined PET inputs are used within the context of drought index
assessment. The PET estimation is a complex technical task within the hydrology domain,
which strongly depends on the availability of numerous meteorological variables, leading
to the use of simplified PET models, which usually do not achieve physical-interpretation
outcomes. From this perspective, three PET models with different composite level were
applied and compared; namely, Penman–Monteith, Thornthwaite and parametric, while
using the Penman–Monteith model as the base model in six meteorological stations for
a long-term period of 30 years (1982–2013). California is an area that has suffered from
a long history of severe droughts [21] and is ideal for developing and testing drought
related research.

2. Materials and Methods
2.1. Study Area

Full raw measurements from six meteorological stations across California (Figure 1)
for the period 1983–2013 (Table 1) have been gathered. For the selected stations, the full
monthly timeseries containing length of temperature, relative humidity, radiation and
wind velocity has been available for a 30-year period and therefore has been mobilized for
our study instead of using other CIMIS gauges stations with insufficient and incomplete
meteorological records. The California Irrigation Management Information System (CIMIS)
is a program unit in the Water Use and Efficiency Branch, Division of Regional Assistance,
California Department of Water Resources (DWR), and it is one of the foremost global
meteorological networks associated with potential evapotranspiration research. Historically,
the network has been developed in cooperation with UC Davis. The local environmental
and soil conditions in the meteorological stations allow accurate estimation of PET.
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Table 1. Information on the selected stations.

Sequence Number Name Meteorological Variables Temporal Resolution Time Period

1 Davis Temperature, relative humidity,
radiation, wind velocity monthly 1982–2013

2 Gerber Temperature, relative humidity,
radiation, wind velocity monthly 1982–2013

3 Durham Temperature, relative humidity,
radiation, wind velocity monthly 1982–2013

4 Carmino Temperature, relative humidity,
radiation, wind velocity monthly 1982–2013

5 Stratford Temperature, relative humidity,
radiation, wind velocity monthly 1982–2013

6 Kettleman Temperature, relative humidity,
radiation, wind velocity monthly 1982–2013

2.2. Modelling Procedures

Raw monthly meteorological timeseries were acquired for six gauge stations. Four
meteorological variables were collected; namely, mean temperature, radiation wind velocity
and relative humidity. PET was estimated monthly by using three different models; namely,
Penman–Monteith, parametric and Thornthwaite, and they are presented below with
representative equations for each PET model:

The well-known Penman–Monteith [22] equation for estimating PET is expressed as:

PET =
∆

∆ + γ′
Rn

λ
+

∆
∆ + γ′

F(u)D, γ′ = γ

(
1 +

rs

ra

)
where PET is potential evapotranspiration (mm/d), Rn is net radiation at the surface
(Wm−2), ∆ is the slope of the saturation vapor pressure curve (PaK−1), γ is the psychometric
coefficient (=67 PaK−1), while rs (s/m) and ra (s/m) are the surface and aerodynamic
resistance factors, respectively.

The Thornthwaite model [23] is a well-established simplified temperature-base model.
The model’s form is:

PET = 1.6Ld

(
10Ta

I

)a

where PET is potential evapotranspiration (mm/d), Ld is the daytime length, Ta is the mean
monthly air temperature (◦C), I the annual heat index and α is an empirically determined
parameter which is a function of I.

The PET parametric model is a modern temperature-base model based on a simplifi-
cation of the Penman–Monteith model. The model was first introduced in CIMIS gauge
stations [24]. Recently, global parametric PET approaches have been presented based
on global gauge stations [25] as well as in conjunction with advanced remote sensing
temperature datasets [26]. The parametric model’s expression is:

PET =
aRa − b
1− cTa

where PET (mm) is potential evapotranspiration, Ra (KJm−2) is extraterrestrial shortwave
radiation and Tα (◦C) is the mean air temperature. The model contains three parameters;
namely, α (kg kJ−1), b (kg m−2) and c (◦C−1), which are estimated through local calibration
of Penman–Monteith data in a process described by Tegos et al. (2015) [24].

In the standardized precipitation-evapotranspiration index, described by Vicente-
Serrano et al. [5], the water deficit of rainfall and the potential evapotranspiration are con-
sidered at different timescales from 1 month to 48 months. The standardized precipitation-
evapotranspiration index uses a three-parameter log-logistic distribution to capture the
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deficit between rainfall and potential evapotranspiration. As part of this study, the follow-
ing calculation procedure was applied:

1. The water balance was estimated using the following equation for three different PET
models:

Dk
n = ∑k−1

i=0 Pn−1 − PETn−1

where P is the rainfall (mm), PET is the potential evapotranspiration (mm), k is the
timescale (months) of the aggregation and n is the calculation month.

2. Drought classification (Table 2) is estimated by fitting in the empirical distribution
D as proposed by Koutsoyiannis and Montanari (2022) [27]. They employed three
log-logistic distributions.

Table 2. The severity and values of SPEI.

Drought Category SPEI Value

No drought >−0.5
Mild drought −0.5~−1

Moderate drought −1~−1.5
Severe drought −1.5~−2

Extreme drought <−2

The aridity index (AI) is a numerical indicator of the degree of dryness of the climate
at a given location. In this study, a well-known formula was used to estimate the aridity
index expressed as follows [28]:

AI =
P

PET
where P is the average annual precipitation (mm) and PET is the potential evapotranspira-
tion (mm).

Herein, the PET required for the aridity index estimation is calculated by applying
three methods. These methods are (a) Penman–Monteith, (b) Thornthwaite and (c) a parsi-
monious parametric approach based on a simplification of the Penman–Monteith formula.
Additionally, the aridity index threshold values for climatic aridity zone classification
were applied according to the UNESCO [29] and UNEP [30] classification schemes for the
Penman and Thornthwaite-based methods, respectively (Table 3).

Table 3. Aridity index (AI) threshold values for climatic aridity zone classification according to
UNESCO and UNEP classification schemes.

UNESCO (Penman) UNEP (Thornthwaite)

Aridity Climate Zone AI values

Hyper-arid <0.03 <0.05
Arid 0.03–0.2 0.05–0.2

Semi-arid 0.2–0.5 0.2–0.5
Dry sub-humid 0.5–0.75 0.5–0.65

Humid >0.75 >0.65

3. Results
3.1. SPEI in Davis Gauge Station

Figure 2 presents SPEI for timescales from 1 month to 24 months and for three different
PET models using Davis gauge station It can be concluded that:
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Figure 2. SPEI Davis meteorological station.

• Severe to extreme droughts are observed for the periods 1984–1985 and 1991–1992
for SPEI for 6-month and 12-month timescales. Lower SPEI timescales (1 month to
3 months) show annual occurrence of mild to moderate drought conditions. Limited
SPEI values for 1984 are slightly lower than −1.5, which is a cut-off referring to severe
drought conditions.

• For scales up to 6 months, the droughts class severity is underestimated by both
parametric and Thornthwaite models. The latter presents the highest deficiencies
against drought classes when compared to the parametric model.

• A major drought event (1984–1986) seems to be underestimated substantially by both
PET models for the 12-month and 24-month timescales. A moderate drought event for
the period 1987–1988 seems to be underestimated by the parametric model and less so
by the Thornthwaite model.

• Overall, the consideration of alternative PET models proves the sensitivity of the
drought classification when SPEI is analyzed.

Figure 3 shows common SPEI plots for all three PET models in reverse recorded order
sequence. Following the above observations, it can be noted that:

• All three PET models provide similar drought SPEI classification up to 3-month
timescales.

• The Thornthwaite model underestimates drought severe class in some 6-month events
whereas the parametric model provides a more accurate classification of those events.

• The Thornthwaite model overestimates drought classes for 12-month events while the
parametric model does the opposite.

• Both PET models (parametric, Thornthwaite) overestimate 24-month drought classes.
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3.2. Error Analysis of the Total Sample

To consolidate our understanding on the influence of different PET configurations for
quantifying standardized precipitation-evapotranspiration index classifications, standardized
precipitation-evapotranspiration index values of different PET models were plotted for the total
sample of five gauge stations; namely Gerber, Durham, Carmino, Stratford and Kettleman.

Figure 4 shows the common plots using the SPEI-Penman–Monteith (SPEI-PM) index
as a base for evaluating the performance of both SPEI-parametric (SPEI-PAR) and SPEI-
Thornthwaite (SPEI-THORN) indexes. Following this, it can be concluded that:

• SPEI-parametric and SPEI-Thornthwaite for up to 6 months provide similar drought
classifications to the SPEI-PM index. The SPEI-parametric index shows better fit when
compared to the SPEI-PM indexes. The latter proves that the PET parametric model
has better performance than the PET Thornthwaite model.

• Drought severity is underestimated at 12 months by both SPEI-Thornthwaite and
FSPEI-parametric models for limited drought events.

• A high classification variance is observed for SPEI at 24 months with both underesti-
mating drought severity with SPEI-parametric and overestimating drought severity
with SPEI-Thornthwaite.
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3.3. Error Analysis of the Aridity Index

Based on the data from six CIMIS stations, monthly PET was calculated using the
well-known Thornthwaite model and the above-mentioned modified parametric method
for a normal 30-year climatic period (1983–2012). In addition, the calculated monthly
Penman–Monteith PET timeseries served as the reference dataset for comparisons between
the two different methods. Figure 5 illustrates the mean annual PET values derived from
the reference and the other methods at each station.
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each station.

It is clear that the parametric model is superior, while a significant underestimation has
been observed by the Thornthwaite’s method. More details on the limitations of alternative
PET models are presented in the discussion section. This is also confirmed by the statistical
metrics used herein to assess the performance of each method (Table 4).

Table 4. Values of the statistical indexes used to evaluate the performance of the (a) parametric and
(b) Thornthwaite methods in the assessment of annual PET.

Station RMSE (mm) MBE (mm) Correlation (r)

Parametric Thornthwaite Parametric Thornthwaite Parametric Thornthwaite

Davis 67.6 642.6 −6.2 −637.7 0.57 0.27
Gerber 103.8 560.6 16.0 −551.9 0.31 0.1

Durham 64.2 458.7 5.5 −450.5 0.58 0.31
Carmino 65.1 643.3 3.2 −640.0 0.64 0.63
Stratford 94.7 638.6 29.1 −630.9 0.61 0.1

Kettleman 75.2 618.7 −23.8 −615.9 0.56 0.73

The findings show that the average RMSE is 78.4 mm and 593.8 mm for the parametric
and Thornthwaite methods, respectively. Regarding the parametric method, the RMSE
values range from 67.6 to 103.8 mm, while the RMSE values for the Thornthwaite method
range from 458.7 to 643.3 mm. On the other hand, the average MBE for the parametric
method range from −23.8 to 3.2, while considerably larger values were estimated for
the Thornthwaite method, ranging from −450.5 to −640 mm. It is also notable that both
methods present low correlation, as the average correlation coefficient is 0.55 for the
parametric method and 0.36 for the Thornthwaite method.
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Uncertainties introduced by the use of different PET methods highly affect the esti-
mation of the aridity index. This may lead to an incorrect climatic classification at a given
location (Table 5).

Table 5. Uncertainties in climate zone characterization due to the PET method.

Penman–Monteith Parametric Thornthwaite

Station AI Value Climatic Zone AI Value Climatic Zone AI Value Climatic Zone

Davis 0.320 Semi-arid 0.321 Semi-arid 0.571 Sub-humid
Gerber 0.465 Semi-arid 0.460 Semi-arid 0.762 Sub-humid

Durham 0.454 Semi-arid 0.452 Semi-arid 0.695 Sub-humid
Carmino 0.662 Sub-humid 0.660 Sub-humid 1.212 Humid
Stratford 0.133 Arid 0.128 Arid 0.224 Semi-arid

Kettleman 0.155 Semi-arid 0.158 Semi-arid 0.256 Sub-humid

According to the estimated aridity index using the reference PET method (Penman–
Monteith), the climate was classified as semi-arid in four of the six stations, arid in one
and sub-humid in one. A successful climatic zone classification was also achieved using
the parametric PET method as an input parameter in the aridity index formula. It is also
notable that the numerical values of aridity index between the two approaches are almost
equal. On the contrary, the use of the Thornthwaite’s PET method leads to significant errors
in aridity index values. These differences factor into the climate dryness underestimation.

4. Discussion

Herein, we discuss how our analysis can contribute to existing knowledge of drought
analysis by summarizing some key points of future research and issues for further consideration:

1. Potential evapotranspiration is the most complex meteorological process and signifi-
cant numbers of simultaneous meteorological variables are required for its indirect
estimation. The importance of simplified PET models is noteworthy. In this vein, the
recent temperature-base parametric model can support drought studies when full
meteorological gauges for estimating using the Penman–Monteith model are not avail-
able. As highlighted above parametric, the PET model outperforms the Thornthwaite
PET model when the standardized precipitation-evapotranspiration index is assessed.
The Thornthwaite PET model fails to provide accurate PET estimates, especially in
arid and semi-arid areas and seems to be suitable for use only in warm climates where
the temperature is the main PET driver.

2. The parametric PET model is recommended for use throughout the majority of the
Earth in both arid and humid environments. Further research for improving the
model’s performance is proposed in tropical and sub-tropical environments, as is
detailed by Tegos et al. (2017) [25] and dos Santos et al. (2021) [31].

3. From previous studies, the parametric PET model, even though it is robust, tends to
underestimate monthly summer PET peaks, and monthly summer PET peaks may
impact the drought severity during water stressed seasons. Thus, the development
of a PET stochastic model can provide further insights in drought studies [32,33] if a
stochastic component is considered and embedded within a parsimony framework as
set out in previous studies [34].

4. Drought assessment and forecast remains a challenging task. In line with the advanced
development of global remotely sensed models, new long term satellite datasets can
support further drought assessment [35,36]

5. New advanced computational tools associated with different drought indexes are
necessary to support geoscientists to capture a holistic view of the phenomenon [37].

6. Simple index approaches associated with top-down models have received criticism
when the drought classification is considered under the short-term with a lack of
gauge records. The recent development of multidimensional machine learning–
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based algorithms may provide opportunities for developing drought forecasting
models [38–40]. Comparative analysis among the different drought indexes is also
recommended in order to improve our knowledge on the drought natural hazard
as a natural phenomenon [41], since the definition of the drought among different
scientific disciplines remains challenging [42].

5. Conclusions

This study introduced a sensitivity analysis of the potential evapotranspiration in-
puts based on the standardized precipitation-evapotranspiration index (SPEI) and aridity
index frameworks. Three PET models of different complexity have been used; namely
the Penman–Monteith model, the temperature-based parametric model and the empirical
Thornthwaite model. The Penman–Monteith model was used as the base model for assess-
ing the drought severity based on the standardized precipitation-evapotranspiration index
definition. It can be summarized that for up to 6 months, the standardized precipitation-
evapotranspiration index–parametric model and the standardized precipitation-
evapotranspiration index–Thornthwaite model provide similar drought classifications,
and that with the standardized precipitation-evapotranspiration index–PM model, drought
severity is underestimated by both the standardized precipitation-evapotranspiration
index–Thornthwaite model and the standardized precipitation-evapotranspiration index–
parametric model for up to 12 and 24 months. In aridity index analysis, high uncertainties
were introduced using different PET methods, which may lead to incorrect climatic classifi-
cations at different locations. Our research was carried out in the CIMIS network California,
a semi-arid area with a long record of drought events; its gauge network is based on
the local conditions, which allows estimation of PET with high reliability. It should be
noted that both the SPEI and the aridity index are sensitive to drought classification when
different PET models are used. The parametric model, which is a parsimonious model ap-
proximating the Penman–Monteith model, proved to be a valuable alternative when a full
meteorological dataset for the Penman–Monteith model is not available, as it outperforms
the simplified Thornthwaite model when standardized precipitation-evapotranspiration
index is assessed.
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