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Abstract. A simple alternative formulation of the Hershfield’s statistical method for 

estimating probable maximum precipitation (PMP) is proposed. Specifically, it is shown that 

the published Hershfield’s data do not support the hypothesis that there exists a PMP as a 

physical upper limit, and therefore a purely probabilistic treatment of the data is more 

consistent. In addition, using the same data set, it is shown that Hershfield’s estimate of PMP 

may be obtained using the Generalized Extreme Value (GEV) distribution with shape 

parameter given as a specified linear function of the average value of annual maximum 

precipitation series, and for return period of about 60 000 years. This formulation substitutes 

completely the standard empirical nomograph that is used for the application of the method. 

The application of the method can be improved when long series of local rainfall data are 

available that support an accurate estimation of the shape parameter of the GEV distribution. 
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1. Introduction 

 The probable maximum precipitation (PMP) defined as “theoretically the greatest depth of 

precipitation for a given duration that is physically possible over a given size storm area at a 

particular geographical location at a certain time of year” [World Meteorological 

Organization, 1986, p. 1] has been widely used for the design of major flood protection 

works. Typically, PMP is used to estimate the largest flood that could occur in a given 

hydrological basin, the so-called probable maximum flood (PMF). In turn, PMF is used to 

determine the design characteristics of flood protection works. The PMP approach, which 

practically assumes a physical upper bound of precipitation amount, is contrary to the 

probabilistic approach, according to which any amount must be associated with a probability 

of exceedance or return period.  

 Despite its widespread acceptance, the concept of PMP has been criticized by many 

hydrologists. We quote, for example, Dingman [1994, p. 141]: 

«The concepts of PMP and PMF are controversial. Can we really specify an upper 

bound to the amount of rain that can fall in a given time? (…) we must recognize that 

the plotted values are only those that have been observed historically at the infinitesimal 

fraction of the earth covered by rain gages, and higher amounts must have fallen at 

ungaged locations at other times and places. And, conceptually, we can always imagine 

that a few more molecules of water could fall beyond any specified limit.» 

Among the most neat criticisms of the concept of PMP is that of Benson [1973]: 

«The “probable maximum” concept began as “maximum possible” because it was 

considered that maximum limits exist for all the elements that act together to produce 

rainfall, and that these limits could be defined by a study of the natural processes. This 

was found to be impossible to accomplish – basically because nature is not constrained 

to limits (...). At this point, the concept should have been abandoned and admitted to be 
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a failure. Instead, it was salvaged by the device of renaming it “probable maximum” 

instead of “maximum possible”. This was done, however, at a sacrifice of any meaning 

or logical consistency that may have existed originally (...). The only merit in the value 

arrived at is that it is a very large one. However, in some instances, maximum probable 

precipitation or flood values have been exceeded shortly after or before publication, 

whereas, in some instances, values have been considered by competent scientists to be 

absurdly high. (…) The method is, therefore, subject to serious criticism on both 

technical and ethical grounds – technical because of a preponderance of subjective 

factors in the computation process, and because of a lack of specific or consistent 

meaning in the result; ethical because of the implication that the design value is 

virtually free from risk.» 

 The defects of the PMP concept is vividly expressed by two of the Wileeke’s [1980] myths: 

the “Myth of infinitesimal probability”, which reads “The probability of occurrence of 

probable maximum event is infinitesimal”, and the “Myth of Impossibility”, which reads 

“Hydrometeorological estimates of stream events are so large they cannot or will not occur”. 

Here he points out a number of storms recorded in the USA that exceeded the PMP estimates 

[see also Dooge, 1986]. 

 The justification of the wide use of the PMP approach is attributed to the “no-risk” aspect 

of the method. According to Benson [1973]:  

«The method has been used and accepted for a long time, for one reason, not because of 

its merits, but because it provides a solution that removes responsibility for making 

important decisions as to degree of risk or protection.» 

 However, the removal of responsibility is an illusion because the adoption of the PMP 

approach by no means implies zero risk in reality. Therefore, not long ago, there has been an 

initiative for a movement away from the PMP-based methods to risk-based approaches for 
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engineering design [e.g., Stedinger and Grygier, 1985; Dawdy and Lettenmaier, 1987; 

National Research Council, 1988, 1994].  

 Besides the general concept of PMP itself, other issues related to the methodology of 

determining the PMP amount have been criticized, mainly because there is no unique method 

for determining the upper bound of rainfall assuming that it really exists. A variety of 

procedures to determine PMP have been proposed [see Wiesner, 1970; Schreiner and Reidel, 

1978; World Meteorological Organization, 1986; Collier and Hardaker, 1996; among 

others], and different procedures may result in different, higher or lower values.  

 Most procedures are based on a comprehensive meteorological analysis, while some are 

based on statistical analysis. Among the latter, the most widely used is Hershfield’s [1961, 

1965] procedure that has become one of the standard methods suggested by World 

Meteorological Organization [1986] for estimating PMP. It has the advantages of taking 

account of the actual historical data in the location of interest, expressing it in terms of 

statistical parameters, and being easy to use. The procedure is based on the general equation 

 hm = h–n + km sn  (1) 

where hm is the maximum observed rainfall amount at the site of interest, h–n and sn are the 

mean and standard deviation of a series of n annual rainfall maxima at that site, and km is a 

frequency factor. To evaluate this factor Hershfield [1961] initially analyzed a total of 95 000 

station-years of annual maximum rainfall belonging to 2645 stations, of which about 90% 

were in the USA, and found that the maximum observed value of km was 15. Then, he 

concluded that an estimate of the PMP amount can be determined by setting km = 15 in (1) 

and substituting hm for the PMP value. Subsequently, Hershfield [1965], proposed that km 

varies with the rainfall duration d and the mean h–n. More specifically, he found that the value 

of km = 15 is too high for areas with heavy rainfall and too low for arid areas, whereas it is too 

high for rain durations shorter than 24 hours. Therefore, he constructed an empirical 

nomograph indicating that km varies between 5 and 20 depending on the rainfall duration d 
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and the mean h–n. This nomograph along with equation (1) constitute the basis of the statistical 

method for estimating PMP, which was standardized by World Meteorological Organization 

[1986].  

 Undoubtedly, the data, analysis and results of Hershfield contain extremely useful 

information and additional validity has been appended to them by the widespread application 

of the method. However, after the discussion of the previous paragraphs, the question arises 

whether the huge amount of rainfall information used by Hershfield suggests the existence of 

a deterministic upper limit of precipitation or not. If the answer to this question is negative 

(and, in fact, is), we can maintain that there is no reason to consider the results of Hershfield’s 

method as PMP. Then other questions arise, i.e., whether this standard method can be 

reformulated in a purely probabilistic manner, without postulating the existence of PMP, and 

what is the probability of exceedance of the method’s results. The answers to these questions 

are the objectives of this paper, which, as we show in the following sections, are achievable 

and simple. 

 The reader may have a primary objection for the attempted probabilistic reformulation of 

Hershfield’s method mainly because of the use of a specified type of probability distribution 

function for describing data from 2645 raingage stations which may experience a variety of 

climatic conditions. Indeed, a single type of distribution function may not be appropriate for 

all stations, but it would be very useful to have an idea of an “average” probabilistic behavior 

of maximum rainfall in such a tremendous number of stations. Besides, such an objection is 

justified only at the same grounds as that for the original Hershfield’s method, because this 

method actually did the same sort of generalization. Moreover, we include in our analysis an 

investigation of the implications of such an assumption via simulation. 

2. Statistical interpretation of Hershfield’s data 

 Hershfield [1961] published a table with summary data of all 2645 records he used; this 

table serves as the basis of all analysis of the present study. More specifically, Hershfield 
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divided the available records into 13 classes according to the length of record, which varied 

from 10-14 years to more than 70 years, as shown in Table 1. Furthermore, he calculated for 

each record the value of km (eqn. (1)) and discretized the range of km, which was extended 

from 1.0 to 15.0, using a step equal to 0.5 (thus having 28 intervals in total). In the aforesaid 

table, he published the number of occurrences of each interval of km for each class of record 

length. In Table 1 we reproduce the observed minimum and maximum interval of km for each 

class of record length. 

 Let us provisionally ignore the effect of the record length n on km (which apparently exists 

and we will return to it later) and unify all classes of record lengths adding the number of 

occurrences of all classes (as Hershfield already did, as well). Then, using the well-known 

Weibull formula, we can estimate the probability of non-exceedance of the random variable 

Km whose realization is km, by  

 F*(km) = 
r(km)
r΄ + 1  (2) 

where r(km) is the number of records with Km ≤ km, and r΄ is the total number of records 

(2645). In fact, this estimation is possible only for the upper bounds of the 28 intervals of km 

used by Hershfield.  

 A plot of km versus F* (more precisely, versus the Gumbel reduced variate –ln(–ln F*)), is 

given in Figure 1 on Gumbel probability paper. Contrary to the interpretation of World 

Meteorological Organization [1986, p. 96], which speaks about an “enveloping” value of km 

this figure suggests that there is no such an enveloping value. As in any finite sample, we 

have in Figure 1 a finite maximum value (km = 15 in our case), but there is no evidence to 

consider that value as an enveloping one. This would be justified only if there was a trend for 

km to stabilize (or saturate) at a certain value as the probability of non-exceedance F*(km) 

approaches unity. But this is not the case in Figure 1, where we observe an intensifying rate of 

increase of km versus the increase of the Gumbel reduced variate –ln(–ln F*). If this rate of 



7 

increase were constant (i.e. the points in Figure 1 formed a straight line) this would indicate 

that km would have a Gumbel distribution. The observed curvature (i.e., intensifying rate of 

increase) suggests that a generalized extreme value (GEV) distribution with shape parameter 

≠ 0 is more appropriate (the curve shown in Figure 1, estimated by least squares, corresponds 

to κ = 0.0857). In conclusion, Figure 1 indicates that the maximum observed value km = 15 is 

not at all a physical upper limit and it would be greater in case that more records were 

available. To support this interpretation, we invoke the cautionary remarks of World 

Meteorological Organization [1986, p. 108] on the statistical method of PMP, which mention 

values of km equal to 25-30 for USA and Canada. 

 We remind that the Gumbel distribution of maxima is  

 FX(x) = exp(–e–x / λ + ψ) (3) 

and the GEV distribution is 

 FX(x) = exp
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

– ⎣⎢
⎡

⎦⎥
⎤1 + κ ⎝⎜

⎛
⎠⎟
⎞ 

 x 
λ  – ψ  

–1 / κ

                κ x ≥ κ λ (ψ – 1 / κ) (4) 

In both (3) and (4) X and x denote the random variable and its value, respectively (in our case 

they represent Km and km, respectively), FX(x) is the distribution function, and κ, λ, and ψ are 

shape, scale, and location parameters, respectively; κ and ψ are dimensionless whereas λ (> 0) 

has the same units as x. Note that (3) is the two-parameter special case of the three-parameter 

(4), resulting when κ = 0. 

  In the above analysis we have not considered the effect of the record length n on km. 

Apparently, there exists a serious such effect for two reasons. First, the more the available 

data values are the more likely is the occurrence of a higher value of km. Second, as km is an 

amount standardized by the sample mean and standard deviation, the larger the record length 

the more accurate the estimation of km. In Figure 2 we have plotted the empirical distributions 

of each class of record length separately, using again (2) but with r΄ being the total number of 

records of the specific class. Clearly, for low and moderate probabilities of non-exceedance 
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(low and moderate values of the Gumbel reduced variate –ln(–ln F*)) the empirical 

distribution of a class with small record length (e.g., 10-14 years) differs from that of a class 

with long record length (e.g., 65-69 years), the curves of the former being below those of the 

latter. This is absolutely justified by the first reason reported above. For very high 

probabilities of non-exceedance (very high values of the Gumbel reduced variate –ln(–ln F*)) 

this situation is reversed in some cases (e.g., the empirical distributions of the classes of 

record length 10-14 and 20-24 years surpass those of classes with longer record length). Most 

probably, this is a consequence of the poor estimation of the mean and standard deviation for 

the classes with small record length. 

 The effect of the record length on the accuracy of estimation of the mean and standard 

deviation of a random variable is intrinsic and unavoidable. However, the effect of the record 

length on the value of maximum km can be easily averted if, instead of studying the 

distribution of the maximum observed km, we choose to study the distribution of all 

standardized annual maxima ki within a record, defined by 

 hi = h–n + ki sn  (5) 

where hi, i = 1, … n, is the ith observed annual maximum rainfall within the record. Denoting 

by F*( ) and F( ) the distribution function of Km and Ki, respectively, and since Ki are 

independent, it is well known [e.g., Gumbel, 1958, p. 75] that F*(k) = [F(k)]n, so that we can 

find the empirical distribution F(k), given F*(k) from (2), by 

 F(k) = [F*(k)] 1 / n (6) 

 This we have done for all Hershfield’s classes of record length by adopting a unique value 

of n for each class, equal to the arithmetic mean of the class’s bounds (for the last class which 

does not have an upper bound we assumed n = 85, so that the total number of station-years be 

94 523, i.e., very close to the value of 95 000 station-years mentioned by Hershfield). Again, 

the estimation of F(k) is possible only for the upper bounds of the 28 intervals of km used by 

Hershfield. The estimated empirical distribution functions F(k) are depicted in Figure 3. 
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Clearly, the departures in F*(km), among different classes observed in Figure 2, have 

disappeared in the F(k) of Figure 3. Some departures of different classes appear in Figure 3 

only for –ln(–ln F) > 6, or F > 0.998, or, equivalently, for return periods greater than 500 

years. This is not so strange if we consider the high uncertainty for such high return periods, 

especially for the classes of small length. We note also that the Gumbel probability plot of 

Figure 3 enlarges greatly any difference in probability at the very right part of the graph. As a 

rough indication that these differences are not significant, we have plotted in Figure 3 a 

couple of confidence curves around a theoretical GEV distribution. The GEV distribution is 

representative for the unified record containing all classes, and its derivation is discussed in 

section 3. The 99% confidence limits at a certain value of F are F ± 2.576 σF where 2.576 is 

the standard normal variate for confidence coefficient 99% and σF = [F (1 – F) (1 / m΄)]0.5 is 

the sample standard deviation of F for a sample size m΄ [Papoulis, 1990, pp. 284, 299]; in our 

case m΄ equals the number of station-years. For the construction of the confidence curves of 

Figure 3, the value of m΄ was taken 2000 which is representative for class 3 with mean record 

length 22 years and 2024 station-years.  

3. Proposed alternative formulation of Hershfield’s method for 24 hour depths 

 The approximate analysis of the previous section indicates that the classes of different 

record lengths do not differ substantially in regard to the distribution of k. Apparently, the 

record length which was the criterion for separating classes is not the most appropriate one; 

other criteria such as climatic conditions would be more appropriate to test whether they 

affect the distribution of k. However, even if the existing Hershfield’s 13 classes are 

considered as totally randomly selected, the absence of substantial difference among them 

provides a rough indication that the specific standardization of annual maximum rainfall (i.e., 

the use of k) is a useful analysis tool.  

 Therefore, with the reservations and explanations given in the last paragraph of section 1, 

we can proceed assuming that all records of standardized annual maximum rainfall k represent 
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practically the same population. This assumption is also supported by the original work of 

Hershfield [1961] who tested the different records for randomness and independence. 

 It is rather simple to find the empirical distribution function F(k) of the union of all 

records. Given from (6) the empirical distribution function Fi(k) for class i which has m΄i 

station-years in total, we estimate the number mi(k) of station-years whose values are less than 

or equal to k by 

 mi(k) = Fi(k) (m΄i + 1) (7) 

Adding mi(k) and for all i we find the total number m(k) for the union of all records; similarly 

adding all m΄i we find the total number of station years (m΄ = 94 523), so that finally 

 F(k) = 
m(k)

m΄ + 1  (8) 

Again, the estimation of F(k) is possible only for the upper bounds of the 28 intervals of km 

used by Hershfield. Thus, the range of k where the estimation of F(k) is possible extends from 

k = 1.5 to 15. The corresponding estimated range of F(k) is from F(k) = 0.7759 to 0.9999904. 

We do not have any information for values of F(k) < 0.7759 (or, equivalently, for return 

periods less than 4.5 years), but this is not a significant gap because typically in engineering 

problems our interest is focused on high return periods. 

 The empirical distribution function of all records is given graphically in Figure 4 on 

Gumbel probability paper. The curvature of this empirical distribution function clearly shows 

that the Gumbel distribution is not appropriate. Therefore, we have fitted the more generalized 

GEV distribution which is also shown in Figure 4 (as well as in Figure 3), along with two 

99% confidence curves derived with the method already described in section 2 for m΄ = 

95 000. Due to the unusual situation about the available empirical information (only 28 values 

of the empirical distribution), typical fitting methods such as those of moments, L-moments, 

maximum likelihood, etc., are not applicable for fitting the theoretical distribution. Instead, 

we used a least square method aimed at the minimization of the mean square error among 
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theoretical end empirical values of the magnitude −ln(−ln F(k)) for the specified values of k. 

The objective function (mean square error) is a function of the GEV distribution parameters, 

i.e., κ, λ and ψ of (4), and its minimization using nonlinear programming resulted in parameter 

values κ̂ = 0.13, λ̂ = 0.6, and ψ̂ = 0.73. 

 One may argue that, because k is a standardized variable, the parameters must be 

constrained so that the theoretical mean and standard deviation of k equal 0 and 1, 

respectively. We preferred not to introduce those constraints into the optimization process for 

two reasons. First, the union of many records with standard deviation 1, has no more standard 

deviation 1 as it can be easily verified. Second, Hershfield [1961] used adjusting factors for 

both the sample mean and standard deviation, so that the mean and standard deviation of k in 

each record do not actually equal 0 and 1. Therefore, the theoretical values of mean and 

standard deviation for the above parameter values are 0.87 and 0.94, respectively. If we force 

parameters to obey the requirements regarding the mean and standard deviation, by 

introducing the relevant constraints into the formulation of the optimization problem, the 

estimated parameters become κ̂ = 0.13, λ̂ = 0.64, and ψ̂ = –0.69, that is, κ remains constant, λ 

changes slightly and ψ changes significantly. 

 In fact, the only parameter that we practically need to know is the shape parameter κ 

because this is the only one that remains invariable when we apply the standardization 

transformation on the random variable representing the annual maximum rainfall depth. 

Moreover, κ is the most difficult to estimate accurately from a small record, whereas λ and ψ 

are more accurately estimated, e.g., from the sample mean and standard deviation.  

 Adopting the parameter set κ = 0.13, λ = 0.6, ψ = 0.73, and solving (4) for the value k = 15 

which was specified by Hershfield as corresponding to PMP, we find that F(k) = 0.999 982 

which corresponds to a return period of 55 700 years. If we assume that k has zero mean and 

unit standard deviation then (3) and (4) after algebraic manipulations reduce to  

 F(k) = exp
⎣
⎢
⎡

⎦
⎥
⎤–exp

⎝
⎜
⎛

⎠
⎟
⎞– 

π k
6
 – γ            κ = 0 (9) 
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 F(k) = exp
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

– ⎣⎢
⎡

⎦⎥
⎤sgn(κ) 

 
 Γ(1 – 2κ) – Γ 2(1 – κ) k + Γ(1 – κ)

 –1 / κ

       κ ≠ 0 (10) 

where sgn(κ) is the sign of κ, γ is the Euler’s constant (= 0.57722) and Γ( ) is the gamma 

function. Apparently, F(k) is a function of the value of the standardized variable k and the 

shape parameter κ only (note the distinction of the Latin k and the Greek κ). Setting κ = 0.13 

and k = 15 to (10) we find F(k) = 0.999 983 and T = 58600, i.e., very close to the previous 

results. By rounding these results we could say that Hershfield’s value k = 15 corresponds to a 

return period of about 60 000 years. This is somehow different from the empirical estimation 

which would be 95 000 years (equal to the number of station-years). The difference is 

apparent in Figure 4 (last point to the right versus the solid line). However, it is not 

statistically significant: if we assume that the probability that k does not exceed 15 is p = 1 – 

1 / 60 000, then the probability that all 95 000 observations do not exceed 15 is p 95 000 ≈ 0.20. 

Therefore, the hypothesis that the empirical and theoretical probabilities are the same, is not 

rejected at the typical levels of significance (e.g., 1%, 5%, or even more, up to 20%). This 

result is graphically verified by the confidence curves of Figure 4.  

 The above results may be summarized in the following three points, which provide the 

alternative interpretation to Hershfield’s [1961] statistical PMP method: 

(1) The GEV distribution can be considered as appropriate, for annual maximum rainfall 

series. 

(2) The value of the standardized annual maximum rainfall k = 15 (which was considered 

by Hershfield as corresponding to PMP) corresponds to a return period of about 60 000 

years. 

(3) The shape parameter κ of the GEV distribution is 0.13. 

This formulation is more consistent than the original of Hershfield [1961] with the 

probabilistic nature of rainfall and, furthermore, it allows quantification of the risk when k = 

15, as well as an assessment of the risk for different (greater or less) values of k.  
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 We must emphasize that the above results are subject to at least two sources of possible 

bias, introduced first by the parameter estimation procedure used by Hershfield to estimate the 

mean and standard deviation for each record, and, second, by the unification of all records as 

if they were independently identically distributed. To quantify the bias from both sources we 

have performed simulations whose results are given in Table 2. In each simulation we 

generated an ensemble of 60 sets each containing 2645 records with randomly chosen lengths 

from the distribution that is derived from Table 1 of Hershfield [1961]. The about 60 × 2645 × 

36 = 5.7 × 106 values of k (where 36 is the average record length) were generated from the 

distribution function (10) with population mean 0 and variance 1. These values were then re-

standardized using the sample mean and standard deviation of each generated sample. These 

statistics were estimated both by the typical unbiased statistical estimators (method C in Table 

2) and the Hershfield’s adjusting factors (already mentioned above), as they are implied by his 

nomographs (method B). From each ensemble we estimated the value of km, as well as the 

empirical return period of the value k = 15, as the average values from the 60 generated sets. 

We examined five cases as shown in Table 2. In case 0 we assumed that all 2645 synthetic 

records have constant parameter κ equal to 0.13. In cases 1-4 we assumed a varying κ 

randomly chosen (for each synthetic record) from a gamma distribution with mean value 0.10 

- 0.13 and plausible values of standard deviation and skewness as shown in Table 2. 

 From the results of Table 2 it is evident that the adoption of Hershfield’s adjustment 

factors in all cases results in slight overestimation of the value of km (method B versus method 

A) and, consequently, in underestimation of the return period of the value k = 15. Notably, 

however, if these adjustments were not used the result would be a serious underestimation of 

km (method C versus method A). Furthermore, the adoption of varying κ results in an increase 

of km and decrease of the return period of the value k = 15 (case 1 versus case 0). Conversely, 

given that Hershfield’s 2645 records certainly have not constant κ, and the parameters were 

estimated by method B, we can expect that the estimated value κ = 0.13 is too high as an 
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average value if the value k = 15 must have a return period of about 60 000 years; a smaller 

average value of κ ≈ 0.10 (case 4, method B) seems more consistent. Therefore, the adoption a 

constant value κ = 0.13, among with the use of Hershfield’s adjusting factors, results in 

overestimation of km and safer design parameters on the average. 

 In his subsequent work, Hershfield [1965] replaced the unique value k = 15 with a 

nomograph giving k as a function of the mean value of annual maximum series h–, which is 

reproduced in Figure 5 (curve of 24-hour rainfall). The curve of this nomograph may be easily 

replaced with a mathematical relationship of the shape parameter κ with h–. To establish this 

relationship we can follow the following steps: (a) select numerous points h– and estimate from 

the nomograph the corresponding values k; (b) for each k find from (10) the value of κ so that 

F(k) = 1 – 1 / 60 000; (c) from the set of pairs (h–, κ) establish a simple type of mathematical 

relationship and estimate its parameters. Using this procedure, it was found that this 

nomograph is practically equivalent to the following mathematically simple statement, which 

substitutes point 3 in the previously stated alternative formulation of the method: 

(3a) The shape parameter κ of the GEV distribution is given as a function of the mean value 

of annual maximum series h–, by 

 κ = 0.183 – 0.00049 h–        (h– in mm) (11) 

 The curve k = g(h–), which is obtained by combining (11) and (10) with T = 1 / 60 000, is 

shown in Figure 5 and agrees well with the empirical Hershfield’s curve.  

 We observe that for very large values of h–, i.e., for h– > 373.5 mm, (11) results in κ < 0. 

This combined with (4) implies that, in that case, k will be upper bounded (and lower 

unbounded). However, to the author’s opinion there is no sufficient physical or empirical 

reasoning to accept an upper bound for k. A direct solution would be to set κ = 0 and use the 

Gumbel distribution in such extremely unusual situations, even though this results in slight 

disagreement with Hershfield for h– > 373.5 mm. We note that, in his original study, 
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Hershfield [1965] had only 5 out of about 2700 points located in that area (h– > 373.5 mm) to 

draw his enveloping curve, and therefore the uncertainty is large, anyhow. 

4. Verification of the proposed alternative formulation of the method  

 To verify the proposed method with historical data we used the longest available record of 

annual maximum daily rainfall in Greece [Koutsoyiannis and Baloutsos, 1998]. This comes 

from the National Observatory of Athens and extends through 1860-1995 (136 years). Its 

mean and standard deviation are 47.9 and 21.7 mm, respectively, and the maximum observed 

value is 150.8 mm (therefore, the observed km = (150.8 – 47.9) / 21.7 = 4.74). The direct 

application of Hershfield’s method results in km = 17.2 and, consequently, in a PMP value 

424.1 mm. From (11) we find κ̂ = 0.160, which applies for both k and h. Then, adopting the 

GEV distribution for h and using the simplest method of moments for estimating the 

remaining two parameters (with mean and standard deviation of h 47.9 and 21.7 mm, 

respectively) we find λ̂ = 12.95 mm and ψ̂ = 2.93 (the corresponding parameters for k are λ̂ = 

0.60 and ψ̂ = 0.77). 

 Alternatively, we fitted the GEV distribution to the given sample of h itself, without 

reference to the proposed method, using the standard methods of maximum likelihood and of 

L-moments. The estimated parameters are κ̂ = 0.161, λ̂ = 12.93 mm, and ψ̂ = 2.94 for the 

method of maximum likelihood [Papoulis, 1990, p. 303] (the maximization was performed 

numerically), and κ̂ = 0.185, λ̂ = 12.64 mm, and ψ̂ = 2.98 for the method of L-moments 

[Stedinger et al., 1993, p. 18.18]. Interestingly, the parameters of the method of maximum 

likelihood almost coincide with those of the proposed method. This indicates that the estimate 

of the shape parameter κ by (11) is reliable, at least in the examined case.  

 The empirical distribution function of the 136-year record, in comparison with GEV 

distribution function with all three parameter sets are shown in Figure 6. As expected, the 

GEV distribution of the proposed method (as well as the indistinguishable method of 

maximum likelihood) verifies that the Hershfield’s PMP value (424.1 mm) has a return period 
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60 000 years (Figure 6). For comparison, we have additionally plotted in Figure 6 the Gumbel 

distribution function, which, apparently, has very poor performance with regard to the 

empirical distribution and underestimates seriously the rainfall amount for large return 

periods.  

 In conclusion, in the examined case we may replace the statement “the PMP is 424.1 mm” 

with “the 60 000-year rainfall, as resulted from the GEV distribution is 424.1 mm”; the latter 

implies that greater amounts of rainfall are possible but with less probability. 

5. Effect of rain duration  

 In addition to the curve for the 24-hour rainfall, Hershfield [1965] presented in his 

nomograph curves of km for shorter durations, i.e., 1 and 2 h, as a result of analysis of rainfall 

data from about 210 stations. These curves are also shown in Figure 5.  

 Generally, if we have available the intensity-duration-frequency (idf) relationships for the 

location of interest we can easily infer the relevant effect of the duration without the need of 

additional curves. The idf relationship may be expressed [Koutsoyiannis et al., 1998] by the 

general form 

 id(T) = 
a(T)
b(d) (12) 

where id(T) is the rainfall intensity corresponding to duration d and return period T, and a(T) 

and b(d) functions of T and d, respectively. Particularly, the function b(d) is typically a power 

function of d and, as we will show, determines completely the effect of duration and can be 

used to infer curves such as those of Hershfield’s nomograph. Writing (12) for two durations, 

d and 24 h, eliminating a(T), and also substituting id(T) = hd(T) / d, where hd(T) is the rainfall 

depth corresponding to duration d and return period T, we find 

 hd(T) 
b(d)
 d  = h24(T) 

b(24)
 24  (13) 

which implies equality in probability for [hd b(d) / d] and [h24 b(24) / 24]. Therefore, if µd and 

σd denote the mean and standard deviation of the rainfall depth for duration d, then  
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 µd 
b(d)
 d  = µ24 

b(24)
 24 ,     σd 

b(d)
 d  = σ24 

b(24)
 24  (14) 

If we denote kd(T) = [hd(T) – µd] / σd, the standardized variate of hd(T), we easily find from 

(13) and (14) that kd(T) = k24(T) = k(T), that is, kd(T) does not depend on d, so that we can use 

(10) and (11) to determine it. Note that h– that appears in (11) is the sample mean of h24, i.e., h– 

≡ h–24 which corresponds to the true mean µ24. The relationship k = g(h–24) which resulted 

numerically from (10) and (11) for T = 60 000 (Figure 5, curve for 24 hours) may be 

reformulated so as to write as a function of h–d, which is the case of Hershfield’s curves. 

Assuming that the sample means h–d and h–24 have the same relation as the true means µd and µ24 

(eqn. (14)) we can write 

 k = g(h–24) = g⎝⎜
⎛

⎠⎟
⎞h–d 

24 b(d)
d b(24)  = gd(h–d) (15) 

where  

 gd(x) := g⎝⎜
⎛

⎠⎟
⎞x 

24 b(d)
d b(24)  (16) 

 Now, if we assume for simplicity that an “average” expression for b(d) is b(d) = d 0.5, then 

(15) becomes 

 k = gd(h–d) = g⎝⎜
⎛

⎠⎟
⎞h–d 

24 0.5

d 0.5  (17) 

Using (17) and starting with the known function k = g(h–24) we calculated the function gd(h–d) 

for d = 1 h and 2 h and we plotted the resulting curves in Figure 5 in comparison with the 

empirical curves of Hershfield. Interestingly, the two sets of curves almost coincide. 

 In conclusion, the analysis of this section shows that (a) there is no need to establish 

relations of the standardized annual maximum rainfall k with any of the rainfall characteristics 

for rain durations less than 24 h, because such relationships are directly derived from idf 

curves; (b) the particular Hershfield’s curves of km for low durations are practically equivalent 

with the assumption that the rainfall depth is proportional to the square root of duration. 
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6. Conclusions  

 Hershfield’s method of estimating probable maximum precipitation (PMP) is a very useful, 

widespread and reliable tool for hydrologic design because it is based on the analysis of a 

huge amount of rainfall information (2645 data records throughout the world containing 

95 000 station-years). However, what the method estimates may not be PMP and there is no 

reason to consider it so. More specifically, the analysis performed with Hershfield’s data 

provided no evidence that there exists an upper bound of precipitation amount and, besides, 

suggested that a simple alternative formulation of the method is possible. This formulation 

can be purely probabilistic and need not postulate the existence of PMP as an upper physical 

limit.  

 It is shown that Hershfield’s estimate of PMP may be obtained by using the Generalized 

Extreme Value (GEV) distribution with shape parameter given as a specified linear function 

of the average of annual maximum precipitation, and for return period equal to 60 000 years. 

This formulation is supported by the published Hershfield’s data and substitutes completely 

the standard empirical nomograph that is used for the application of the method. Moreover, 

the alternative formulation assigns a probability distribution function to annual maximum 

rainfall, thus allowing for the estimation of risk either for the Hershfield’s “PMP” value or 

any other large rainfall amount. 

 The return period of about 60 000 years estimated here for Hershfield’s PMP is rather 

small as compared to other estimates of the literature (although the other estimates may not be 

fully comparable as they refer to other PMP estimation methods). For example, according to 

National Research Council [1994, p. 14] the return period of PMP in the United States is 

estimated to 105-109 years, whereas Foufoula-Georgiou [1989] and Fontaine and Potter 

[1989] indicate that values of PMP of the literature have return periods of 105-106 years. 

Likewise, according to Austin et al. [1995, p. 74] the values of PMP estimated in Great 

Britain by a storm model are associated with return period of 200 000 years. 
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 The verification of the proposed alternative formulation of the method was performed by 

applying it in Athens, Greece, where there exists a long (136-year) record of annual maximum 

daily rainfall. The available long record suggested that the GEV distribution is appropriate 

and made possible a relevantly accurate estimation (by standard statistical methods) of its 

shape parameter, which almost coincided with that obtained by the proposed method. This 

coincidence enhances our trust for the results of the typical statistical analysis in the examined 

case, which prove to be in agreement with the outcome of a comprehensive analysis of 95 000 

station-years of rainfall information throughout the world. However, the examined case is not 

a typical one, because most often the available records have lengths of a few tens of years, 

thus not allowing a reliable estimate of the distribution’s shape parameter. In those cases, the 

proposed alternative formulation of Hershfield’s method provides at least a first 

approximation of the shape parameter based on the average of the annual maximum daily 

precipitation. 

 In cases where rain durations less than daily are of interest, Hershfield’s nomograph 

provides additional curves for specified such durations. Our analysis showed that (a) there is 

no need to use separate curves for lower durations, because such curves can be directly 

derived from local intensity-duration-frequency curves; (b) the particular Hershfield’s curves 

for low durations are practically equivalent with the assumption that the rainfall depth is 

proportional to the square root of duration. 
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List of Figures 

Figure 1 Empirical (rhombi) and GEV (continuous line) distribution function of Hershfield’s 

maximum standardized variate km for all classes of record length (on Gumbel probability 

paper). The parameters of the GEV distribution are κ = 0.0857, λ = 1.12, and ψ = 2.63. 

Figure 2 Empirical distribution functions of Hershfield’s maximum standardized variate km 

for each class of record length (on Gumbel probability paper). 

Figure 3 Empirical distribution functions of standardized rainfall depth k for each class of 

record length (on Gumbel probability paper). 

Figure 4 Empirical (rhombi) and GEV (continuous line) distribution function of standardized 

rainfall depth k for all Hershfield’s [1961] data (on Gumbel probability paper). 

Figure 5 Comparison of Hershfield’s empirical nomograph for km, as a function of the mean 

annual maximum rainfall h–d and duration d (dashed lines), with the curves obtained for the 

proposed alternative formulation (k for T = 60 000; continuous lines) by applying equations 

(10), (11) and (17). 

Figure 6 Empirical and theoretical distribution functions of the annual maximum daily 

rainfall at Athens (on Gumbel probability paper). The GEV distribution obtained by the 

proposed method coincides with the GEV distribution fitted directly from the sample with the 

method of maximum likelihood. 
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Tables 

Table 1 Summary table of the data published by Hershfield [1961]. 

Class 

number 

Length of 

record 

Number of 

individual 

records 

Minimum value 

of km (interval 

where it lies) 

Maximum value 

of km (interval 

where it lies) 

1 10 - 14 208 1.0 - 1.5 14.5 - 15.0 

2 15 - 19 851 1.0 - 1.5 13.0 - 13.5 

3 20 - 24 92 1.5 - 2.0 14.0 - 14.5 

4 25 - 29 108 1.5 - 2.0 8.0 - 8.5 

5 30 - 34 97 2.0 - 2.5 10.5 - 11.0 

6 35 - 39 85 2.0 - 2.5 9.5 - 10.0 

7 40 - 44 108 2.0 - 2.5 10.0 - 10.5 

8 45 - 49 149 1.5 - 2.0 9.5 - 10.0 

9 50 - 54 260 2.0 - 2.5 9.5 - 10.0 

10 55 - 59 352 1.5 - 2.0 11.0 - 11.5 

11 60 - 64 279 2.0 - 2.5 11.0 - 11.5 

12 65 - 69 45 2.0 - 2.5 8.0 - 8.5 

13 > 70 11 2.0 - 2.5 6.0 - 6.5 

Total  2645 1.0 - 1.5 14.5 - 15.0 
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Table 2 Simulation results for the exploration of sources of bias in the proposed formulation 

of Hershfield’s method. 

Assumed statistical 

characteristics of κ 

km using estimation method† Return period of k = 15 using 

estimation method†

Case 

no. 

E[κ] Std[κ] Cs[κ]  A B C A B C 

0 0.13 0 0 17.6 

(16.2)‡

18.8 7.1 66300 

(58600)‡

42900 >> 95000

1 0.13 0.036 1.35 19.1 21.4 7.2 44900 28500 >> 95000

2 0.12 0.039 1.24 18.2 19.7 7.1 52800 38000 >> 95000

3 0.11 0.042 1.15 17.5 19.9 7.0 82600 47500 >> 95000

4 0.10 0.045 1.08 17.0 19.0 7.1 93400 53300 >> 95000

† Estimation methods: (A) using theoretical moments (mean 0 and standard deviation 1); (B) 

using adjusted moments by the Hershfield's procedure; (C) using typical statistical moments.

‡ Theoretical values (where applicable). 
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