

Outlining a master plan framework for the design and assessment of flood mitigation infrastructures across large-scale watersheds

<u>P. Dimas¹</u>, G.K. Sakki¹, P. Kossieris¹, I. Tsoukalas¹, A. Efstratiadis¹, C. Makropoulos¹, N. Mamassis¹, K. Pipili² ¹ Dept. of Water Resources and Environmental Engineering, School of Civil Engineering, NTUA, Athens, Greece ² ANODOS S.A., Athens, Greece

12th World Congress on Water Resources and Environment (EWRA 2023) "Managing Water-Energy-Land-Food under Climatic, Environmental and Social Instability" Thessaloniki, Greece, 27 June - 1 July 2023

Conference II: Session II.1

Introduction: describing the problem

The area of interest: Western Thessaly region

- Damages and losses induced by the **Medicane lanos** over the greater Thessaly region.
- Need for **developing a Master Plan** for the West Thessaly flood protection.

The final area of interest occupies approximately **6400 km²**, thus:

- A **mega-scale** hydrological, hydraulic and water management study.
- Poses multiple conceptual and computational challenges.
 Which is the goal of the study?
- 1. Provide a synthesis of **already proposed** as well as **new** projects (dams, embankments, ditches).
- 2. Prioritize them under a multipurpose prism.

Structure of the presentation

- Description of the **methodological framework**.
- Final planning → **Strengthen the flood protection** of the area.
- Combine large-scale projects (dikes, multi-purpose dams) and retention basins (temporary reservoirs).

Part A:	Preliminary assessment of specific areas where high risk is expected due to flood phenomena	Semi-distributed representation of the rainfall-runoff transformations and the flood routing processes	Coupled 1D/2D hydrodynamic simulation of the flood prone riverine system			
Part B: Technical works utilized or proposed	Large-scale projects, i.e., dikes, multi-purpose dams (permanent reservoirs)		Retention basins of controlled inundation (temporary reservoirs)			
Objective	Sketch a framework for facing similar studies in a holistic manner - Maintain a high level of computational efficiency and explainability					

PART A:

Methodological framework

Preliminary assessment of specific areas where high flood risk is expected (1/3)

- Simple geospatial criteria were utilized, following Allafta and Opp (2021) and Theochari et al. (2021).
- Eight thematic layers were compiled:
 - 1. mean annual rainfall
 - 2. distance from river network
 - 3. elevation
 - 4. terrain slope
 - 5. land use/land cover
 - 6. drainage network density
 - 7. soil permeability
 - 8. hydrolithology
- The information of these layers is "translated" into flood susceptibility scores, from 1 (very low) to 5 (very high)
- We produce an overall flood susceptibility map, as a weighted overlay of individual layers

Parameter (Unit)	Class	Parameter Weight	Class Rank
	500-700		1
Rainfall (mm/year)	700-900		2
	900-1100	19.57%	3
	1100-1300		4
	1300-1500		5
	0-700		1
	700-2000		2
Distance to the river (m)	2000-4000	16.06%	3
	4000-7000		4
	> 7000		5
	< 110		1
	110-200		2
DEM (m)	200-450	14.20%	3
	450-750		4
	> 750		5
	0-10		1
	10-20		2
Slope (degrees)	20-30	13.99%	3
	30-40		4
	> 40		5
	- Shrubland		1
	- Cropland		2 to 3
Land use/land cover	- Bare land, Urban	11.07%	4
	- Wetlands		5
	- Water bodies		5
	0-0.2		1
Drainage density (km/km²)	0.2-0.4		2
	0.4-0.6	10.57%	3
	0.6-0.8		4
	0.8-1		5
Soil permeabilty	-Very high		1.25
	-High	0.000/	2.5
	-Medium	8.89%	3.75
	-Low		5
	-Extremely high		1.25
I had a link of a single source of the	-High		2.5
Hydrollthological permeability	-Medium	5.65%	4
potential	-Low		4
	-Very low		5

Preliminary assessment of specific areas where high flood risk is expected (2/3)

280000 320000 360000 05 10 30 40 ∎Km **D02** 4400000 4400000 IN D01 4360000 4360000 D03 **Preliminary flood** susceptibility Very low Based the flood susceptibility 1. on three map, Low Medium domains chosen to be analyzed were in 4320000 20000 High hydrodynamic simulations. 320000 360000 280000 A coupled 1D/2D model is set up for each domain. 2.

Representation of the rainfall-runoff simulation (1/3)

- **Goal of the simulation:** produce design flood hydrographs to drive the hydrodynamic analysis.
 - **1. Semi-distributed discretization** of the hydrological system.
 - A network-type model consisting of nodes, stream/river branches, and sub-basins (212 nodes, 210 branches and 306 sub-basins).
- **Event-based approach**, following the combined NRCS-CN and synthetic unit hydrograph (SUH) methods.
 - **1. NRCS-CN:** transformation of the design storm event over each sub-basin into flood runoff.
 - 2. SUH: routing to the corresponding outlet node.
- The point hydrographs through all sub-basins are synthesized and propagated along the hydrographic network by applying a novel conceptual approach.

Model implemented in HEC-HMS environment

Representation of the rainfall-runoff simulation (2/3)

time of concentration of

the most upstream

sub-basin

- Routing → linear kinematic wave method for steep (>1%) channel slopes and the wave-diffusion Muskingum method for mild ones.
- Their common input → a characteristic time parameter, K: the average travel time between the upstream and downstream junctions at the associated reach element.
- The estimation of parameter K across the stream network is based on a pseudo-hydraulic kinematic approach (Efstratiadis et al., 2022):

$$V_{i} = \frac{1}{n_{i}} R_{i}^{2/3} J_{i}^{1/2} \qquad R_{i}^{2/3} = c$$

$$V_{i} = \frac{1}{n_{i}} R_{i}^{2/3} J_{i}^{1/2} \qquad R_{i}^{2/3} = c$$

$$c = \frac{1}{t_{c} - t_{u}} \left(\frac{n_{1} L_{1}}{J_{1}^{1/2}} + \frac{n_{2} L_{2}}{J_{2}^{1/2}} + \dots + \frac{n_{N} L_{N}}{J_{N}^{1/2}} \right) = \frac{\beta}{t_{c} - t_{u}}$$

time of concentration of the entire catchment

 After determining c for each rainfall scenario, we estimate the mean velocity at each reach element of the stream network and the corresponding travel time, Li/V → K

Representation of the rainfall-runoff simulation (3/3)

Through the HEC-HMS simulations we produce the design hydrographs at key-junctions of the system →

Drivers of the hydrodynamic models (coupled 1D-2D).

- The hydrographs are acting as upstream and internal boundary conditions (BCs) of the hydrodynamic models.
- Automated procedures and interfaces of HMS and RAS with the data processing system HEC-DSS are developed in R environment.
- All the produced hydrographs are stored in HEC-DSS database files.

Hydrodynamic simulation of the riverine system (1/2)

- **Coupled 1D-2D** simulations in HEC-RAS.
- Why to choose this type of simulation?
 - Get the best out of both worlds: fast 1D computations where the flow direction is known beforehand (inside the river banks). 2D computations in the floodplains where the water path is not known.
 - 2. Disclose the water transfer dynamics between the main river and the floodplains. Allow water to exit and re-enter the riverine system by utilizing lateral structures in HEC-RAS, i.e. lateral weirs that control the flow by applying the standard weir equation $Q = C \cdot L \cdot H^{3/2}$

D02 region computational domain

Hydrodynamic simulation of the riverine system (2/2)

Model parameters:

- **1.** Computational time step, $\Delta t = 10$ s
- **2.** Distance between cross sections (1D domain discretization): $\Delta x = 50, 100, 150, 200 \text{ or } 300 \text{ m}$
- **3. 2D** area computational grid spacing (2D domain discretization): 50m x 50m or 100m x 100m (Should be proportional to the 1D spacing)
- 4. 2D flow equations: diffusion wave approximation
 - Very Stable Computationally.
 - Can handle larger time step Courant C > 2 (C = 5 max).
 - Good for computing rough global estimates, such as flood extent.

5. Mixed flow regime activated in the 1D domain.

- Modeling mixed flow regime (subcritical, supercritical, hydraulic jumps, and draw downs) is quite complex with an unsteady flow model. Most **unsteady flow solution algorithms** become unstable when the flow passes through critical depth.
- Local Partial Inertia (LPI) Technique. Reduction factor to the two inertia terms in momentum equation.

PART B:

Assessment of the utilized flood protection works

General outline of the proposed works (1/2)

Development of three types of flood mitigation works:

- 1. dikes, along parts of the lower channel network
- 2. six new multi-purpose reservoirs in the upstream, mountainous, parts of the watershed
- **3.** nine retention basins in the middle and downstream parts (390 km² of agrarian land)

Reservoirs

Retention basins

General outline of the proposed works (2/2)

Effect of reservoirs

- We examine design storms of a return period **T**= **100 years**
- We examine two scenarios:
 - **1.** A full reservoir in the beginning of the simulation.
 - 2. A semi-full reservoir: A capacity (~15% of the total capacity) is left empty to accommodate the flood volume
- The reservoirs can store 65 out of 150 hm³ produced in their upstream sub-basins, and the larger ones decrease flood peaks up to 75-95%.

Reservoir	Pyli	Mouzaki	Lithaios	Karabalis	Dafnospilia	Neochoritis	Smokovo	Palaioderli
Inflow peak (m ³ /s)	839.6	788.1	47.8	261.4	268.7	467.9	759.7	908.6
Outflow peak – full reservoir (m ³ /s)	599.6	292.3	38.5	137.4	264.7	337.7	72.9	441.6
Percentage of decrease (%)	29	63	19	47	1	28	90	51
Outflow peak – semi-full reservoir (m ³ /s)	474.7	124.5	34.8	86.5	264.7	240.5	8.0	208.8
Percentage of decrease (%)	43	84	27	67	1	49	99	77

Combined Effect of retention basins and dikes/levees (1/2)

- An important amount of about 56 hm³ can also be temporarily retained in the closed basins, most of which is diverted from the adjacent channel network.
- Their performance may also be **further improved** by installing control structures along the dikes (e.g., lateral gates), to better manage the arriving flood flows.

Retention basin	Lateral Structure Codes as modeled in HEC-RAS	Volume overflowing from the channels (hm ³)	Available capacity (hm³)
1	UP_K2 9735 R, K20_K22 9214 L, K22_K2 899 L	4.0	5.0
2-4	FE_EK 6789 L, FE_EK 6790 R	14.3	20.3
5	K23_K22 3199 R, K23_K22 3200 L, K22_K2 900 R, K2_EK 2098 R	3.9	4.7
6	M2_JM 14392 R, UP_K2 9734 L, K2_EK 2099 L, EK_JE 4818 L, JM_JE 2102 R	6.6	16.2
7	N2_N1 4425 R*, N2_N1 4426 L, M2_JM 14391 L	3.3	10.4
8	P1_down 11459 R, P1_down 11460 L*, M2_JM 14391 L	5.0	4.1
9	P4_P1 7059 L, D1_P1 5297 R	4.7	3.6
Total		41.9	64.3

PART C:

Did we manage to reach our objective ?

Conclusions

- □ Our analyses reveal the **effectiveness of the combined scheme** of the different flood mitigation works, and particularly the role of good management practices of reservoirs.
- □ The proposed framework is structured in a modular way, allowing to incorporate different modeling techniques or software in the modeling chain.
- □ The effectiveness of upstream storage and retention projects is maximized if they are combined with:
- (a) lateral overflow storage projects in the nine closed basins proposed in the present study, for which flood-controlled zones are located in their lower reaches, and
- (b) projects to enhance drainage in targeted sections of the hydrographic network, mainly by raising embankments.

References

- Allafta, H., and C. Opp, *GIS-based multi-criteria analysis for flood prone areas mapping in the transboundary Shatt Al-Arab basin, Iraq-Iran,* Geomatics, Natural Hazards and Risk, 12(1), 2087-2116, doi:10.1080/19475705.2021.1955755, 2021.
- Efstratiadis, A., P. Dimas, G. Pouliasis, I. Tsoukalas, P. Kossieris, V. Bellos, G.-K. Sakki, C. Makropoulos, and S. Michas, *Revisiting flood hazard assessment practices under a hybrid stochastic simulation framework, Water*, 14(3), 457, doi:10.3390/w14030457, 2022.
- Theochari, A.-P., M. Develekou, and E. Baltas, *GIS-Based multi-criteria approach towards sustainability of flood-susceptible areas in Giofiros river basin, Greece,* Circular Economy and Sustainability, doi:10.1007/s43615-021-00096-z, 2021.

Thank you for your attention!

