
1. Abstract
The hydrometeorological processes associated with renewables are characterized by 
substantial spatiotemporal variability, and thus uncertainty, which is addressed through 
decentralized planning, thus taking advantage of scaling effects. The objective of this work is 
to provide a comprehensive investigation of the role of scale regarding solar photovoltaic 
production in Greece, which is one of the predominant renewables. By implementing 
macroscopic criteria in terms of solar potential (e.g., topography radiation indices), we select 
a sufficient sample of well-distributed locations in Greece. For these points, hourly radiation 
and temperature data, derived from satellite products, are retrieved and validated against 
ground observations. Following this, we formulate a detailed simulation procedure that 
accounts for the two physical drivers and the panel characteristics (i.e., efficiency and 
temperature impacts due to heating), and we configure the baseline scenario by computing 
the individual production of each site. Next, to highlight the added value of distributed 
production and quantify the scaling effects in PV power production, we follow a Monte Carlo 
approach by randomly distributing PVs across the selected locations, to eventually provide 
a statistical analysis on the spatial and temporal domain and over different PV technologies.
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7. Conclusions & future research perspectives
▪ Distributing solar PVs across different locations exhibits a shift of the relationship between 

power production and spatial reliability. As the spatial distribution of PVs increases, so do 
the higher-reliability capacity factor values, while lower-reliability values decrease;

▪ Distributed PVs can ensure higher power production with increased reliability, compared to 
that of centralized configurations;

▪ The variance of PV production practically converges to zero as more locations are 
accounted for, meaning that highly distributed layouts are significantly less vulnerable to 
power curtailment factors;

▪ The effects of temperature on PV power production are not negligible, especially during 
the summer months; 

▪ Future research will be focused on:

❑ Including more components in the estimation of solar potential, e.g., diffuse 
radiation, cloud coverage, effects of topography (cf. Mamassis et al., 2012);

❑ Investigating seasonality effects on spatially-distributed capacity factors; 

❑ Validation of theoretical power potential with real-world cases.
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2. Why distributed?
▪ Distributed energy systems (DES) have emerged as promising solutions towards the 

delivery of key electricity services, including, but not limited to, power production, having 
the potential to reduce reliance on centralized infrastructure (cf. Burger et al., 2019).

▪ DES, if sited at the right locations and operated under the right conditions, not only deliver 
the same services as centralized systems, but also provide additional locational value.

▪ Their benefits, especially when combined with centralized systems, include reducing 
operating (e.g., transmission) costs and energy losses, and increasing reliability and 
resilience both by relieving network congestion and in the occasion of network outages. 

6. Key simulation outcomes

By contrasting the capacity factor probability curves of the centralized production (benchmark 
scenario) against the distributed settings, derived through stochastic combinations of PVs 
(upper panel), the following conclusions are drawn: 

▪ The probability of exceedance can be interpreted as a metric of spatial reliability, thus the 
increase of PV spatial distribution leads to increased guaranteed power production;

▪ As the number of locations increases, the curves become smoother, thus increasing the

spatial spread of PVs leads to 
decreased variability, and 
eventually less uncertainty in 
PV power production;

4. Outline of solar PV system simulation 
procedure: Data, parameters & processes

𝒏𝒂𝒄𝒕𝒖𝒂𝒍 = 𝒏𝒏𝒐𝒎 − 𝒂𝑻 ∙ 𝒎𝒂𝒙(𝑻 − 𝟐𝟓, 𝟎)

where 𝒂𝑻 is a power temperature coefficient (%/°C), denoting 
the rate of PV efficiency decrease for every unit increase of 
temperature above 25°C.

𝑪𝑭 =
𝑬𝒎𝒆𝒂𝒏,𝒂𝒏𝒏𝒖𝒂𝒍

𝑷𝒏𝒐𝒎 ∙ 𝟖𝟕𝟔𝟎

▪ The simulation accounts for the two driving meteorological 
processes, i.e., solar radiation, 𝑹 (W/m2) and temperature, 𝑻 
(°C), and two technical parameters, associated with panel 
technology (i.e., efficiency, power temperature coefficient).

▪ At each location, the hourly power production is calculated for 
15 years (2005-2020) as follows:

▪ The adjustment of efficiency is employed by the following 
formula that accounts for temperature effects:

𝑷𝒉𝒐𝒖𝒓𝒍𝒚 =
𝒏𝒂𝒄𝒕

𝒏𝒏𝒐𝒎
𝒎𝒊𝒏 𝒏𝒏𝒐𝒎 ∙ 𝑹 ∙ 𝑨𝒑𝒂𝒏𝒆𝒍, 𝑷𝒏𝒐𝒎

where 𝒏𝒂𝒄𝒕 is the adjusted PV efficiency against temperature 

effects, 𝒏𝒏𝒐𝒎 is the nominal efficiency, 𝑨𝒑𝒂𝒏𝒆𝒍 is the PV area, 

and 𝑷𝒏𝒐𝒎 is the nominal power, which is achieved under the so-
called Standard Test Conditions (i.e., for cell temperature of 
25°C, solar irradiance of 1000 W/m2 and air mass of 1.5) 

PV module characteristics

• Area: 1.77 m2

• Nominal power: 400 W

• Efficiency: 22.6 %

Inputs

• Solar radiation

• Temperature

• PV module 
characteristics

Outputs

• Power 
production

• Capacity 
factor

Power conversion process

▪ To evaluate the PV potential of each location in dimensionless 
means, we express it in terms of annual capacity factor: 

Remark: Each location’s PV performance is evaluated for three power temperature coefficient values (i.e., 0.0, 0.2, 0.4%/°C). The first 
value corresponds to a theoretical setting, where temperature has no effect on PV power production, the second refers to state-of-the-
art technologies that are less susceptible to temperature effects, while the last one is a typical value, concerning conventional modules.

▪ The CF values at all locations are quite high (min 17.4%, max 
21.4%, for the conventional temperature factor), which in turn, 
confirms that their solar potential is high. This verifies the site 
selection criteria utilized in our analysis.

▪ The spatial variability of the centralized production is visualized 
through the empirical probability curve (inverse CDF) of the 
annual capacity factors across the 25 selected locations.

▪ The curve data are derived by sorting the CF values in descending 
order and assigning an empirical exceedance probability (cf. 
Efstratiadis et al., 2021) to each value. If 𝑛 is the size of data, the 
probability of exceeding the sorted value at position 𝑖 is estimated 
through the Weibull plotting position, i.e.:

𝒑𝒊 =  𝒊 / (𝒏 + 𝟏)

▪ To provide a continuous spatial variability model, we fit the 
formula derived by the Kumaraswamy distribution function (cf. 
Kumaraswamy, 1980) to the empirical probability values:

𝑪𝑭 = 𝑪𝑭𝒎𝒊𝒏 + 𝟏 − 𝟏 − 𝒑𝒂 𝒃 𝑪𝑭𝒎𝒂𝒙 − 𝑪𝑭𝒎𝒊𝒏

5. Probabilistic assessment of centralized 
production 

where 𝑪𝑭𝒎𝒊𝒏 and  𝑪𝑭𝒎𝒂𝒙 are the theoretical lower and upper 
limits of the capacity values, respectively, 𝒂 and 𝒃 are shape 
parameters, and 𝒑 is the probability of exceedance. 

Remark: The shape parameters and the limits 𝑪𝑭𝒎𝒊𝒏 and  𝑪𝑭𝒎𝒂𝒙, 
corresponding to 𝑝 ≈ 1 and 𝑝 ≈ 0, are inferred via calibration

3. Data collection and validation

Remark: The satellite-derived time series exhibit sufficient similarity with ground data.

▪ 25 well-distributed locations all over 
Greece are selected to investigate 
their PV power potential;

▪ Hourly solar radiation and air 
temperature data for 15 years are 
retrieved from the Photovoltaic 
Geographical Information System 
(PVGIS) tool (cf. Huld et al., 2012) 
using the Surface Solar Radiation Data 
Set Heliosat-2 (SARAH-2);

▪ To assess the predictive capacity of 
satellite data, we contrast them with 
ground observations of hourly solar 
radiation and temperature time series, 
in one of the selected locations 
(telemetric meteorological station @ 
NTUA campus, Zographou, Athens).

Validation 
point

6. Monte Carlo approach for distributed production

▪ A Monte Carlo analysis is carried out to highlight the benefits of 
distributed solar PV production, thus accounting for alternative sites and 
production capacities.

▪ The “joint” power potential is assessed by distributing PVs in equally-
probable combinations of locations. To handle combinatorial explosion, 
we employ a Monte Carlo approach to calculate the capacity factor from 
1,000 randomly selected combinations. Each combination is configured 
by sampling the number of PV installation sites within the range [2, 𝑁 −
1], where 𝑁 is the total number of feasible locations (25 in our case).

▪  Since solar radiation exhibits quite significant fluctuations across 
Greece, we argue that by distributing PVs across the predefined 
locations, the uncertainty in PV power production will be reduced. This 
is because, unlike centralized production, factors that typically induce 
power curtailment, such as cloud coverage, temperature effects, and 
atmospheric aerosols (cf. Kambezidis, 2021) are less likely to 
simultaneously impact different geographic regions.

Remark: As the spatial spread of PVs across the Greek 
territory increases, the uncertainty of power performance (in 
terms of CF) decreases

▪ Notably, the ratio of the 
underlying area of the 𝑛 = 2 
curve to the baseline one is 
1.8/1.0 (the two curves are 
crossed at 𝑝 = 40%).

To provide better understanding 
of the scaling law derived by the 
distributed production setting, 
we plot the CF values that 
correspond to 90% probability of 
exceedance against 𝑛 (lower 
panel). Key conclusions are:

▪ For the given spatial reliability 
level, the distributed power 
production increases as more 
locations are accounted for;

▪ Temperature effects are also 
contrasted, where, as 
expected, as the temperature 
coefficient increases, so does 
the PV power curtailment.

▪ The distance between the 
probability curves practically 
equals the difference of 
associated power temperature 
coefficients, i.e. 0.2%.
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