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Abstract
This work presents a stochastic framework for the construction of rainfall intensity–timescale–

return period relationships, which was applied in the recent regionalization of design rainfall 

curves over the Greek territory, described in a companion paper. The methodology outlined herein 

builds upon the Koutsoyiannis’ et al. 1998 framework, which has been recently revisited and 

upgraded, and incorporates two different versions: (a) a theoretically consistent stochastic model 

applicable for rainfall intensity over any scale of interest and (b) a simplified version valid over 

small scales, which makes parameter estimation easier. Special focus is given to the presentation 

of the simplified version, which suffices for most engineering tasks. Parameter estimation 

approaches are presented in detail including the K-moments framework that allows for reliable 

high-order moment estimation and handling of bias due to spatiotemporal dependence. 

Keywords:   rainfall modelling; extreme rainfall; design rainfall; intensity–duration–frequency 
curves; tail-index; K-moments; stochastic modelling
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1. Introduction

Accurate rainfall estimates for various timescales and return periods are one of the most important 

prerequisites for hydrological and hydraulic design. Engineers typically have access to this 

information using mathematical relationships that relate the time-averaged rainfall intensity (x) 

over a given time scale (k) to the return period (T). The latter terms are usually referred to as 

“duration” and “frequency” in the literature, i.e., forming the term ‘intensity–duration–frequency’ 

curves, which however, induces ambiguity in terminology as “duration” can be confounded with 

actual rainfall duration, while “frequency” is related to but not synonymous to the return period. 

Here, to avoid confusion, we use the term “ombrian relationships” (or curves), from the Greek 

“όμβρoς” (meaning rainfall), that has been also used in several past studies (Koutsoyiannis et al. 

2023a, Koutsoyiannis and Iliopoulou 2022; Iliopoulou et al. 2022). 

There are several different types of ombrian relationships in the literature (cf. Svensson and 

Jones, 2010, Lanciotti et al. 2023 for extensive reviews), ranging from early empirical approaches 

(Sherman 1931, Bernard, 1932) to generalized parametric approaches, such as the probabilistic 

approach formulated by Koutsoyiannis et al. (1998) and the approach based on the rainfall simple- 

or multi-scaling assumption (Burlando and Rosso 1996, Langoussis and Veneziano 2007, 

Veneziano and Fucolo 2002), as well as other regression-type ('data-driven') approaches (Overeem 

2008, Haruna et al. 2023). Most of these methods are either empirical or at least include some 

empirical relationships that have been established through long-term hydrological experience. 

Despite certain theoretical shortcomings owing to the empirical derivations (see Koutsoyiannis 

2023a, p.290), most approaches address the problem for design for small scales, albeit with 

different performance being reported worldwide (Shehu et al. 2023, Lanciotti et al. 2023). 

Meanwhile, however, attempts to provide ombrian relationships with a theoretical foundation have 

often employed inappropriate assumptions, leading to relationships that are oversimplified and 

unsuitable for engineering application. 

This work presents a stochastic framework of ombrian relationships that forms the 

theoretical background for the recent regionalization of ombrian relationships in Greece 

(Koutsoyiannis, 2023c), which is the focus of a companion paper (Iliopoulou et al. 2023). The 

stochastic framework presented herein constitutes an advance of the approach formulated by 

Koutsoyiannis et al. (1998) which is one of the standard approaches in hydrological practice (e.g., 
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Sane et al. 2018, Shehu et al. 2022, Lanciotti et al. 2022). The new upgraded framework has been 

developed in two variants (Koutsoyiannis, 2023a; Chapter 8): (a) a theoretically consistent 

stochastic modelling framework of rainfall intensity, valid over any time scale of interest, and (b) 

a simplified version applicable over small time scales, e.g., of the order of minutes to a few days. 

A key motivation for deriving the ombrian relationships under a theoretically consistent 

stochastic framework is the ability to retain multi-scale validity and thus, achieve increased 

modelling efficiency. In particular, the ombrian curves are typically constructed for time intervals 

ranging from a few minutes to several hours, as this range of timescales is most relevant for 

common engineering applications. However, having a multi-scale model of rainfall intensity is 

preferrable since larger temporal scales are important for advanced engineering operations, such 

as reservoir operation and water management plans, while the model can also be applied in 

simulation (Koutsoyiannis and Dimitriadis 2021). The problem with this version is that it requires 

long and complete fine-scale timeseries of the parent process for its determination and such rainfall 

data are often not available at large regional scales. Also, the parameter estimation procedure 

becomes complicated if the regionalization of parameter values is sought. In this respect, it is also 

important to obtain simplified versions of such a model that can be applied in practice with data 

requirements as common as the ones employed in traditional modelling of ombrian curves. Indeed, 

in many regions, including Greece, long and complete timeseries of fine-scale rainfall data are 

sparse and thus, advanced modelling based on the first version cannot be applied at the regional 

scale (Iliopoulou et al. 2023). For such cases, the simplified version is developed and detailed 

herein. It is important to note that the simplified version is obtained from the full version under 

stated assumptions, and therefore it inherits the theoretical consistencyof the full model, except in 

the aspects in which the simplifying assumptions apply.

A second reason for seeking theoretical consistency in modelling of ombrian curves is to 

make estimation from data with awareness of the involved bias and uncertainty, the quantification 

of which requires a theoretical model. Even more, it is well-established that in a stochastic process 

characterized by persistence, both bias and uncertainty increase significantly (Dimitriadis and 

Koutsoyiannis 2015, Koutsoyiannis 2023a, Iliopoulou and Koutsoyiannis 2019), and this is the 

case for the rainfall process as well, including its extremes (Iliopoulou et al. 2018, Dimitriadis et 

al. 2021, Koutsoyiannis 2023a, Iliopoulou and Koutsoyiannis 2019, O’Connell et al. 2023). 
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To guide empirical estimation, the paper presents in detail efficient estimation methods for all 

involved parameters. Emphasis is given to a new estimation framework for the estimation of the 

distribution parameters, including the highly uncertain tail-index, namely the knowable moments 

(K-moments) approach (Koutsoyiannis 2019, 2023b). This set of moments presents various 

advantages over classical approaches (Koutsoyiannis 2023b) the most relevant of which for our 

study are that high-moment orders, related to the tail-behaviour, can be reliably estimated and 

assigned a return period, whereas estimation can also be adapted for bias due to spatio-temporal 

dependence, which is common in the analysis of rainfall data. Along with the theoretical 

development of the simplified model, these estimation approaches complement the theoretical 

background on which the point modelling and subsequent regionalization of ombrian curves for 

Greece is based (Iliopoulou et al. 2023).

The remaining of this work is structured in three sections. Section 2 deals with the presentation 

of the stochastic model detailing the requirements for theoretical consistency and introducing the 

two variants, with emphasis placed on the simplified version for small scales. Section 3 describes 

the approaches proposed for parameter estimation, including the K-moments return period 

estimation framework. Summary and conclusions are reported in Section 4.

2. A stochastic framework for multi-scale rainfall intensity modelling

2.1 Requirements for theoretical consistency 

All ombrian relationships are based on some assumptions, which herein are intended to be 

theoretically consistent with key stochastic properties for the rainfall process, under a stationary 

framework, which is consistent with long-term stochastic changes (Koutsoyiannis and Montanari 

2015). Yet as previously explained, due to the practical/engineering nature of ombrian curves, it 

is reasonable to sacrifice perfect theoretical consistency if it results in too involved expressions. A 

set of assumptions for theoretical consistency that are both practical and consistent is proposed by 

Koutsoyiannis (2023a, p.290), as follows: 

1. A basic requirement of any stochastic model is to preserve first and second-order 

characteristics of a process of interest, which in this case, is the temporal average intensity 

 over any time scale k. For handling the second-order properties, it is convenient to 𝑥(𝑘)

employ the variance of the averaged process over timescale of averaging , i.e., var [𝑥(𝑘)]
the climacogram, the preservation of which ensures preservation of any other second-order 
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characteristic (Koutsoyiannis 2023a, Dimitriadis and Koutsoyiannis 2015). The need for 

preserving a constant mean is obvious, even though this requirement is violated in common 

expressions of ombrian curves.

2. The process variance should be finite for , for physical consistency relating to required 𝑘→0

energy (which would otherwise be infinite), and zero for , in order for the process to 𝑘→∞

be ergodic. 

3. The model should account for the fact that the probability dry,  is nonzero 𝑃(𝑘)
0 ≔𝑃{𝑥(𝑘) = 0}

for small time scales, and equivalently, that the probability wet, 𝑃(𝑘)
1 ≔𝑃{𝑥(𝑘) > 0} = 1 ―

 is smaller than 1 for small k, including for .𝑃(𝑘)
0 𝑘→0

4. Moments of order greater than two are significant to consider since an ombrian model 

places a strong emphasis on the rainfall extremes.

5. The upper-tail index of the distribution should be constant for all time scales. Theoretical 

justification of this requirement is given in Koutsoyiannis (2023a, p.318).

6. The model should handle the all-scale rainfall distribution. In this respect, the Pareto 

distribution is an optimal choice for short time scales due to its simplicity and clear 

relationship between the time-averaged intensity and return period (the reader is referred 

to the Appendix for a detailed presentation). However, as the time scale extends to several 

days or longer, the Pareto distribution becomes insufficient, and a bell-shaped type of 

probability density, as the Pareto-Burr-Feller distribution (Koutsoyiannis 2023a, p.291) is 

more appropriate.

2.2 Ombrian model for small scales

The mathematical framework for rainfall curves proposed by Koutsoyiannis et al. (1998) is one of 

the most widely used approaches for design rainfall (e.g., Sane et al. 2018, Shehu et al. 2022, 

Lanciotti et al. 2022). Recently, Koutsoyiannis (2023a, Chapter 8) revisited this framework 

developing an approach that generalizes typical ombrian curves applicable over small scales, to 

stochastic models of rainfall intensity, valid over any scale (arbitrarily large) supported by the data. 

The revisited model preserves all requirements discussed in Section 2.1. However, for large time 

scales the mathematics becomes somewhat involved while these scales are less relevant to typical 

applications. Here, we apply the framework only for small time scales, for which a Pareto 

distribution for the non-zero rainfall intensity is justified. As already mentioned, for larger scales, 
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this should be replaced by a Pareto-Burr-Feller distribution. For the former case, the Pareto 

distribution quantile is given as (Koutsoyiannis 2023a, p.294): 

𝑥 = 𝜆(𝑘)
( 𝑃(𝑘)

1 𝑇 𝑘)𝜉 ― 1

𝜉
(1)

where  is the probability wet,  is a scale parameter and  is the tail-index of the Pareto 𝑃(𝑘)
1 𝜆(𝑘) 𝜉

distribution. Both  and  are functions of the timescale obtained as (related derivations are 𝑃(𝑘)
1 𝜆(𝑘)

given in the Appendix):

𝑃(𝑘)
1 =

1 ― 𝜉
1/2 ― 𝜉

𝜇2

𝛾(𝑘) + 𝜇2 (22)

𝜆(𝑘) =
𝜇(1 ― 𝜉)

 𝑃(𝑘)
1

=
(1/2 ― 𝜉)(𝛾(𝑘) + 𝜇2)

 𝜇 (3)

where  is the mean intensity (constant at all time scales) and γ(k) the climacogram of the process, 𝜇

i.e., the function of the variance across timescale, which can follow different models. 

This model respects the requirements set for small scales, yet its application requires estimation 

of stochastic properties (e.g., the climacogram) based on the parent process, which in this case 

should be based on complete fine-scale timeseries of the rainfall intensity. Such series are often 

sparse, and this may hinder reliable estimation of the ombrian model in regional analyses, as is the 

case of Greece (Iliopoulou et al. 2023). For such cases, a simplification of the model with less 

intensive data requirements, i.e., employing solely series of extremes (block maxima or values 

over threshold), is possible as detailed next.

2.3 Simplified version 

Based on the following assumptions which are reasonable for the fine-scale behaviour of rainfall, 

Equations (1)–(3) may be simplified. For small time scales:

 We assume that , and hence we can set the quantity  𝑃(𝑘)
1 ∝ 𝑘 𝛽(𝑘)≔𝑘 𝑃(𝑘)

1 =  𝛽 = constant 

in Equation (1). This is a strong assumption, yet necessary to derive the simplified version 

of the model, and for this reason, it is usually implicitly adopted in most simplified ombrian 

relationships (cf. Koutsoyiannis 2023a, p.290-291, p.299). The assumption can only hold 

as long as  (otherwise > 1 would result). If larger timescales are of interest, then 𝑘 < 𝛽 𝑃(𝑘)
1

the all-scale model version (Koutsoyiannis 2023a, p.291-295) should be used.
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 , and thus, we can neglect the latter term in their sum.𝛾(𝑘) ≫ 𝜇2

 The empirical climacogram may be modelled through the generalized Cauchy-type model 

climacogram (Koutsoyiannis, 2023; p. 113):

𝛾(𝑘) = 𝜆2
1(1 + (𝑘

𝛼)2𝑀)
𝐻 ― 1

𝑀
(4)

where  and  are scale parameters, with dimensions of time  and , respectively, and ,  𝛼 𝜆1 [𝑡] [𝑥] 𝐻 𝑀

are dimensionless parameters in the interval (0,1), controlling the long-range, i.e., Hurst-

Kolmogorov (HK) dynamics, and local scaling of the process (fractal behaviour) of the process, 

respectively. For  we take the neutral value  as default.𝑀 𝑀 = 1/2

These simplifying assumptions, result in some violations of a full stochastic consistency, as 

detailed in Koutsoyiannis (2023a, p.299). However, at small scales, of the order of minutes to a 

few days the violations are negligible. By virtue of these simplifications, the ombrian relationship 

is given as:

𝑥 = 𝜆2
1
(1/2 ― 𝜉)

𝜉𝜇 (1 +
𝑘
𝛼)2𝐻 ― 2(( 

𝑇
𝛽)𝜉

― 1 ) (5)

It is easily observed that Equation (5) can be written concisely as the quotient of two separable 

functions b(T) and a(k) of the return period and the timescale, respectively, in the form:

𝑥 =
𝑏(𝛵)
𝑎(𝑘) (6)

From Equation (5) it follows that the function a(k) has the following general form:

𝑎(𝑘) = (1 +
𝑘
𝛼)𝜂

,  𝜂≔2 ― 2𝐻 (7)

where α and η are parameters to be estimated from the data with  (in units of time, e.g., h) 𝛼 > 0

and 0 < η < 1 (dimensionless). Accordingly, assuming   and setting  the 𝜉 > 0 𝜆 = (1/2 ― 𝜉)𝜆2
1  𝜉𝜇

function b(T) is:

𝑏(𝑇) = 𝜆(( 𝑇 𝛽)𝜉 ― 1),  𝜉 > 0 (8)

Therefore, Equation (6) takes the following final form, for the usual case where :𝜉 > 0

Page 8 of 25

URL: http://mc.manuscriptcentral.com/hsj

Hydrological Sciences Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

8

𝑥 = 𝜆
( 𝑇 𝛽)𝜉 ― 1

(1 + 𝑘 𝛼)𝜂 (9)

where the following five parameters are involved:  an intensity scale parameter in units of the 𝜆

rainfall intensity  (e.g. mm/h),  a timescale parameter in units of the return period (e.g. years), 𝑥 𝛽

 a timescale parameter in units of timescale (e.g. h) with  > 0,  a dimensionless parameter with 𝛼 𝛼 𝜂

, and  the upper tail index of the process. 0 < 𝜂 < 1 𝜉 > 0

In the case that the return period of the rainfall intensity is empirically determined based on 

rainfall exceedances extracted from the full series, a Pareto distribution can be generally assumed 

for modelling the rainfall intensity, as implied by Equation (9). However, if the return period is 

determined based on series of annual maxima (AM) of rainfall intensity, then both long-term 

empirical evidence and theoretical arguments support the use of the Extreme Value Type 2 (EV2) 

distribution from the Generalized Extreme Value (GEV) distribution family:

𝐹(𝑦) = exp ( ― (1 + 𝜉(𝑦
𝜈 ― 𝜓))) ―

1
𝜉),  𝑦 ≥ 𝜈(𝜓 ―

1
𝜉) (10)

where  (dimensionless), (units same as in ) and (dimensionless) are location, scale 𝜓 𝜈 >  0 𝑦 𝜉 >  0 

and shape parameters, respectively. It should be mentioned that the case of < 0 is not appropriate 𝜉

for maximum rainfall, since it presumes the existence of an upper limit for the variable, which is 

inconsistent to the physical reality. Also, the case of =0, i.e., assuming a Gumbel (Extreme Value 𝜉

Type 1—EV1) distribution for the maximum rainfall intensity, is also not supported by worldwide 

empirical evidence and is to be avoided in general (Koutsoyiannis 2004). Therefore, it is not 

developed herein, but further details for this case are given in Koutsoyiannis (2023a). 

Equivalently, the EV2 distribution as given by Equation (10) can be re-parameterized 

consistently to Equation (9) as follows:

𝐹(𝑦) = exp ( ―
𝛥
𝛽(𝑦

𝜆 + 1) ―
1
𝜉) (11)

where ,   and  and . 𝛥 = 1 year 𝛽 = (1 – 𝜉 𝜓)1/𝜉𝛥 𝜆 = (1 – 𝜉 𝜓) 𝜈 / 𝜉 𝜉 > 0
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The variable y represents either the rainfall intensity x or, equivalently, the product  𝑥 𝑎(𝑘)

(Equation (6)). Solving Equation (11) in terms of y and substituting  = 1 – Δ / T, where Δ = 1 𝐹(𝑦)

year for annual maxima, yields, respectively:

𝑥 = 𝜆
( ― (𝛽 𝛥)ln (1 ―  𝛥 𝑇)) ―𝜉 ― 1 

(1 + 𝑘 𝛼)𝜂 ,  𝜉 > 0 (12)

and therefore, in this case the function  is:𝑏(𝛵)

𝑏(𝛵) = 𝜆(( ― (𝛽 𝛥)ln (1 ―  𝛥 𝑇)) ―𝜉 ― 1 ),  𝜉 > 0 (13)

It is easily shown that for small return periods, Equation (9) deriving from a Pareto distribution 

yields higher intensity than Equation (12) whereas for larger return periods (Τ > 10 years) the two 

are practically indistinguishable given that for small Δ/Τ holds ln (1  (Δ/T)) = (Δ/T)  (Δ/T)2  

  Δ/T. Therefore, from an engineering perspective, it is safer to express the final model as 

Equation (9) even when the fitting is based on Equation (14), i.e., in the case that annual maxima 

are employed. Therefore, Equation (9) is the final design relationship, as it is in full correspondence 

with the natural rainfall process (without reference to the subjective choice of the yearly time scale 

for the maxima extraction), has a simpler mathematical description, and its validity covers return 

periods also smaller than 1 year. Equations (9) and (12) were also presented by Koutsoyiannis et 

al. (1998) for small scales, albeit with a slightly different parameterization, and without links to 

the multi-scale stochastic model. Despite this, they are adequate for most engineering applications 

of ombrian curves, namely those involving flood analyses. A summary of the simplified 

relationships along with the parameters is provided in Table 1.

An attractive advantage of this simplified version is the separability of functions  and 𝑎(𝑘)

 that allows for an independent, two-step procedure of parameter estimation. This is useful in 𝑏(𝛵)

practice and even more for regional analyses where different data sources may be available. In 

particular, the estimation of the parameters of the timescale function (of the expression 𝑎(𝑘)) 

requires the use of sub-daily or even sub-hourly data, available from tipping-buckets and 

automated censors. On the other hand, the estimation of the distribution parameters (of the 

expression 𝑏(𝑇)) may be performed by also exploiting daily rainfall records which are 

characterized by longer lengths and a denser spatial resolution while they are usually more reliable 

in recording heavy rainfall during storm events (e.g., Molini et al. 2005). 
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2.4 Physical/mathematical basis of the parameters

The simplified Equations (9) and (12) are dimensionally consistent, and the five parameters have 

physical or logical meaning, as explained below following Koutsoyiannis (2023a, p. 297). It should 

be noted, however, that the procedure for parameter estimation is based on minimizing an error 

expression rather than on their actual meaning. Therefore, the connection between the parameter 

values and their meanings is imperfect, it nonetheless allows us to comprehend the full theoretical 

framework.  

 𝜂 [−]: Persistence parameter, where larger values indicate less strong persistence. It is 

asymptotically connected to the Hurst parameter 𝐻, with the relationship 𝜂 = 2 − 2𝛨. For a 

purely random process, 𝐻 = 0.5 and 𝜂 = 1, a value that is the upper allowable limit of 𝜂, but 

certainly not supported by empirical evidence. Clearly, any value of  results in , 𝜂 <  1 𝐻 >  0.5

i.e., a process with persistence. In a fully persistent process,  and , a value that is 𝐻 =  1 𝜂 =  0

the lower allowable limit of 𝜂. For , , which is a typical value of .𝛨 =  0.75 𝜂 =  0.5 𝜂

 𝛼 [Τ]: Time scale parameter, expressing the rate of deviation of the term  𝛢 ≔ 1/(1 +  𝑘/𝛼)𝜂

from the pure power law . For time scale 𝑘 ≫ 𝛼, 𝐴 and 𝐵 are practically identical. 𝐵 ≔ (𝛼/𝑘)𝜂

For 𝑘 = 𝛼, the 𝐴 term already deviates quite a bit (by 1/3 to 1/2) from the power law. For 𝑘 → 

0 (instantaneous time scale), 𝛢 = 1, while 𝛣 → ∞. For 𝛼 → 0, 𝐴 and 𝐵 tend to coincide, but 

the rainfall intensity tends to infinity. For that reason, the value 𝛼 = 0 should be excluded. 

Typical values are close to (Koutsoyiannis et al. 2023c) 𝛼 = 0.2 h, while, for a set of global 

rainfall records, Koutsoyiannis and Papalexiou (2017) suggested 𝛼 =0.07 h.

 𝜉 [−]: Upper-tail index of the distribution of rainfall depth or intensity. Its minimum value, 𝜉 

= 0, corresponds to an exponential distribution (or Gumbel distribution for annual maximum 

rainfall). Values of 𝜉 > 0 correspond to a Pareto distribution (or Fréchet distribution for annual 

maximum rainfall). For better understanding of the meaning of the parameter 𝜉 it is noted that, 

when 𝜉 > 0, the classical moments of the distribution are finite only for order 𝑝 < 1/𝜉, while 

for 𝑝 > 1/𝜉 they diverge to infinity. Therefore, values of 𝜉 ≥ 1 correspond to an infinite mean 

of the rainfall depth or intensity, which has no physical meaning. Values 𝜉 ≥ 1/2 are not 

considered admissible because they make the variance (𝑝 = 2) infinite. Values 𝜉 ≥ 1/3 and 𝜉 ≥ 

1/4 result in infinite skewness (𝑝 = 3) and kurtosis (𝑝 = 4), respectively. Typical values range 
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from 𝜉 = 0.1 to 0.2 (Koutsoyiannis et al. 2023c), while global investigations of precipitation 

extremes have given 𝜉 = 0.13 to 0.15 (Koutsoyiannis 1999, 2004b). All these empirically 

estimated values suggest finite mean, variance, and classical skewness and kurtosis of the 

distribution.

 𝛽 [T]: Scale parameter for return period, expressing the average temporal distance of two 

consecutive wet periods (e.g., days). It is recalled that the simplified ombrian expression is 

based on the assumption that the ratio of the time scale 𝑘 to the probability wet at scale 𝑘, 𝑃1(𝑘) 

is constant, equal to 𝛽, i.e., 𝛽 = 𝑘/𝑃1(𝑘). Considering 𝑘 = 1 d, we find 𝛽 = 1 d/𝑃1(1 d) = 𝛮/𝜈 d, 

where 𝑁 ≈ 365 is the number of days in a year and 𝜈 is the average number of wet days in a 

year. Thus, the ratio 𝑁/𝜈 is the average time interval between two wet days. If it rains every 

day, then 𝜈 ≈ 365 and the average distance between two wet days is 𝛽 = 1 d. If it rains 20% of 

the days, then 𝛽 = 1/0.2 = 5 d =0.0137 years. Since the rain depth has a lower bound of 0, if 

we set 𝑇 = 𝛽, then the ombrian equation should yield 𝑥 = 0, which is indeed the case. Values 

𝑇 < 𝛽 are meaningless. Likewise, time scales 𝑘 > 𝛽 cannot be modelled by the simplified 

equations.

 𝜆 [LT−1]: Characteristic instantaneous rainfall intensity (scale parameter), roughly 

corresponding to a one-year return period (𝛵 = 1 year). Indeed, for 𝑘 = 0, for typical values 𝜉 

= 0.15, 𝛽 = 4 d (cf. the explanation of parameters 𝜉 and 𝛽 above), and for 𝑇 = 1 year = 365 d, 

it follows (𝑇 ⁄ 𝛽)𝜉 = (365 ⁄4 )0.15 ≈ 2 and thus, from equation (9), 𝑥(0, 1 year) = 𝜆.

3. Estimation of ombrian parameters 

3.1 Time-averaging of rainfall intensity

The ombrian relationships describe the probabilistic behaviour of the time-averaged rainfall 

intensity x(k) over any scale k of interest. Therefore, as in all studies investigating a process at many 

scales, the first step is to aggregate the available data from several time series to different time 

scales. The aggregated series are formed with no specific provision for the starting point for 

aggregation of each original time series. For instance, if the original series is a daily time series  𝑥𝜏

we can construct the 2-day time series , in two different ways depending on the selection we 𝑥(2)
𝜏

make for the first term. Namely, the that contains the daily term 𝑥(2)
1  𝑥2 could be either (𝑥1 + 𝑥2)/

 Likewise, if we construct a time series at time scale 10, there are 10 variants (the 2 or (𝑥2 + 𝑥3)/2.
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first term  that contains the daily term  could be anyone among  through 𝑥(10)
1 𝑥10 (𝑥1 +… + 𝑥10)/10

). These are all numerically distinct time series, yet their statistical properties (𝑥10 +… + 𝑥19)/10

are same. Following a stochastic approach, all these realizations are equivalent since we are 

interested in statistical properties and not the time series values per se. As a result, since we are 

using a stochastic approach, there is no need to apply a sliding window and take the maximum 

value among the variants for our investigation, although this has been a common practice in the 

studies of hydrological extremes (e.g., Linsley et al. 1975, p. 357). In fact, by doing so, instead of 

constructing a time series  whose first term would be, e.g., = , we construct the 𝑥(2)
𝜏 𝑥(2)

1 (𝑥1 + 𝑥2)/2

time series  whose first term is: 𝑦(2)
𝜏 𝑦(2)

1 ≔max {(𝑥1 + 𝑥2)/2,(𝑥2 + 𝑥3)/2} = (𝑥2 + max {𝑥1,𝑥3})/

, which is a different stochastic process from the one of interest, . For this reason, we do not 2 𝑥(𝑘)
𝜏

apply a sliding window but use a fixed time window, with any arbitrary starting time, and without 

any conversion of the original time series (e.g., by a Hershfield coefficient), except taking temporal 

averages at several time scales.

3.2 Estimation of the timescale function parameters 

The simplified version of the ombrian model utilizing the separability of functions  and  𝑎(𝑘) 𝑏(𝑇)

allows for a simplified fitting procedure, in two independent steps, as introduced by Koutsoyiannis 

et al. (1998). From the expression of Equations (9) and (12) it is easy to see that for the different 

timescales  the stochastic variables:𝑘𝑗

𝑦 𝑗≔𝑎(𝑘𝑗)𝑥 = (1 + 𝑘𝑗 𝛼)𝜂𝑥 (14)

have a common distribution function, with the  for the different  being samples of it. Let then, 𝑦𝑗 𝑘𝑗

 denote the merged sample with length  where  is the ith item of the sub-𝑦𝑗𝑖≔𝑎(𝑘𝑗)𝑥𝑗𝑖 𝑛 = ∑
𝑗𝑛𝑗 𝑥𝑗𝑖

sample of size  for timescale . Let also  denote the rank of  in the merged sample  so  𝑛𝑗 𝑘𝑗 𝑟𝑗𝑖 𝑥𝑗𝑖 𝑦𝑗𝑖

that the mean rank of each sub-sample is given as . Replacing all  with the mean 𝑟𝑗 = ∑
𝑖𝑟𝑗𝑖/𝑛𝑗 𝑟𝑗𝑖

rank  we get a sample of  values, with equal to ,  equal to  etc. Then the mean and 𝑟𝑗 𝑛 𝑛1 𝑟1 𝑛2 𝑟2

variance estimators are, respectively:

𝑟≔
1
𝑛∑

𝑗
𝑛𝑗𝑟𝑗 (15)
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𝛾𝑟≔ 
1
𝑛∑

𝑗
𝑛𝑗(𝑟𝑗 ― 𝑟)2

(16)

If no ties are present among the different ranks, then .𝑟 = (𝑛 + 1)/2

Following the assumption that the samples are from the same distribution, given by the right-

hand side of Equation (14), then each realization of  should be close to the mean while that of 𝑟𝑗

the variance  should be minimal. Therefore, the parameters  and   can be identified as the 𝛾𝑟 𝛼 𝜂

values that minimize the estimate of the variance  from the observations . The original 𝛾𝑟 𝑥𝑗𝑖

variables  could be used as well instead of the ranks , yet the use of the ranks makes the 𝑦𝑗𝑖 𝑟𝑗𝑖

estimation process more robust to outliers. In order to improve the fit in the region of higher 

intensities, we may use a part of the data, belonging to the highest 1/2 or 1/3 of intensity values 

for each timescale. 

3.3 Estimation of the distribution function parameters using K-moments 

After estimating the parameters of the  function, the  function parameters must be 𝑎(𝑘) 𝑏(𝑇)

specified. The distribution fitting is based on the method of K-moments (Koutsoyiannis 2019, 

2023a, Chapter 6). K-moments have been developed with the aims of being knowable for very 

large orders (depending on the sample size) and interpretable in terms of order statistics. K-

moments are a more general type than classical moments, probability-weighted moments, and L-

moments, and share some properties with all of them as well as order statistics (for a detailed 

analysis the reader is referred to Koutsoyiannis 2023b). The distinctive feature of K-moments for 

the study of extremes though is that they are tailored to perform extreme-oriented analyses, as they 

enable reliable estimation of very high-order moments. Furthermore, each high-order K-moment 

estimate can be assigned a return period, which provides a direct means to empirical estimation of 

probability, alternative to order statistics. In addition, their estimation can be appropriately 

modified in the case that there is bias due to dependence, as discussed in the following sections. 

Finally, they have a simple, clear, intuitive and rigorous definition as expectations of maxima 

(upper K-moments) or minima (lower K-moments) in a sample. The former case which is relevant 

to our study is presented below.

Koutsoyiannis (2019) has introduced several variants of K-moments, of which here we use 

the simplest non-central variant, as defined in Koutsoyiannis (2023a, p.183). The simplest non-
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central upper K-moments  is defined to be the expected value of the maximum of p independent 𝐾′𝑝

stochastic variables identical to : 𝑥

𝐾′𝑝 : = E[max (𝑥1,𝑥2, …, 𝑥𝑝)] =  𝑝E [(𝐹(𝑥))𝑝 ― 1𝑥] (17)

for the moment order  and the last part of the equation is valid for continuous stochastic  𝑝 ≥ 1

variables . The estimators of the non-central K-moments are given by the following formulae 𝑥

(Koutsoyiannis 2023a, p. 189):

𝐾′
𝑝 =

𝑛

∑
𝑖 = 1

𝑏𝑖𝑛𝑝 𝑥(𝑖:𝑛) (18)

𝑏𝑖𝑛𝑝 = {0, 𝑖 < 𝑝

𝑝
Γ(𝑛 ― 𝑝 + 1)

Γ(𝑛 + 1)  
Γ(𝑖)

Γ(𝑖 ― 𝑝 + 1), 𝑖 ≥ 𝑝 ≥ 0
(19)

where  is the ith smallest variable in a sample , of size , (the ith item of the sample in 𝑥(𝑖:𝑛) 𝑥 𝑛

ascending order) and p is the order of the moment, which can be any positive number p  . In ≤ 𝑛

addition, the following holds:
𝑛

∑
𝑖 = 1

𝑏𝑖𝑛𝑝 = 1
(20)

The fact that  for  means that as the moment order increases, fewer data are used in 𝑏𝑖𝑛𝑝 = 0 𝑖 < 𝑝

the estimation, until only one is left, the maximum, when , and . For ,  𝑝 = 𝑛 𝑏𝑛𝑛𝑛 = 1 𝑝 > 𝑛 𝑏𝑖𝑛𝑝 = 0

for every , and the estimation becomes impossible. The first order non-central K-𝑖, 1 ≤ 𝑖 ≤ 𝑛

moment is the mean value of the sample.

The K-moment values, being closely related to order statistics, can also be assigned a return 

period, as follows (Koutsoyiannis 2023a, p.225-227):

𝑇(𝐾′𝑝)
𝐷 = 𝑝𝛬𝑝 ≈ 𝛬∞𝑝 + (𝛬1 ― 𝛬∞)

(21)

where ,  are coefficients depending on the distribution function and D is the time step or, 𝛬1 𝛬∞

more generally, a time period reference for the specification of return period. For the EV2 

distribution it is shown (Koutsoyiannis 2023a, p. 229) that the  coefficients are functions of the 𝛬

shape parameter :𝜉
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𝛬1 =
1

1 ― exp ( ― (Γ(1 ― 𝜉))
―

1
𝜉)

(22)

𝛬∞ = Γ(1 ― 𝜉)
1
𝜉

(23)

For validation purposes, the following relationship of empirical return periods based on order 

statistics is also used, which is shown to provide an unbiased estimate of the logarithm of the return 

period (Koutsoyiannis 2023a, p.170):

𝑇(𝑖:𝑛)

𝐷 =
𝑛 + 𝑒1 ― 𝛾 ― 1

𝑛 ― 𝑖 + 𝑒 ―𝛾 =
𝑛 + 0.526

𝑛 ― 𝑖 + 0.561 (24)

The procedure outlined above could be directly applied for assigning return periods to the 

K-moments of any sample and the parameters of the EV2 distribution could be obtained by 

minimizing an error metric (e.g., the root mean square error) between the theoretical quantiles and 

the empirical K-moment values, or between the corresponding return periods. To take advantage 

of the large number of reliably estimated moments but also to check the behaviour of the model, 

it is also possible to use only some moments for calibration of the model, and to use the higher 

ranks for comparison/verification purposes (as a validation set). In so doing, the moments used in 

the calibration are still much more than the ones used in regular moment fitting procedures 

(typically up to 3 or 4 orders) while a second set of higher moments is also available for validation. 

It is also noted that the estimation method can be applied either to the rainfall intensities or directly 

to the values of the annual maximum rainfall depths or their standardized values, with an 

appropriate adjustment of the final parameters (e.g., Iliopoulou et al. 2022). It is also possible to 

use either the merged intensities of all time scales, provided that they are first suitably adjusted 

with the time scale function  (via Equation (14)), or to base the fit only on one time scale, e.g. 𝑎(𝑘)

24 h.

3.4 Effect of temporal dependence on return period estimation

Since a K-moment is a property of the process's marginal, first-order distribution, its definition is 

unaffected by the dependence structure. On the other hand, temporal dependence introduces bias 

into K-moment estimators and thus, in the case of stochastic processes, the estimator’s 

unbiasedness, asserted for the case of independent samples, is no longer valid. However, it is 
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possible to quantify and offset the effect of dependence by appropriately modifying the moment 

order  used for the estimation, as follows. 𝑝

For the case of temporal dependence of the general HK type as represented by the estimated 

 parameter, the following first-order approximation of the bias , suitable for positively 𝐻 ― 𝛩HK

skewed processes, can be used (Koutsoyiannis 2023a, p. 216):

― 𝛩HK(𝑛,𝐻) =
1

2𝑛2 ― 2𝐻 ―
2𝐻(1 ― 𝐻)

𝑛 (25)

Based on this, and assuming that the same adjustment applies approximately to all orders  (cf. 𝑝

simulation experiments in Koutsoyiannis 2023a, p.263), we can obtain the modified orders  𝑝′

using the corresponding bias-correction factor  (for simplicity denoted ) as:𝛩HK 𝛩

𝑝′ ≈ 2𝛩 + (1 ― 2𝛩)𝑝((1 + 𝛩)2) (26)

For  Equation (26) results to no modification, consistent to the fact that the estimator of the 𝑝 = 1,

mean (i.e., the 1st order upper non-central moment) is unbiased. Based on the modified orders, the 

empirical return periods are adjusted according to Equation (21).

3.5 Effect of spatial dependence on return period estimation from merged records

In the case that we have many observation records, representing the same stochastic process, we 

often use them simultaneously by merging the samples to increase reliability of our estimations. It 

is well known however that in the case the records are not independent of each other, the estimation 

uncertainty for the merged record depends on an equivalent sample length that is reduced 

compared to that for the case of independence (in which the equivalent sample length is the sum 

of the individual record lengths) but remains greater than that of an individual record. The 

framework of Κ-moments allows for the effect of spatial dependence to be explicitly accounted 

for in the estimation of the return period. This is achieved through proper modification of the order 

of the moments of the unified sample, p', which in turn modifies the estimation of the return period. 

Let  denote the sample length of each station,  denote the number of stations, and 𝑛1 𝑚 𝑛 = 𝑚 𝑛1 

denote the size of the merged sample, then the following methodology is applied (Koutsoyiannis 

2023a, section 6.18):

 For  we set , therefore no modification is performed.𝑝 ≤ 𝑛1 𝑝′ = 𝑝
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 For  the following approximation is used. We estimate the equivalent Hurst parameter 𝑝 > 𝑛1

H, based on the spatial correlation of the stations ρ: 

𝐻 =
1
2 +

ln (1 + 𝜌)
2ln 2 (27)

Then the modified orders of the moments are obtained as:

𝑝′ ≈ 2𝛩 + (1 ― 2𝛩)(𝑝 ― 𝑛1 + 1)((1 + 𝛩)2) + 𝑛1 ― 1 (28)

where  is obtained from Equation (25), and their corresponding return periods are adjusted 𝛩

according to Equation (21). 

In the case that the records to be merged cannot be regarded as random samples but time 

series with time dependence (of general HK form) it is possible to apply the following approximate 

methodology for modifying their return periods (Koutsoyiannis 2023a; p.224). A representative, 

single value of the dependence parameter, which captures the effect of both temporal and spatial 

dependence, denoted as  ('bulk' H), is determined as follows:𝐻𝑏

𝐻𝑏 = (1 ―
ln 𝑚
ln 𝑛 )𝐻 +

ln ((1 + 𝜌(𝑚 ― 1))) + ln 𝑚
2ln 𝑛 (29)

where  parameters as before, and  the long-term dependence parameter characterizing the 𝑚, 𝑛, 𝜌, 𝐻

individual records (see also Equation (4)). Then, the bias factor  is estimated as before 𝛩HK

(Equation (25)), and the moment orders and corresponding return periods are modified. It is noted 

that unlike the previous case, in this case all the orders of the moments and the corresponding 

return periods are modified.

Therefore, these procedures provide a means to compensate for bias due to spatiotemporal 

dependence when multiple records are used simultaneously for the estimation of the distribution 

function parameters.

4. Conclusions

This work outlines the methodological framework for the construction of rainfall intensity–

timescale–return period (also, called ombrian) curves that was used in the recent regionalization 

of the ombrian curves throughout the Greek territory, which is described in a companion paper 

(Iliopoulou et al. 2023). It introduces a stochastic framework for ombrian relationships based on a 

set of pre-requisites for theoretical consistency as set by Koutsoyiannis (2023a) that may be 
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relaxed depending on practical needs. In this respect, the framework has two different levels of 

validity and complexity, (a) a full-scale ombrian model, covering any scale of interest, that requires 

the complete parent series for its determination, and (b) a simpler version applicable only over the 

usual small scales of hydrological design, that can be determined based on series of extremes. 

Special focus is given to the second case, since its more economic data requirements are most often 

satisfied for regional analyses of extremes, as was also the case in Greece. In addition, the simpler 

framework has an added flexibility related to involving two separable functions, a timescale 

function and a distribution function, the parameters of which can be estimated by different data 

sources. This enables, for instance, the straightforward use of daily raingauges for the fitting of the 

distribution function.

The framework is complemented by appropriate estimation strategies for both functions. 

Emphasis is placed on the efficient estimation of the distribution function using the new method 

of K-moments, which allow reliable high-order moment estimation and treatment of the extremes, 

while accounting for the bias induced by temporal and spatial dependence, which is non-negligible 

when adopting a stochastic approach. 

Overall, the methodology provides a framework for theoretical understanding and modelling 

of ombrian relationships consistent with a stochastic representation of the parent rainfall process, 

accompanied by estimation procedures that are adjusted for data availability encountered in 

standard hydrological practice. The framework was applied for the recent construction of ombrian 

relationships in Greece and may be of use to other regional probabilistic analyses of rainfall 

extremes. 
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Appendix

The Pareto distribution as an ombrian model for small scales

The Pareto distribution for a continuous stochastic variable  ≥ 0 can be expressed as 𝑥
(Koutsoyiannis 2023a, p. 45):

𝐹(𝑥) = 1 ― (1 + 𝜉
𝑥
𝜆) ―

1
𝜉
,  𝜉 > 0,  𝜆 > 0 (A1)

where  is the upper-tail index,  is a scale parameter and the lower bound is assumed zero. The 𝜉 𝜆
corresponding return period is easily obtained as: 

𝑇(𝑥)
𝐷 =

1
1 ― 𝐹(𝑥) = (1 + 𝜉

𝑥
𝜆)

1
𝜉

(A2)

For the chosen Pareto distribution of the parent stochastic variable , its multi-scale version with 𝑥
discontinuity at the origin for small time scales, which in the case of the rainfall process is equal 
to the probability dry, i.e., , where  is the 𝑃(𝑘)

0 ≔𝑃{𝑥(𝑘) = 0} = 1 ― 𝑃(𝑘)
1 𝑃(𝑘)

1 ≔𝑃{𝑥(𝑘) > 0}
probability wet, is obtained as:

𝐹(𝑘)(𝑥) = 1 ― 𝑃(𝑘)
1 (1 + 𝜉

𝑥
𝜆(𝑘)) ― 1 𝜉

(A3)

The upper-tail index  should be scale-invariant (see proof in Koutsoyiannis 2023a, p.318), while 𝜉

the probability wet, , and the state scale parameter, , are functions of the time scale . By 𝑃(𝑘)
1 𝜆(𝑘) 𝑘

setting  in Equation (A3), the resulting rainfall quantile for scale  and return 𝑇 = 1 (1 ― 𝐹(𝑘)(𝑥)) 𝑘

period , i.e., the ombrian model, is:𝑇

𝑥 = 𝜆(𝑘)
( 𝑃(𝑘)

1 𝑇 𝑘)𝜉 ― 1
𝜉

(A4)

To fully specify the model it suffices to determine the functions  and  which can be derived 𝜆(𝑘) 𝑃(𝑘)
1

from the mean  and the climacogram  of the process, as follows. By standard algebra on 𝜇 𝛾(𝑘)

equation Error! Reference source not found., we find that the pth moment of  is:𝑥(𝑘)

E[(𝑥(𝑘))𝑝] = 𝜇′𝑝 =
𝑃(𝑘)

1 (𝜆(𝑘))𝑝𝑝

𝜉𝑝 B(𝑝,
1
𝜉 ― 𝑝) (A5)

where Β( ,  ) denotes the beta function. Hence, the mean is:
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E[𝑥(𝑘)] = 𝜇 =
𝑃(𝑘)

1 𝜆(𝑘)
1 ― 𝜉 (A6)

and the squared coefficient of variation is:

𝐶2
v[𝑥(𝑘)] =

𝛾(𝑘)
𝜇2 =

2(1 ― 𝜉)
(1 ― 2𝜉)𝑃(𝑘)

1
― 1 (A7)

which can be solved for and , to derive Equations (2) and (3). 𝑃(𝑘)
1 𝜆(𝑘)

It is noted that the special case  signifies the maximum time scale , at which the 𝑃(𝑘)
1 = 1 𝑘 ∗

max

Pareto distribution is mathematically feasible, at which:

𝑃(𝑘 ∗
max)

1 = 1,  
𝛾(𝑘 ∗

max)
𝜇2 =

1
1 ― 2𝜉,  𝜆(𝑘 ∗

max) = 𝜇(1 ― 𝜉) (A8)

However, if we are interested in preserving the probabilities dry/wet, we should choose the time 

scale  (of transition from Pareto to a bell-shaped type of probability density, as the Pareto-Burr-𝑘 ∗

Feller) smaller enough than , at a point where the deviation of probability dry derived from 𝑘 ∗
max

the Pareto model from the empirical one is marginally acceptable.
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Table 1. Summary of the simplified ombrian relationships (for application over small scales) and 
their parameters, for rainfall intensity , time scale  and return period . Note that the equations 𝑥 𝑘 𝑇
are dimensionally consistent, so if, as usual, rainfall intensity is expressed in mm/h, the temporal 
scale in hours (h) and the return period in years (years), the parameters  must be expressed 𝜆,𝛼,𝛽
in the same units, respectively.

Validity Mathematical relationship

 For return period that is defined with reference to series 
above a threshold and therefore can also take values less 
than 1 year; it is the final relationship used for design

𝑥 = 𝜆
( 𝑇 𝛽)𝜉 ― 1

(1 + 𝑘 𝛼)𝜂

 For return period that refers to annual maxima series and 
thus takes values greater than  = 1 year; it is an intermediate 𝛥
relationship used for parameter estimation when annual 
maxima series are used

𝑥 = 𝜆
( ― (𝛽 𝛥)ln (1 ―  𝛥 𝑇)) ―𝜉 ― 1 

(1 + 𝑘 𝛼)𝜂

Parameter Symbol (usual units)

 Rainfall intensity scale parameter λ (mm/h)

 Shape parameter (upper tail-index) ξ (-)

 Timescale parameter for return period β (years)

 Timescale parameter α (h)

 Persistence parameter η (-)
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