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Abstract: Reservoir routing has been a routine procedure in hydrology, hydraulics and water man-
agement. It is typically based on the mass balance (continuity equation) and a conceptual equation
relating storage and outflow. If the latter is linear, then there exists an analytical solution of the
resulting differential equation, which can directly be utilized to find the outflow from known inflow
and to obtain macroscopic characteristics of the process, such as response and residence times, and
their distribution functions. Here we refine the reservoir routing framework and extend it to find
approximate solutions for nonlinear cases. The proposed framework can also be useful for climatic
tasks, such as describing the mass balance of atmospheric carbon dioxide and determining char-
acteristic residence times, which have been an issue of controversy. Application of the theoretical
framework results in excellent agreement with real-world data. In this manner, we easily quantify
the atmospheric carbon exchanges and obtain reliable and intuitive results, without the need to resort
to complex climate models. The mean residence time of atmospheric carbon dioxide turns out to
be about four years, and the response time is smaller than that, thus opposing the much longer
mainstream estimates.

Keywords: mass balance; continuity equation; reservoir routing; residence time; response time;
carbon dioxide

What is more I loved, and still do love, mathematics for itself as not allowing room for

hypocrisy or vagueness, my two pet aversions.

Stendhal [1] (p. 111).

1. Introduction

Thanks to their links with real-world problems and their engineering approach in
seeking rational solutions to them, hydrology and hydraulics have ever been in close
contact with reality. This has prevented them from practicing hypocrisy and vagueness,
much like in mathematics (cf. the epigram above). Historically, the solutions to real-world
problems preceded the development of hydrology and hydraulics as sciences and thus
could not be based on scientific knowledge. Rather, they were based on common sense,
which historically has provided the foundation of philosophical and scientific knowledge,
while in recent decades, it tends to be abandoned in favor of what euphemistically has been
called “political correctness”.

Among the solutions to real-world problems, the technology of storage, implemented
by cisterns at a small scale and reservoirs at dammed rivers at a large scale, has been most
determinant. Perhaps the first dam with a reservoir storing water was that in Jawa, in the
desert of Northeastern Jordan, a 5 m high and 80 m long dam dated between 3500 and
3400 BC [2]. Another prehistoric example is the so-called Sadd el Kafara dam in Wadi
Garawi, about 50 km southeast of Cairo, dated into the old kingdom of Egypt, around
2650 BC [3].

Storage facilities for surpluses of goods, in particular grains, to be consumed in periods
of deficit, preceded those for water. Granaries date as far back as 9500 BC in the Jordan
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Valley, coinciding with the dawn of agriculture, and they were initially at the household
scale, later expanding to larger scales for collective storage of grain [4].

We may speculate that this type of storage, whether for water or grain, was for seasonal
(intra-annual) regulation and is far different from modern facilities for overyear regulation.
Yet we have written information about the latter type of regulation, which is necessary to
deal with famines, in the biblical story of Joseph and the pharaoh’s dream of the seven fat
and the seven skinny cows. The famine, which was predicted by Joseph in his interpretation
of the pharaoh’s dream, indeed occurred, but Egypt was prepared for it [5].

Bell [6] and Said [7] confirm this biblical story and date it to an uncertain number of
years preceding 1740 BC. Specifically, Bell [6] links this story with an inscription in the tomb
of Sobek-nakht, which was decorated in the three-year reign of Sobekhotep III, just prior
to ca. 1740, and reads as follows: “I was a man who protected the afflicted against the powerful
[. . .] who supplied the granaries of the god [. . .] who summoned his entire energy every time he saw
an insufficient flood”. She also refers to another (undated) tomb inscription, which reads, “I
gave grain to the entire country, I saved my town from famine [. . .] no one has done what I did”.

This biblical story is of great hydrological and climatic importance, as it is perhaps
the oldest text referring to a long-lasting drought, as well as to the natural behavior of
clustering in time of similar events (such as dry or wet years), which in recent times was
quantified by Hurst [8] in 1951. Mandelbrot and Wallis [9] used the term Joseph effect for this
behavior, which today is more often called Hurst-Kolmogorov dynamics [10]. The importance
of the story extends to good management practices, in which the storage of goods (in this
case in granaries) during periods of abundance can mitigate the adverse consequences in
periods of shortage.

Yet storage is not a human invention, because nature uses it extensively. Numerous
natural processes include storage, and their modeling needs to properly represent it. On
the other hand, the need for the design and management of human storage facilities, par-
ticularly water reservoirs, has enabled deeper insights and more concrete knowledge on
modeling storage and the related processes. This modeling typically follows a systems
approach, with an input (inflow), an output (outflow), and a state variable (stored quantity).
These three quantities are interlinked with a first principle, i.e., mass conservation, imple-
mented as a linear differential or a difference equation. This, however, does not suffice for
complete modeling. One more equation is needed. In detailed physical modeling, this can
be offered by another physical principle, such as conservation of momentum, but in macro-
scopic modeling, this is not possible, and the second equation is macroscopic with some
conceptual or statistical meaning, depending on the nature of the system. In particular, if
this second equation is a linear relationship between inflow and storage, then there exists
an analytical solution of the resulting differential equation, which can be directly utilized
to find the outflow from the known inflow and to obtain macroscopic characteristics of
the process, such as response and residence times and their distribution functions. If that
equation is nonlinear, then only special cases admit an analytical solution.

Here, the reservoir routing framework is revisited, streamlined, and extended to find
approximate solutions for nonlinear cases (Section 2). Furthermore, this framework, de-
veloped under the name Refined Reservoir Routing (RRR), is applied to a topical issue of
climatic interest, the mass balance of atmospheric carbon dioxide (Section 4). Before that
(in Section 3), the particulars of the problem of atmospheric carbon dioxide storage are
discussed, along with a summary of the complex established approach, which presents
substantial differences from the simple RRR approach. The RRR framework readily allows
the determination of characteristic residence times, which have been an issue of contro-
versy (Section 5). It is concluded (Section 6) that the application of the RRR framework
results in excellent agreement with real-world data. In this manner, it easily quantifies
the atmospheric carbon exchanges and produces reliable and intuitive results, without the
need to resort to complex climate models.

It is worth emphasizing that the atmospheric carbon dioxide balance, like the water
balance, is governed by geophysical processes, despite the common perception that it is
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determined by human emissions from the burning of fossil fuels. The latter represent
only 4% of total emissions [11], and in this respect, they are similar to human emissions
of water vapor, whose percentage is of the same order of magnitude [12–15]. In global
hydrology, we usually neglect the human emissions part, although we certainly consider
it in local studies related to irrigation. The opposite is thought in climate studies, where
human emissions are seen as the cornerstone of the climate edifice. However, this is not
due to the importance of human emissions but has rather been dictated by non-scientific
influences [15]. Geophysically driven emissions of both carbon dioxide and water vapor
are closely linked to each other and to the biosphere processes.

Specifically, during photosynthesis, plants absorb both CO2 and H2O, producing
organic matter. The water availability drives the uptake of CO2 through stomata, creating
an interconnected cycle of gas exchange. In addition, both plants and animals respire,
emitting CO2 and H2O, while plants also transpire. These processes determine the inflow
of both CO2 and H2O to the atmosphere. Furthermore, decomposers break down organic
material, releasing CO2, while water facilitates the breakdown of organic compounds,
influencing the decomposition rates and thus CO2 emissions. The hydrological cycle
influences plant growth by providing the water needed for photosynthesis, thereby driving
CO2 absorption. Furthermore, both CO2 and H2O affect the climate, as both are greenhouse
gases, with water being the determinant one, as, in addition to its much larger absorption
of longwave radiation, it is also responsible for clouds, which also absorb radiation [15].

Of these two, we opt to study the atmospheric CO2 balance for three reasons:

1. Its “lumping” in a systems approach is direct, because its concentration varies slowly,
while that of atmospheric water varies dramatically with time, geographic location,
and altitude.

2. As we will see below, there is controversy about the atmospheric CO2 budget, reflect-
ing incomplete understanding and quantification of the processes, which the simple
RRR framework may shed light on.

3. Exporting a methodological framework developed in hydrology to the study of
climate may be beneficial to both hydrology and climatology and may demonstrate
the potential and usefulness of hydrology in climate research.

2. Theoretical Analysis
2.1. System Components and Determination of Their Temporal Evolution

We consider a system that can be represented as a reservoir, with input I(t), output
Q(t), and storage S(t). These three quantities are connected by the continuity equation,
which expresses the conservation of mass and is written in differential form as

dS(t)
dt

+ Q(t) = I(t) (1)

It can be seen that in the systems approach we follow, the continuity equation is uni-
dimensional. No extensions for more dimensions are required. In hydrosystems, the
inflow is typically the upstream flow discharge, the outflow is the downstream flow dis-
charge or a reservoir spill, and they are usually expressed in terms of volumes instead
of masses. (However, unless we deal with uncompressible fluids, we should stick with
mass units.) The reservoir could be a real one, upstream of a dam, but the use of imaginary
reservoirs is not uncommon. For example, an entire catchment is often represented as a
single imaginary reservoir with the inflow being the precipitation [10,16] or as a cascade of
reservoirs [17], in which outputs from upstream reservoirs are inputs to the downstream
reservoirs in the cascade. Similar representations may be appropriate for groundwater
stored in aquifers [18].

Storage, however, is not limited to locally resolved processes of surface- or ground-
water. The global hydrological cycle can be viewed in terms of mass exchange, with
the main storage being the oceans but with the atmosphere having a crucial role when
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evaporation and precipitation are studied [19]. Modeling of the carbon cycle can also be
made in a similar setting, as will be shown in Section 4.

The typical problem is to determine the outflow Q(t) for known inflow I(t). To fully
describe the transformation of inflow to outflow, we need one more equation. The solution
of the two equations is commonly known as reservoir routing. In hydrology and hydraulics,
we usually construct the second equation by means of stage–discharge and stage–storage
relationships. Different equations can be formulated, depending on the system dynamics,
but the following power type (combined) equation is representative for most problems:

Q(S) = Q0

(
S
S0

)b
(2)

where b is a dimensionless parameter (exponent), and S0 and Q0 are parameters with units
of mass and mass flow, respectively. These are necessary to make the equation physically
(dimensionally) consistent and here will be regarded to be the initial conditions (at time
zero, i.e., I(0) and Q(0), respectively). Notice that these parameters are not unique; for
example, we can multiply S0 and Q0 by c and c−b, respectively, and get another pair of
valid parameters.

It is well known that when b = 1, we get a first-order linear differential equation with
constant coefficients, i.e.,

dS(t)
dt

+
1

W0
S(t) = I(t), W0 :=

S0

Q0
(3)

where W0 is a characteristic residence time, whose meaning will be discussed below. This
admits a closed solution:

S(t) = S0e−t/W0 +
∫ t

0
e−(t−s)/W0 I(s)ds, Q(t) = Q0e−t/W0 +

1
W0

∫ t

0
e−(t−s)/W0 I(s)ds (4)

This case (b = 1) is known as the linear reservoir [20–25], and the fact that it admits a
general analytical solution makes it a useful tool. We will call a reservoir with b < 1 a sub-
linear reservoir (as the discharge function Q(S) is sublinear, meaning that lim

S→∞
Q(S)/S = 0).

Conversely, we will call a reservoir with b > 1 a superlinear reservoir. For both sublinear
and superlinear reservoirs, no general analytical solution can be found, except for very few
special cases (e.g., [26–28]), some of which will be discussed below and in Appendix A.
Here, we will seek general approximate solutions for b ̸= 1.

As a first step, we standardize the equation in the following form, in which all variables
are dimensionless:

ds(τ)
dτ

+ (s(τ))b =
i(τ)
q0

(5)

with initial conditions
s(0) = q(0) = 1 (6)

where

τ =
t

W0
, s(τ) =

S(τW0)

S0
, q(τ) =

Q(τW0)

Q0
, i(τ) =

I(τW0)

I0
, q0 =

Q0

I0
(7)

with S0, I0, Q0 denoting the values of the respective variable at time t = τ = 0. Notice
the use of lower- and upper-case symbols for dimensionless and dimensional quantities,
respectively, with the exception of dimensional time, where we use the common symbol t,
while we use the Greek symbol τ for dimensionless time.

Now we make a first-order linear approximation of (s(τ))b at s = 1 (similar to
Basha [29]), as

(s(τ))b = bs(τ) + 1 − b + O
(
(s − 1)2

)
(8)
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and neglecting the high-order terms we get

ds(τ)
dτ

+ bs(τ) =
i(τ)
q0

+ b − 1 (9)

whose solution is

s(τ) = e−bτ +
∫ τ

0
e−b(τ−s)

(
i(τ)
q0

+ b − 1
)

ds, q(τ) = be−bτ − b + 1 + b
∫ τ

0
e−b(τ−s)

(
i(τ)
q0

+ b − 1
)

ds (10)

If the dimensionless inflow is constant (i.e., i(τ) = 1, or dimensional inflow
I(t) = I0 = Q0/q0), this simplifies to

s(τ) = 1 − 1
b

(
1 − 1

q0

)
(1 − e−bτ), q(τ) = 1 −

(
1 − 1

q0

)
(1 − e−bτ) =

1
q0

+

(
1 − 1

q0

)
e−bτ (11)

where, as t → ∞ , the dimensionless outflow becomes 1/q0 and the dimensional output
becomes Q0 (1/q0) = I0.

It is important to note that, despite being an approximation, this preserves the mass
balance precisely. Indeed, the time integral of outflow minus inflow is

t∫
0

Q0q
(

u
W0

)
du − I0t =

(q0 − 1)Q0W0

bq0

(
1 − e−

bt
W0

)
(12)

while the change in storage is

S0 − S0s
(

t
W0

)
= S0

1
b

(
1 − 1

q0

)(
1 − e−

bt
W0

)
(13)

and upon substituting W0Q0 for S0, we confirm that the right-hand sides in the above two
equations are identical.

It is readily seen that if q0 = 1, then s(τ) = q(τ) = 1, which describes a steady state
flow. In this particular case, the solution is exact. When the inflow is zero, a case that is
represented as q0 = ∞, the solution becomes

s(τ) = 1 − 1
b

(
1 − e−bτ

)
, q(τ) = e−bτ (14)

but it is not exact; the exact one will be discussed below. For b > 1 and τ → ∞, this
results in s(∞) = 1 − 1/b > 0, meaning that the reservoir never empties. This looks
absurd, but it is consistent with the linear approximation made, as seen in Equation (8),
according to which no outflow occurs for s(t) ≤ 1 − 1/b. For b < 1, the resevoir empties at
τ = −ln (1 − b)/b and beyond that time q(τ) = 0.

For inflow linearly varying with time, i.e., i(τ) = 1 + aτ, the solution becomes

s(τ) = 1 +
aτ

bq0
− 1

b

(
1 − 1

q0
+

a
bq0

)(
1 − e−bτ

)
, q(τ) =

1
q0

− a
bq0

+
aτ

q0
+

(
1 − 1

q0
+

a
bq0

)
e−bτ (15)

where the rightmost equation can also be written as

q(τ) =
i(τ − 1/b)

q0
+

(
1 − i(−1/b)

q0

)
e−bτ (16)

If a ≥ 0, the solution is valid for any τ; if a < 0, it is valid for τ ≤ −1/a.
Some special cases also admit exact analytical solutions, like in the linear reservoir

problem. A most interesting case is when the inflow is zeroed at time τ = 0 and continues
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to be zero (i(τ) = 0) at any τ > 0. In this case, the solution of the differential Equation (5),
which is now homogenous with initial conditions (6), is easily found to be

s(τ) = ((b − 1)τ + 1)
1

1−b , q(τ) = ((b − 1)τ + 1)
b

1−b (17)

and it apparently holds for (1 − b)τ ≤ 1, that is, for any τ if b ≥ 1, but for τ ≤ 1/(1 − b) if
b < 1; beyond that time, s(τ) = q(τ) = 0. As b → 1 , we have the limiting case:

s(τ) = q(τ) = e−τ (18)

We also examine the following two special cases, which are useful as benchmarks. The
first benchmark case is superlinear, q(τ) = (s(τ))2, i(τ) = 1, for which

q(τ) =
1
q0

1 −
2
(
1 −√

q0
)

(
1 +

√
q0
)
e

2τ√q0 + (1 −√
q0)

2

, s(τ) =
√

q(τ) (19)

The second is sublinear, q(τ) = (s(τ))1/2, i(τ) = 1, with

q(t) =
1
q0

(
W

(
(q0 − 1)e−

q0τ
2 +q0−1

)
+ 1

)
, s(τ) = (q(τ))2 (20)

where W(z) denotes the Lambert W function, defined as the inverse of the function
z = f (w) := wew. The case q(τ) = (s(τ))2 also has an analytical solution for linearly
changing inflow, but this is too complicated to write down. It is thus preferable to use
numerical integration, which can work in every case, yet the analytical approximations are
quite useful, as will be seen in the next sections. Additional cases of analytical solutions
and different approximations are studied in Appendix A.

The good performance of the approximate solution is illustrated in Figure 1 for con-
stant inflow and in Figure 2 for input linearly changing with time. From these figures, we
infer that as long as the exponent b is between 1/2 and 2, and the initial dimensionless
output q0 between 0.8 and 1.25, the linear approximation is satisfactory. In practical tasks,
these ranges cover the most typical applications. An exception is the determination of the
response time (see Section 2.3), in which the input is zero (and hence q0 = ∞), but for this
case, we have an exact solution (Equation (17)).
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Figure 1. Comparison of the exact (lines) and approximate (dots) solutions for the indicated cases and
for constant inflow. The exact solutions are derived from (left) Equation (19) (superlinear reservoir,
b = 2) and (right) Equation (20) (sublinear reservoir, b = 1/2). The approximate solutions are derived
from Equation (11).
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Figure 2. Comparison of the exact (lines) and approximate (points) solutions for b = 2 and (left)
q0 = 0.8 and (right) q0 = 1.25 and for the indicated cases. In the case of the constant inflow (a = 0),
the exact solution is derived from Equation (19) and the approximate solution from Equation (11).
The cases of increasing and decreasing flow correspond to a = 0.1 and a = −0.1, respectively, and
the exact curves were determined by numerical integration, while the approximate solutions were
determined by Equation (15).

2.2. Residence Time

The above mathematical framework allows us to determine residence and response
times and probabilities thereof. In this subsection, we deal with the former, starting with
its definition, and in the next one with the latter.

Definition 1. The residence time, W, is defined to be the time duration that a particle (molecule)
spends in the reservoir from its entry to its exit.

As a starting point, we consider a simple reservoir in which the flow is steady, lami-
nar, and one-dimensional, i.e., the flow properties change only along the flow direction,
described with a variable x ∈ [0, L], while the cross-sectional area may change with x and
is A(x). As the flow is steady, the discharge Q0 is constant in time and the same for all x
(inflow equal to outflow), while the velocity changes with x as V(x) = Q0/A(x). Due to
the laminar flow, a molecule flowing into the reservoir at point x = 0 will follow a smooth
trajectory and will travel a distance dx in time dt = dx/V(x) = A(x)dx/Q0. Therefore, by
integration, the total time that the molecule spends inside the reservoir, i.e., the residence
time, denoted as W0, is

∫ L
0 A(x)dx/Q0 and in this case is the same for all particles. The

integral is the reservoir volume S0 and hence

W0 =
S0

Q0
(21)

As we will see below, this residence time, W0, despite being determined above by
assuming a simplistic and unrealistically regular system, is characteristic for any reservoir,
however complex and chaotic.

Next, we examine a fully random system, in which particles are well mixed and the
residence time can only be modeled by a stochastic approach. Let W be a stochastic variable
(random variable) representing the time a molecule left the reservoir, once it entered at
time t = 0. (Notice that we use the Dutch notational convention to underline the stochastic
variables.) At time t, the mass stored in the reservoir is S(t). At time t + dt, the mass
is S(t) + I(t)dt − Q(t)dt. Of the molecules contained in S(t) at time t, the proportion
of those removed at time t + dt is found, by neglecting second-order differentials, to be
Q(t)dt/S(t).

The event that a molecule, which entered the reservoir at t = 0, has remained at time
t = W, can be denoted as {W > W }. The event that it leaves the reservoir in the next
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elementary interval dW is {W ≤ W + dW} and its probability, conditional on {W > W},
is equal to the ratio of the mass leaving during this interval, Q(W)dW, to the total mass:

P{W ≤ W + dW|W > W} =
Q(W)dW

S(W)
(22)

Applying the definition of conditional probability, we write

P{W < W < W + dW}
P{W > W} =

Q(W)dW
S(W)

(23)

The numerator of the left-hand side is the probability density multiplied by dW, i.e.,
the derivative of the distribution function FW(W). Hence

F′
W(W)

1 − FW(W)
=

Q(W)

S(W)
(24)

The solution of this differential equation is

FW(W) = 1 − exp
(
−
∫ W

0

Q(t)
S(t)

dt
)

(25)

and in dimensionless form, with

w :=
W
W0

(26)

the distribution function of the dimensionless residence time is

Fw(w) = 1 − exp
(
−
∫ w

0

q(τ)
s(τ)

dτ

)
(27)

or

Fw(w) = 1 − exp
(
−
∫ w

0
(q(τ))1− 1

b dτ

)
(28)

This simplifies to the following expressions in the indicated special cases:

• Linear reservoir (in which q(τ)/s(τ) = 1), any inflow:

Fw(w) = 1 − e−w (29)

• Superlinear benchmark reservoir, q(t) = (s(t))2, constant inflow:

Fw(w) = 1 − 2e
w√q0(

2 +
(

e
2w√q0 − 1

)(
1 +

√
q0
)) (30)

• Sublinear benchmark reservoir, q(t) =
√

s(t), constant inflow:

Fw(w) = 1 −
W

(
(q0 − 1)e−

q0w
2 +q0−1

)2

(q0 − 1)2 (31)

Equation (29) is the standard exponential distribution. The equations for the bench-
mark reservoirs are non-standard and look complicated, yet if we plot them, we see that
they do not differ substantially from the exponential distribution. To make the differences
more visible, we choose to plot the probability ratio Fw(w)/(1 − Fw(w)) on a logarithmic
axis, instead of the distribution function Fw(w), which would not show any visible differ-
ence. This is seen in Figure 3, where indeed the body of each distribution is almost identical
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to the other, and differences appear in the tails (w > 2, noting that both the mean and
standard deviation of the standard exponential distribution equal 1).
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Figure 3. Probability plots of the distribution function of the dimensionless residence time for the
indicated cases and constant inflow. The exact distributions (lines) are determined by numerical
integration of Equations (29)–(31) and are compared to approximate analytical solutions (dots)
determined by Equation (34).

Next, we proceed to form an approximation of the distribution function for the general
case, i.e., not limited to the benchmark cases. Specifically, for the ratio q(τ)/s(t) appearing
in Equation (27), we propose the approximation

r(τ) :=
q(τ)
s(τ)

= (q(τ))1− 1
b ≈ d − Ac

1 + cτ
=: rA(τ) (32)

where A, c, d are parameters. Then, the integral in Equation (27) becomes

w∫
0

q(τ)
s(τ)

dτ ≈
w∫

0

(
d − Ac

1 + cτ

)
dτ = dw − ln(1 + cw)A (33)

so that Equation (27) becomes

Fw(w) = 1 − e−dw(1 + cw)A (34)

The distribution is interesting, and its domain is w ≥ 0 if c ≥ 0 (corresponding to
b ≥ 1) and 0 ≤ w < −1/c if c < 0 (corresponding to b < 1). In both cases, it has all its
moments finite if d ̸= 0.

To find the parameters for b ≥ 1, we match at τ = 0, (a) the true values of
r(τ) = (q(τ))1−1/b and rA(τ), (b) their derivatives, found by approximating q(τ) from
Equation (11), and (c) at τ = ∞, the true values of r(τ) and rA(τ). The obtained equa-
tions are

1 = d − Ac, (b − 1)
(

1
q0

− 1
)
= Ac2,

(
1
q0

)1− 1
b
= d (35)

If b < 1, instead of the value at τ = ∞, we use that at τ = 1/(1 − b), which is the
upper bound of the variable, as in this case, it is bounded from above. The last part of
Equation (35) becomes (

1
q0

)1− 1
b
= d − Ac

1 + c/(1 − b)
(36)
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Hence, the solution covering both cases is

d =


q

1
b −1
0 , b ≥ 1

q
2− 1

b
0 −1

2q
2− 1

b
0 −q

1− 1
b

0 −q0

, b < 1
, c =

b − 1
d − 1

(
1
q0

− 1
)

, A =
d − 1

c
(37)

It is interesting to note that when q0 → ∞ , meaning that the inflow tends to zero, in
both cases, b ≥ 1 and b < 1, we obtain d → 0 . Hence, c → b − 1, A → 1/(1 − b) , and the
limiting distribution becomes

Fw(w) = 1 − (1 + (b − 1)w)
1

1−b (38)

We stress that in this special case, the resulting Equation (38) is an exact solution, as
are Equations (29)–(31) as well. In the general case, Equation (34) is an approximation.
As seen in Figure 3, the approximation compares very well to the exact solutions for the
benchmark cases (Equations (29)–(31)).

By integration of wF′
w(w), we find that the mean is

µw =



1
d , d > 0 and

{
A = 0
or c = 0

−1
(A+1)c = 1

b−2 , d = 0 and

{
c > 0, A < −1
or c < 0, A > 0

1
d + Aed/cΓ(A,d/c)

d(d/c)A , c > 0, d > 0

1
d + Aed/c(Γ(A,d/c)−Γ(A))

d(d/c)A , c < 0, d > 0, A > 0

(39)

while in subcases not included above (e.g., c > 0, A > −1), the mean diverges to infinity.
From the equation Fw(w1/2) = 1/2, the median is found to be

w1/2 =


ln 2

d , c = 0 or A = 0
2−

1
A −1
c , d = 0

− A
d W

(
− 2−

1
A de−

d
Ac

Ac

)
− 1

c , otherwise

(40)

It is useful to note that for a linear reservoir (b = 1), the above approximations result
in d = 1, A = 0 and hence recover the exact case of an exponential distribution, in which
µw = 1, w1/2 = ln 2. In the exponential distribution, we have Fw(µw) = 1 − e−1, and this
property has been used to define other variants of characteristic times such as the so-called
e-time (used by Berry [30]), relaxation time, e-folding time, half-life, or decay constant
(used by IPCC [31,32], but without providing definitions). Here, we prefer not to use such
terms but stick to the probabilistically meaningful terms mean and median (dimensionless)
residence times. The dimensional mean and median are found after multiplication by
W0, i.e., µW = W0µw, W1/2 = W0w1/2.

We stress that, excepting special cases, some of which are already mentioned, the
above formulae provide approximations rather than exact values. To find a second approxi-
mation, simpler to apply, a numerical investigation was conducted and concluded with the
following simple formulae, designated as approximation 2:

µw = b0.45ln (q0−a), w1/2 = ln 2bγln q0 , γ =

{
0.2, b ≤ 1
0.25, b ≥ 1

(41)

where the approximation of µw also includes the case of a linear change of inflow with rate
a (dimensionless).
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Comparisons of the approximations of the mean residence time with the exact values
for the benchmark cases and constant inflow are given in Figure 4. It is observed that
approximation 2 is somewhat better than approximation 1—and also simpler. In addition,
Figure 5 shows comparisons for changing inflows. Generally, the approximations perform
well. Most importantly, both figures show that for the common ranges of b and q0, the
dimensionless residence time is close to 1, not differing more than ±10%. Therefore,
this thorough theoretical investigation results in the simple conclusion that in practical
problems, it is sufficient to take µw = 1 and w1/2 = ln 2 = 0.693. Consequently, considering
the dimensional time, in practice, we may take the mean residence time as W0 = S0/Q0
and the median one as 70% of W0.
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Figure 4. Comparison of the mean dimensionless residence time from exact benchmark solutions
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(39) and (41), respectively).

Water 2024, 16, x FOR PEER REVIEW 12 of 49 
 

 

 

Figure 5. Comparison of the mean dimensionless residence time for the indicated cases. Continuous 

lines for constant inflow (𝑎 = 0) were obtained from Equations (30) and (31) (with numerical inte-

gration to find 𝜇𝑤), and those for increasing (𝑎 = 0.1) and decreasing (𝑎 = −0.1) inflow were found 

by numerical integration of the exact differential equations (considering a finite upper limit of inte-

gration, determined such as to avoid numerical instabilities). Beside each exact curve, that of ap-

proximation 2 (Equation (41)) is also plotted as a dashed line. 

2.3. Response Time 

The response time is conceptually different from the residence time, as it is related to 

the impulse response function (IRF), defined as follows: 

Definition 2. The impulse response function (IRF), g(h), of a system is defined to be the system 

output at time distance (lag) h from the time the system is perturbed by an input that is an (instan-

taneous) impulse of unit mass (a Dirac delta function). 

A thorough and general presentation of the IRF concept in a causality framework has 

been presented by Koutsoyiannis et al. [11,33–35]. In our case, the following particular 

considerations are made for a reservoir: (a) the system can be studied in terms of the di-

mensionless quantities, and the dimensional ones can then be obtained through Equation 

(7); (b) the response function 𝑔(𝜂) for dimensionless time lag 𝜂 = ℎ/𝑊0 is identical to 

the dimensionless output function 𝑞(𝜏) for 𝜂 = 𝜏, which results from the impulse of an 

otherwise empty reservoir; and (c) the system is causal, which means that 𝑔(𝜂) = 0 for 

𝜂 < 0. Point (b) entails that when we speak about the IRF, we can use the symbols 𝑔(𝜂) 

and 𝑞(𝜂) interchangeably. When we need to refer to dimensional time, the respective IRF 

is 𝑔ℎ(ℎ) = 𝑔(ℎ/𝑊0)/𝑊0. 

Based on these considerations and the framework in [33], we proceed to the follow-

ing: 

Definition 3. Based on the dimensionless IRF of a reservoir, g(η), we define the mean and the 

median dimensionless response time as the mean 𝜇𝜂 and the median 𝜂1/2 of the function g(η), and 

the dimensional ones are derived by multiplying the dimensionless ones by the characteristic resi-

dence time 𝑊0 = 𝑆0 𝑄0⁄ : 

𝜇𝜂 ∶= ∫ ℎ 𝑔(ℎ)ⅆℎ

∞

0

, ∫ 𝑔(𝜂)ⅆ𝜂

𝜂1/2

0

=
1

2
, 𝜇ℎ = 𝜇𝜂𝑊0, ℎ1/2 = 𝜂1/2𝑊0 (42) 

0.9

0.95

1

1.05

1.1

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

M
ea

n 
di

m
en

si
on

nl
es

s 
re

si
de

nc
e 

tim
e,

 μ
w

Initial outflow to inflow ratio, q0

b = 1 (any inflow)

b = 2, constant inflow

b = 1/2, constant inflow

b = 2, increasing inflow

b = 1/2, increasing inflow

b = 2, decreasing inflow

b = 1/2, decreasing inflow

Figure 5. Comparison of the mean dimensionless residence time for the indicated cases. Continuous
lines for constant inflow (a = 0) were obtained from Equations (30) and (31) (with numerical
integration to find µw), and those for increasing (a = 0.1) and decreasing (a = −0.1) inflow were
found by numerical integration of the exact differential equations (considering a finite upper limit
of integration, determined such as to avoid numerical instabilities). Beside each exact curve, that of
approximation 2 (Equation (41)) is also plotted as a dashed line.
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2.3. Response Time

The response time is conceptually different from the residence time, as it is related to
the impulse response function (IRF), defined as follows:

Definition 2. The impulse response function (IRF), g(h), of a system is defined to be the system
output at time distance (lag) h from the time the system is perturbed by an input that is an
(instantaneous) impulse of unit mass (a Dirac delta function).

A thorough and general presentation of the IRF concept in a causality framework has
been presented by Koutsoyiannis et al. [11,33–35]. In our case, the following particular
considerations are made for a reservoir: (a) the system can be studied in terms of the
dimensionless quantities, and the dimensional ones can then be obtained through Equation
(7); (b) the response function g(η) for dimensionless time lag η = h/W0 is identical to
the dimensionless output function q(τ) for η = τ, which results from the impulse of an
otherwise empty reservoir; and (c) the system is causal, which means that g(η) = 0 for
η < 0. Point (b) entails that when we speak about the IRF, we can use the symbols g(η)
and q(η) interchangeably. When we need to refer to dimensional time, the respective IRF is
gh(h) = g(h/W0)/W0.

Based on these considerations and the framework in [33], we proceed to the following:

Definition 3. Based on the dimensionless IRF of a reservoir, g(η), we define the mean and the
median dimensionless response time as the mean µη and the median η1/2 of the function g(η),
and the dimensional ones are derived by multiplying the dimensionless ones by the characteristic
residence time W0 = S0/Q0:

µη :=
∞∫

0

h g(h)dh,

η1/2∫
0

g(η)dη =
1
2

, µh = µηW0, h1/2 = η1/2W0 (42)

Notice that the median η1/2 is defined by an implicit equation.

To conceptualize the impulse, we imagine an empty reservoir (in dimensionless setting)
with zero inflow, which at time zero receives instantaneously a unit input, increasing the
storage to s(0) = 1 and causing an outflow q(0) = 1. Subsequently, the input becomes
zero, and the outflow is decreased. Hence, the outflow is given by Equation (17), and,
consequently,

g(η) = ((b − 1)η + 1)
b

1−b (43)

It is then easy to find from Equation (42) the characteristic times, which are

µη =
1

2 − b
, η1/2 =

2b−1 − 1
b − 1

(44)

Notice that for b ≥ 2, the mean µη diverges to infinity. It is stressed that the quantity η1/2 is
the dimensionless time required to empty half of the reservoir storage and not that required
for the outflow to be reduced to half its initial value (denoted as ζ1/2 and implicitly defined
as q(ζ1/2) = 1/2). For completeness, the resulting expression for the latter is

ζ1/2 =
2

b−1
b − 1

b − 1
(45)

While the median η1/2 (similar to the mean µη) is an increasing function of b, ζ1/2 is a
decreasing one (for b > 0.21), taking identical values only for b = 1 (linear reservoir).
The particular values for b = 1 (linear reservoir) are identical to the mean and median
residence times:

µη = 1, η1/2 = ζ1/2 = ln 2 (46)
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It is interesting to note that the original definitions of the characteristic lag times in
the causality framework of Koutsoyiannis et al. [33] were based on a linearity assumption.
On the other hand, Equations (27) and (17) did not assume linearity, and thus the results
found do hold for a nonlinear system (reservoir). This offers a basis for an extension of
that causality framework. We note, however, that while in the linear case, the function g(η)
suffices to determine the output for any input through a convolution equation, this is not
the case if the dynamics is nonlinear.

The residence time in the case that the input is an impulse at time τ = w = 0 is given
by Equation (38). For b = 1, this corresponds to the exponential distribution; indeed, by
taking the limit as b → 1 , we recover Equation (29). For b < 1, the variable w becomes
bounded from above by 1/(1 − b), which means that the reservoir empties (and the outflow
ceases) at a finite time. For b > 1, the time to full emptying is infinite, and for b > 2, the
mean of w is also infinite.

Furthermore, it can be observed that

Fw(w) = 1 − s(w) =

w∫
0

q(τ)dτ =

w∫
0

g(η)dη (47)

and if we take the derivatives, we find that the probability density function is

fw(w) = q(w) = g(w) (48)

This is not a coincidence, but it can be easily shown that it holds for any function
q(τ) = f (s(τ)). We can thus state this result and the ones it entails as follows:

Proposition 1. The IRF equals the probability density function of the residence time for the case
that the input is an impulse function.

Corollary 1. The mean and median response time equal the mean and median residence time for
the case that the input is an impulse function.

Corollary 2. In a linear reservoir, the dimensionless IRF is a standard exponential distribution.

For different input, though, the residence time is different from the response time.
The former depends on the input, while the latter depends only on the exponent b (or
more generally on the function q(τ) = f (s(τ))). Illustrations of the different residence and
response times for characteristic values of b and q0 are shown in Figure 6, which allows the
formulation of the following:

Remark 1. For a linear reservoir, (a) the IRF is exponential; (b) the mean residence time and the
mean response time are equal to each other, with a value W0 = S0/Q0; (c) the median residence time
and the median response are also equal to each other and smaller than W0 by the factor ln 2 = 0.69.

Remark 2. For a sublinear reservoir, the mean and median response times are generally smaller than
the mean and median residence time, respectively, and can only become equal if the input is zero.

Remark 3. From a practical point of view and for a reservoir that is not superlinear, the response
times are smaller than the characteristic value W0 = S0/Q0, and the residence times can only slightly
(by < 10%) exceed this value (for highly sublinear reservoirs and initial inflow higher than outflow).

It is useful to notice that for a nonlinear reservoir, the linear approximation, which in
this case takes the form of Equation (14), is not satisfactory when the inflow is zero. This is
illustrated in Figure 7, where the approximation is compared to the exact one. The same is
the case for the distribution function of residence time when the inflow is zero, as seen in
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Figure 8. However, this is not a problem in our framework, since the exact solutions in this
case are explicit (Equation (17) for outflow and (38) for residence time).
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Figure 6. Comparison of characteristic dimensionless time lags for the indicated cases. Mean and
median residence times are determined from approximation 2 (Equation (41)). Response times are
determined from the exact solution (Equation (44)). The mean response time in the bottom left graph
(b = 2) is infinite.
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Figure 7. Dimensionless outflow for zero inflow in the indicated cases, representing an impulse
response function, with comparison of exact solutions (Equation (17)) and approximate ones
(Equation (14)). In the right panel (sublinear reservoir, b = 1/2), according to the exact solution, the
reservoir empties at time τ = 1/(1 − b) = 2, while according to the linear reservoir approximation,
the emptying time is τ = −ln (1 − b)/b = 1.39; beyond emptying time, the outflow is zero.
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Figure 8. Probability plots of the distribution function of dimensionless residence time for the
indicated cases and zero inflow, with comparison of the exact solution (Equation (38)) with
the linear reservoir approximation (Equation (14), which, combined with Equation (27), yields
Fw(w) = min(1, (1 − e−bw)/b)).

2.4. Parameters and Their Estimation

The reservoir model, as a system with a power law connecting the outflow and
storage, is quite simple and involves two parameters, the dimensionless exponent b and a
dimensional parameter. For a linear reservoir, the characteristic dimensional parameter is
the characteristic residence time, W0 = S0/Q0, which is invariant (does not change if we
change the time origin) and equals the mean residence time. However, if the reservoir is
nonlinear, this is not invariant. Instead, the invariant dimensional parameter is

Ω :=
Sb

Q
=

Sb
0

Q0
= W0Sb−1

0 (49)

which for b = 1 becomes identical to W0. The dimensions of Ω are [Mb−1T
]
.

To estimate the parameters, we need at least a couple of simultaneous observations
of Q and S. However, these would not give any information about the appropriateness
of the model. The ideal case is to have systematic measurements (time series) of all three
processes I, Q, and S, and fit the model by minimizing the error in processes Q and S. If we
have observations of the storage process only, which is the easiest to measure, the model
cannot be fitted, unless we have some additional estimates of the balance at some time scale.
An example will be discussed in Section 4 for the atmospheric component of the carbon
cycle, which has been of topical interest, yet the established approach lacks simplicity,
transparency, and clarity, and hence the RRR framework can help in better modeling the
storage and balance.

3. Carbon Cycle: A Summary of the Established Approach
3.1. Concepts and Terminology

Typically, the carbon cycle is modeled with complex approaches, such as in climate
models, which do not allow transparency and easy understanding. The established ap-
proach is reflected in the Assessment Reports of the Intergovernmental Panel on Climate
Change (IPCC), among which here we refer to the Fifth Assessment Report (AR5) [31]
and the Sixth Assessment Report (AR6) [32]. Comprehensive critiques on the established
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approach, accompanied by alternative approaches and quantifications, have been provided
by Salby [36], Humlum et al. [37], Harde [38,39], Berry [30], Poyet [40], and Stallinga [41].

The approach presented here, with its simplicity and transparency, can shed light on
the unclear issues and highlight the problems in the established approach. Here we empha-
size some of the problems, starting with those in terminology, which reflect obscureness,
ambiguity, and vagueness in the concepts studied.

The terminology within the IPCC reports is different than that used here, as seen in
the following extract from the latest IPCC report [32] (Glossary; pp. 2237, 2246):

Lifetime is a general term used for various time scales characterizing the rate of processes
affecting the concentration of trace gases. The following lifetimes may be distinguished:

[. . .] Response time or adjustment time (Ta) is the time scale characterizing the decay
of an instantaneous pulse input into the reservoir. The term adjustment time is also used
to characterize the adjustment of the mass of a reservoir following a step change in the
source strength. Half-life or decay constant is used to quantify a first-order exponential
decay process. [. . .]

The term lifetime is sometimes used, for simplicity, as a surrogate for adjustment time.

In simple cases, where the global removal of the compound is directly proportional to the
total mass of the reservoir, the adjustment time equals the turnover time: T = Ta.

[. . .]

Turnover time (T) (also called global atmospheric lifetime) is the ratio of the mass M of a
reservoir (e.g., a gaseous compound in the atmosphere) and the total rate of removal S
from the reservoir: T = M/S.

[. . .]

Response time or adjustment time In the context of climate variations, the response
time or adjustment time is the time needed for the climate system or its components to
re-equilibrate to a new state, following a forcing resulting from external processes. It
is very different for various components of the climate system. The response time of
the troposphere is relatively short, from days to weeks, whereas the stratosphere reaches
equilibrium on a time scale of typically a few months. [. . .] In the context of lifetimes,
response time or adjustment time (Ta) is the time scale characterizing the decay of an
instantaneous pulse input into the reservoir.

We notice in the above definitions the terms lifetime, turnover time, global atmospheric
lifetime, response time, adjustment time, half-life, and decay constant, none of which is clear
enough to allow quantification or even to allow distinguishing which one is referred to
each time. The most general term appears to be lifetime, which is typically used to describe
decaying entities such as unstable atoms (radioactive) or particles but may be inappropriate
for the processes in question. For example, the atmospheric carbon dioxide may not die or
decay (e.g., in the ocean-atmosphere exchange), and therefore it is meaningless to speak
about its lifetime. In contrast, it is meaningful to speak about its residence time, the time
between entering and leaving the atmosphere. As explained in Section 2, the residence
time can be represented as a stochastic variable ranging from zero to infinity, yet we can
quantify and specify it through either (a) its distribution function, (b) its average, (c) its
median, or (d) any other statistic (e.g., standard deviation, skewness, etc.) that would be
relevant in each case. No such information is given or hinted at in the above definitions
by IPCC.

The ambiguity in the terminology and definitions is manifest also in the assessments
and results provided. Thus, the IPCC AR5 contains the following statements:

The concept of a single, characteristic atmospheric lifetime is not applicable to CO2. [31]
(p. 473)

No single lifetime can be given [for CO2]. The impulse response function for CO2 from
Joos et al. (2013) [42] has been used. [31] (p. 737)
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Likewise, the IPCC AR6 refers to “multiple lifetimes for CO2” without specifying
which ones [32] (p. 302, Table 2.2; p. 1017, Table 7.15).

Apparently, the residence time (and IPCC’s “lifetime”) may take any positive real
value, if modeled as a stochastic variable, yet it has certain statistics, such as a mean, which
IPCC avoids specifying, preferring to report that the values are multiple. It is interesting
that the same reports give specific values for other substances. The reasons for this special
treatment of CO2 by IPCC may be inferred from what follows.

3.2. Separate Treatment of CO2 Depending on Its Origin

The ambiguity is accompanied by inappropriate assumptions and speculations, the
weirdest of which is that the behavior of the CO2 in the atmosphere depends on its origin
and that CO2 emitted by anthropogenic fossil fuel combustion has higher residence time
than when naturally emitted. This is clear in the IPCC AR5:

Simulations with climate–carbon cycle models show multi-millennial lifetime of the
anthropogenic CO2 in the atmosphere. [31] (p. 435)

It is also repeated in IPCC AR6:

This delay between a peak in emissions and a decrease in concentration is a manifestation
of the very long lifetime of CO2 in the atmosphere; part of the CO2 emitted by humans
remains in the atmosphere for centuries to millennia. [32] (p. 642 FAQ 4.2)

This weird idea has a long history, as it was thought from the beginning of climate
modeling that the fate of anthropogenic CO2 is different from that of the natural CO2. For
example, Joos et al. [43] stated the following:

When considering the fate of anthropogenic CO2, the emission into the atmosphere can be
considered as a series of consecutive pulse inputs.

More recently, in their study entitled “The millennial atmospheric lifetime of anthro-
pogenic CO2”, Archer and Brovkin [44] stated,

The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2
invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published
models in the literature from 20–60%, remains airborne for a thousand years or longer.

In addition, Archer et al. [45] stated,

The models agree that 20–35% of the CO2 remains in the atmosphere after equilibration
with the ocean (2–20 centuries).

The idea is also redundantly repeated in gray literature (and more recently promoted
by artificial intelligence chatbots), including in publications by universities and research
organizations, such as the following by the Massachusetts Institute of Technology (MIT)
and the National Aeronautics and Space Administration (NASA), respectively:

Estimates for how long carbon dioxide (CO2) lasts in the atmosphere [. . .] are often
intentionally vague, ranging anywhere from hundreds to thousands of years. [. . .] As
it stands, says [Ed] Boyle, human-generated carbon dioxide is expected to continue
warming the planet for tens of thousands of years [46].

Once [carbon dioxide is] added to the atmosphere, it hangs around, for a long time:
between 300 to 1000 years. Thus, as humans change the atmosphere by emitting carbon
dioxide, those changes will endure on the timescale of many human lives [47].

We may highlight in the former quotation the phrase “intentionally vague”, which
faithfully conveys the fact that behind all this vagueness, there are intentions. The reader
interested in some amusement may also see a summarizing depiction of the idea in a cartoon
by Berry [48] depicting a demon that separates and delays the human CO2 molecules in
the atmosphere.
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3.3. Modeling Approach

IPCC’s methodology in modeling the atmospheric CO2 exchange is based on the
so-called Bern modeling approach (Joos et al. [42,43]; Myhre et al. [49]; Strassmann and
Joos [50]; Luo et al. [51]). It is reflected in the following expression of the IRF as the sum of
three exponential functions and a constant term:

g(h) = a0 +
3

∑
i=1

aie−h/Wi (50)

The fitting of the parameters of this expression has been based on climate model
results. This is made clear by Joos et al. [42], who stated (below their Equation (11) and in
the caption of their Table 5) that they fitted on the mean of the multimodel mean in future
studies. In other words, the parameters were not obtained from observed data.

There are several problems with this methodology, in addition to the fact that it is
based on imaginary data. These are discussed in general mathematical terms in Appendix B,
as well as in numerical terms, with the specified values of the parameters also given in
Appendix B, which were used in IPCC AR5 and IR6. In particular, the form of the equation
is arbitrary and does not correspond to a reservoir’s dynamics. The inclusion of the constant
term (a0) results in theoretically infinite mean response time. Even if the constant term is
excluded, the resulting mean response time is 353 years. With the inclusion of this term,
even if we replace the nominal upper limit of integration, which is infinity, with 1000 years
(the duration considered by Joos et al. [42] for their model fitting), the mean response time
is no less than 432 years. These values can hardly be reconciled with the fact that the
residence time of CO2 is no more than 4 years, as admitted even by IPCC [32] (p. 2237):

Carbon dioxide (CO2) is an extreme example. Its turnover time is only about 4 years
because of the rapid exchange between the atmosphere and the ocean and terrestrial biota.
However, a large part of that CO2 is returned to the atmosphere within a few years. The
adjustment time of CO2 in the atmosphere is determined from the rates of removal of
carbon by a range of processes with time scales from months to hundreds of thousands
of years. As a result, 15 to 40% of an emitted CO2 pulse will remain in the atmosphere
longer than 1000 years, 10 to 25% will remain about ten thousand years, and the rest
will be removed over several hundred thousand years.

In Section 5, we will show that the first part of this quotation (referring to a 4-year
“turnover time”) is correct, while the last part is blatantly incorrect, as not even one CO2
molecule remains in the atmosphere for such a long time.

4. RRR Application to the Atmospheric Component of the Carbon Cycle
4.1. Data

Systematic measurements of the atmospheric CO2 have been made since 1958 [52] by
the Scripps CO2 Program of the Scripps Institution of Oceanography, University of Califor-
nia, and are available online [53–55]. The data include observations of CO2 concentration
(in micro-moles CO2 per mole, or parts per million—ppm), and are processed to extract
monthly values, filled in in case of missing data. Here, the monthly time series have been
retrieved and processed for two stations, namely, Mauna Loa Observatory, Hawaii (19.5◦ N,
155.6◦ W, 3397 m a.s.l., 1958–present), and Barrow (recently renamed to Utqiagvik), Alaska
(71.3◦ N, 156.6◦ W, 11 m a.s.l., 1961–present).

Data on global human carbon emissions are also available online for the years
1850–2022 and have been retrieved from [56,57]. The value of 2023 was taken as that
of 2022 increased by 1.01, according to the International Energy Agency’s report [58] (p. 3)].

For conversion of different units, we use the following coefficients:

• From mass of C to mass of CO2, we multiply by 44/12 = 3.67 kg CO2/kg C (where 44
and 12 are the molecular masses of CO2 and C).
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• From atmospheric CO2 concentration in ppm to total atmospheric mass in Gt CO2, we
multiply by 7.8 Gt CO2/ppm CO2.

4.2. Premises of the Application

Based on the IPCC AR6 estimates of the global carbon balance [32] (Figure 5.12),
Koutsoyiannis et al. [11] compiled a summary graph of total carbon emissions and sinks,
distinguishing the preindustrial quantities (before 1750) and modern additions. This graph
is reproduced here as Figure 9, after conversion from Gt C to ppm CO2.
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Figure 9. Annual carbon balance in the Earth’s atmosphere, in ppm CO2/year, based on the IPCC
estimates [32] (Figure 5.12). The balance of 2.4 ppm CO2/year is the annual CO2 accumulation in
the atmosphere. The total of the modern natural additions (64.2 + 36.5 − (52.2 + 25.6)) = 22.9 ppm is
4.4 times larger than the human emissions (4.4 + 0.8 = 5.2 ppm). (Adapted from [11]).

Based on this graph, we make the following observations, which are important for the
modeling of the CO2 exchanges that follow:

1. Human activities are responsible for only 4% of carbon emissions.
2. The vast majority of changes in the atmosphere since 1750 (red bars in the graph) are

due to natural processes, respiration and photosynthesis.
3. The increases in both CO2 emissions and sinks are due to the temperature increase,

which expands the biosphere and makes it more productive.
4. The terrestrial biosphere processes are much stronger than the maritime ones in terms

of both production and absorption of CO2.
5. The CO2 emissions by merely the ocean biosphere are much larger than human emissions.
6. The modern (post 1750) CO2 additions to pre-industrial quantities (red bars in the

right half of the graph, corresponding to positive values) exceed the human emissions
by a factor of ~4.5. In the most recent 65 years, covered by measurements, the rate of
natural emissions is ~3.5 times greater than the CO2 emissions from fossil fuels.

Point 3 above implies a causality direction between temperature and CO2 concentra-
tion that is opposite to the popularly assumed one, which is also the one assumed and
embedded in climate models. Indeed, according to conventional wisdom, it is the increased
atmospheric carbon dioxide concentration ([CO2]) that caused the increase in temperature
(T). However, this was questioned by Koutsoyiannis and Kundzewicz [59], while later
Koutsoyiannis et al. [11,33,34] provided evidence, based on analyses of instrumental mea-
surements of the last seven decades, for a unidirectional, potentially causal link between T
as the cause and [CO2] as the effect. The same causality direction was confirmed for the
entire Phanerozoic by using several proxy data series [35].

The effect of [CO2] on the CO2 inflow to the atmosphere is depicted in Figure 10. The
two endpoints, corresponding to 1750 and 2017, were determined from the quantities given



Water 2024, 16, 2402 20 of 47

in Figure 9, with the additional information that [CO2] was 280.0 and 404.6 in these two
years, respectively.
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Figure 10. Atmospheric carbon dioxide inflows and outflows as a function of carbon dioxide
concentration. Large circles correspond to IPCC estimates for 1750 and the recent decade (assigned
to 2017), and the line joining them is a power law with slope b = 0.7. The other circles have been
determined using the Q10 method, as in Koutsoyiannis et al. [11], and the triangles by the same
method but using 30% higher values of Q10. A power law for output (not drawn in the graph) has a
slope of 0.77.

The remaining points are obtained from the so-called Q10 model [60], as in Koutsoyian-
nis et al. [11] (their Appendix A). This is based on the following equation:

Rt

R0
= Q(Tt−T0)/(10K)

10 (51)

where Rt and R0 denote the respiration rate at times t and t0, respectively, Tt and T0 are
the temperatures at these times, and Q10 is a dimensionless parameter, characteristic of the
species. Assuming a linear trend cT in temperature, we get

Rt

R0
= QcT(t−t0)/(10K)

10 (52)

The linear trends for the last 65-year period were calculated in [11] from the NCEP/
NCAR reanalysis data at 0.26 ◦C/decade for the terrestrial and 0.12 ◦C for the maritime
part. The literature gives representative average Q10 values of 3.05 for the terrestrial
respiration [60] and 4.07 for the maritime respiration [61]. For these values and after
anchoring the calculations at year 2017, the resulting total inflow to the atmosphere (the
sum of respiration from the terrestrial and the maritime part) is shown in Figure 10 against
the [CO2] observed values at a decadal time step. The figure also shows a power law
between [CO2] and input (emitted) CO2, with an exponent of 0.7, determined from the two
endpoints. The intermediate points do not perfectly agree with this power law, although
they show a rising trend. If we increase the Q10 values by 30% (e.g., to account indirectly
for processes that are not explicitly considered, such as ocean outgassing driven by Henry’s
Law, which states that as water temperature increases, the solubility of CO2 in water
decreases), the agreement is improved, as also shown in the figure. In addition, the figure
shows two points of CO2 outflow from the atmosphere corresponding to 1750 and 2017,
which were again determined from the quantities given in Figure 9. These points show a
similarity with those of the input, with a greater rise, yielding an exponent of a power law
equal to 0.77.
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4.3. Model and Its Fitting Methodology

To apply the reservoir routing methodology to the atmospheric CO2, we represent the
storage S(t) as the atmospheric [CO2] (in ppm) and the inflow I(t) and outflow Q(t) as the
emissions and sinks, respectively (ppm/year). An eminent characteristic of the atmospheric
CO2 exchange is its seasonality, implying seasonal variation of the characteristic residence
time. To take seasonality into account in a parsimonious manner, we modify Equation (2)
by substituting S0/W0 for Q0 and then replacing W0 with a periodic function of time, W(t):

Q(S) =
S0

W(t)

(
S
S0

)b
(53)

In the first phase (Phase 1), several preliminary model runs were made with different
parameterizations, including mathematical expressions of Q(S) different from the power
law, but here, only final runs are presented. It was concluded that the best results are
obtained by the power-law relationship and with the following simple and parsimonious
mathematical form for W(t):

W(t) = A(cos(2πt + φ) + ψ)b (54)

where the parameter A has dimensions of time (as does W(t)), and the parameters φ (phase)
and ψ are dimensionless. Hence,

Q(t) =
S0

A

(
S(t)

S0(cos(2πt + φ) + ψ)

)b
(55)

For two times t1 and t2 differing by 2kπt, where k is an integer (meaning: referring to the
same date in different years), we have Q(t1)/S(t1)

b = Q(t2)/S(t2)
b, which is a periodic

extension of the invariance condition in Equation (49).
Given the similar behaviors in the input and outflow, as seen in Figure 10, we choose

a similar expression for the natural inflow, IN(t), which is not measured:

IN(t) =
S0

AI

(
S(t)

S0(cos(2πt + φI) + ψI)

)bI

(56)

with parameters bI , AI , φI , ψI like those in the expression of outflow. This defines a charac-
teristic time for input:

WI(t) = AI(cos(2πt + φI) + ψI)
bI (57)

To find the total input, we add the anthropogenic emissions, IA(t), which are known as
described in Section 4.1:

I(t) = IN(t) + IA(t) (58)

In this, we have neglected inflows from volcanism and other outgassing sources (e.g., re-
lated to El Niño–Southern Oscillation), which may induce some inaccuracies in
our modeling.

To apply the differential equation with the observations, which are in discrete time
with a monthly step, we discretize the time, t = j∆, and to avoid an implicit numerical
scheme, we reduce the time step to half monthly (∆ ≈ 1/24 years, but it varies slightly
among months because of the different durations of the months) and estimate the values of
S(t) at the mid-month as the average of the values in consecutive months. The differential
equation is then written in discrete time as

S((j + 1)∆)− S(j∆)
∆

+ Q(j∆) = IN(j∆) + IA(j∆) (59)
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from which we find the storage at the step (j + 1)∆ from the values of the three variables at
step j∆, i.e.,

S((j + 1)∆) = S(j∆) + N(j∆)∆ (60)

where N(j∆) is the net inflow at step j∆:

N(j∆) := IN(j∆) + IA(j∆)− Q(j∆) (61)

The model has eight parameters, two dimensionless exponents b, bI of the storage–
outflow and storage–inflow power laws, two dimensional A (in time units), and four
dimensionless parameters of the cosine functions that describe seasonality. We apply the
model to two locations (Barrow and Mauna Loa), letting the parameter values be different
in the two locations, except for the exponents b, bI , which we assume to be the same at both
locations. To estimate these parameters, we make a complete simulation at both locations
and perform an optimization (using a typical solver in a common spreadsheet software).

The quantities that provide means for comparing actual data and simulations are S(j∆)
and N(j∆). Observed time series of the former are readily available, while the latter are
estimated from the former from Equation (60). The simulated values, which we denote
Ŝ(j∆) and N̂(j∆), are determined from Equations (55)–(61). After completing a simulation
with a specified parameter set, we determine the explained variance for each quantity,
S(j∆) and N(j∆), as follows:

EVS := 1 −
var

[
Ŝ(j∆)− S(j∆)

]
var[S(j∆)]

, EVN := 1 −
var

[
N̂(j∆)− N(j∆)

]
var[N(j∆)]

(62)

respectively. These quantities are equivalent to the coefficient of determination (R2) in
linear regression. For zero bias, EV is identical to the Nash–Sutcliffe efficiency (NSE) and
as in our applications the bias was negligible, EV and NSE virtually coincided. We form an
objective function as the sum of these two quantities in both locations, and we maximize
this sum by changing the parameters.

In the second phase (Phase 2), we focus on determining the exponents b, bI by numer-
ous simulation runs, by fixing b and optimizing all other parameters. Figure 11 shows
the optimized bI as a function of b. Consistently with what was already observed in the
discussion of Figure 10, the optimal bI is always smaller than b by 0.05–0.06. This small
difference is essential to keep, as no good fitting is possible if the two are assumed equal.
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Figure 11. Optimized values of bI (the exponent of the power law of inflow) as a function of the
values of b (the exponent of the power law of outflow). The optimization was made by fixing b to a
specified value and letting all other parameters free.
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Figure 12 shows the explained variances as functions of the specified exponent b. Those
of S(j∆) are extraordinarily high (higher than 0.997), while those of N(j∆) are around 0.85.
We observe that the explained variances for Barrow are consistently increasing with the
increase of b, while those at Mauna Low decrease for b > 1. From a Pareto optimality
point of view, these results suggest that there is no meaning in adopting any value of b < 1.
Therefore, we finally choose b = 1, i.e., a linear reservoir, for the additional reason that it is
simpler, exact in its analytical solution, and more intuitive.
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Figure 12. Achieved values of the indicated explained variances, after maximizing their sum by
fixing b to a specified value and letting all other parameters free.

4.4. Results of Final Modeling

The next phase (Phase 3) includes the fine-tuning of the results of Phase 2, after
choosing b = 1, and their detailed presentation. The final optimized parameters are shown
in Table 1.

Table 1. Fitted parameters of Equations (55) and (56).

Site b φ A (Years) ψ bI φI AI (Years) ψI

Mauna Loa 1 5.445 1.973 2.115 0.953 5.247 1.462 2.855
Barrow 1 5.757 4.181 1.370 0.953 5.149 3.104 1.633

The evolution of storage, S(t), observed and simulated, is shown in Figure 13, along
with a visualization of the seasonal variation of the characteristic times W, WI . The agree-
ment of observed and simulated values is impressively good, as visually seen and also
indicated in the values of explained variances, marked in the figures.

The evolution of the simulated inflow and outflow (I(t), Q(t)) is shown in Figure 14.
Here, we do not have means for comparison, as there are no observations of these quan-
tities. Yet we know that in the last ten years, the average outflow should be close to
104.9 ppm/year (Figure 9). In the optimization, we introduced a constraint that the average
outflow should not depart more than 5% from the value of 104.9 ppm/year, and this
constraint is satisfied. It is informative to compare in this figure the natural emissions to
the anthropogenic ones, which are a very small portion of the total.
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Figure 13. Comparison of observed and simulated storage, S(t) ≡ [CO2], for (upper) Mauna Loa and
(lower) Barrow. The insets show the seasonal variation of the characteristic times W, WI .

The evolution of the observed and simulated net inflow (N(t) = I(t)− Q(t)) is shown
in Figure 15. There is good agreement between the two, reflected in explained variances of
~86%, as shown in the figures. Yet there is some discrepancy in reproducing the increasing
variation of the net inflow with time in Barrow, which is due to the biosphere expansion.
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Figure 14. Simulated inflows and outflows for (upper) Mauna Loa and (lower) Barrow.

It is not easy to improve the fitting in terms of the latter discrepancy and better
represent the biosphere expansion in the last years, unless we sacrifice the parsimony in
modeling. An example is given in Figure 16, where we replaced the cosine function for
the inflow characteristic time WI (Equation (57)) with 24 half-monthly values while not
modifying the corresponding expression for the outflow. As seen in the figure, the explained
variance was improved from 86% to 92%. Yet there is no perfection in reproducing the
biosphere expansion, and, anyhow, the pursuit of parsimony should never be neglected.
For these reasons, we may regard our final solution as that presented in Figure 13 through
Figure 15, rather than that of Figure 16.
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Figure 15. Comparison of observed and simulated net inflows for (upper) Mauna Loa and
(lower) Barrow.
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Figure 16. Comparison of observed and simulated (upper) storages and (lower) net inflows for
Barrow, in the case that the cosine function of inflow is replaced by an arbitrary function, defined
through 24 coordinates.

4.5. Results for Imaginary Cases

Our next phase (Phase 4) is devoted to examining some imaginary cases to offer
additional insights. In this phase, we examine the following four cases:

1. Human emissions are disregarded, and only natural processes are considered.
2. The natural processes are neglected, and only the anthropogenic emissions are considered.
3. In addition to anthropogenic emissions, natural outputs (but no inputs) are also considered.
4. All processes are considered, but the biosphere expansion is neglected.

The results for case 1 are shown in Figure 17 in terms of comparisons of observed and
simulated time series of storage, S(t). The agreement of observed and simulated series
is as impressively good as that in the complete modeling shown in Figure 13. Hence, the
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inclusion or omission of the anthropogenic contribution does not offer anything important
in modeling, except in altering the model parameters.
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Figure 17. Comparison of observed and simulated storage, S(t) ≡ [CO2], for (upper) Mauna Loa and
(lower) Barrow, as in Figure 13, but omitting anthropogenic emissions (imaginary case 1). The insets
show the seasonal variation of the characteristic times W, WI .

The results for the other three cases of Phase 4 are shown in Figure 18 and are not satis-
factory. The worst of all is case 2, in which only the anthropogenic emissions are considered.
The results have no relationship with reality. Case 3 is better, but again, neither the overyear
trend nor the seasonality is captured. Case 4 is even better, as it captures seasonality, but
the overyear trend is again not well represented. To implement Case 4 (all processes but
without biosphere expansion), S0 was substituted for S in Equations (55) and (56). For this
case, Figure 19 shows the observed and simulated net inflow (N(t) = I(t)− Q(t)), where
the inability to capture the observed behavior, namely the increasing variation of the net
inflow with time in Barrow, which is due to the biosphere expansion, is manifest.
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Figure 18. Comparison of observed and simulated storage, S(t) ≡ [CO2], for (upper) Mauna Loa and
(lower) Barrow, as in Figure 13 but for the indicated imaginary cases. The insets show the seasonal
variation of the characteristic times W, WI for the case of all emissions without biosphere expansion
(imaginary case 4). The explained variance noted is for the same case, while it is smaller in the other
indicated cases, and decreased to less than –100% for the worst case of human emissions only.
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Figure 19. Comparison of observed and simulated net inflows for (upper) Mauna Loa and (lower)
Barrow as in Figure 15 but without biosphere expansion (imaginary case 4).

4.6. RRR Validation

A first thought when proposing a new method is to compare it with an existing
method. As discussed in Section 3, the topic of the CO2 balance is heavily studied and also
officially reported in IPCC Assessment Reports. However, possible agreement of the RRR
framework results with those of IPCC would not validate the former because of the severity
of the problems in the latter, which are discussed in Section 3 and in Appendices B and C.
In particular, Appendix C offers an indirect (not formal) validation of the RRR results by
enrolling additional data, namely isotopic data of atmospheric 14C. These data reflect an
accidental real-world experiment, not designed as such but related to nuclear weapons
testing, in the 1950s and 1960s, which stopped afterwards. The injection of a series of
14C impulses in the atmosphere made a real-world situation close to an ideal to estimate
an IRF of the 14CO2 dynamics. The analysis in Appendix C shows that the observed
14CO2 dynamics are compatible with the RRR results and blatantly incompatible with the
IPCC results.
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For a formal validation of the RRR method, we use the split-sample scheme (Klemeš,
1986, [62]) which has been the standard methodology in hydrology. Specifically, we split
the data into two periods, where the first, 1958–2002, representing about two thirds of the
dataset length, is used for model fitting, and the second, 2003–2023, is used for validation.
The resulting model fits are shown graphically in Figures 20 and 21, the fitted parameters
by the same method as in Section 4.3 are shown in Table 2, and the performance indices are
shown in Table 3, also in comparison to those of the fit on the entire observation period.
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Figure 20. Comparison of observed and simulated storage, S(t) ≡ [CO2], as in Figure 13 but for the
calibration period 1958–2002: (upper) Mauna Loa and (lower) Barrow. The insets show the seasonal
variation of the characteristic times W, WI .
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Figure 21. Comparison of observed and simulated net inflows as in Figure 15 but for the calibration
period 1958–2002: (upper) Mauna Loa and (lower) Barrow.

Table 2. Fitted parameters of Equations (55) and (56) as in Table 1 but for the calibration period
1958–2002. For comparison, the parameters of Table 1 are also shown in parentheses.

Site b φ A (Years) ψ bI φI AI (Years) ψI

Mauna Loa 1 5.399
(5.445)

2.126
(1.973)

2.092
(2.115)

0.935
(0.953)

5.164
(5.247)

1.578
(1.462)

2.858
(2.855)

Barrow 1 5.710
(5.757)

4.174
(4.181)

1.368
(1.370)

0.935
(0.953)

5.134
(5.149)

2.207
(3.104)

1.594
(1.633)

Figure 20 shows that the model, when fitted in 1958–2002, somewhat underestimates
the [CO2] in the last few years. Figure 21 does not have any discernible visual difference in
net inflow, I − Q, from Figure 15, in which the calibration was for the entire observation
period. Table 2 shows that the parameter values changed only slightly with the change in
the calibration period. Finally, Table 3 shows slight decreases of the performance indices
in the period 2003–2023 when the fitting is made in the period 1958–2002. The decrease is
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about 3.5% in [CO2] and 1–1.5% in I − Q when compared to the values of the fitting on the
entire observation period. Overall, the validation results are deemed satisfactory.

Table 3. Explained variances (%) as performance indices of the RRR method for the indicated applications.

↓Site Storage S ≡ [CO2] (ppm) Net Inflow, I − Q (ppm/year)

Period→ All 1958–2002 2003–2023 All 1958–2002 2003–2023

Calibration over the entire period
Mauna Loa 99.94 99.82 99.64 85.81 87.25 83.30
Barrow 99.77 99.25 99.16 85.30 85.82 84.64
Calibration over the period 1958–2002
Mauna Loa 99.73 99.90 96.24 85.57 87.46 82.25
Barrow 99.55 99.44 95.88 84.85 86.18 83.13

Note: The arrow ↓ point to the column that follows and the → points to the row.

5. Discussion and Further Results
5.1. Residence Times

The fitted model parameters directly provide the reservoir characteristics and their
seasonal variation. That variation, which is substantial, is easy to explain as follows:
contrary to the common belief highlighting anthropogenic emissions, the carbon cycle is
dominated by the natural emissions and absorptions. It is useful to find an annual average
in the following manner:

Wm :=

∫ 1
0 S(t)dt∫ 1

0 Q(S(t))dt
=

∫ 1
0 S(t)dt∫ 1

0
S0
A

(
S(t)

S0(cos(2πt)+ψ)

)b
dt

(63)

where for convenience (and without introducing errors), we have changed the time origin
so that the phase φ be zero. Observing that the variation in S(t) within a year is much
smaller than in Q(t), we simplify the expression to

Wm ≈ S0

S0
A
∫ 1

0

(
1

(cos(2πt)+ψ)

)b
dt

=
A∫ 1

0

(
1

(cos(2πt)+ψ)

)b
dt

(64)

The integral can be evaluated analytically for any b, but here we give its value for
b = 1, which resulted from our analysis. The integral in this case is 1/

√
ψ2 − 1. Hence,

Wm ≈ A
√

ψ2 − 1 =
√
(A(ψ − 1))(A(ψ + 1)) =

√
WminWmax (65)

because the seasonal minimum and maximum values of W are, respectively, Wmin = A(ψ − 1),
Wmax = A(ψ + 1).

In other words, the annual mean residence time is the geometric mean of the minimum
and maximum values of W(t). The characteristic seasonal and annual mean residence
times are shown in Table 4. They vary seasonally from ~1.5 to ~10 years at Barrow, with a
narrower range (~2 to ~6 years) at Mauna Loa. On an annual basis, the residence time is
~3.5 to ~4 years. The table also includes empirical mean values, separately for the beginning
and the ending years, estimated as the ratio of the average S to the average Q of that year
(where, however, the Q series is produced in the model). It is impressive that (a) there is no
change throughout the last 63 years covered by the dataset, and (b) the agreement between
the RRR theoretical results and the empirical estimates is close to perfect.
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Table 4. Mean residence times, seasonal (Wmin, Wmax) and annual Wm (in years).

Site
Minimum,

Wmin =
A(ψ − 1)

Maximum,
Wmax =
A(ψ + 1)

Arithmetic
Average, Aψ

Theoretical Mean,
Wm =√

WminWmax

Empirical
Mean Wm,

Beginning Year

Empirical Mean
Wm,

Ending Year

Calibration over the entire period
Mauna Loa 2.20 6.15 4.17 3.68 3.68 3.70
Barrow 1.55 9.91 5.73 3.91 3.94 3.95
Calibration over period 1958–2002
Mauna Loa 2.32 6.57 4.45 3.91 3.93 3.98
Barrow 1.53 9.88 5.70 3.89 3.92 3.98

Table 4 also contains residence times for the case that the calibration period was
1958–2002. No noticeable differences are seen in that case. For completeness of the analysis,
an additional model fitting was made assuming different parameter sets for each half of the
observation period. The results (not reported quantitatively) do not show any discernible
change in the characteristic times between the two subperiods.

5.2. Anthropogenic Emissions Remaining in the Atmosphere: Total Mass

In light of the above analyses and results (and in view of the IPCC claims quoted
in Section 3), we can discuss a relevant question of general interest, that is, what part of
anthropogenic emissions through the period 1850 to date (the period for which emission
data are available) has remained in the current atmosphere.

To answer this question, we observe that from the mass dmA(t) that entered the
atmosphere from anthropogenic emissions at time [t, t + dt], there remains a portion equal
to P{W > tc − t}, where tc is the current time. This portion is equal to 1 − F(tc − t). In
other words, the mass remaining is

dmR(t) = (1 − F(tc − t))dmA(t) = e(t−tc)/W0dmA(t) (66)

By integrating from t0 = 1850 to tc = 2023, we can find the total remaining mass, MR.
If MA is the total mass of anthropogenic emissions through this period, then the proportion
remaining is

MR

MA
=

∫ tc
t0

e(t−tc)/W0dmA(t)∫ tc
t0

dmA(t)
(67)

Application with emission data and with W0 = 4 years results in MR = 163 Gt CO2 or
20.9 ppm, while MA = 2612 Gt CO2 or 334.9 ppm, so that MR/MA = 6%, comparable to
(somewhat smaller than) the estimate ~10% by Stallinga [41] and also slightly smaller than
the cumulative emissions of the last 4 years (as is reasonable). This contradicts the IPCC
assertion [32] (p. 676, also repeated many times in AR6), which follows:

Over the past six decades, the average fraction of anthropogenic CO2 emissions that has
accumulated in the atmosphere (referred to as the airborne fraction) has remained nearly
constant at approximately 44%.

5.3. Anthropogenic Emissions Remaining in the Atmosphere: Probabilistic Assessment of
Characteristic Times

Another relevant question that the RRR framework allows us to answer is whether or
not there is some truth in the IPCC’s statement quoted in Section 3, that “15 to 40% of an
emitted CO2 pulse will remain in the atmosphere longer than 1000 years, 10 to 25% will remain
about ten thousand years, and the rest will be removed over several hundred thousand years”. We
examine it also in connection with the IPCC statement that the “turnover time is only about
4 years”, which we deem correct, as it agrees with the results of this study. We make the
following calculations:



Water 2024, 16, 2402 35 of 47

• The probability that a molecule remains after 1000 years is p = 1 − FW(1000) =

1 − Fw(1000/4) = e−250 = 10−108.6, where we have used Equation (29) to evaluate the
Fw(w).

• The probability that out of N molecules none remain after 1000 years is (1 − p)N , and
the probability that at least one molecule remains is p1 = 1 − (1 − p)N . Given that as
p → 0 ,

(
1 − (1 − p)N

)
/pN → 1 , for small p (as in our case), we have p1 = pN.

• According to IPCC [32] (Figure 5.12), the atmospheric CO2 amounts to 870 Pg C =
8.7 × 1017 g C. Thus, the mass of CO2 is 8.7 × 1017 × (44/12) = 3.2 × 1018 g (where 44
and 12 are the molecular masses of CO2 and C, respectively). The number of moles is
3.2 × 1018 g / (44 g/mol) = 7.1 × 1016 mol.

• The Avogadro constant is 6.022 × 1023 mol−1, and thus the number of CO2 molecules
in the atmosphere is N = 7.3 × 1016 mol × 6.022 × 1023 mol−1 = 4.4 × 1040 = 1040.6.

• Hence, the probability that after 1000 years, at least one out of the N = 1040.6 molecules
remains in the atmosphere is p1 = pN = 10−108.6 × 1040.6 = 10−68.

• A probability 10−68 is virtually no different from an impossibility. Hence, we can be
certain that none of the molecules existing in the atmosphere now, whether due to an
“emitted CO2 pulse” or existing before it, will remain after 1000 years—let alone after
“ten thousand years” or after “several hundred thousand years”.

• To make this probability a reasonable rarity of 1% (10−2) that a single molecule
out of the N = 1040.6 remains in the atmosphere, we need to make p = p1/N =
10−2/1040.6 = 10−42.6. This would occur at time t such that 1− FW(t) = 1− Fw(t/4) =
e−t/4 = 10−42.6, which yields t = 392 years.

In other words, the IPCC’s statement that “15 to 40% of an emitted CO2 pulse will
remain in the atmosphere longer than 1000 years, 10 to 25% will remain about ten thousand
years, and the rest will be removed over several hundred thousand years” needs to be cor-
rected to “not even one molecule from an emitted CO2 pulse will remain in the atmosphere
longer than 400 years, even if that emitted pulse amounts to the entire current atmospheric
CO2 content”.

The above results are based on the linear reservoir dynamics (b = 1, according to our
optimized model run). If b was smaller, e.g., b = 0.77, as in the discussion in Section 4.2, the
processes would be faster and the probabilities even smaller. (As discussed in Sections 2.2
and 2.3, the residence time w, as a stochastic variable, becomes bounded from above, and
the IRF becomes zero at a finite time.)

6. Conclusions

The study offers a comprehensive framework to refine reservoir routing (RRR), which
is of some usefulness for several problems in hydrology, hydraulics, and water manage-
ment. Additionally, it offers some insights into the application of mass balance (continuity
equation) with linear or nonlinear dynamics in hydrological processes and beyond, most
notably in processes of the climatic system. The RRR framework includes the following
features, obtained by theoretical analyses and also useful for practical problems:

• It defines and clarifies the relevant quantities, including the characteristic time lags,
such as residence and response times, which are often confused in the literature. (The
Glossary presented below summarizes the related concepts and their definitions.)

• It refines the case of a reservoir with linear dynamics, which admits analytical solutions
for all related variables, and rederives and streamlines these analytical solutions.

• It classifies the cases of a reservoir with nonlinear dynamics, studies some special
cases that admit analytical solutions, and provides working approximations of the
outflow and the residence time, including its probability distribution and statistical
characteristics.

• It provides an exact solution for the instantaneous response function and the response
time, whether for the linear or nonlinear case.
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• It proposes a framework for model fitting, based on observed data, for several cases,
whether with linear or nonlinear dynamics.

In the theoretical aspect, our analyses provide a case where the instantaneous response
function results directly from the system dynamics, rather than from stochastic, data-based
means, thus complementing the recent causality framework by Koutsoyiannis et al. [11,33,34].
It further provides an extension of this framework for nonlinear dynamics, which deserves
further pursuit. Additionally, it confirms the importance of the feature of this framework
to include a nonnegative value at zero time lag (a value that in the reservoir case is actually
the global maximum of the function), contrary to the Granger causality scheme [63], which
excludes the zero time lag (see additional discussion on that issue in [33]).

While our framework is fairly general and comprehensive, it cannot represent every
problem related to storage systems. In particular, the paper’s scope leaves out problems
whose dynamics require advanced stochastic methodologies to describe. These may be
dealt with in future research.

The application of the RRR framework to the atmospheric CO2 gives useful insights
in terms of residence and response times, which have been an issue of controversy. The
theoretical framework results in excellent agreement with real-world data on carbon dioxide
concentration. The atmosphere appears to behave as a linear reservoir in terms of the
atmospheric CO2, whose exchange is clearly dominated by the biosphere processes, with
human emissions playing a minor role. The quantification of the atmospheric CO2 exchange
with the RRR framework yields reliable and intuitive results, complying with observations,
in contrast to the results of complex climate models, which are shown to be inconsistent
with reality. The mean residence time of atmospheric CO2 is about four years, and the mean
response time is smaller than that, thus contradicting the mainstream estimates, which
suggest times of hundreds or thousands of years, or even longer.

Undoubtedly, numerous natural processes are involved in the carbon cycle, which
operate on widely ranging time scales. Indeed, we have rapid processes (photosynthesis,
respiration), which occur over days to years, and slower processes (e.g., ocean-atmosphere
exchange), which operate over timescales of decades to centuries. There are also very slow
processes (e.g., carbonate formation) that operate over millennial timescales. However, this
is irrelevant, as rapid processes remove the CO2 molecules at their pertinent scales, without
waiting for the slow or the very slow processes to act.

Clearly, the atmospheric CO2 observational data are not consistent with the climate
narrative. They rather contradict it. In this, the present study complements earlier studies
in that (a) causality direction between temperature and atmospheric CO2 is opposite to
that commonly assumed [11–34], (b) climate models misrepresent the causality direction
that is identified by the data [11], (c) there are no discernible signs of anthropogenic CO2
emissions on the greenhouse effect, which is dominated by water vapor and clouds [64],
and (d) there are no discernible signs of change in the isotopic synthesis of atmospheric
CO2 sources and sinks, which is determined by the biosphere processes [65].
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Glossary
Continuity equation: The equation expressing the conservation of mass, which for a

reservoir with storage S(t), inflow I(t), and outflow Q(t) is written in differential form as
dS(t)/dt + Q(t) = I(t).

Impulse response function (IRF, gh(h)): A system’s output at a time distance (lag) h
from the time in which the system is perturbed by an input that is an (instantaneous)
impulse of unit mass (a Dirac delta function). It is also expressed in dimensionless form,
g(η) = gh(ηW0)W0. An interesting property (proposition 1) is that the IRF is identical
to the probability density function of the residence time for the case that the input is an
impulse function.

Reservoir, linear: A reservoir in which the outflow is proportional to storage. Any other
type of storage–outflow relationship defines a nonlinear reservoir.

Reservoir, sublinear: A reservoir in which the outflow is proportional to storage raised
to a power b < 1.

Reservoir, superlinear: A reservoir in which the outflow is proportional to storage raised
to a power b > 1.

Residence time (W): The time duration that a particle (molecule) spends in the reservoir
from its entry to its exit. Excepting the (unrealistic) case of a perfectly regular (laminar)
flow, the residence time is different for different molecules and is therefore represented as a
stochastic variable (hence the underscore in the notation).

Residence time, characteristic (W0): The time that is defined as the ratio W0 := S0/Q0,
where S0 and Q0 represent the initial conditions of storage and outflow, respectively, at
time t = 0. In general, W0 depends on the initial conditions. In a linear reservoir it is equal
to the mean residence time, µW .

Residence time, mean (µW): The mean of the stochastic variable W, which represents the
residence time. It may also be expressed in dimensionless form, µw = µW/W0. In a linear
reservoir, the mean residence time is equal to the characteristic residence time µW = W0,
and the dimensionless mean residence time is µw = 1. In a sublinear or superlinear
reservoir, a simple approximation of the mean residence time is given by Equation (41).

Residence time, median (W1/2): The median of the stochastic variable W, which repre-
sents the residence time. It may also be expressed in dimensionless form, w1/2 = W1/2/W0.
In a linear reservoir, the median residence time is smaller than the mean residence time by
the factor ln 2 = 0.69. In a sublinear or superlinear reservoir, a simple approximation of the
median residence time is given by Equation (41).

Response time, mean: The mean of the IRF, in dimensional form (µh) or dimensionless
form (µη = µh/W0). In a linear reservoir, the mean response time is equal to the mean resi-
dence time and to the characteristic residence time, µh = µW = W0, and the dimensionless
ones are µη = µw = 1. In a sublinear reservoir, the mean response time is generally smaller
than the mean residence time. In a sublinear or superlinear reservoir, the mean response
time is determined from the exact Equation (44).

Response time, median: The median of the IRF, in dimensional form (h1/2) or dimen-
sionless form (η1/2 = h1/2/W0). In a linear reservoir, the median response time is smaller
than the mean response time by the factor ln 2 = 0.69. In a sublinear reservoir, the me-
dian response time is generally smaller than the median residence time. In a sublinear or
superlinear reservoir, the median response time is determined from the exact Equation (44).

System: A set of independent interacting elements, characterized by (a) a boundary that
determines whether an element belongs to the system or the environment, (b) interactions
with the environment (inputs and outputs), and (c) relationships between its elements
and inputs and outputs. In its simplest form, a system transforms an input signal into an
output signal.

Systems approach: A holistic way of describing complex structures and solving com-
plex problems, using the concept of a system, thereby simplifying the representation
of a structure or a problem without requiring a detailed description of every element
and process.
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Appendix A. Alternative Approximations of a Sublinear or Superlinear Reservoir

With reference to the dimensionless form of the nonlinear reservoir dynamics, here
we offer four alternative approximations, which are more involved than the first-order
approximation discussed and used in the body of this paper. The first is a second-order
approximation, which works for b > 1. Its form preserves the exact values of q(s) = sb for
s = 0 and s = 1 and the exact value of its derivative for s = 1. The expression is

q(s) = (1 + (b − 1)(s − 1))s (A1)

and its solution for constant i(τ) = 1 is

q(t) =
1
q0

− b2q0 − 4bq0 + 4b + 4q0 − 4
4(b − 1)q0

sec2

 t
√
−q0(b − 2)2 − 4b + 4

2
√

q0
− tan−1

 b
√

q0√
−q0(b − 2)2 − 4b + 4

 (A2)

The second approximation is appropriate for b < 1 and also preserves the same exact
values. It has the fractional form

q(s) =
s

b + (1 − b)s
(A3)

and its solution for constant i(τ) = 1 is

q(t) =
b + q0 − 1

(b − 1)q0

(
W

(
−q0b+b+q0−1

bq0
exp

(
− t(b+q0−1)2+(b−1)(q0−1)q0

bq2
0

))
+ 1

) − 1
b − 1

(A4)

An obvious advantage of both these approximations is that they result in q(s) = 0
when s = 0, while the linear approximation in Equation (8) does not have this property.
The third approximation does not have this property either (i.e., q(0) ̸= 0 while it preserves
the other two values, q(1) = 1, q′(1) = b), but it has the advantage of being easier to handle.
Its expression is

q(s) = 1 − b + be−1+s (A5)

and its solution for constant i(τ) = 1 is

q(t) = 1 +

(
1 − 1

q0

)(
1 − e(b−1+ 1

q0
)t
)

e(b−1+ 1
q0
)t − 1

b

(
1 − 1

q0

) (A6)

Next, we study an approximation in which the reservoir is decomposed into two linear
reservoirs with characteristic times W1, W2, storages S1(t), S2(t), and outflows Q1(t), Q2(t),
so that the totals equal the quantities of the real reservoir:

S1(t) + S2(t) = S(t), Q1(t) + Q2(t) = Q(t), a1 + a2 = 1,
W1

dQ1(t)
dt + Q1(t) = a1 I(t), W2

dQ2(t)
dt + Q2(t) = a2 I(t)

(A7)

To specify the constituent reservoirs, we study them in the case that the inflow is zero

W1
dQ1(t)

dt
+ Q1(t) = 0, W2

dQ2(t)
dt

+ Q2(t) = 0 (A8)

with solutions
Q1(t) = a1Q0e−

t
W1 , Q2(t) = a2Q0e−

t
W2 (A9)

where we have assumed that the initial conditions in each of the two reservoirs are Q1(0) =
a1Q0, Q2(0) = a2Q0, Q0 = Q(0).
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On the other hand, the exact solution in this case (homogenous differential equation)
exists (see Equation (17)) and is

Q(t) = Q0

(
(b − 1)

t
W

+ 1
) b

1−b
(A10)

Therefore, the problem is to specify the weights a1, a2, a1 + a2 = 1 and the characteristic
times W1, W2 that best approximate Q(t). To this aim, we determine the first three deriva-
tives of the exact solution and the approximation at t = 0 and equate them. After the
algebraic manipulations, we find

a1,2 =
1
2
±

√
(b − 1)(2b − 1)

2(2b − 1)
, W1,2 =

2a1,2

b
(A11)

The approximation works for b > 1, so that the quantity in the square root be positive. In
the case of b < 1, there is no meaning in using exponential functions for the approximation,
as the domain for which Q(t) > 0 is finite.

In a similar manner, we can make approximations with more than two linear reservoirs
(see also Appendix B), but we should bear in mind that these are approximations and not
exact solutions. In contrast, a differential equation of a reservoir, which is a first-order
equation, generally does not have an exact solution that is a sum of exponential functions.

Appendix B. Notes on the Sum of Exponential Functions as a Response Function

To illustrate the case that the response function is a sum of exponential functions, we
consider the IRF of Equation (50) as given by Joos et al. [42], with their original coefficients,
which are reproduced in Table A1. Here we note that the coefficients are given in [42]
(Table 5) without units, with the four ai adding up to 1 (except that the table caption contains
some instructions with coefficients to multiply and get certain units). This vagueness does
not affect our calculations below, as we are only interested in the temporal characteristics
of their proposed IRF.

Table A1. Parameters of the IRF of Joos et al. [42] as given for CO2 in their Table 5 and as used in
both the IPCC AR5 and IR6 [51].

Term i=0 i=1 i=2 i=3

Coefficient ai 0.2173 0.224 0.2824 0.2763
Coefficient Wi (years) ∞ 394.4 36.54 4.304

With the parameter values in Table A1, the IRF is

Q(h) = 0.2173 + 0.224e−h/394.4 + 0.2824e−h/36.54 + 0.2763e−h/4.304 (A12)

With some algebra, we may find that if we erase the constant term a0, Equation (A12)
is a solution of the linear differential equation

d3Q(t)
dt3 − 0.2622

d2Q(t)
dt2 + 0.007017

dQ(t)
dt

− 0.00001612(t) = 0 (A13)

This is a third-order linear equation and does not typically represent the dynamics of
a reservoir. Instead, this solution can be the output of a cascade of three linear reservoirs,
where the first has characteristic time 4.304 years and input 0; the second has characteristic
time 36.54 years, and its input is the output of the first reservoir; and the third has char-
acteristic time 394.4 years, and its input is the output of the second reservoir. While the
notion of a cascade has been useful in hydrological applications, i.e., in representing a basin
as a cascade of reservoirs, it can hardly be imagined as a proper model for the atmosphere
in the carbon balance case of the atmosphere as a whole.
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It is stressed that in the above case, the reservoirs of the cascade are arranged in series
and not in parallel (which would make more sense). If different sinks operate in parallel at
a single linear reservoir, with each one having a characteristic time Wi, which means that
each of the outputs is proportional to the storage

Qi =
S

Wi
(A14)

then the overall reservoir dynamics will be

dS(t)
dt

+ ∑
i

S(t)
Wi

= I(t) (A15)

or
dS(t)

dt
+

1
WISR

S(t) = I(t),
1

WISR
= ∑

i

1
Wi

(A16)

Obviously, this is the dynamics of a simple linear reservoir with characteristic time
equal to the inverse sum of reciprocals (ISR), or else equal to the harmonic mean of Wi
divided by the number of sinks. For the case examined with the coefficients in Table A1,
the inverse sum of reciprocals is WISR = 3.8 years. Notice that (a) the term W0 = ∞ does
not contribute at all in WISR (as 1/∞ = 0), and (b) the coefficients ai in Table A1 are not
relevant, as the reservoir is not partitioned into different parts (as if each sink worked for a
specific part only), but they act all together for the entire reservoir.

On the other hand, in the cascade of reservoirs in series, characterized by the differ-
ential Equation (A13) and its solution in Equation (A12), if we omit the constant term a0,
following Equation (42), the mean is given by

µh =

∞∫
0

h (Q(h)− a0)dh /
∞∫

0

(Q(h)− a0)dh =
35, 225

99.9
= 353 years (A17)

Now, if we take into account the constant term a0 = 0.2173 in Equation (A12) (i.e.,
do not subtract it from Q(h)), then apparently the mean response time becomes infinite.
However, this is not the only problem caused by the constant term. An IRF is the response
from an instantaneous impulse, which has infinite mass flow rate but finite (unit) total
mass. On the other hand, the total outflow integral due to this constant term only is∫ ∞

0 0.2173 dh = ∞. Therefore, there is a violation of the mass balance, with an imbalance
equal to infinity. A third problem is that if we solve the reservoir differential Equation (1)
in its homogenous form, there will appear a linear term in S(t), namely, −0.2173t, which at
some time (depending on the initial condition of storage) will make the storage negative.

Since Joos et al. [42] state that they fitted their model for lags < 1000 years, it is useful
to repeat the above calculation including their constant a0 but replacing infinity with the
upper limit of their fitting, i.e., 1000 years. This gives

µh =

1000∫
0

h Q(h)dh /
1000∫
0

Q(h)dh =
134, 116

310.2
= 432 years (A18)

This can be regarded as the lowest possible value implied by the Joos et al. model,
assuming that their response function vanishes off beyond their fitting limit of 1000 years
(which, however, is not stated in their paper).

Appendix C. Indirect Validation of the RRR Results Using 14C Isotopic Data

An accidental real-world experiment, not designed as such but coming up as a result
of the nuclear weapons testing, allows us to calculate an upper bound of the response time
of atmospheric CO2 and thereby assess whether the claimed time lags by IPPC, reaching
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“several hundred thousand years”, can have any relevance to reality or, alternatively, whether
the reality is that these time lags are of the order of a few years, as found in this paper.

It is remembered that carbon appears in the atmosphere, the oceans, and the biosphere
in the form of the stable isotopes 12C and 13C at percentages of 99% and 1%, respectively [66].
It also appears in the unstable isotopic form 14C, known as radiocarbon but in trace amounts
(of the order of 1 × 10−12). As detailed by Hua et al. [67], radiocarbon is naturally produced
in the upper atmosphere by the interaction of the secondary neutron flux from cosmic rays
with atmospheric nitrogen isotope 14N. Following its production and oxidation to CO2, 14C
enters the biosphere and oceans via photosynthesis and air-sea gas exchange, respectively,
providing a supply that approximately compensates for the decay of the existing 14C in
terrestrial and marine reservoirs.

In the 1950s and 1960s, the presence of 14C was dramatically increased due to nuclear
weapons testing. This produced large fluxes of thermal neutrons, which reacted with atmo-
spheric 14N to form 14C. These were mostly injected into the stratosphere and subsequently
transported to the troposphere. Since about 1965, the 14C concentration in the atmosphere
has been dropping rapidly. Given that the half life of 14C is about 5700 years [68], this drop
was not due to radioactive decay but due to CO2 absorption by other reservoirs. Hence,
the radioactive decay during these few decades can be neglected.

The use of 14C data to estimate the atmospheric CO2 residence time is not new, as it
appears that it has been pioneered by Starr (1993) [69], who noted the following:

This study explores the plausibility of this concept, which results in much shorter atmo-
spheric residence times, 4-5 years, than the magnitude larger outcomes of the usual global
carbon cycle models which are adjusted to fit the assumption that anthropogenic emissions
are primarily the cause of the observed rise in atmospheric CO2. The continuum concept
is consistent with the record of the seasonal photosynthesis swing of atmospheric CO2
which supports a residence time of about 5 years, as also does the bomb C14 decay history.
The short residence time suggests that anthropogenic emissions contribute only a fraction
of the observed atmospheric rise, and that other sources need be sought.

More recently, several studies have corroborated Starr’s [69] results by independent
analyses. These have been produced by Berry [30,70,71]; Harde, either alone [39] or
in collaboration with Salby [72–74]; Poyet [40], and Stallinga [41]. On the other hand,
Andrews [75] disputed these studies, claiming that they are mistaken and that his analysis
“confirms the prediction of a conventional model of the carbon cycle”, but without providing any
calculation to show that.

Here we perform an analysis independent of all the above by using the rich data sets
compiled by Hua et al. [67]. These include zonal, hemispheric, and global summer ∆14C
data sets for the period 1950–2019, as well as compiled monthly F14C

(
and ∆14C

)
data

sets for five different geographical zones. All data are openly provided in spreadsheets
in the Supplementary Information section of the Hua et al. study. The symbols F14C and
∆14C denote the so-called “fraction modern” and “the per mil difference of the normalized
sample/modern-carbon ratio from unity”, respectively, and are defined in [76–78]. As we
consistently refer to atmospheric CO2, and since both quantities express ratios, the symbols
∆14C and ∆14CO2 are used here interchangeably (and likewise for F14C).

We wish to investigate the time evolution of the radiocarbon fraction in the atmosphere,
say, F14C, and, in particular, how fast this fraction converges to the pre-bomb testing
minimum value

(
F14C

)
min

, which can be assumed to be the naturally occurring one. We

clarify that this differs from examining the concentration [14CO2] per se, because the latter
also depends on the total [CO2] in the atmosphere, which has been increasing for more
than a century. Here, the question we deal with is how fast the excess 14C was removed
by the biosphere, and, therefore, we should isolate the study of that question from the
modern increase of the total [CO2]. To see that this is the reasonable approach, let us
consider the imaginary case that throughout the examined period, the concentration of
[14CO2

]
was constant, while the fraction F14C was decreasing, e.g., at the observed rate.
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This would happen if the 14CO2 absorbed by the biosphere, [14CO2
]

ABS, was replaced by

that added through the total CO2 inflow, [CO2]IN, that is, if [14CO2
]

ABS = [F 14CO2

]
IN

×

[CO2]IN, where the [F 14CO2

]
IN

is the isotope-14 fraction in the input CO2. Clearly, if in

this imaginary case we considered the concentration [14CO2
]

in our calculations, we would
conclude that the residence time of 14CO2 would be infinite, because [14CO2

]
would be

constant. This is absurd, because the biosphere in fact removes 14CO2, as shown by the
decrease in F14C.

The impulses produced by the “bomb experiment” and in particular its stop at about
1965 make a real-world situation close to an ideal to estimate an IRF of the 14CO2 dynamics.
It is remembered that by definition, an IRF assumes zero input after the impulse, and this
is precisely consistent with the above explanation as to why we should not consider the
[CO2]IN and hence the [14CO2

]
in our estimation.

Based on these observations, we may form an IRF of the atmospheric 14CO2 dynamics
by considering either of the quantities (relative differences):

D
[
F14C

]
:=

F14C −
(

F14C
)

min(
F14C

)
max

−
(

F14C
)

min

, D
[
∆14C

]
:=

∆14C −
(

∆14C
)

min(
∆14C

)
max

−
(

∆14C
)

min

(A19)

where
(

F14C
)

max
and

(
∆14C

)
max

are the maximum observations of the respective quanti-
ties, which occurred close to the year 1965, while the respective minimum values occurred
in 1955 or before (depending on the geographical zone). By their definitions, both D

[
F14C

]
and D

[
∆14C

]
range between 0 and 1.

Figure A1 compares the temporal evolution of D
[
F14C

]
and D

[
∆14C

]
for the North

Hemisphere (NH) zone 1 and for the period after the occurrence of the maximum until
2019, as derived from the Hua et al. [67] data. It is seen that the differences between the two
are negligible, and therefore the results are expected to be the same regardless of which of
the two we choose to analyze.
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Eventually, we choose to analyze the D
[
∆14C

]
series because Hua et al. [67] also

provide a time series on a global basis for ∆14C, which is depicted in Figure A2. Before we
proceed to analyze this time series, it is useful to stress the following two quotations from
their paper:
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Decreases in atmospheric ∆14C from the mid-1960s to mid-1980s are mainly due to rapid
exchange between the atmosphere and the biosphere and oceans [. . .], while combustion
of fossil fuels free of 14C is the main causal factor for the ∆14C decline since the late
1980s and early 1990s [. . .]. Since the early and late 2000s, the atmospheric ∆14C values
have been lower than those of the surface waters in the North and South Pacific Gyres,
respectively, indicating the oceans might become a net 14C source (instead of a net 14C
sink) of the atmosphere [. . .]

The last data points in our compiled monthly data at 2019.375 have respective F14C
values of 1.0084 and 1.0195 for the NH and SH (see Supplementary Tables 2a–e), which
are very close to the pre-bomb F14C value of slightly lower than 1. This indicates that
clean-air F14C is likely to reach the pre-bomb value in the early 2020s [. . .].

The first quotation guides us to focus our model and its fitting on the period
1965–1985, because (a) it most faithfully reflects the system dynamics sought, i.e., the
exchange between the atmosphere and the biosphere and oceans, and (b) the IRF values are
higher, as are their changes in time, and hence they are more appropriate for model fitting.

The second quotation expresses a blatant disagreement with IPCC claims of time lags
reaching “several hundred thousand years”, given that the entire perturbation of 14C by bomb
testing disappeared in about 55 years.

If we assume that the reservoir dynamics is linear, which is the simplest and most
parsimonious case, then, according to corollary 2, the IRF will be exponential, i.e.,

D
[
∆14C

]
(h) = e−h/µh (A20)

where µh is the mean response time. Hence,

∆14C =
(

∆14C
)

min
+

((
∆14C

)
max

−
(

∆14C
)

min

)
e−h/µh (A21)

This model, with fitted µh = 17.2 years, perfectly describes the data for the period
1965–1985, as seen in Figure A2. In addition, its extrapolation for the subsequent period
(without changing the fitted parameters) agrees very well with the data. Hence, the simple
linear reservoir is a good model for the system examined.

The two IRFs for the ∆14C case, empirical (from data) and modeled (from Equation
(A21) with µh = 17.2 years), are compared with two IRFs that refer to the total [CO2]. These
are the IPCC model (Equation (50) with the coefficients shown in Table A1) and the linear
reservoir model of the present study with µh = 4 years. The absolute incompatibility of the
IPCC model with reality, as demonstrated through the ∆14C data (and the model fitted to
them, which is in perfect agreement with the data) is obvious (Figure A3).

The relevant question is whether or not the ∆14C data and model are compatible with
the linear reservoir model of the present study. The answer is affirmative, and the longer
mean response time in the ∆14C case (µh = 17.2 years) compared to the total [CO2] case
(µh = 4 years) is expected. There are three very strong reasons for this increase in the
response time of ∆14C:

1. The absorption of the heavier isotope 14C is subject to a function known as fractionation,
that is, isotope discrimination. In particular, photosynthesis, during the exchange of
O2 and CO2, discriminates against the heavier isotopes, and, as a result, 14C remains
in the atmosphere for longer periods.

2. As already noted above, most of the 14C produced by nuclear weapons testing was in-
jected into the stratosphere, and the transport from the stratosphere to the troposphere
is a slow process, substantially increasing the time lags.

3. While, by its definition, the IRF presupposes zero inflows after the impulse, in reality,
there were additional 14C inflows due to anomalous neutron flux (corresponding to a
systematic increase of 5–10% over the last 30 years, according to Harde and Salby [74]).
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The fact that these 14C inflows were not considered in the model led to an artificial
increase in the actual response time.
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injected into the stratosphere, and the transport from the stratosphere to the tropo-

sphere is a slow process, substantially increasing the time lags. 

3. While, by its definition, the IRF presupposes zero inflows after the impulse, in reality, 

there were additional 14C inflows due to anomalous neutron flux (corresponding to a 

systematic increase of 5–10% over the last 30 years, according to Harde and Salby 

[74]). The fact that these 14C inflows were not considered in the model led to an arti-

ficial increase in the actual response time. 

The precise quantification of these factors is not easy and does not belong to the scope 

of this paper. Nonetheless, the 14C analysis offers an indirect validation of the RRR results 

by determining an upper bound of the response time, which the RRR model respects, 

while the IPCC model blatantly violates it. 
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Figure A2. Global ∆14C time series, as provided by Hua et al. [67], and fitted linear reservoir model
(Equation (A21)).

The precise quantification of these factors is not easy and does not belong to the scope
of this paper. Nonetheless, the 14C analysis offers an indirect validation of the RRR results
by determining an upper bound of the response time, which the RRR model respects, while
the IPCC model blatantly violates it.
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