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Abstract: As cities have expanded into floodplains, the need for their protection has
become crucial, prompting the evolution of flood studies. Here, we describe the operational
tools, methods and processes used in flood risk engineering studies in the 1970s, and we
evaluate the technological progress up to the present day. To this aim, we reference relevant
regulations and legislation and the recorded experiences of engineers who performed
hydrological, surveying and hydraulic studies in the 1970s. These are compared with
the operational framework of a contemporary flood risk assessment study conducted in
the Pikrodafni basin in the Attica region. We conclude that, without the technologically
advanced tools available today, achieving the level of detail and accuracy in flood mapping
that is now possible would have been unfeasible, even with significant human resources.
However, ongoing urban development and growth continue to encroach upon flood plains
that have existed for centuries, contributing to increased flood risk.

Keywords: technological progress; natural hazards; flood risk; urbanization; monitoring;
operational framework

I do not fear computers. I fear the lack of them.

(attributed to Isaac Asimov, writer of science fiction)

1. Introduction
The 20th century witnessed a profound transformation in urban landscapes, marked

by rapid and often unplanned urbanization. This expansion frequently encroached upon
natural floodplains, heightening the risk of flood-related damage [1]. Numerous studies
have documented the significant impact of urbanization on floodplain dynamics, demon-
strating that cities built in these regions face elevated flood risks due to disrupted natural
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water flow patterns and reduced absorption areas [2–4]. Research also shows that tradi-
tional urban planning often lacked the sufficient integration of flood risk considerations,
which led to infrastructure vulnerabilities in flood-prone areas [5,6].

Historically, flood risk assessment relied heavily on manual data collection and the use of
analog methods. Engineers and planners employed hydrological and hydraulic calculations
based on limited datasets, often obtained through labor-intensive fieldwork [7–9]. These
methodologies were not only time-consuming but were also constrained by the absence of
operational frameworks that integrated up-to-date and large-scale data, limiting their ability
to address the spatiotemporal variability of flood risk effectively. With the advent of digital
technologies in the late 20th century, however, the field of flood risk assessment experienced a
paradigm shift. Geographic Information Systems (GIS), satellite remote sensing and digital
modeling software have significantly enhanced the accuracy, efficiency and scope of flood
studies [10,11].

Despite these advances, there is limited literature comparing the practical impacts
of these historical methodologies versus modern ones in specific flood-prone urban ar-
eas [12–14]. Prior studies largely focused on the intercomparison of either early-stage
or contemporary methods without a comprehensive examination of how technological
progress has changed operational flood risk management, particularly in rapidly urbanizing
regions [15].

This study aims to fill this gap by providing a comparative analysis of flood risk
assessment methods used in the 1970s with those conducted nowadays, by focusing on
the urbanized catchment of Pikrodafni in the Attica region, Greece. The Pikrodafni basin
offers a compelling example of the challenges and technological opportunities in managing
flood risks in urbanized Mediterranean settings. The pressures of rapid urbanization,
inadequate planning, shrinking green spaces and the impacts of wildfires have made the
area increasingly prone to flooding. These challenges highlight the value of innovative
approaches that combine advanced technologies with local insights to design effective flood
management strategies. By examining how technological advancements have shaped the
related flood assessment practices, this study highlights the strengths of modern methods
and the enduring relevance of traditional approaches, ultimately guiding more resilient
urban flood management strategies.

Figure 1 depicts the relative time savings in conducting flood risk management studies
achieved by technological advances. It can be inferred that achieving the level of accu-
racy and visualization that we nowadays can would be quite difficult, if not practically
impossible, during the 1970s.
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2. Methodology
To comprehend the synergies and disparities between present and traditional hard-copy

approaches in the estimation of flood risk, our research sought and combined input from the
following sources indicative of practices in the 1970s (referred to as ‘historical approaches’):
(a) guidelines and directives provided in relevant regulations; (b) reports of hydrologic and
hydraulic studies and relevant practices, as performed in the past and (c) testimonies of
experienced engineers who made similar projects in Greece during the 1970s.

Then, a systematic comparative analysis was conducted in order to identify the
strengths, weaknesses and complementary aspects between hard-copy, traditional methods
and current approaches. As a representative example of the latter (referred to as a ‘mod-
ern approach’), we analyzed the methodology from a research project conducted by the
National Observatory of Athens (NOA)/IAASARS/BEYOND and the National Technical
University of Athens (NTUA)/ITIA research teams, which estimated the food risk at the
building-block scale in one of the most flood-prone areas of the Attica region, the Pikrodafni
basin [16].

The basic frameworks of the two approaches are outlined in the following sections,
whereas detailed comparisons of the methodologies and operational practices are made in
Section 3, in the context of the case study.

2.1. Historical Approaches

Throughout history, societies have developed various approaches for reducing flood
risk and managing the impacts of floods [17]. These strategies, often based on a deep
understanding of local environments and ecosystems, have evolved over time to address
the challenges posed by natural disasters [18].

Historical approaches, employed by societies for mitigating flood risks, were mostly
based on cultural practices. Cultural practices, rituals and folklore often carried practical
knowledge about flood management. While this could be considered a primitive science,
stories and traditions passed down through generations contained valuable insights into
how to cope with and mitigate flooding [19,20]. For example, the myth of the Great Flood,
which describes the melting of the ice of the last Ice Age (about 15,000 years ago), is referred
to globally in about 200 mythologies of different cultures and civilizations, starting with
the Sumerian myth of Gilgames, the biblical story of Noe, the Greek myth of Deucalion
and many others [21,22].

Before the common use of personal computers, civil engineers employed various
sources of knowledge for studying flood risk in each area [23,24]. These approaches were
based on fundamental hydrology principles, hydraulics and empirical observations. To
assess flood risk, civil engineers mainly applied, in combination, topographic surveys and
field research; empirical analysis of rainfall records and river gauge data (when available);
empirical hydrological and hydraulic models; floodplain mapping of historical events
based on local experience and observational studies; and, generally, design standards and
manuals [25].

As described in the Presidential Decree No. 696/1974 [26], which provided for the
regulation of hydrological and hydraulic studies in the 1970s, the required resolution
of rainfall data was monthly and that of the temperature was daily. Some examples of
commonly used methods and formulas for hydrological analyses are those provided by
Thiessen, Fuller, Kirpich, Thornthwaite and Dickens [27]. Only in the 1980s, with the
evolution of programming calculators, were engineers able to produce, in a reasonable
time and with reasonable accuracy, more detailed studies of rainfall-runoff models and
flood hydrographs [28].
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While these methods lacked the precision and efficiency of modern computer-based
models, they formed the foundation for understanding and managing flood risk. The
expertise of civil engineers, combined with careful observation and manual calculations,
played a crucial role in developing effective flood risk management strategies and mitiga-
tion measures even in the absence of advanced computational tools. A standard workflow
of the aforementioned process is depicted in Figure 2 [29–31], while the detailed steps are
described in Section 3, in the context of the Pikrodafni case study.

Figure 2. Flow chart of a typical flood hazard study as performed in the 1970s.

2.2. Modern Approach

In the 1970s, the Logarithmic Calculation Ruler, hardcopy maps and analog tools
(cameras, topographical instruments, etc.) and hydraulic laboratories were the main tools
for flood-risk studies. Nowadays, modern computers, databases, including openly available
databases through the internet, satellite imagery, modeling software and digital equipment
(smartphones, drones, etc.) constitute the main tools for flood risk studies [32–34].

The general guidance for modern flood risk studies is provided by the Floods Directive
2007/60/EC [35], which requires not only temporal but also spatial analysis. In line with
this requirement, the modern approach for flood risk assessment, as reflected by our project,
involves the following steps, also depicted in Figure 3 [36].

A comprehensive hydrological analysis is applied using GIS techniques (see exam-
ples in [37,38]), which involve calculating the basin’s design rainfall, using the so-called
intensity–duration–frequency curves (also called ombrian), the parameters of which are
currently available all over Greece [39,40], configuring its temporal distribution and assess-
ing infiltration losses. This analysis leads to the estimation of the ‘excess rainfall depth’ and
the final design rainfall event for various return periods.

A Digital Elevation Model (DEM) is essential in hydraulic modeling. DEMs are de-
rived from high-resolution data sources, specifically through the National Cadastre [41],
which provides a 2 m spatial resolution based on LSO25 orthophotos. The DEM requires
careful pre-processing before modeling, since there are many errors in elevations that
cause flow discontinuity. Therefore, necessary adjustments need to be incorporated into
the Digital Elevation Model to create a hydrologically accurate terrain, ensuring higher
accuracy in hydraulic modeling results. Data for the initial modifications must be sourced
from related technical studies and field observations on the study area. Earth Observation



Water 2025, 17, 112 5 of 21

(EO) data with a high spatial resolution are also used, such as Land Use and SCS Curve
Number (CN) [42], which are very sensitive parameters for the modeling. Most of the time,
EO datasets are offered publicly, covering large areas (even worldwide) and enhancing the
flood assessment. Also, potential burnt areas may now be detected and delineated using
remote sensing techniques, derived from the “FireHub” service [43] of the Operational
Unit BEYOND Center for Earth Observation Research and Satellite Remote Sensing of
National Observatory of Athens. This allows for the proper modification of the hydrologic
and hydraulic models to account for the altered properties (e.g., CN values and Manning’s
coefficient values). The burnt areas’ detection gives an added value to the modern ap-
proach, since burnt areas cannot be easily inferred at large scales without EO data, while
their presence highly affects the estimation of runoff parameters alongside other critical
parameters (e.g., sediment transport).

Figure 3. Flow chart of the 2020s’ representative flood risk methodology for the study area, based on
three of the most common hydrologic–hydraulic software available.

Satellite imagery, particularly from Google Earth, supplemented data when additional
or complementary information are needed for developing the DEM. These satellite images
provide crucial landmarks, thus guiding the research team in conducting field inspections
following a rigorous methodology [44].

On-site field inspections performed by expert engineers are also critical for under-
standing the area’s characteristics, providing valuable insights relevant to incorporating
terrain modifications in the DEM and finalizing the catchment area [45]. Based on these,
further minor adjustments in the topography may be made to ensure an accurate and
smooth flow direction across the region.

Next, hydraulic engineers develop and apply analytical methodologies for the detailed
assessment of flood hazards. For the hydraulic modeling, two open-source and widely
used hydraulic software are used in combination, i.e., HEC-RAS [46] and LISFLOOD [47].
The more accurate but highly computationally complex HEC-RAS model is calibrated
and validated according to the results of the quasi-2D LISFLOOD model, with a low
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computational load. HECRAS outweighs LISFLOOD due to the various types of hydraulic
analysis provided and the 1D, 2D and 1D/2D schematization of the model’s geometry.
These options are offered and adapted according to the needs of each analysis, obtaining
increased accuracy in the results. In the employed methodology, a 2D unsteady analysis
is chosen for pluvial flood hazard assessment at a very high spatial resolution (on the
building block level). Spatially distributed rainfall is directly applied to HEC-RAS using the
‘Rain-On-Grid’ method technique [48,49], with excess rainfall assessed after considering the
hydrologic losses. Flow parameters, including the flood depth and extent, are derived by
solving the 2D Saint-Venant equations within the hydraulic model, based on the developed
computational mesh. Moreover, HEC-HMS (Hydrologic Engineering Center-Hydrologic
Modeling System of the US Army Corps of Engineers) [50] software is also utilized for
rainfall-runoff modeling in order to run the LISFLOOD model with input flow hydrographs,
since the latter does not support a ‘Rain-On-Grid’ scheme.

Following the estimation of flood hazard, vulnerability is considered as a weighted
estimation of population density and population age (socio-economic parameters), as well
as building type (disaster resilience parameters), based on the most recent published data
of the Population and Housing Census by the Hellenic Statistical Authority [51]. For
the assessment of the overall vulnerability, the above-mentioned layers are synthesized.
The estimation of exposure is based on the land value, according to the objective land
values (€/m2), as obtained from the Ministry of Finance [52]. Finally, hazard, total vul-
nerability and exposure are properly synthesized in order to estimate the resulting flood
risk [53].

Figure 3 shows the basic steps of the abovementioned methodology for the flood
risk study, a representative type of the ‘modern approach’, which is also applied in the
Pikrodafni case study, described next.

3. Case Study: The Pikrodafni River Basin
3.1. The Pikrodafni Stream

The Pikrodafni stream, located in the Attica region of Greece, is a small but ecologically
significant urban river that flows through densely populated areas before outflowing into
the Saronic Gulf. The main branch is 4.8 km and the basin area is around 25 km2, which
lies from Mount Ymittos to Faliro Bay (Saronikos Gulf). The Pikrodafni’ s river basin is a
flood-prone area, which experienced a recent severe flood event on 22 February of 2013,
where most of the damages were detected near the estuarine.

Historically, the river played a crucial role in local water management and ecological
balance. However, extensive urbanization since the mid-20th century [54] has altered its
natural hydrology, reducing its floodplain and increasing flood risks in adjacent neighbor-
hoods. The development of the urban areas through the years is depicted in the following
picture (Figure 4), along with the two largest rivers in Athens, Pikrodafni and Cephisus. It
is observed that from the 1920s and after, the urban expansion has radically increased.

The hydrographic network of the Pikrodafni river basin is classified into natural and
artificial, presenting Kalogiron, Kalamon, Amalias and Zoodohou Pigis substreams in
addition to the Pikrodafni river, as depicted in Figure 5. In the largest part of the once
natural streams, the natural riverbed was buried and replaced by underground channels,
including the drainage system. Also, there is a stream diversion of the adjacent river
basin where part of a stream bypasses the natural flow and flows into the major branch.
Nevertheless, due to its open surface parts (Figure 5), Pikrodafni is considered to be one of
the few remaining waterways in the urban fabric of Athens.
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Figure 4. Pikrodafni stream, Pikrodafni’s basin and the urban development of Athens.

Figure 5. Hydrological network of Pikrodafni’s river basin, including reaches with a natural riverbed
and ones with technical works.
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The watershed is characterized by mixed land use, varying from residential and
commercial zones to small patches of remaining green areas. Also, the upstream part of the
basin in Mount Ymittos was struck by multiple wildfires during the period 1985–2020. The
burnt areas were properly incorporated in the modeling of the flood scenarios by altering
the CN values and Manning’s coefficient values, respectively.

The river’s hydrological behavior is further influenced by Mediterranean climatic
patterns, including intense, short-duration rainfall events that exacerbate flood risks.

Despite its challenges, the Pikrodafni River serves as a vital case study for flood risk
management in urbanized Mediterranean regions. The lack of efficient urban planning in
combination with rapid urbanization, limited natural green spaces and burnt areas increase
the study area’s susceptibility to floods. Efforts to preserve and manage the Pikrodafni
river basin have highlighted the need for integrating advanced technological tools with
local knowledge to develop sustainable flood mitigation strategies.

Two teams of experts from NOA and NTUA (co-authors of the present study) were
involved in the analysis of the flood risk of Pikrodafnis’ river in our present research
(2021–2022). In the following sections, we describe the methods and the limitations of
studies, as performed in the 1970s, and of the representative contemporary approach,
which relies on the use of modern tools and digital equipment.

3.2. Hydrological Analysis of the River Basin

In the 1970s, rainfall data for the Pikrodafni basin were managed by the Greek National
Meteorological Organization and were kept in hard copies (non-digitized form) [55]. A
researcher conducting a flood study for the area had to visit the organization, apply for
data acquisition and, conditional upon the approval of the application, make a copy of the
requested data series. Using this information and especially sharing it with other scientists,
engineers and stakeholders was very difficult. Misplacing the data for various reasons (e.g.,
loss of data files and destruction by moisture, retirement of the responsible person, fires,
etc.) due to the lack of the digital recording and collection of the data was often observed.
In addition, obtaining access to the hard copy of the data required the physical presence of
the engineer(s), which posed practical challenges related to distance and time. This process
could take at least a month or more, depending on the amount of data required and on the
availability of engineers.

In contrast, modern technology has dramatically transformed how data are accessed
and used in the Pikrodafni basin study, significantly reducing the time needed for data
collection and practical estimations. With the development of computers and digital
communication tools, accessing hydrological data has become much simpler. Today, this
process typically takes only a few days, as most rainfall services manage data for this area,
store them digitally and can share it quickly. Additionally, a large volume of data is now
publicly accessible through open databases (see Table 1).

While access to runoff data has also generally improved, challenges still exist due
to the scarcity of runoff gauges—for instance, none are available for the Pikrodafni basin.
However, satellite-derived flood extents, if available, and crowdsourced data—such as
photos of flood depths and videos of flood events—help to address this issue, at least for
calibration, validation and verification purposes [56].

Additionally, land use data for the Pikrodafni basin (Table 1) has become widely acces-
sible thanks to the existence of public global and national land use/cover databases [42].
Although field investigations may still be needed for validation, open databases signifi-
cantly reduce the time needed to estimate related coefficients and lessen the reliance on
subjective assessments derived from literature focused on other regions. This approach
also supports the estimation of the spatiotemporal variability and the inherent uncertainty
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of these coefficients [57]. In the context of the Pikrodafni River basin, recently burnt areas
were detected and delineated using remote sensing techniques from the “FireHub” ser-
vice of the Operational Unit BEYOND at the Center for Earth Observation Research and
Satellite Remote Sensing of the National Observatory of Athens [43]. These detected burnt
areas were subsequently incorporated into the Land Use dataset as a new classification.
As a result, relevant parameters, such as the Curve Number (CN) values and Manning’s
roughness coefficient, were adjusted to reflect the changes in the landscape caused by the
fires. The identification of burnt areas through remote sensing was critical to this case study,
since the region experienced wildfires in the past, and the affected areas could not be easily
and objectively identified at large scales without Earth Observation (EO) data. An example
of the distribution of land use categories for the study area is shown in Figure 6.

Figure 6. Land use classes of Pikrodafni watershed.

Significant technological progress has also affected the estimation methods. Before
the advent of digital tools, hydrological estimation methods for the Pikrodafni basin were
labor-intensive. Researchers had to perform the required standard hydrological analysis,
such as design rainfall estimation and rainfall-runoff transformation, manually. Given
these limitations, it is clear why essential probabilistic analyses, such as design rainfall
estimation, relied on simplified procedures and data from only a limited number of stations.
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Subsequent tasks—such as determining the design rainfall profile (hyetograph), estimating
infiltration losses and performing rainfall-runoff transformation—previously had to also be
carried out manually. This not only required significant time but also limited the feasibility
of multi-model analyses and sensitivity assessments.

Today, engineers studying the Pikrodafni basin have access to rainfall intensity–
duration–frequency (also called ombrian) relationships, due to them being available na-
tionwide in Greece [40,58]. Further, the subsequent hydrological procedures have been
standardized and incorporated in various open-source hydrologic software that enable
the quick application and easy comparison of different hydrological hypotheses, such
as the HEC-HMS [50] open software applied in the Pikrodafni case. Still, the absence of
historical gauge data in the basin limits the ability to identify the most suitable method.
Nevertheless, the availability of various automated methods and models helped to improve
the representation of the hydrological and hydraulic uncertainties involved [59].

Table 1 presents a comparative summary of the standard tasks involved in hydrological
studies and other related activities, contrasting practices from the 1970s with those used
today for the Pikrodafni River, along with the challenges that persist.

Table 1. Standard tasks involved in hydrological studies, related past and present activities and
persisting challenges. Information related to data and tools used for the present Pikrodafni case study
is provided in the respective references.

Task Past Present Persisting Challenges

Rainfall data acquisition Manual collection from
local services. Public/private databases [60,61] Limited local data;

private ownership

Land use data acquisition Field investigations;
literature estimates Remote sensing databases [42,43] Spatial accuracy

Runoff data acquisition Sparse, digitized data from
scattered sources

Few open databases [62], (no station
for Pikrodafni)

Sparse gauge data; limited
public access

Recording flood events Resident interviews Citizen feedback through online
questionnaires [18]

Centralized agency for data
collection needed

Design rainfall estimation Empirical methods with limited
station data

Design rainfall parameters available
at the country level [40]

Hyetograph estimation Manual or spreadsheet-
based methods

Spreadsheet-based methods and
software tools (HEC-HMS [49])

Rainfall-runoff transformation Manual application of methods Software-based methods
(HEC-HMS [49])

Model selection uncertainty due
to runoff data scarcity

3.3. Survey Study

In order to better describe the topography of the terrain, engineers have to find the
elevation values using maps. In the 1970s, maps for the Pikrodafni basin, Attica, Greece,
were provided by the Army Geographical Service (AGS), with the highest resolution equal
to 1:5000 (Figure 7). A researcher had to visit the AGS and submit an application justifying
the map request. Following the application approval, a copy of the map could be obtained.
This process could take at least a month. Moreover, specific permission was needed for
requests that involved sensitive areas, such as military installations, locations near the
borders of the country or on islands neighboring other countries, etc.

An engineer, or, more often, a surveying team of engineers, was needed for measuring
the river basin area by using a mechanical tool called a “planimeter” or by using a gridded
paper put under a semi-transparent drawing of the basin. However, it was still difficult
to distinguish the branches of the river at this scale; therefore, the engineers had to make
systematic field inspections walking through and along the whole river. Moreover, the
engineers had to carry maps for locating their position while taking photos and writing
their observations in each position in notebooks. Further, the absence of GPS necessitated
triangulation to achieve the accurate (within a few meters) determination of the engineer’s
position. To achieve such accuracy, extremely time-consuming triangulation tasks were re-
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quired. In order to conduct triangulation, the engineer would need four geodetic constants,
which could only be obtained from the AGS.

Figure 7. Miniatures of the five AGS maps composing the Pikrodafni basin, with physical dimensions
of 0.9 m × 0.6 m.

In addition, even measuring distances accurately could be challenging, especially for
long distances. For example, when distances exceeded the length of a measuring tape,
additional techniques and tools were required to ensure measurement precision. Keeping a
sight line or straight-line paths between the measured points was also difficult. In practical
terms, obstacles such as buildings, terrain features or the curvature of the Earth could
obstruct the direct line of sight. Thus, seeking alternative methods for measuring distances
more accurately became a necessity.

It is noted that on a 1:X scale map, 1 mm corresponds to X/1000 m; for example, on a
1:50,000 scale, 1 mm corresponds to 50 m, and on a 1:100 scale, 1 mm corresponds to 0.1 m.
Since the frame of each map represents about a 4.5 km horizontal and 3 km vertical area,
the physical dimension of each map (without borders) is 0.9 m × 0.6 m. If an engineer had
to inspect the Pikrodafni basin (without the borders of the map), such as the one depicted
in Figure 7, the size of the composed map would be 3.7 m × 1.8 m, thus complicating its
field-use and related calculations.

At present, engineers involved in the flood risk assessment of the Pikrodafni basin
composed the DEM using satellite imagery and the available background DEM [63]. In
Greece, a background DEM up to a 2 m × 2 m grid resolution may currently be obtained,
as was also the case for the Pikrodafni basin. Considering that the thickness of the Rapi-
dograph Pen in black drawings could vary between 0.25 and 1.00 mm; a scale of 1:100
could be easily produced with the desired accuracy. In this case, even if black prints were
available in the 1970s, the dimension of a composed map of the Pikrodafni basin would be
about 135 m × 60 m.

For the Pikrodafni River basin, locations of special interest and critical points were
further analyzed using field visits, satellite imagery and previous studies. Such landmarks
could be efficiently captured using mobile phones, and their location was specified using
the Google Earth platform (Figure 8). Field visits aimed at identifying such locations and
hydraulic work infrastructure along the river in order to perform appropriate modifications
for the DEM and the geometry of the hydraulic model. Also, the critical points were



Water 2025, 17, 112 12 of 21

prioritized in three categories according to the level of intervention, which constituted very
useful information for the relevant authorities. After the inspection of the satellite images,
214 locations were selected for field inspection (approximately one landmark for every
100 m) (Figure 8).

Figure 8. Landmarks for field inspections in the Pikrodafni River.

In contrast, in the 1970s, the engineering team for the Pikrodafni River basin had to
manually locate their position with surveying instruments and take note of their findings
in recorders or notebooks. It is estimated that in each working day, only two to three points
could be surveyed, as 2–3 h were needed just for the triangulation process in each location.
In addition, photos were needed for each location, and the process for developing these
photos for 20 points could take at least a week.

Overall, in 1970s, determining the paths of the Pikrodafni river and its basin using
printed maps was very challenging. Additionally, the required survey studies, the identifi-
cation of the necessary landmarks for field research, the delays of the photo display process
and the difficulties of the report composition would have extended the entire process to
over a year, using the same human resources that now allow for completing it in about
three months.

3.4. Hydraulic Analysis

In the 1970s, flood risk assessment in hydraulic studies of the Pikrodafni basin en-
countered distinct challenges compared to those of today, primarily due to the lack of
advanced computer technology. Engineers and researchers depended largely on manual
data collection methods, including field surveys, stream gauging and physical or experi-
mental modeling in laboratories [59,64–67]. However, physical and experimental modeling
methods were complex and not commonly implemented in Greece, making them less
efficient for assessing flood risk in the Pikrodafni basin [68].

Conventional methods required painstaking manual measurements and calculations
for understanding the behavior of the river flow, its main patterns and its flow conditions.
This was important for accurately simulating the river and floodplain’s routing and inun-
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dation flood dynamics, and consequently, for producing the flood maps as a function of the
return period [24,69].

Empirical equations and mathematical models played a crucial role in the related
hydraulic studies before the digital era. Due to the lack of computational power, engineers
for the Pikrodafni River had to apply simplified mathematical formulas based on observed
hydraulic phenomena and theoretical principles for estimating flood characteristics, such as
peak flow rates, water depths and floodplain inundation extents. These methods lacked the
precision and complexity of computerized models and provided results mostly on a single
dimension (1D), yet they constituted valuable tools for assessing flood risk and designing
basic flood control infrastructure and mitigation measures in the Pikrodafni basin.

Today, hydraulic modeling has advanced considerably. In our study, the open-source
hydraulic model HEC-RAS 6.3 2D was employed to assess flood hazards in the Pikrodafni
River basin using the Rain-On-Grid technique. The total hyetograph for each return period
was used as the input without deducting the water losses, which were internally estimated
using the US Soil Conservation Service [70] method for the selected Curve-Number and
soil moisture conditions (typically CNII and CNIII). Furthermore, available land-use maps,
sensitivity analysis and field measurements were used to produce and integrate in the
model updated land-cover layer polygons for the floodplain and assign the Manning’s
roughness coefficient to the riverbeds [71]. Hydraulic computation was performed by using
variable time steps and conducted at a high spatial resolution (ranging from 10 to 25 m
depending on the catchment area). An even finer resolution (e.g., 1 to 10 m) was applied in
areas of particular interest, i.e., near streams, road networks, hydraulic infrastructure and
areas with intense topographic relief variations.

Modern computers have also revolutionized the visualization of results. What once re-
quired manual plotting and often the involvement of specialized designers is now a routine
task that can be accomplished in basic spreadsheet programs, supported by statistical and
geostatistical software [72]. The HEC-RAS 6.3 hydraulic model can produce water depths,
the flood extent and velocity maps for the flood hazard across various initial conditions
and scenarios, also allowing for the advanced visualization of flow conditions, such as the
one shown for the Pikrodafni basin in Figure 9.

Figure 9. Example of a 3D view of the simulated flood scenario based on the HEC-RAS 6.3 software.

Table 2 presents a comparative summary of the standard tasks involved in hydraulic
studies and related operational activities, contrasting practices from the 1970s with those
used today for the Pikrodafni River, along with the challenges that persist.
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Table 2. Standard tasks involved in hydraulic studies and related past and present activities and
persisting challenges. Information related to data and tools used for the present Pikrodafni case study
is provided in the respective references.

Task Past Present Persisting Challenges

Survey/topography data Manual data collection
from services

High-resolution digital elevation model
available from a public database (National
Cadastre [41])

Spatial accuracy

Land use data for
Manning’s roughness.

Field investigation;
literature estimates

Remote sensing databases [42,43],
Google Earth

Poor representation of recent
land-use changes

Sensitivity analyses Non-applicable. High-performance computing and
automation tools [73]

Reducing computational
demands for broader scenarios

Flood extent data No data. Satellite imagery, crowdsourced data
Copernicus EMS [74] Image quality; availability.

Flood parameters in 2D
(depth, velocity and runoff).

Physical models; empirical
1D estimations

Hydraulic software (HEC-RAS [45],
LISFLOOD [46])

Improving accuracy at a
manageable computational cost

3.5. Flood Risk Assessment

With the application of modern hydraulic methods, the estimated floodplains in the
Pikrodafni River basin covered an area of 1.45, 1.56 and 2.79 km2, for a return period of
50, 100 and 1000 years, respectively. Following the estimation of the flood hazard and
the combination with obtained vulnerability and exposure data [51,52], we produced an
accurate estimation of the flood risk map with high spatial resolution reaching up to the
building-block level (Figure 10). This map enabled the identification of critical points
within the Pikrodafni River basin, which were then prioritized for direct intervention and
mitigation measures.

 

Figure 10. Map of flood risk assessment and critical points of first priority.
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In contrast, in the 1970s, once engineers identified critical points across several river
cross-sections, they had only a broad understanding of the flood extent. In particular, to
conduct a more in-depth flood analysis for the Pikrodafni basin, they needed to create a
detailed terrain model near the critical river cross-sections. This required the additional
surveying of affected areas at scales of at least 1:500, with the data then passed to hydraulic
engineers. These engineers would then empirically estimate the flood extent and perform
topographical work over areas of at least 5 km2 [75]. With analog tools, this could take a
single engineer approximately 8000 working days for a 1:500 scale (covering 630 m2/day)
or 55,000 working days for a 1:100 scale (covering 90 m2/day). Considering the above, it is
evident that only a very preliminary assessment of flood risk for the Pikrodafni area could
be made in the 1970s, with limited accuracy and a lack of detailed spatial resolution.

4. Discussion
The Pikrodafni River serves as an illustrative example of how technological advances

shape flood risk estimation methods and related operational procedures and, ultimately,
drive urban planning and flood management strategies. To this aim, this work analyzes a
modern flood risk assessment project in the basin and compares it with the capabilities of
performing similar analyses in the past, documenting the related technological advances
in methodologies and operational practices. In the 1970s, flood risk assessments were
constrained by limited data quality, coarse resolution and a lack of computational tools,
often leading to underestimations of flood extents in urbanized areas. These limitations
were especially pronounced in regions with complex topography and irregular hydraulic
structures, such as the urbanized Pikrodafni basin.

In the 1970s, rainfall and hydrological data for flood risk assessment in Greece were
limited and often difficult to access. The data required for intensity–duration–frequency
(ombrian) relationships were available only through physical records from the Greek Na-
tional Meteorological Organization, while hydro-geological data for the Pikrodafni River
basin lacked the precision needed for accurate flood risk modeling. Flood simulations were
constrained by the limited computational capacity and data resolution available at the
time. Analyses were predominantly 1D due to the high cost and impracticality of quasi- or
fully 2D-dimensional hydraulic models, especially in Greece. Engineers primarily used
1D hydraulic models, which often failed to capture flood extents accurately, especially in
low-gradient rivers like the Pikrodafni. Additionally, coarse-resolution maps and DEMs
(1:5000 scale, equating to DEM cells of approximately 250 × 250 m) resulted in a lack of
precision in flood risk assessments. The absence of computational tools for generating
synthetic time series or performing sensitivity analyses resulted in less rigorous flood as-
sessments, particularly in areas with complex topography. Flood event data were primarily
gathered through personal accounts from residents, making it difficult to systematically
document or verify historical flood events. The lack of comprehensive data resulted in a
limited understanding of flood hazards.

Today, high-resolution rainfall and hydro-geological data are widely available, sig-
nificantly improving flood modeling precision and efficiency. Parameters for estimating
design rainfall depths for any return period are available on a grid covering the entire Greek
territory, including the Pikrodafni basin [40]. Detailed DEMs, which achieve resolutions as
fine as 2 × 2 m, akin to a 1:100 scale, are available, such as the one used for the Pikrodafni
basin [44]. Additionally, the challenge of acquiring data on burnt areas, particularly after
wildfires, was resource-intensive in the past. Today, satellite imagery and remote sensing
allow for the efficient and accurate identification of such areas, and such estimates were
effectively incorporated for the flood risk assessment of the Pikrodafni basin [43]. Current
hydraulic methods address the shortcomings of simplified 1D analyses through quasi 2D



Water 2025, 17, 112 16 of 21

or fully 2D analyses [67], greatly improving the accuracy of flood risk estimates and their
applicability, even in complex urban environments [44]. Modern technology, such as online
surveys, social media and crowdsourced data, has also transformed how historical flood
information is collected, offering more reliable and expansive data sources [76]. Today, with
these advancements in digital modeling, GIS and remote sensing, detailed flood hazard
maps for Pikrodafni basin are generated with unprecedented precision [16,36].

The shift from the manual, labor-intensive methods of the 1970s to modern, high-tech,
digital methods for flood risk assessment has both radically reduced the human effort
required during related operational procedures and significantly improved accuracy in risk
estimates. In the past, using hard-copy methods, engineers, apart from manual calculations,
had to survey large areas themselves and create detailed terrain models near critical river
cross-sections at scales of at least 1:500. This process involved extensive fieldwork and
topographical analysis, which, if carried out with the accuracy and the human resources
devoted to the studied Pikrodafni project, would require years to be completed. In contrast,
modern hydraulic models, equipped with high-resolution DEMs, allow for the efficient
production of accurate flood risk maps at a spatial resolution as fine as the building-
block level. With the use of computational tools, these advanced methods can cover vast
areas, such as the Pikrodafni River basin, producing floodplain estimates for 50-, 100- and
1000-year return periods in a fraction of the time and effort. This technological leap has
made it possible to identify critical flood-prone areas and prioritize interventions in a more
efficient, cost-effective manner, highlighting the significant reduction in human labor and
the enhancement of overall model precision.

Climatic and environmental changes continue to challenge flood risk assessment,
despite advancements in technology. While the effect of global warming on flood risk is
an active area of research [77–79], regional analyses in Greece [80] suggest that rainfall
extremes are consistent with patterns expected under stationary stochastic models. These
findings align with broader evidence showing that the rainfall process exhibits signifi-
cant inherent variability, which hinders predictability based on local trends [81]. This
underscores the importance of stochastic approaches and probabilistic design in current
operational practices [82], including the development of ombrian relationships [39,40].
These curves, developed using stochastic approaches and high-quality datasets, remain
robust tools for flood risk assessment, accommodating a wide range of uncertainty driven
by stochastically modeled climatic changes. Furthermore, an advanced technological
framework—integrating high-resolution data, predictive modeling and remote sensing—
ensures that flood risk management remains both effective and adaptive to evolving
climatic conditions and diverse uncertainties.

Building on these advances, Artificial Intelligence (AI) and Machine Learning (ML) of-
fer promising opportunities to enhance flood risk assessments. These technologies facilitate
the processing of large datasets, enable pattern identification and improve the predictive
accuracy of streamflow models [83–85]. In Greece, the adoption of AI/ML methods in
local practices is still in its early stages, but their potential to optimize workflows is sub-
stantial. Applications include automated hydraulic model calibration and performance
assessment [86], real-time flood forecasting [87] and integrating diverse data sources such as
remote sensing and crowdsourced information [43]. Deep Learning techniques, particularly
in image analysis from satellite data, could revolutionize the identification of critical factors
like land-use changes and post-wildfire hydrological conditions [88]. As these technologies
mature, their integration into standard practices by local offices is expected to enhance
decision-making efficiency and resilience to emerging flood risks. However, given their
limited application and the absence of standardized practices in Greece, their potential
benefits warrant future research.
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Despite technological advances, field inspections and local knowledge remain critical
in validating model outputs and ensuring that flood risk assessments align with real-
world conditions, preventing the pitfalls of an overreliance on digital tools. An integrated
approach combining advanced digital models with site visits, direct investigations, com-
munity engagement and conventional methods fosters a more holistic understanding of
flood risk. This approach enables the design of robust flood mitigation measures that are
not only technically sound but also attuned to local contexts, ensuring that strategies are
both innovative and grounded in practical reality.
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