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Abstract: Amid the growing energy–water nexus crisis, large dams are being reconsidered
as viable solutions despite significant environmental concerns. A critical and enduring
issue with large dams is the threat they pose to downstream communities and infrastructure
in the event of structural failure. The Oroville Dam spillway incident, where inadequate
maintenance led to uplift forces that exceeded the structural capacity of a chute slab, causing
severe damage, has renewed the focus on the structural stability of spillway components.
This study argues that conventional methods, which rely on averaged values and empirical
coefficients, may be inadequate for accurately capturing the dynamical stresses on spillway
chutes induced by turbulent flow conditions. We propose a novel approach using stochastic
simulation schemes to generate synthetic time series of velocity, which are then applied
to a differential equation governing the chute slab oscillations. Through a hypothetical
case study inspired by the Oroville incident, we demonstrate two key issues: first, that the
conventional approach significantly underestimates the maximum stresses experienced by
chute slabs under dynamic uplift pressures; and second, that the stochastic structure of the
velocity, particularly the variance and persistence, plays a major role in determining the
maximum stress.

Keywords: spillway failure; chute slab anchoring; uplift pressures; turbulent flow; stochastic
analysis; persistence; unidirectional oscillator

1. Introduction
Over the last few decades, large hydraulic dams have faced increasing criticism due to

their impact on the landscape and the ecological dynamics over a wide area surrounding
their installation. However, the impending crisis in the energy–water nexus necessitates
reconsidering the policy of ‘zero-impact’ approaches, making large dams a viable solution
once again [1]. In addition to ecological concerns, dams are perceived as potential threats
to both the safety and economic activities of nearby communities [2,3]. This perception is
reinforced by failure or near-failure incidents, such as the Oroville Dam crisis in California,
USA, which occurred during the February 2017 floods.

To further improve the safety of existing and new dams, every failure incident is
thoroughly investigated to derive useful lessons regarding best maintenance and construc-
tion practices. Regarding the Oroville Dam crisis, the California Department of Water
Resources assembled an Independent Forensic Team (IFT) to determine the cause of the
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spillway’s failure, resulting in a comprehensive report [4]. According to this report, a key
factor in the incident was the exceedance of the uplift capacity and structural strength of a
chute slab, whose failure led to the subsequent failure of neighboring slabs and the expo-
sure of the weathered underlying rocky ground. Contributing factors included inherent
vulnerabilities in the spillway design, poor maintenance and inspection, poor spillway
foundation conditions in some locations [4], and sub-optimal management practices [5].
Motivated by the initiating event in the chain that led to the spillway failure—the uplift
of the chute slab—this study revisits the assessment of uplift forces using an innovative
stochastic–dynamic approach.

Hydraulic structures that conduct high flows are subject to both dynamic shear stresses
and normal forces caused by stagnation pressure, which develops when moving water
molecules collide with an obstacle. These pressures can propagate through cracks or joints
under the slabs of a hydraulic structure, creating uplift forces. To mitigate this effect,
underdrain systems and slab anchoring are employed. In the case of the Oroville Dam, the
underdrain system failed to remove the leaking water, effectively, delivering stagnation
pressure under the slabs. Then, the anchoring bars failed, either due to the weathered
underlying rock or due to the corrosion of the steel [4]. This exemplified vulnerability high-
lights the importance of accurately estimating the magnitude and persistence of extreme
stresses that may be exerted on hydraulic structures due to the flow over the spillway.

The stagnation pressure depends on the velocity head Hs at the location of the obstacle,
which is given by the following formula [6]:

Hs =
u2

2g
(1)

where u is the velocity magnitude at the location of the obstacle and g the acceleration of
the gravity.

The velocity head Hs at the obstacle—such as the one created by a vertical offset of a
chute slab—can be estimated from the section-averaged flow velocity of the corresponding
cross-section using a hydraulic approach. For example, Wahl and Heiner [7] assumed a
velocity profile described by a power law and employed the energy coefficient method [8]
to obtain the factor a⋆ that gives the ratio of Hs to the velocity head calculated from the
corresponding section-averaged velocity V. Then, the stagnation pressure can be easily
calculated from Hs with the following formula: Ps = ρwgHs, where ρw is the density of
water (around 1000 kg m−3).

In the case of a slab, offset at a joint, the uplift pressure can be estimated from the
stagnation pressure based on the normalized uplift Ω, which depends on the ratio of
the joint gap to the slab vertical offset. The lower this ratio (i.e., the larger the offset in
comparison to the joint gap), the higher the Ω (see Figure 6 in [7]). Therefore, the uplift
pressure at an offset slab can be calculated as follows:

L = Ωa⋆ρw
V2

2
(2)

The uplift force on a slab can be obtained by multiplying L by the area of the slab.
However, calculations become more complex in the case of transient flows. Assuming that
pressure propagates instantaneously under the slab, Equation (2) can be used with a time-
variant V to estimate the fluctuating uplift pressure L [9]. To obtain a single critical value
for spillway design, the typical approach is to multiply L, obtained with time-averaged V,
by the summation of the positive and negative pressure coefficients c+,−

P , which are defined
by the observed pressure differences above and below the mean pressure value [10,11].
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The previous approach, despite the time-varying nature of the studied system, pro-
vides a single design value. For this reason, we refer to it hereafter as the deterministic–static
method, and, though straightforward, it entails various drawbacks.

• First, it is evident that in turbulent flows, the velocity, and consequently the pressure,
fluctuates unpredictably. For this reason, the approach of adopting hard upper and
lower limits for these fluctuations is questionable, especially if these limits are obtained
from experiments of a limited observation period. It is evident that these limits depend
on the duration of the observations, as record-breaking values may continue to arrive
as long as the observations continue.

• Second, in digital sensors, such as Acoustic Doppler Velocimeters, measurement
error increases when small sampling rates are employed [12]. On the other hand,
large sampling rates introduce aggregation, smoothing the signal and trimming peak
values [13]. Ideally, reliable measurements should be obtained at high rates. However,
this is compromised either by the introduced error at high frequencies or by the
smoothing effect at low frequencies. As a result, the frequency of modern Doppler-
based velocimeters is practically limited to a range of a few hundred Hz, which
compromises the ability to capture very high but short-lasting velocities.

• Finally, assessing the stability of slabs includes checking the maximum stress on the
anchoring bars against their capacity. This must be carried out taking into account
the dynamic nature of the slab–bar system. It is well known from stress analysis
that in shock loading (see Section 2.13.4 in [14]) the dynamic amplification factor
(response maximum amplitude relative to the displacement due to a static force of
equal magnitude) is 2. Evidently, the temporal profile of the uplift force influences the
maximum stress on the system.

The aforementioned challenges regarding the simulation of the impact of transient
flows on dynamic systems have been addressed by some researchers employing sophis-
ticated deterministic models. For example, Gardner and Sitar [15] combined the discrete
element method, which simulates polyhedral blocks representing rock mass, with the
lattice Boltzmann method, which simulates turbulent water flow. However, this approach
is very computationally intensive. As mentioned in [15], “. . . it took approximately 63 min
of computation time to simulate 0.1 s for the rock erosion example on a computer with 2
Intel Xeon E5-2630 CPUs (6 cores each) and 20 GB of memory”.

Fiorotto and Salandin [16] presented a comprehensive statistical approach that ad-
dresses the previous issues while being minimal in computational resource requirements.
They demonstrated, by solving the differential equation of the harmonic oscillator analyt-
ically, that the stress on the bar depends on the time interval τ, during which the uplift
pressure exceeds an arbitrary threshold ps (usually taken as the mean plus three to eight
times the standard deviation of pressure). They derived that for the bar capacity to be
exceeded, τ must exceed a specific threshold that depends on the bar characteristics and
slab thickness, and the pressure during τ must exceed (ps + pmax)/2, where pmax is the
design value obtained by the deterministic–static approach. The joint probability of this
concurrent exceedance (assuming independence of τ duration and pressure) is given by the
product of the corresponding marginal probabilities. The probability of extreme pressure
values is provided by Toso and Bowers (see Figure 8 in [10]), while τ follows the Rayleigh
probability density function (PDF) [16].

The previous approach is going in the right direction by addressing the probabilistic
nature of the stresses and the dynamic nature of the studied system. However, it is a
simplified approach that neglects some important characteristics of the system, namely the
added hydrodynamic mass and the damping effect from friction and energy dissipation.
Barjastehmaleki et al. introduced the proper terms in the differential equation to represent
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these effects, but they dropped the probabilistic approach [17]. Both these approaches
assume an unrestricted harmonic oscillator for the anchored slab system (though the
slab is restricted in the equilibrium position by the ground) besides other assumptions
(e.g., replacing fluctuating pressure with a step function during τ) to solve the differential
equation analytically.

In this study, we propose a comprehensive yet simpler approach based on a stochastic–
dynamic simulation. This approach combines a stochastic simulation scheme for generating
synthetic velocity time series, the driving force, with a numerical simulation of the vertical
upward displacement of an anchored slab due to the uplift pressure. The stochastic
simulation employs alternative schemes that make different assumptions regarding the
stochastic structure of the driving force, with emphasis on a stochastic characteristic that is
related to the average τ (see persistence in Section 2.2). This approach is not constrained
by the simplifications of previous studies that sought an analytical solution. The objective
is to examine the impact of the stochastic structure of the driving force—specifically its
persistence—on the maximum stress of the anchoring bar, thus providing a more precise
analysis of the slab’s stability under extreme flow conditions.

2. Materials and Methods
2.1. Dynamic Simulation

In this study, we assume a simplified representation of the dynamic system of an an-
chored slab experiencing uplift forces by modeling it as a damped unidirectional oscillator,
similar to the one shown in Figure 1. The mass can move upwards, pushed by the uplift
forces, but it cannot move below the equilibrium position, which corresponds to the ground
level at the chute slab location.

Figure 1. Unidirectional oscillator of a mass, a spring, and a damper.

Applying the second law of motion to the system of Figure 1, it is obtained that

∂2y
∂t2 m = LA − g(m − sAρw)− ky − c

∂y
∂t

(3)

where y is the vertical displacement of the slab, taking only positive values (m), L is the
pressure given by Equation (2), A is the top view area of the slab (m2), m is the mass of the
slab (kg), s is the slab thickness (m), k is the spring constant (N m−1), and c is the damping
coefficient (kg s−1).

Equation (3) does not include boundary conditions because there is no formula pre-
scribing the dependent variable (displacement) for specific values of the independent
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variable (time). Instead, it is a piecewise-defined differential equation, where the governing
equation depends on the dependent variable. Specifically, Equation (3) applies for y > 0
and is a second-order, non-homogeneous ordinary differential equation. This type of equa-
tion can be solved analytically using the method of variation of parameters [18]. It can also
be easily solved by reducing it to a system of first-order ordinary differential equations and
then applying a numerical scheme like the Runge–Kutta method [19]. These approaches are
typically employed in the case of harmonic oscillators. However, in this case, the domain
of acceptable solutions includes only positive vertical displacements. Therefore, to solve
Equation (3), we have implemented the following explicit numerical scheme.

yt − 2yt−1 + yt−2

dt2 m = Lt−1 A − g(m − sAρw)− kyt−1 − c
yt − yt−2

2 dt
(4)

The initial conditions for Equation (4) are y1 = 0 and y2 = 0. Equation (4) is then
solved sequentially to calculate the slab displacement over the time domain. If at any time
step t, yt < 0, both yt and yt−1 are reset to 0, effectively reapplying the initial conditions.
This is because Equation (3) is equivalent to a system of two first-order ordinary differential
equations, which requires defining initial conditions for two variables.

The time step dt should be adequately small to ensure both acceptable accuracy and a
detailed description of the dynamics. It should be at most half the natural period of the
oscillator, which can be estimated by the following formula [19]:

T = 2π
√

m
k

(5)

2.2. Stochastic Simulation

Fiorotto and Salandin introduced the time interval τ in their study, defining it as
follows: “persistence time τ is defined as the time interval between an up-crossing and
the next down-crossing of a given pressure level” [16]. They showed that persistence
time is equally important as the maximum pressure over a time interval in regulating the
maximum stress on an anchoring bar. In general, persistence is a characteristic of stochastic
processes that exhibit clustering of similar values [20], and is measured with the coefficient
H ∈ [0, 1] (the higher the coefficient value, the more persistent the process).

One of the objectives of this study is to investigate the influence of the persistence of
the flow velocity on the maximum stress on the anchor bars. Since it is assumed that flow
over the spillway is 1D, two alternative univariate stochastic schemes were employed. The
first was the AR1 [21,22]:

Vt = µ + a(Vt−1 − µ) + bϵt (6)

where Vt is the average cross-section velocity at time step t, ϵt is the innovation or error
term, which here follows a Normal Distribution N(0,1), a = r1, and b2 = γ(1 − a2); µ, γ,
and r1 are the sample mean, variance, and lag-1 autocorrelation, respectively [22].

The second stochastic scheme was the generalized moving average scheme [20]:

Vt =
J

∑
j=−J

ajϵt (7)

where J is a large integer, which gives the scale up to which the scheme properly represents
the persistence, and the weights aj are calculate by the following formula:

aj =

√
2(1 − H)

(1.5 − H)2 γ
(

0.5|j + 1|H+0.5 + 0.5|j − 1|H+0.5 − |j|H+0.5
)

(8)
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The scale up to which it is important to properly represent persistence is problem-
specific. In our case study, J was equal to 105.

The first stochastic scheme, given by Equation (6), preserves the mean, variance, and
lag-1 autocorrelation, and is suitable for H coefficients around 0.5. The second stochastic
scheme, given by Equation (7), preserves the mean, variance, lag-n autocorrelation, and
persistence of the observed time series (i.e., the H coefficient). This scheme is suitable
for H coefficients approaching 1, i.e., high persistence, and for this reason is also called
HK because it is suitable for Hurst–Kolmogorov processes [20]. The synthetic time series
produced by both schemes follow a Normal Distribution.

2.3. Case Study

The case study is hypothetical but adopts characteristics that resemble the Oroville
Dam. According to the IFT report [4], slab thickness at the location of the failure was
7 inches, i.e., 17.8 cm. The chute design specified No. 11 anchor bars, spaced at 10 feet, i.e.,
3.05 m, each way in plan view and extending 5 feet into the foundation (around 1.52 m).
This means there was one anchor per slab area of 9.3 m2. The mass of a concrete slab of this
area is 9.3 m2 × 0.178 m × 2320 kg m−3 = 3840.5 kg. The elastic modulus of iron is 200 GPa.
The No. 11 anchor bar has a cross-section of 1006 mm2. Assuming a bar length equal to
1.52 m, and employing Cook’s uniform bond stress model [23], the spring constant can be
calculated equal to 2 × 200 GPa × 1006 mm2/1.52 m = 264.7 MN m−1. The damping ratio
was set equal to 0.06. This is the average ratio reported in the corresponding experiments
of Clough (see Table III in [24]) and Sinha et al. (see Figure 7 in [25]).

The oscillations of bodies submerged in fluids are influenced heavily by the reaction
forces exerted by the surrounding fluid (water in our case). The most typical approach to
represent these forces is to introduce the hydrodynamic mass, which is presumed to be
an additional mass to the studied system accounting for the surrounding water reaction
forces. For the case of a square submerged plate, the hydrodynamic mass is given by the
following formula [25,26]:

mh =
π

4
ρwl3 (9)

where l is the length of the side of the square. For the previously mentioned slab character-
istics (side equal to 3.05 m), Equation (9) yields mh = 22, 205.7 kg. This amount is added to
the mass of the inertia term, i.e., the mass in the left side of Equations (3) and (4).

The normalized uplift, parameter Ω in Equation (2), is taken equal to 0.9552, whereas
the ratio α⋆ in Equation (2) is taken equal to 0.09354. These are the values employed in the
example calculation in the Appendix of [7].

The statistical characteristics of the flow are obtained with the following assumptions.
The mean velocity is taken equal to the example calculation given in [7], i.e., 30.05 m/s.
The variance is estimated by the turbulence intensity coefficient, which for 1D flows is
essentially the coefficient of variation of the velocity magnitude. A plausible and conser-
vative coefficient value equal to 0.1 was assumed (see Figure 16 in [27], Figure 4 in [28],
Figure 5 in [29], and Figure 16 in [30]); then, a mean value of 30.05 m/s yields a variance
equal to (30.05 m/s × 0.1)2 = 9.03 (m/s)2. For the HK stochastic scheme, the H coefficient
was taken equal to 0.9. We deliberately chose a high value for H to make distinguishable
any effect of persistence. Yet, this number is plausible because such high H values have
been reported for turbulent flows around jets [31]. The two stochastic schemes produced
two synthetic time series that correspond to a time period of 13 h and 53 min.

Regarding the time step of simulation dt, it should be selected fine enough to reliably
represent the dynamics of the system. The period of the system, according to Equation (5), is
2π((m + mh)/k)0.5 = 0.062 s. Therefore dt should be a fraction of this number. We selected
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dt after numerical investigation to ensure minimum overall error in the frequency response
curve. Figure 2 displays the amplitude of the oscillations, simulated by Equation (4), for a
periodic uplift force generated by a test velocity equal to 30.05 m/s × | sin(2πν)|, where ν

is the frequency of the fluctuation of the test velocity magnitude ranging from 0 to 20 Hz.
This figure indicates that the frequency response curves generated from the simulations
with time steps 0.001 and 0.0005 s coincide, which indicates a very small numerical error
for time steps finer than 0.001 s.

Figure 2. Resonance curve obtained from simulations with time steps of 0.005, 0.001, and 0.0005 s.
Note: the maximum allowable strain for iron is not considered.

3. Results
Figure 3 shows the displacement of the hypothetical slab under the ideal scenario of a

flow with a constant velocity of 30.05 m/s, corresponding to the mean value of the case
study. The displacement is calculated both with and without accounting for the added
hydrodynamic mass to highlight its influence on system response. Including the added
mass increases the natural period of the oscillator and reduces the damping effect. In both
cases, the oscillation eventually fades to a constant displacement of 0.0012 m, with the
maximum displacement reaching approximately 0.0025 m.

Figure 3. Displacement for constant flow velocity V = 30.05 m/s, with and without the added
hydrodynamic mass mh. Note: the maximum allowable strain for iron is not considered.
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Figure 4 displays the histogram of the persistence time τ of the uplift pressure, i.e., the
time interval between the up-crossing and down-crossing of a threshold equal to two times
the standard deviation plus the mean. The uplift pressure was calculated from Equation (2)
for synthetic time series of velocity generated by AR1 and HK, i.e., Equations (6) and (7).
Two histograms are provided in Figure 4, one corresponding to AR1 and one to HK
stochastic schemes. The vertical axis gives the frequency—with respect to the total number
of exceedance intervals—for τ measured in simulation time steps. This figure indicates
that large persistence times (above 5) are more frequent in the case of the synthetic velocity
time series generated with the HK scheme—note: the logarithmic scale is employed for
the y-axis; therefore, larger downwards-pointing bars indicate a lower corresponding
frequency.

The ratios of the AR1 frequencies to the HK frequencies, as displayed in Figure 4,
are 1.04, 0.90, 0.85, 0.88, 1.01, 1.31, 1.36, 1.54, 3.18, and 8.38. This indicates that high
uplift pressures (greater than the average plus two times the standard deviation), with
durations of 9 and 10 time steps, occur three to eight times more frequently when the
driving force—flow velocity—is characterized by high stochastic persistence.

(a) (b)

Figure 4. Histogram of the persistence time of the synthetic flow velocity produced with (a) AR1 and
(b) HK.

Figure 5 shows the uplift pressure values and the resulting displacement yt within
a 0.2 s window centered around the moment when the maximum simulated yt occurs
for velocities generated using the AR1 and HK schemes. For comparison, this figure
also includes the mean uplift pressure and the displacement corresponding to the design
uplift pressure (deterministic–static approach). The latter is computed using the formula
A((c+P + c−P )L − sg(ρc − ρw))/k, where L represents the uplift pressure associated with the
mean velocity. The simulation time step used was 0.001 s.

The maximum vertical displacements simulated using synthetic velocities generated
by the AR1 and HK schemes were 3.10 × 10−3 and 3.38 × 10−3 m, respectively. The mean
displacement value obtained from both schemes was 1.29 × 10−3 m, while the standard
deviations were 4.18 × 10−4 and 4.32 × 10−4 m, respectively, indicating similar values. The
simulated displacements for the AR1 and HK schemes exceeded a threshold value, defined
as the mean plus four times the standard deviation, 25 and 396 times, respectively (note
that 396/25 ≈ 15).
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Figure 5. The synthetic uplift pressure values (Lt) and resulting displacement (yt) for velocity time
series produced with AR1 and HK. The blue and orange horizontal lines indicate the maximum
displacement obtained with the conventional (deterministic–static) approach and the uplift pressure
corresponding to a constant velocity equal to the mean value (L).

To evaluate the impact of the time step, simulations were repeated with a time step
of 0.0005 s, while doubling the length of the synthetic time series for velocity to ensure
an equivalent simulation period to the time step of 0.001 s. The maximum vertical dis-
placements simulated using synthetic velocities produced by the AR1 and HK schemes
were 2.6437 × 10−3 and 3.2971 × 10−3 m, respectively. Comparing these values with
those obtained using a time step of 0.001 s, it can be inferred that the maximum displace-
ment in simulations based on the synthetic time series employing the AR1 scheme was
significantly reduced.

4. Discussion
The simulation results indicate that both the stochastic properties of the flow velocity

(such as variance and persistence) and the characteristics of the bar–slab oscillator sig-
nificantly affect the maximum stress exerted on the anchoring bar of a chute slab. The
discussion of the results is as follows:

• The deterministic–static method may underestimate the maximum stress on an an-
choring bar. In our case study, the stochastic–dynamic approach resulted in 9% to
19% higher maximum displacement, depending on the stochastic persistence of the
velocity. For the case study’s mean velocity of 30.05 m/s, the summation of positive
and negative pressure coefficients obtained from the synthetic velocity time series
is c+P + c−P = (max(Vt)2 − min(Vt)2)/mean(Vt)2 ≈ 2, similar to the value suggested
in [9]. Consequently, the maximum expected uplift pressure is 80 kPa, closely matching
the maximum value observed in the stochastic–dynamic approach shown in Figure 5.
However, the maximum displacement according to the deterministic–static approach
is 2.83 mm, whereas the stochastic–dynamic approach yielded maximum displace-
ments of 3.10 mm and 3.38 mm for synthetic velocity time series generated using AR1
and HK, respectively. This underscores the significance of considering the dynamic
behavior of the slab–anchoring bar system.
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• Under typical conditions, the stochastic persistence plays a significant role in deter-
mining the maximum stress on chute slabs. Specifically, the maximum displacement
calculated in the case study using synthetic time series of velocities with a Hurst–
Kolmogorov (HK) model was 9% higher than that calculated using an autoregressive
model of order 1 (AR1). This result is consistent with the findings of Fiorotto and
Salandin [16], who highlighted the importance of persistence times, defined as the
number of consecutive exceedances of uplift pressure. However, our study adopts a
more generalized approach, treating persistence as an inherent property of the stochas-
tic structure of flow velocity, which is the primary driving force behind the stresses on
the chute slab.

• The simulation time step must be carefully chosen to ensure that numerical errors
remain within acceptable tolerance limits. In our case study, which, although hypo-
thetical, is based on typical characteristics, the time step needed to be finer than 0.005 s.
Consequently, simulations were performed with time steps of 0.001 s and 0.0005 s.
At these time scales, the variance of the flow velocity was assumed to be constant.
As a result, the stress indices (i.e., the displacements) for the 0.0005 s time step were
lower compared to those for the 0.001 s time step due to the proportionally shorter
interval duration τ for smaller time steps. This effect is more evident in the case of AR1.
This discrepancy is attributed to the fact that AR1, suitable for Markovian processes,
produces a much steeper climacogram compared to Hurst–Kolmogorov processes.
In contrast, Hurst–Kolmogorov processes, with their less steep climacogram, exhibit
smaller deviations under the same assumption [20]. This further highlights the im-
portance of selecting the most appropriate stochastic scheme for analysing stochastic
process that drive dynamic systems.

The impact of vertical displacement on the disturbance of the flow was not accounted
for in the simulations. Typically, vertical displacement is expected to increase the coefficient
Ω in Equation (2), resulting in higher uplift pressures (L) for the same flow velocity. The
value of 0.9552 used in our simulations corresponds to a ratio of joint gap to slab vertical
offset of 12.7/12.7 mm/mm = 1 [7]. The maximum simulated slab displacement is 3.5 mm
(Figure 5), which reduces the ratio to 0.78. However, the normalized uplift Ω increases
non-linearly and slowly with a decreasing ratio (see Figure 7 in [7]), and the value is already
very close to the upper limit of Ω, which is 1. Therefore, the positive feedback is negligible
in our case study.

It should be noted that the reported displacement values are based on a specific
length of the generated synthetic time series, which for this case study corresponds to
a duration of 13 h and 53 min. This choice of length introduces some subjectivity into
the analysis. To address this subjectivity, a comprehensive probabilistic approach should
be employed [32,33]. This involves generating time series of sufficient length—multiple
times the duration of any plausible dangerous event—to produce reliable return period
plots. Subsequently, the maximum stresses can be assessed based on an acceptable level of
probability of exceedance as defined by the design study.

In this case study, plausible statistical parameters were assumed for the AR1 and HK
stochastic simulation schemes. However, in real applications, these parameters should be
derived from measurements. This can pose a challenge if preliminary numerical analysis
suggests the need for a very small time step. Nevertheless, Bellin and Fiorotto state
that “analysis of force power spectrum suggests that the fluctuation energy is mainly
concentrated at the lower end of the spectrum” (see also Figure 3 in [9]). Furthermore,
later studies indicate that variance stabilizes below a certain scale [34], which aligns with a
fundamental physical principle: a continuously increasing variance at lower scales would
imply infinite variance at infinitesimal scales, requiring infinite energy to manifest [20].
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Therefore, a measurement frequency of a few hundred Hz should be sufficient to capture
the necessary information for a stochastic scheme suited to turbulent flow processes, such
as the filtered Hurst–Kolmogorov family [20,34].

It is essential to highlight that the maximum displacement—and consequently the
maximum stress—shown in Figure 5 is not directly caused by the maximum uplift pressure.
For the AR1 model, the maximum displacement occurs at t = 586.49 s, whereas the
maximum uplift pressure occurs at t = 600.20 s, i.e., 13.71 s later. For the HK model, the
maximum displacement occurs at t = 118.67 s, while the maximum uplift pressure occurs
at t = 109.15 s, i.e., 9.52 s earlier. Given that Figure 5 covers only a 0.2 s time window—
well separated from the occurrence of maximum pressures—it is clear that uplift pressure
alone does not dictate maximum stress. This highlights the critical role of the stochastic
structure, particularly persistence, in shaping stress dynamics. While this study provides
valuable insights into the role of persistence in shaping maximum stress, it is important
to acknowledge its limitations. The absence of direct stress measurements means that the
findings rely on numerical modeling rather than empirical validation. Future research
should prioritize experimental investigations to measure anchoring bar stresses directly,
thereby improving the validation of the stochastic–dynamic approach and refining our
understanding of structural responses under stochastic hydraulic conditions.

Two important aspects not examined in this study are the stress on the anchoring
bar and the effects of creep. Creep occurs under sustained extreme loading conditions,
while stress analysis on the anchoring bar could initially be approached using Hooke’s
law—multiplying displacement by the spring constant and dividing by the bar’s cross-
sectional area. However, this approach is overly simplistic. In the uniform bond stress
model, the anchoring force is distributed uniformly along the bonded anchor’s curved sur-
face area, making Hooke’s law insufficient for accuracy. Moreover, the stress–displacement
proportionality holds only within the elastic region. As for creep, a common failure mecha-
nism, it results from prolonged exposure to extreme stress (see Figure 1 in [35]), highlighting
its dependence on the duration of elevated stress values, and hence on persistence. A more
detailed modeling of the anchoring bar is needed to provide reliable predictions regarding
material and anchoring failure.

When acquiring measurements, two key issues need to be considered. The first con-
cerns the scale of physical models, often used to study hydraulic structures in laboratories,
as there is evidence that it unpredictably influences persistence. Nordin et al. [36] reported
findings on turbulent flows, showing that for flow depths of 1.4 cm, 28 cm, 3.4 m, and
10.7 m, the corresponding H values were 0.60, 0.84, 0.93, and 0.95, respectively. This trend
suggests that the characteristic length of a flow may influence its persistence. Therefore, if a
scale model is used, it is questionable whether the resulting measurements will accurately
represent the persistence of the full-scale flow.

Measurements, whether from laboratory experiments or real-world observations, are
subject to inherent biases, especially when dealing with stochastic processes that exhibit
high persistence. Statistical estimators for these processes tend to underestimate values,
leading to increased bias. For example, the expected value γ̂ of the typical variance
estimator (the expected value is necessary since a statistical estimator is itself a random
variable) underestimates the actual variance γ when only n measurements are available, as
shown by the following formula [20]:

γ̂ = (1 − 1
n2−2H )γ (10)

A numerical investigation using Equation (10) indicates that for a limited number of
measurements and high persistence, the underestimate may be significant. For instance,
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with 1000 measurements and a coefficient H of 0.9, the variance estimator underestimates
the true variance by 25%.

A point of debate arises regarding the specifications of the unidirectional oscillator.
The added hydrodynamic mass, as calculated by Equation (9), typically applies to a fully
submerged square plate. However, spillway slabs only contact flowing water on their upper
surface, while the lower surface remains dry or, in cases of water infiltration, in contact
with a thin film of water that may contribute to uplift pressure. One might argue that the
mass of this thin film is negligible, suggesting that the right-hand side of Equation (9) be
halved. Conversely, it could also be reasoned that the rapid and small displacements of
the slabs justify using the equation as is, even with a millimeter-thin water film. This issue
requires further investigation.

The development of uplift forces is a complex, multi-stage process, with each
stage marked by significant uncertainty. While stagnation pressure at the obstacle
level—corresponding to the offset of a chute slab—can be calculated straightforwardly from
flow velocity, the full development of uplift forces involves more intricate mechanisms. In
this study, these mechanisms were represented using simplified approaches applicable to
specific cases, such as assuming instantaneous pressure propagation under the slab and a
small integral scale relative to slab length [11]. Given the stochastic–dynamic nature of the
system, the intermediate calculation stages between flow velocity and uplift force require
additional exploration through targeted hydraulic experiments.

5. Conclusions
This study examined the impact of the stochastic characteristics of flow velocity on the

stresses exerted on spillway components. A stochastic simulation of flow velocity was combined
with a dynamic simulation of an anchoring bar–slab system, forming a stochastic–dynamic
approach. The findings demonstrate that the stochastic characteristics of flow velocity, as
the driving force, play a crucial role in the system’s behavior, indicating that deterministic
methods may not be adequate for thoroughly studying these types of problem. The hypothetical
case study, which mimics the hydraulic characteristics of the Oroville Dam spillway incident,
revealed that the deterministic method underestimated the stresses on anchoring bars by 19%.
Other important findings from the study include the following:

• While deterministic models can offer rough estimates, they may overlook critical stress
factors introduced by random fluctuations in flow velocity. The persistence of the
magnitude of flow velocity significantly impacts the maximum stress developed on
the anchoring bar. The duration of extreme conditions is also influenced by this persis-
tence, which in turn controls creep and likely the rate of overall structural degradation.

• Various researchers have conducted experiments to obtain velocity and pressure mea-
surements in turbulent flows. However, this study, which focuses on the maximum
stress of anchoring bars, highlights that such datasets provide minimal support for
studying maximum stress. This is because, as found in this study, maximum stress
is not directly related to maximum pressure, and the persistence of velocity in phys-
ical models does not necessarily match that of real-world systems, as suggested by
previous studies.

• In the stochastic–dynamic approach, accurately representing the system’s response
requires selecting an appropriate simulation time step. However, finer time steps
demand higher-frequency observations, which may not always be feasible. In such
cases, disaggregation of available measurements using suitable stochastic models (e.g.,
filtered Hurst–Kolmogorov) may be necessary to generate input time series for the
dynamic system at the required temporal scale.
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Since no experimental data are available for the maximum stress on the anchoring bars,
future experiments measuring these stresses would greatly enhance our understanding
of the underlying processes and provide critical validation of the proposed approach.
Additionally, future research should focus on refining the stochastic–dynamic approach and
improving measurement techniques to maintain accuracy at higher temporal resolutions.
Such efforts will advance our understanding of structural safety under stochastic hydraulic
conditions and help mitigate the risk of spillway failures.
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