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Abstract: Remotely sensed data, including rainfall estimates and digital elevation models
(DEMs), are increasingly available at various temporal and spatial scales, offering new
opportunities for rainfall regionalization in regions with limited ground-based observations.
We evaluate the efficacy of NASA’s Integrated Multi-satellitE Retrievals for GPM (IMERG)
rainfall estimates and SRTM-derived elevation data as alternative spatial covariates for
regionalizing average and extreme rainfall patterns across Greece. Using the Bilinear
Surface Smoothing (BSS) framework, we assess and compare the regionalization of average
daily rainfall and average annual maximum rainfall across multiple timescales (0.5 h to
48 h) by leveraging both IMERG-derived estimates and the elevation data as covariates.
Additionally, the BSS framework is herein extended to provide Bayesian credible intervals
for the final estimates, using the posterior variance estimate and the equivalent degrees
of freedom determined through the Generalized Cross Validation error minimization
procedure. Elevation-based models outperformed IMERG, particularly for indices of
extreme rainfall, capturing the differential effects of orography. The exploration of the
orographic effect based on the BSS framework revealed that the average annual rainfall
maxima at small timescales exhibit a negative relation to elevation, which becomes positive
and more significant with increasing timescale. However, IMERG proved valuable for
regionalizing average daily rainfall, demonstrating its utility as a complementary tool. The
results also underscore the role of temporal scale in regionalization efficiency of extreme
rainfall, with higher accuracy observed at longer timescales (24 h and 48 h) and greater
uncertainty at finer scales.

Keywords: satellite data; rainfall regionalization; extreme rainfall; orographic effect; rainfall
covariates; spatial interpolation; IMERG; bilinear surface smoothing; Greece

1. Introduction
Regional rainfall estimates have a pivotal role for hydrological design, water resources

management, and broader applications in geosciences, including the designing of infras-
tructure and modeling of natural hazards such as floods, droughts, and landslides [1–5].
Typically, the most reliable source of rainfall information is obtained from ground-level
measurements, either from automated censors or gauges managed by observers. Yet, such
data refer to point measurements, which albeit indispensable are spatially sparse due to
managerial and economic costs, with a declining availability observed in recent years [6].
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This study addresses this critical gap by evaluating how satellite-derived rainfall and
elevation data can enhance spatial rainfall estimation, especially in regions where in situ
measurements are scarce.

Advances in earth observation, such as satellite products, reanalysis datasets, and
weather radars, have provided additional rainfall information [7–10]. These products
offer global coverage, frequent temporal updates, and the potential for near-real-time
applications, making them invaluable tools for rainfall regionalization and hydrological
modeling [11–13]. Among them, the satellite-based rainfall has received increased attention
due to its global coverage and short latency that also supports operational applications.
Still, such sources cannot replace traditional ground-based rainfall information due to their
short length (<50 years), biases over different regions, and increased uncertainties involved
in the estimation of rainfall [6,14]. Therefore, it is crucial to estimate rainfall at ungauged
locations utilizing the records from rainfall stations as the ground reference, a task that has
attracted long-term efforts in geosciences and particularly hydrology [1].

There is a proliferation of methods to regionalize rainfall in space, ranging from
traditional approaches in geostatistics, such as kriging-based approaches and the inverse-
distance method, to smoothing based approaches as well as recent methods involving
machine learning techniques such as neural networks [15–20]. In most cases, other than
the spatial coordinates themselves, additional spatial covariates can increase the power
of the regionalization. Covariates mainly include topographic features such as elevation,
distance from the shore, slope, as well as atmospheric covariates and other sources of
rainfall information [21–23]. Among them, elevation is the most common covariate due to
its well-known effect on rainfall, the so-called orographic enhancement of precipitation,
which is observed in mountainous regions globally [24].

While elevation has been widely explored as a covariate in the regionalization of daily
rainfall extremes [1], its impact on sub-daily rainfall is still unclear. Iliopoulou et al. [25] in
the regionalization of design rainfall relationships in Greece found elevation to control the
scaling parameter of the intensity–timescale–return period relationships and postulated
that a complex relationship occurs between elevation and multi-scale rainfall maxima
that warrants further investigation. Similar results in terms of elevation were reported
by Avanzi et al. [26] in Italy, who found a reverse orographic effect for small timescales.
Mazzoglio et al. [22,27] examined various covariates for extreme rainfall in Italy and
identified elevation as one of the most important ones, with increasing effect on the daily
scale but a “reverse” effect on finer scales. Differential effects of elevation with respect to
temporal scale were reported in other regional analyses [28].

Covariates from alternative data sources, including satellite-derived rainfall data, may
be considered as promising for rainfall regionalization. Although satellite data have been
actively studied as a replacement of conventional rain gauge data in rainfall frequency
analyses, with results being mixed [25,29], the extent to which they can be useful as a
covariate has been less explored in the literature, with only a few studies on the topic [30].
Koutsoyiannis et al. [31] employed IMERG data for the regionalization of average daily
rainfall in Greece in the scope of climatic investigation and concluded that the IMERG data
tend to underestimate the rainfall extremes. Yet, their potential in the regionalization of
extreme rainfall variables has not been systematically evaluated till now.

We thus explored the effectiveness of two spatial covariates, namely elevation, derived
from the Shuttle Radar Topography Mission (SRTM) [32], and IMERG satellite rainfall
estimates [7], in the regionalization of average daily and extreme rainfall patterns. We
revisited the effect of elevation focusing on the average of sub-daily rainfall maxima and
compared the strength of the effect across the different timescales. Further, we assessed
the potential of IMERG rainfall data as an alternative covariate in rainfall regionalization
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by systematically comparing its performance to that of elevation. Despite known biases
relative to gauge measurements, particularly during extreme events, IMERG offers con-
sistent temporal coverage and dense spatial resolution, making it a potentially valuable
covariate, particularly for capturing rainfall patterns in regions with limited gauge data.
We examined the power of satellite-derived rainfall estimates for average daily rainfall
and average maximum rainfall (also called “index-rainfall” in some of the literature [33])
across various timescales ranging from sub-hourly (0.5 h) to 48 h and to the regionalization
of average daily rainfall and multi-scale average maximum rainfall, respectively. These
were compared against the widely used elevation covariate to assess their effectiveness in
capturing spatial rainfall variability of average and extreme rainfall patterns.

Both covariates were studied in the framework of the Bilinear Surface Smoothing
method [18,19] designed for spatial regionalization that integrates additional explanatory
variables while minimizing cross-validation errors. The BSS method has demonstrated
robust performance, particularly in data-scarce regions [34], making it well-suited for
addressing the challenges of spatial rainfall estimation [2,25]. The BSS framework is herein
extended to incorporate Bayesian credible intervals, offering a new means of quantifying
the uncertainty in regional rainfall estimates.

The methodology was applied over all of Greece, which serves as a challenging case
study, encompassing highly diverse topography and rainfall patterns. The findings are
herein discussed in view of practical applications of rainfall regionalization and novel
insights into the spatial structure of average and extreme rainfall patterns across multiple
temporal scales.

The remainder is structured as follows: The regionalization methodology, including
the BSS framework, the credible intervals, and performance assessment, are presented in
Section 2. Information on the study area and data sources is provided in Section 3. The
results and discussion are presented in Section 4, and conclusions are provided in Section 5.

2. Methodology
2.1. Bilinear Surface Smoothing

A brief overview of the mathematical framework is presented since it is detailed in
the aforementioned publications [18,19,34]. The general idea behind both methods is to
compromise the trade-off between the objectives of minimizing the fitting error and the
roughness of the fitted bilinear surface, therefore termed Bilinear Surface Smoothing (BSS).
The larger the weight of the first objective, the rougher the surface will appear, while the
opposite is true for a larger weight of the second objective.

The mathematical framework of BSS suggests that fitting is based on minimizing the
Generalized Cross Validation error (GCV) [35] between the set of the given data points and
the corresponding estimates.

The general estimation function, ẑ(x, y) for a point z with spatial coordinates (x, y) on
a plane, according to the BSS method, is

ẑ(x, y) = d (1)

where d is the value of the fitted bilinear surface at that point.
The BSS method was extended by the introduction of an additional explanatory

variable (Bilinear Surface Smoothing with an Explanatory variable; BSSE) available at a
denser dataset compared to that of the main variable, as follows. We assume that at the
locations of the given data points, we also know the value of an explanatory variable t, and
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therefore, for each point z, there corresponds a value t. In this case, the general estimation
function is

ẑ(x, y) = d + t·e (2)

where d and e are the values of two fitted bilinear surfaces at that point. This is not a global
linear relationship but a local linear one, as the quantities d and e change in space.

In the case of the BSS, there are four adjustable parameters for surface d: the numbers
of intervals along the horizontal and vertical direction, respectively, i.e., mx, my, and the
corresponding smoothing parameters τλx and τλy. The incorporation of the explanatory
variable, for the BSSE case, adds two more adjustable parameters: the smoothing parame-
ters τµx and τµy corresponding to surface e. The values of all the smoothing parameters
are restricted in the interval [0, 1) for both directions. When the smoothing parameters
are close to 1, the resulting bilinear surfaces exhibit greater smoothness, whereas for small
values of these parameters, interpolation among the known points is obtained.

A notable advantage of this method for regional analyses is its proven reliability,
even when data are limited and sparse. This sets it apart from traditional geostatistical
techniques, which typically require a denser network of data points to function effectively
(e.g., semivariogram estimation for kriging) [34]. Additionally, the method is highly
efficient, with fewer parameters and decisions needed during modeling. In contrast, the
standard geostatistical approaches involve selection from numerous variants; selection
of variogram between several models, e.g., linear, spherical, exponential, Gaussian, and
power; and determining values for parameters such as range, sill, and nugget, adding
both complexity and potential subjectivity, as no universally objective framework exists for
these decisions.

2.2. Credible Intervals in the BSS Framework

Credible or Bayesian intervals treat their bounds as fixed and the estimated parameter
as a random variable, whereas frequentist confidence intervals treat their bounds as random
variables and the parameter as a fixed value. We delineate the assessment of credible
intervals for the fitted bilinear surface using the BSS mathematical framework.

This approach leverages a Bayesian framework similar to the smoothing spline
method [36] to account for uncertainty in the estimated variance. It incorporates the
smoother matrix, residual sum of squares (RSS), and the posterior covariance matrix of the
fitted surface. The residual errors are modeled as random variables with a certain variance,
which reflects the unexplained variability in the data. By estimating the variance from the
residual sum of squares and adjusting for the degrees of freedom, the Bayesian framework
captures the uncertainty in this variance. This uncertainty is then propagated to the fitted
values of the surface.

Using the variance, we built the posterior covariance matrix for the fitted surface. This
matrix represents the variance of the fitted surface at each observation point, incorporating
the estimated noise from residual errors. The credible intervals are derived from this
posterior covariance, which directly reflects the variability of the surface values rather than
the residuals themselves.

2.2.1. Formulation Based on the BSS Framework

In the BSS framework, a bilinear surface ẑ(x, y) is fitted to a set of n observed data
points z = [z1, z2, . . . , zn]

T corresponding to spatial coordinates (xi, yi) (for i = 1, . . ., n) by
minimizing the GCV. The observed data are the combination of two components: (a) the
signal, i.e., the fitted surface that is the part of the data that the model tries to explain, i.e.,
ẑ(xi, yi), and (b) the noise, i.e., the random error that is the part of the data that is random
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or cannot be captured by the model, i.e., the residual errors. Thus, the model complies with
the following relationship between the observed and fitted values:

zi = ẑ(xi, yi) + ri (3)

where zi are the observed values at the data points, and ẑ(xi, yi) is the estimation from
the bilinear surface at point (xi, yi) obtained through the smoothing process, i.e., the
minimization of the GCV, while ri ∼ N(0, σ2) represents the normally distributed random
residual errors with zero mean and variance σ2.

Equations (1) and (2) can be written in the following form to provide the fitted values
ẑ at the observation points:

ẑ = A z (4)

The smoother matrix A, which captures how the observed data are mapped to the
fitted values, is for BSS

A := Π(ΠTΠ + λxΨx
TΨx + λyΨy

TΨy)–1ΠT (5)

while for BSSE, it is
A := Π TΠ Ω−1(ΠTΠ)T (6)

where

Ω :=

[
ΠT Π + λxΨT

x Ψx + λyΨT
y Ψy ΠT TΠ

ΠT TΠ ΠT TT TΠ + µxΨT
x Ψx + µyΨT

y Ψy

]
(7)

Matrix Π contains the weights of each element of the bilinear surfaces, while T is a
diagonal matrix with its elements being the values of the explanatory variable at the given
data points. Matrices Ψx and Ψy represent the smoothness of the bilinear surfaces and
assure a unique solution of the fitting problem. The elements of these two matrices are the
differences of slopes between consecutive segments of the bilinear surface according to the
x and y directions. For the detailed definition of matrices Π, T, Ψx, and Ψy along with the
estimation and transformation of the smoothing terms λx, λy and µx, µy, the reader may
refer to [18].

By using the above-presented formulation, the procedure of acquiring the credible
intervals follows.

2.2.2. Computation of the Residual Sum of Squares

The vector of residuals r, i.e., the difference between the observed values and the fitted
values in the BSS framework, is defined as

r = z − ẑ = z − Az = (I − A)z (8)

The Residual Sum of Squares (RSS) measures the total squared difference between the
observed values and the fitted surface, thus providing the total discrepancy between them:

RSS =
n

∑
i=1

(zi − ẑi) = ∥z − Az∥2 = ∥(I − A)z∥2 (9)

2.2.3. Estimation of the Error Variance

The error variance σ2 represents the expected squared magnitude of the random errors
ri, i.e., how much the observed values deviate from the true underlying surface due to
randomness or uncertainty. This quantifies the uncertainty or variability in the data that is
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not explained by the model. This variance is key when constructing credible intervals, as it
tells us how much we expect the actual observations to deviate from the fitted values due
to random fluctuations or errors.

In the context of constructing credible intervals, the error variance plays a crucial role
because it influences the width of the intervals since higher error variance means that the
data are noisier, leading to wider credible intervals (greater uncertainty), and lower error
variance indicates that the model fits the data well, leading to narrower credible intervals
(less uncertainty).

The error variance σ2 is estimated by scaling the RSS by the effective residual degrees
of freedom. Thus, in the BSS framework, the variance is estimated as

σ2 =
RSS

ν
, v = trace(I − A) (10)

where ν represents the equivalent degrees of freedom for error, which indicates the degrees
of freedom that remain after fitting the bilinear surface to the data. By analogy to regression,
the equivalent degrees of freedom for the surface are ν = trace(A). This formulation for σ2

considers both the smoothing applied by A and the residual degrees of freedom that reflect
how well the data are fit.

2.2.4. Posterior Covariance Matrix of the Fitted Surface and Credible Interval Assessment

To quantify the uncertainty in the fitted bilinear surface, we compute the posterior
covariance matrix Σ of the fitted surface values. This matrix is given by

Σ = σ2 (I − A) (11)

The diagonal elements of matrix Σ, i.e., Σii, represent the posterior variances of the
fitted values at each observation point.

In typical cases, credible intervals can be computed using the normal distribution
when the variance σ2 is known and accurately estimated. However, in practice, especially
for finite sample sizes, the variance σ2 is estimated from the data and thus subject to
uncertainty.

To account for this uncertainty in the estimated variance, we use the Student’s
t-distribution for constructing the BSS’s credible intervals. The t-distribution adjusts for
the fact that σ2 is estimated from the data rather than known, and the degrees of freedom
are reduced by the smoothing process, which consumes some of the data’s information.
This leads to more accurate credible intervals for the fitted surface compared to the normal
distribution, especially when the equivalent degrees of freedom are less than 30. As those
increase above this limit, the t-distribution converges to the normal distribution.

The credible intervals for the fitted bilinear surface ẑ(xi, yi) at each observation point
(xi, yi) are given by

ẑ(xi, yi)± tα/2,ν·
√

Σii (12)

where ẑ(xi, yi) is the fitted value at point (xi, yi), tα/2,ν is the critical value from the
Student’s t-distribution with ν = trace(I − A) degrees of freedom and confidence level
1 − α, and Σii is the ith diagonal element of the posterior covariance matrix Σ, representing
the posterior variance of the fitted value at point (xi, yi).

This credible interval reflects uncertainty around each estimated point by means of
the fitted surface, based on the observed data and prior information about the smoothness,
as controlled by the smoothing parameters.
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2.3. Regionalization Performance Assessment

The performance of regionalization was assessed using several criteria, including the
mean bias error (MBE), mean absolute error (MAE), root mean square error (RMSE), coeffi-
cient of determination (r2), the Nash–Sutcliffe efficiency (NSE) [34], and the normalized
root mean square error (NRMSE) [37]. The smoothness of each surface was quantified
by the standard deviation, σ, of the estimates. However, relying on different statistical
metrics to evaluate spatial interpolation methods may not accurately reflect the validity
of the results beyond the locations included in the interpolation process. To address this
issue, a leave-one-out cross-validation (LOOCV) approach was also employed to evaluate
the effectiveness of the interpolation methods between the two covariates (elevation and
IMERG) based on the aforementioned criteria.

LOOCV is widely used for assessing spatial interpolation methods and has been ap-
plied extensively in water resources research, as documented by numerous studies [34,38,39].
This technique is also a standard feature in most Geographic Information System (GIS)
software platforms.

Finally, a summary of the overall research workflow is presented in Figure 1. This dia-
gram consolidates the methodological steps described above, providing a visual overview
of the data sources, modeling procedures, uncertainty analysis, and validation framework
employed in the study.

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Overview of the research workflow used for average and extreme rainfall regionalization.

3. Study Area and Data
3.1. Study Area

The study area is the entire Greek territory, spanning 131,957 km2 and including a
multitude of islands and a diverse landscape (Figure 2). Although the climate is predom-
inantly Mediterranean, there are considerable differences in rainfall distribution across
the country. Particularly, Greece includes four climatic types (arid, temperate, cold, and
polar) and 11 sub-types (BSh, BSk, Csa, Csb, Cfa, Cfb, Dsb, Dsc, Dfb, Dfc, and ET) based on
Köppen–Geiger climate classification [40]. Daily rainfall averages range from 0.6 mm/day
(approximately 219 mm/year) to 7.3 mm/day (around 2666 mm/year) [31]. Northwestern
Greece receives the highest rainfall, while the driest areas include Athens, several Aegean
islands, and parts of central Macedonia and Thessaly. The intricate interplay of topography
and climate makes Greece a particularly challenging region for rainfall modeling [31], so
the presented methodology and conclusions may be used as reference for other regions.
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Figure 2. Physical map of Greece (source: https://github.com/der-stefan/OpenTopoMap, CC BY-SA
3.0, accessed on 31 May 2025).

3.2. Ground-Based Data

Respecting the methodological framework summarized in Figure 1, the following
sections describe the ground-based data sources employed to estimate average daily rainfall
(Section 3.2.1) and average maximum rainfall across different scales (Section 3.2.2) to serve
as ground reference for the regionalization experiments.

3.2.1. Daily and Monthly Records

We utilized ground-based observations from 128 stations, including records at both
daily and monthly resolution, which were deemed sufficiently reliable for estimating
average daily rainfall across Greece [31]. To address boundary-related issues in some
experiments, the study area was extended to include neighboring regions, specifically
sections of Turkey, North Macedonia, Bulgaria, and Albania.

The dataset comprises the following components:

• Stations with daily records: 61 rainfall series with over 60 years of data, 56 of which
are sourced from the Hydroscope database (http://www.hydroscope.gr/, accessed on
10 February 2023) and 5 from the Greek Meteorological Service;

• Stations with monthly records within Greece: 31 rainfall series from the Global Histor-
ical Climatology Network (GHCN), each spanning more than 30 years;

• Stations with monthly records from neighboring countries: 36 stations from the GHCN,
located in Turkey, North Macedonia, Bulgaria, and Albania, also with data spanning
over 30 years.

While the 56 Hydroscope records are directly accessible through its platform, the
remaining records can be obtained via the KNMI Climate Explorer tool (http://climexp.
knmi.nl/, accessed on 10 February 2023). All data underwent quality control in a prior study
on Greek climatic trends [31]. The daily series, which represent the longest continuous

https://github.com/der-stefan/OpenTopoMap
http://www.hydroscope.gr/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
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records available in Greece, have also been utilized to derive rainfall intensity–duration–
frequency relationships [25].

3.2.2. Annual Maxima Records

To derive the average annual maxima estimates across different temporal scales, we
employed available records of annual maxima in Greece from a recent regionalization of
design rainfall curves [25]. Following rigorous quality control, a dataset of 783 stations was
employed (Table 1), which includes

Table 1. Type and number of ground-based stations with data at each timescale.

Daily
Rain Gauges

Sub-Daily
Rain Recorders

Timescale 1 d 2 d 5 min 10 min 15 min 30 min 1 h 2 h 3 h 6 h 12 h 24 h 48 h
Number 503 490 38 128 47 231 273 279 269 280 280 280 223

• 503 daily rain gauges, with 130 situated at sites also equipped with a rain recorder;
• 280 rain recorders, providing sub-daily resolution data.

These stations are distributed across 651 unique geographic locations. The longest
dataset is from a daily rain gauge in Athens, which spans the period from 1863 to 2022.

3.3. Satellite Data

We utilized satellite data from NASA’s Integrated Multi-satellitE Retrievals for
the Global Precipitation Mission (IMERG, https://gpm.nasa.gov/data/imerg, https:
//giovanni.gsfc.nasa.gov/giovanni/ accessed on 8 November 2024) [7]. Specifically, pre-
cipitation estimates from the IMERG Final Precipitation L3 Half-Hourly 0.1◦ × 0.1◦ V06
product (GPM_3IMERGHH), which underwent post-processing gauge calibration, were
retrieved for the entire geographical extent of Greece and its neighboring regions.

The dataset offers a spatial resolution of 0.1◦, corresponding to 8991 grid points
for the study area, 1373 of which represent the mainland portion of Greece. This high
spatial resolution ensures excellent coverage, enabling the creation of detailed precipitation
maps. The dataset spans from 1 June 2000 to 30 September 2021, covering a total of
21 hydrological years.

The temporal resolution of the IMERG data allows for their use in estimating both
average daily rainfall across Greece and average annual maximum rainfall values over
varying timescales.

3.4. Elevation Data

The elevation of each station to be incorporated as an additional explanatory variable
was derived from the Shuttle Radar Topography Mission (SRTM) dataset and available as
3 arc second, i.e., approximately 90 m resolution at the equator [32]. The SRTM data, with
their high spatial resolution and global coverage, provide reliable elevation information
that enhances the analysis by accounting for the impact of topography on rainfall patterns.

4. Results and Discussion
In view of BSSE implementation, the global minimum of GCV for every temporal scale

was reached by implementing the methodology for different numbers of segments mx and
my (1 ≤ mx ≤ 200, 1 ≤ my ≤ 200) and minimizing GCV for each combination by altering
each one of the adjustable parameters, as detailed in [18]. Additionally, we assessed larger
values of mx and my up to 1000 segments in either direction by setting each smoothing

https://gpm.nasa.gov/data/imerg
https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
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parameter to its minimum value (0.001) in order to reduce the computational effort. The
results of the above procedure are presented in Table 2.

Table 2. BSSE optimal parameter values.

Timescale Number of
Segments, mx

Number of
Segments, my τλx τλy τµx τµy

0.5 h 9 140 0.884742 0.024031 0.001 0.001
1 h 9 198 0.016242 0.009531 0.001 0.001
3 h 9 254 0.001 0.001 0.001 0.001
6 h 9 348 0.001 0.001 0.001 0.001

12 h 9 448 0.001 0.001 0.001 0.001
24 h 14 981 0.001 0.001 0.001 0.001
48 h 14 387 0.001 0.001 0.001 0.001

Daily Average 6 147 0.99 0.001 0.652857 0.018715

4.1. Regionalization of Average Daily Rainfall

The BSSE framework was first applied to the regionalization of average daily rainfall
as estimated from the ground stations described in Section 3.2.1. Next, the BSSE model
was applied by employing the elevation and the IMERG-derived average daily rainfall as
alternative covariates.

The respective maps are shown in Figure 3, while the full dataset performance metrics
and the LOOCV metrics are presented in Tables 3 and 4, respectively. Both applications
resulted in very good performance with high NSE values, considering the all-data statistics
(0.9 and 0.74, respectively) and the LOOCV (0.74 and 0.67) evaluation as well. The elevation-
based regionalization is, however, superior in both evaluations. The resulting surfaces
(Figure 3) reveal similar climatic patterns, with higher rainfall rates in Western Greece
and lower in the central part, yet the overall variability appears smoother in the IMERG-
based map. In particular, the IMERG-based regionalization does not capture the range of
variability apparent in the elevation-based regionalization, resulting in greater smoothing,
as also depicted in terms of the standard deviation, σ, of the estimates (Table 3).

 
(a) (b) 

Figure 3. Regionalized map of average daily rainfall (mm) (a) using the elevation as a covariate and
(b) using the IMERG satellite data as a covariate.
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Table 3. Performance assessment statistics for the regionalization based on the elevation and IMERG
covariates for average daily rainfall.

Surface Statistics (All Data) Elevation IMERG

MBE (mm) 0.00 0.00
MAE (mm) 0.22 0.36
RMSE (mm) 0.31 0.49

NSE 0.90 0.74
r2 0.90 0.74

NRMSE (%) 6.95 10.99
σ (mm) 0.89 0.83

Table 4. Performance assessment LOOCV statistics for the regionalization based on the elevation and
IMERG covariates for average daily rainfall.

Surface Statistics (LOOCV) Elevation IMERG

MBE (mm) −0.01 0.00
MAE (mm) 0.36 0.41
RMSE (mm) 0.49 0.55

NSE 0.74 0.67
r2 0.75 0.67

NRMSE (%) 10.99 12.43

4.2. Regionalization of Average Maximum Rainfall for Different Scales

The regionalization experiments were repeated for the case of average annual max-
imum rainfall at different scales, i.e., 0.5 h, 1 h, 3 h, 6 h, 12 h, 24 h, and 48 h. For this
evaluation, the respective IMERG-derived estimates (i.e., the average annual maximum
rainfall depth at each temporal scale) were used in the IMERG-based regionalization. The
maps are presented in Figures 4–10 for the 0.5 h, 1 h, 3 h, 6 h, 12 h, 24 h, and 48 h cases. The
performance assessment metrics are given in Tables 5 and 6 considering all data and the
LOOCV, respectively. The NSE values for both evaluations (elevation and IMERG) in terms
of the timescale of rainfall maxima are shown in Figure 11.

  
(a) (b) 

Figure 4. Regionalized map of average 0.5 h maximum rainfall (mm) (a) using the elevation as a
covariate and (b) using the IMERG satellite data as a covariate.
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(a) (b) 

Figure 5. Regionalized map of average 1 h maximum rainfall (mm) (a) using the elevation as a
covariate and (b) using the IMERG satellite data as a covariate.

  
(a) (b) 

Figure 6. Regionalized map of average 3 h maximum rainfall (mm) (a) using the elevation as a
covariate and (b) using the IMERG satellite data as a covariate.
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(a) (b) 

Figure 7. Regionalized map of average 6 h maximum rainfall (mm) (a) using the elevation as a
covariate and (b) using the IMERG satellite data as a covariate.

  
(a) (b) 

Figure 8. Regionalized map of average 12 h maximum rainfall (mm) (a) using the elevation as a
covariate and (b) using the IMERG satellite data as a covariate.
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(a) (b) 

Figure 9. Regionalized map of average 24 h maximum rainfall (mm) (a) using the elevation as a
covariate and (b) using the IMERG satellite data as a covariate.

(a) (b) 

Figure 10. Regionalized map of average 48 h maximum rainfall (mm) (a) using the elevation as a
covariate and (b) using the IMERG satellite data as a covariate.
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Table 5. Performance assessment statistics for the regionalization based on the elevation and IMERG
covariates for each timescale.

Surface Statistics (All Data) 0.5 h 1 h 3 h 6 h 12 h 24 h 48 h

Elevation

MBE (mm) 0.00 0.00 0.00 0.00 −0.01 −0.01 0.00
MAE (mm) 2.75 3.18 4.01 5.36 6.95 7.27 9.01
RMSE (mm) 3.46 4.11 5.37 7.12 9.13 10.09 13.91

NSE 0.49 0.54 0.67 0.71 0.76 0.80 0.91
r2 0.50 0.55 0.67 0.71 0.77 0.80 0.91

NRMSE (%) 13.08 12.68 8.63 8.10 6.78 5.23 5.50
σ (mm) 3.05 4.04 7.21 10.35 15.49 19.34 24.92

IMERG

MBE (mm) 0.00 0.00 0.00 −0.01 0.00 0.00 0.00
MAE (mm) 2.99 3.50 4.18 4.57 7.56 9.33 10.58
RMSE (mm) 3.79 4.57 5.66 6.58 10.77 13.07 15.13

NSE 0.39 0.43 0.63 0.75 0.67 0.66 0.75
r2 0.39 0.43 0.64 0.75 0.67 0.67 0.75

NRMSE (%) 14.34 14.12 9.10 7.49 7.99 6.78 5.98
σ (mm) 2.74 3.61 6.94 10.60 14.33 17.10 24.75

Table 6. Performance assessment LOOCV statistics for the regionalization based on the elevation and
IMERG covariates for each timescale.

Surface Statistics (LOOCV) 0.5 h 1 h 3 h 6 h 12 h 24 h 48 h

Elevation

MBE (mm) 0.05 −0.42 −1.84 0.15 1.61 −0.17 0.21
MAE (mm) 3.51 4.51 13.54 8.20 12.77 11.25 11.52
RMSE (mm) 4.48 9.15 91.65 11.52 31.01 16.23 17.65

NSE 0.14 −1.28 −94.99 0.23 −1.73 0.48 0.86
r2 0.20 0.03 0.03 0.32 0.14 0.51 0.86

NRMSE (%) 16.94 28.23 147.34 13.10 23.01 8.42 6.98

IMERG

MBE (mm) −0.04 −0.14 −1.48 −0.22 −0.61 −3.30 −1.12
MAE (mm) 3.47 4.07 12.31 9.48 12.90 16.37 16.78
RMSE (mm) 4.46 5.38 78.04 16.47 24.35 79.25 28.13

NSE 0.15 0.21 −68.60 −0.57 −0.68 −11.42 0.13
r2 0.18 0.23 0.03 0.16 0.11 0.04 0.33

NRMSE (%) 16.85 16.59 125.46 18.75 18.07 41.11 11.12

It is evident that with increasing timescale of aggregation of the rainfall amounts, the
regionalization uncertainty decreases, as evidenced by the increasing r2 values (Table 5)
and the increasing efficiency (also Figure 11). A slight divergence is observed in the case of
the IMERG covariate, with the peak performance being observed in 6 h and not increasing
further for the 12 h, 24 h, and 48 h timescales.

Performance varied from acceptable to high for both covariates (NSE values in the
range 0.4–0.9) in the case where the full dataset was employed (Table 5). Although re-
sults are comparable, the elevation-based regionalization systematically outperformed the
IMERG one, which also yielded smoother surfaces (in terms of the standard deviation, σ, of
the estimates), with the only exception on the 6 h scale (although small, with NSE: 0.71 and
σ: 10.35 mm for the elevation against NSE: 0.75 and σ: 10.60 mm for the IMERG covariate).
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Figure 11. NSE comparison of the elevation-based and the IMERG-based regionalization schemes.

The uncertainty of extreme rainfall is, however, showcased in the results of the LOOCV
(Table 6), which are markedly inferior compared to those of the case of average daily rainfall
(Table 4). In this evaluation, the regionalization performance remained robust only for
the case of 24 h and 48 h, when employing elevation as a covariate. The poor values
of the LOOCV in the remaining cases are indicative both of the inherent uncertainty
involved in indices of extremes but also of the need for a denser network of stations for the
sub-daily records.

4.3. Assessment of Credible Intervals

To delve further into the estimation uncertainty, the credible intervals were assessed,
and stations falling outside the 95% probability band were identified. Figure 12 illustrates
this for (a) the average 24 h maximum rainfall and (b) the average 24 h rainfall. The
identified stations were examined, revealing no unrealistic behavior, and their occurrence
remained within the expected 5% threshold, specifically at 4.9% for the maxima and 4.7%
for the average rainfall. Most of these “outliers” align with established patterns of either
very high or low average maximum rainfall values. A few stations were flagged due to
limited data length and higher associated uncertainty. Nevertheless, the identified stations
highlight areas where the gauge network is sparse, emphasizing the need for prioritized
station installation. Such efforts should focus on regions with complex rainfall patterns,
where additional data are crucial for robust characterization.

  
(a) (b) 

Figure 12. Distribution of stations along the 95% credible intervals for (a) the average 24 h maximum
rainfall and (b) the average 24 h rainfall.
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4.4. Effect of Elevation on Multi-Scale Rainfall Patterns

The BSS framework allows for the investigation of the orographic influence on the
rainfall maxima across different timescales. This is accomplished by exploring the corre-
sponding regionalization scheme in terms of the values of surface e (Equation (2)), namely
the weights assigned to the explanatory variable, i.e., the elevation. The median values
of the elevation surface weights are shown in Figure 13, with positive values indicative
of a tendency of positive association to the rainfall amount, while the opposite is true for
negative values. The positive values towards the larger scales demonstrate the increasing
effect of orography on precipitation, the well-known “orographic enhancement”. It is
interesting, however, that this effect becomes significant above the 6 h scale, peaking at the
48 h scale with median weight of 6.5 times higher than the 3 h scale. At smaller scales, the
average annual rainfall maxima exhibit very low values of the elevation weights, with the
median value for the 0.5 h scale being negative, suggesting that the orographic effect acts
inversely to the precipitation processes. This suggests that orography exerts complicated
controls on the rainfall amount in Greece across different scales, acting as an increasing
factor at large temporal scales while demonstrating mixed or even negative influence on
small scales.

Figure 13. Regionalization weights for the elevation surface for each timescale of rainfall maxima.

It is worth noting that the corresponding median value of surface e in case of average
daily rainfall was 0.0008, exhibiting a non-systematic spatial influence of the orography in
this case.

5. Conclusions
We investigated the regionalization of average and extreme rainfall patterns in Greece

using the BSSE framework, incorporating both elevation (DEM) and satellite-derived
IMERG rainfall estimates as alternative covariates. The results reveal the comparative
performance of these covariates, shedding light on the role of temporal scale, the robustness
of orographic effects, and the distinct dynamics of average and extreme rainfall.

While both DEM and IMERG showed promising performance in regionalizing rainfall
patterns, elevation-based models outperformed IMERG. The higher spatial variability of
the SRTM-derived DEM in the Greek territory allowed it to capture fine-scale orographic
features, which were particularly important for modeling rainfall variability across different
regions. In contrast, IMERG provided spatially smoother rainfall estimates, particularly for
the average annual maximum rainfall across 0.5 h to 48 h scales. This finding suggests that
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IMERG rainfall estimates may not be accurate enough to support extreme-oriented analyses,
such as regionalization of design rainfall curves particularly in areas with complex terrain as
Greece, as noted in the literature [25]. This is consistent with reported findings that IMERG
underestimates orographic rainfall over NW-W Greece and greatly overestimates rainfall
over islands and coastal areas [41]. The need for caution when using IMERG, especially
in regions with significant topographic variation, has been emphasized globally [42]. In
contrast, elevation-based models showed higher efficiency, providing a more accurate
representation of rainfall patterns. Despite this limitation, IMERG still proved useful,
particularly for the regionalization of average daily rainfall, with its performance being
comparable to the elevation-based one, especially for the 6 h scale maxima, a finding which
demonstrates its value as a complementary tool for regional rainfall climatic analyses.

Regionalization efficiency was also greatly impacted by the temporal scale of maxima,
peaking at higher scales (24 h and 48 h) and being poorer at smaller scales, particularly
under the LOOCV assessment. This is reflective of both the higher uncertainty present
in fine-scale rainfall but also of the poorer density of the station network in Greece at
these scales. The 24 h scale proved as one of the most effective for regionalizing average
maximum rainfall, which also validates the choice of the records from the daily rain gauges
network as the basis for the regionalization of the distribution parameters in the design of
rainfall curves in previous studies [2,25]. The orographic enhancement effect was robust
at higher timescales (>6 h), with a clear increase in rainfall observed at higher elevations,
consistent with previous findings [2,25]. At the smaller temporal scales (e.g., 0.5 to 6 h), the
orographic effect exhibited more complexity, with some regions showing negative weights
for elevation, suggesting a reverse orographic effect, which was more significant at the
0.5 h scale. This may suggest the presence of different regimes in the interaction between
precipitation systems and orography, each influenced by different dominant processes such
as convective and stratiform processes [28]. Therefore, the relationship between average
maximum rainfall depth and elevation is not consistent across different temporal scales
in Greece. In this light, the above-presented analysis can be useful not only in rainfall
regionalization techniques but also in various other tasks, such as weather forecasting
systems through satellite data.

Furthermore, the use of credible intervals proved instrumental in assessing the uncer-
tainty in the regionalization process. The credible intervals highlighted areas where the
station network may be insufficient or where unusual rainfall patterns might exist. This
information is invaluable for improving network design, as it can guide the placement
of new stations or the adjustment of existing ones to better capture spatial variability,
especially in regions prone to extreme rainfall events. By focusing on areas outside the 95%
credible interval, the network can be optimized to provide more accurate rainfall estimates
both for flood risk management and climatic studies.

Overall, this work underscores the importance of selecting appropriate covariates and
temporal scales when regionalizing rainfall patterns in complex terrains like Greece. While
elevation-based models demonstrated superior performance, particularly for patterns of
multi-scale extreme rainfall, satellite-derived IMERG estimates provided valuable com-
plementary insights in the case of climatic analysis of the average daily rainfall patterns.
Moreover, the use of credible intervals emphasized the value of uncertainty analysis in
identifying gaps in station coverage and guiding network optimization. Further research,
alongside a denser station network or additional data sources, is needed to enhance the
representation of spatial dynamics in fine-scale extreme rainfall patterns to improve the
accuracy of regional rainfall models in various climatic regimes.
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