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The ultimate risk index: deaths and classification of their causes

ey
Road accidents [ 2.35 93.95
Suicide [N 1.46

Nutritial issues [ 1.04
Homicide [l 0.75
Drowning - 0.59

Alcohol & drugs [l 0.58

Fire J] 0.23

War & terrosrism | 0.21
Cold (& heat) | 0.12
Natural disasters | 0.08
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Question for thought: Why has the last risk category on the list been elevated as the greatest
Source: Koutsoyiannis (2024) — . q )
Reference decade 2010 gIObaI pOIICy ISSUE:
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Are fatalities from natural disasters increasing?
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Source: Koutsoyiannis (2024).
Data from https://ourworldindata.org/world-population-growth;
https://ourworldindata.org/ofdacred-international-disaster-data

Floods, droughts and other
natural disasters have always
occurred and will always do.

The risk from natural
disasters has been
spectacularly decreased.

We owe that decrease to
engineering and technology.

Instead of casting pessimistic
prophesies for the future, in
the last century engineers
improved hydro-technology,
water management, and risk
assessment and reduction.
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Climate crisis is not a scientific issue; it’s a political doctrine

m This assertion is illustrated by

=) the decision of the European
Parliament (Nov. 2019),

) the creation of the Ministry of
Climate Crisis in Greece (Sep.
2021) and

© the announcement of the UN
(Apr. 2022)

m  Question: Which one is a bigger
threat?

o A natural climate crisis?

The European Parliament declares
climate emergency

Press Releases I

+ Commission must ensure all proposals are aligned with 1.5 *C target

+ EU should cut emisslons by 55% by 2030 to become climate neutral by 2050 - -
« Calls to reduce globai emissions from shipping and aviation = ‘Q -

) United ;
o~ i@ e Meetings Coverage

£*7 Nations

PRESS RELEASE
SECRETARY-GENERAL » STATEMENTS AND MESSAGES

SG/SMIT1228
4 APRIL 2022

Secretary-General Warns of Climate
Emergency, Calling Intergovernmental
Panel's Report ‘a File of Shame’, While
Saying Leaders ‘Are Lying’, Fuelling
Flames

EU should commit to net-zero greenhouse gas emissions by 2050 at the UN
Conference, says Parllament.

o Ora political "climate crisis"?

https://www.europarl.europa.eu/news/ https://civilprotection.gov.gr/klimatiki-krisi See also:
en/press-room/20191121IPR67110/ https://press.un.org/en/2022/sgsm21228.doc.htm https://climath.substack.com/p/introducing-climath
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Domains of climate analysis for this presentation

Mediterranean

Greece
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Why M ed ite rranean ? Geophysical Research Letters’ L

Climate [ Free Access
° Heat stress intensification in the Mediterranean climate change =
I D C c hotspot

. » . T
INTERGOVERNMENTAL PANEL on CliMaTe chante [yl by

Review

A Literature Review of Climate-Related Coastal Risks in the

0 Mediterranean, a Climate Change Hotspot
Climate Change 2021
g @GU seottiences - Earth System Dynamics =

The Physical Science Basis

Article

Articles / Volume 13, issue 1 / ESD, 13, 321 340, 2022 Search n

10.6.4.6 Future Climate Information From Global Simulations

Article | Assels Peer review  Metrics Related articles

The Mediterranean is expected to be one of the most prominent
and vulnerable climate change hotspots (Diffenbaugh and Giorgi,
2012). CMIPS, CMIP6, HighResMIP and CORDEX (Section 10.6.4.7)

hitps:/idoi.org10.5194/esd-13-321-2022
& Authoris) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

Research article | @@® | 08 Feb 2022

The Mediterranean climate change hotspot in
the CMIP5 and CMIP6 projections
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Whv Greece? |E—_1
The Greek government E b ool
is proud for the
important innovation [EEEEEEEEEEEE
of establishing the - 3
Ministry of Climate
Crisis.

m A Deep Search by Grok
3 suggested that
Greece is the only
country with a ministry
titled "climate crisis”.

m Also, there are no
countries with
ministries including
“climate emergency”
their title.

https://civilprotection.gov.gr/klimatiki-krisi
(Automatically translated to English)

The establishment of the Ministry of Climate Crisis and Civil Protection (September 2021) is an important innovation of our country .
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Why Greece (2): «Golden Raspberry Awards» to Greeks

m The table on the right shows the results of the most THE TOP FOUR

recent (2022) polls on the percentage of the Greece 36%

population of various countries that feel fear for the Italy 8929
alleged climate threat. 0

Japan 82%

m Greeks consistently top the list with the following South Korea 829%

ggacgefgggezozzozoé-gs: 82%, 2010: 87%, 2013: 87%, THE MIDDLE FOUR
: 0, : ° The Netherlands 77%

= GALLI_]-P a = Pew Research Center ‘%}::{é o
. - _ Belgium 75%
. LMN PUBLICATIONS  TGPICE  DATASETS | MORE . e Do U n Ited KI n gd 0 m 75%
in ¥ f & & SO - =] FEBRUARY 10, 2018 | s i = ) .
Climate Change Climate Changestill || Climate Change Germany 73%
Remains Top
and Financial e LRS00 Gy THE BOTTOM FOUR
Fewer Americans, Instabilitv S Threat, but . oba reat
Europeans View Global NSstabliity Seen as CyberattacksaRising | Across 19-Country Sj 57%
Warming as a Threat Top Global Threats | Concern Survey INgapore (}
(o)
Sources: U SA 54 A)
https://www.pewresearch.org/global/2022/08/31/climate-change-remains-top-global-threat-across-19-country-survey/ I I 47cy
https://www.pewresearch.org/global/2019/02/10/climate-change-still-seen-as-the-top-global-threat-but-cyberattacks-a-rising-concern/ S ra e (0]
https://www.pewresearch.org/global/2013/06/24/climate-change-and-financial-instability-seen-as-top-global-threats/ . 0
https://news.gallup.com/poll/147203/Fewer-Americans-Europeans-View-Global-Warming-Threat.aspx M d I ayS Ia 44 A)
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Part B
Global hydrology

B

Articles / Volume 24, issue 8 / HESS, 24, 3899-3932, 2020 Search

Article Peer review Metrics Related articles
https://doi.org/10.5194/hess-24-3899-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article | Highlight paper | @® 07 Aug 2020

Revisiting the global hydrological cycle: | "] =
is it intensifying? -

Demetris Koutsoyiannis &4



Does atmospheric water
show intensification of
hydrological cycle?

m [PCC (2013,2021) conjectured that the

water vapour amount in the

atmosphere would increase, and the
hydrological cycle would intensify.

m However, the water vapour amount is

fluctuating—not increasing
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Source of graph: Koutsoyiannis (2020); reanalysis data (NCEP-NCAR & ERA5): §_ 20 -
http://climexp.knmi.nl; satellite data, NVAP: Vonder Haar et al. (2012) (Figure 4c, = 15
after digitization); satellite data, MODIS: https://giovanni.gsfc.nasa.gov/giovanni/; 10 Sea

averages from Terra and Aqua platforms.
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Do satellite data of the 21st century show increasing
presence of water vapour amount?

m Both Terra and Aqua satellite platforms for all atmospheric levels suggest decreasing
trends.

| Hence, the data Total vertical column From surface From 440 hPa (~6500 m)
H to 680 hPa (~3200 m) to 10 hPa (~26 000 m)
are opposite »8 ’3 08
to the IPCC .
conjecture *
] ’ —526 TITIR n )1 L thh o7
Apparently, E25 l \
this suggests 5 | = ) o M
. £ -
that climate 523 19 1
822 WY
models do not & R s . |
represent the A . '
. 20 )
thSICS 1o | ——MApIsTerra —MODISAqua | o4
co rrectly. 2000 2005 2010 2015 2020 2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
Source of graph: Koutsoyiannis (2020); MODIS data: Thin and thick lines of the same colour represent monthly values and running
https://giovanni.gsfc.nasa.gov/giovanni/ annual averages (right aligned), respectively.

D. Koutsoyiannis & T. lliopoulou, A cool look at hydroclimatic risk 12


https://giovanni.gsfc.nasa.gov/giovanni/

Do precipitation and
evaporation increase?

m Both precipitation and evaporation are
fluctuating—not increasing
monotonically.

m Hence, the IPCC conjecture is falsified.
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Is monthly maximum daily preC|p|tat|on mcreasmg?

m  The graphs show the variation of an
index of extreme rainfall, which is
the monthly maximum daily
precipitation, areally averaged over
the continents.

m In all continents, this index is
fluctuating—not increasing
monotonically.

m In particular, the satellite
observations show decreasing,
rather than increasing trends in the
21st century.

Thin and thick lines represent monthly values and running
annual averages (right aligned).

Source of graph: Koutsoyiannis (2020); reanalysis data
(NCEP-NCAR & ERAS5, gauge-based precipitation data
gridded over land (CPC), and combined gauge and satellite
precipitation data over a global grid (GPCP):
http://climexp.knmi.nl
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Is daily precipitation variability increasing?

m The standard deviation of = ”
daily rainfall, areally averaged, E s
as seen both from CPC and <
GPCP observational data, g, , | l H| | 11,
decreases, thus signifying § '
deintensification of extremes = ag | |
in the 21st century. %

m Again, it will be more prudent s 5 I | H-HH
to speak about fluctuations 3 Tt o
rather than deintensification. E )5

° e GPCP (earth)

Thin and thick lines of the same colour represent % 2 ——¢PC (land)

monthly values and running annual averages (right

aligned), respectively. 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Source of graph: Koutsoyiannis (2020); gauge-based precipitation data gridded over land (CPC), and combined gauge and satellite precipitation data
over the entire Earth (GPCP): http://climexp.knmi.nl
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Have droughts
been affected
by humans?

From the abstract: “No
evidence is found for
any systematic trend in
precipitation deficits
attributable to
anthropogenic climate
change...”

B virotosy lﬁ\o\py
The Spatial Scale Dependence of The Hurst Coefficient in Global
Annual Precipitation Data, and Its Role in Characterising Regional
Precipitation Deficits within a Naturally Changing Climate

by 2} Enda O'Connell " &, £ Greg O'Donnell ! and @ Demetris Koutsoyiannis 2 @
Hydrology 2022, 9(11), 199; https:/idoi.org/10.3390/hydrology9110199

Hurst's seminal characterisation of long-term (LTP) in records more than seven
decades ago conlinues to inspire investigations into the Hurst phenomenon, not just in hydrology and
d-ma!ology but in many other scientific fields. Here, we present a new thecretical development based on

t (HK) that lains the recent finding that the Hurst coefficient
increases vmh the spatial scale of averaging for regional annual precipitation. Wo also present some mmm

froq slar( hom the premise that ACC is an explanatory factor, and set out to

prove it, a more would be to adopt the Null Hypothesis that natural
climatic variability is a causal factor, and to test the An.mnhvs Hypothesis that it is ACC. In this rmld the

use and misuse of trend tests, and the mi of have been and in
a number of papers (e.g., [43,44,45,46)), and it is good to see that moroeonstdefed approaches are now
‘emerging in the literature (e.g., [47,48,49)). That ACC can be a factor i is notin i
but based on current evidence, natural climatic variability remains the main driver of precipitation deficits in
regions affected by LTP, but care is needed that apparent trends resulting from LTP are not misinterpreted as
evidence of ACC.
From a multi-decadal analysis of the ing p no was found to show that there has
been any increase in precipitation deficits in recent that might be lo to global
Precipitation deficits are a eonsequonca of natural climatic variabilitythe level of LTP, so the Hurst

results on the scale dependence of H in regional and an

between sample resuits and theory. LTP in average basin scale precipitation is shown lo be eons:slem wnh

LTP in the annual flows of some large river basins. An analysis of the ing of

deficits in regions exhibiting LTP shows that the Hurst canbe a IS of the risk

of severe precipitation deficits. No evidence is found for any trend in p deficits

attributable to anthropogenic climate change across the regions analysed. Future precipitation deficit risk

assessments should, in the first instance, be based on HK sit that the
of i with LTP, and not rely ly on GCM proj that may not

pvopeﬂy capture long-wm natural variability in the climate.

4.3. Characteristics Of Precipitation Deficits For The Eight Ltp Regions

The analysis of the crossing properties of average regional precipitation deficits using the 1900-2013
data set shows that some regions deficits p i ly in the early part of the 20th century,
while other regions were in surplus over the same period. The averages of the D, SV and / statistics across
the eight regions for each year suggest that there is a levelling up of the crossings between the first and
second half of the record (Figure 12), and with relatively low volumes in the middle period. The grand
averages for Periods 1-3 (Table 5(i) and Figure 13(i)) do not suggest that there is any intensification of
precipitation deficits in Period 3 that might be attributed to ACC. On the conlrary, the statistics suggest that
Pericd 1 is characterised by more severe deficits, with the lowest deficits and intensities below the MSD level
in Period 2.

4.4. Precipitation Deficits, Droughts And Anthropogenic Climate Change

In analysing the evidence for any recent global i on p deficits, the IPCC [32)
noted that, while some regions of the world had recorded strong ptadpﬁmon deficits in recent decades, other

regions had not. They noted that global studies had generally shown no significant trends in SPI time series, 29

and in derived drought frequency md severity data, and concluded that natural climatic variability is still the

i mode of g g p deficits and droughts, and, by implication, LTP. This
conclusion is supported by our findings here, where we have not seen any clear evidence of intensification in
precipitation data up to and including 2020 (Table 5 and Figure 13). A the ive on i
continues to evolve [33,34,35,36).

and HK on a histeric data set should be used to test water
system and and not rely y on GCM proj that do not
reproduce the LTP in observational records.
a) Regional Average: b) Regional Average:
Duration below Mean 6 Volume % below Mean
8
-10
6 -20
4 -30
-40
2 -50
0 -
1920 1940 1960 1980 2000 1920 1940 1960 1980 2000
c) Regional Average: d) Regional Average:
Duration below Mean-Std Volume % below Mean-Std
3.0
25 -5
2.0 i
15
e -15
0.5 -20
1920 1940 1960 1980 2000 1920 1940 1960 1980 2000

Figure 12. Regional averages of deficit duration and volume percentage for each year for the mean and MSD
crossing lovels, 1901-2013

* Period 1: 1901-1938 (38 years)

» Period 2: 1939-1976 (38 years)

» Period 3: 1977-2013 (37 years)

O’Connell et al. (2022); see also https://notrickszone.com/2023/02/20/random-probability-analysis-of-global-

drought-data-affirm-no-pattern-can-be-linked-to-human-

activity/
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Do climate models provide guidance for the future?

m  Short answer: No.

m Long answer: They have not provided skill for the past. Notice: (1) the large error of
the “Multimodel” ensemble in terms of the mean; (2) the increasing trend of climate
model outputs after 1980, which did not appear in reality.

Thin and thick lines represent monthly
values and running annual averages (right 34 28

aligned). e G PP = Multimodel \
== Single model }

Source of graph: Koutsoyiannis (2020);
observations come from the combined
gauge and satellite precipitation data
over a global grid (GPCP); climate model
outputs are for the scenario “RCP8.5”
(frequently referred to as “business as
usual”); “Multimodel” refers to CMIP5
scenario runs (entries: CMIP5 mean —
rcp85) and “Single model” refers to
CCSM4 — rcp85 (ensemble member 0), 2.6 11 2 T ||| 1
where CCSM4 stands for Community '
Climate System Model version 4, released Earth Land
by NCAR. Data and model outputs are 2.4 1.8
accessed through http://climexp.knmi.nl 1940 1960 1980 2000 2020 1940 1960 1980 2000 2020
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Trentli

| | li
|!I ‘|I\|f‘
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Annual average rainfall depth (mm/d)

Do rainfall data of the Mediterranean suggest a climate
crisis at present and recent past?

1.9 11
All time maximum Hurst parameter: 0.79

18 1.8 mm (1972) g

1.7 E 1
s

1.6 o3
el

15 g
@ 09 | - -

14 > =

_____ = s |
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1.2 Annual s ’ Annual

e 3(0-year climatic ) N E e 3(0-year climatic
11 == == 10-year climatic All time minimum ._g e= = ]0-year climatic
B 1.14 mm (2000) & ; o
- - - - Linear trend -0.8%/decade 2 0.7 - - - — Linear trend 0%/decade
1! 7 |
1950 1960 1970 1980 1990 2000 2010 2020 1950 1960 1970 1980 1990 2000 2010 2020

Source of data: Daily gridded data from the European ERAS reanalysis, http://climexp.knmi.nl. The data are averages for the area 30°N-46°N, 6°W- 36°E;
the graphs are for land points only, but no essential difference appears if the sea points are also considered.
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Does rainfall frequency in the Mediterranean suggest
unprecedented droughts at present and recent past?

0.3
= All time maximum Hurst parameter: 0.64
E 0.26 (1956)
g 0.25
L
o
Vv
= 0.2
o
[}
©
£ -H-
g 0.15
<
=
3
Source of data: Daily gridded data from % 0.1
the European ERAS reanalysis, o '
http://climexp.knmi.nl. The data are o A |
averages for the area 30°N-46°N, 6°W- > nnua |
36°, from which the number of days with ¢ 0.05 Al ti . e 3(-year climatic
average rainfall depth < 0.1 mm was > Img minimum e=» = ]0-year climatic
calculated for each year; the graphs are et 0.04 (1972) - - - - Linear trend 2.2%/decade
for land points only, but no essential - o !
difference appears if the sea points are 1950 1960 1970 1980 1990 2000 2010 2020

also considered.
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Does maximum rainfall in the Mediterranean suggest
unprecedented intensities at present and recent past?

Source of data: Daily gridded data from
the European ERAS reanalysis,
http://climexp.knmi.nl. The data are
maxima for the area 30°N-46°N, 6°W-
36°E; the graphs are for land points
only, but no essential difference
appears if the sea points are also
considered.

Annual maximum rainfall depth (mm/d)
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Do long rainfall records in the Mediterranean suggest
unprecedented changes at present and recent past?

Daily and maximum daily precipitation (mm/d)
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Do climate models simulate the real-world rainfall
extremes?

m Tsaknias et al. (2016—multirejected paper) tested the reproduction of extreme events by three
climate models of the IPCC AR4 at 8 test sites in the Mediterranean which had long time series of
temperature and

precipitation. e - : e
) —~—ECHAMS | 5 - gg:—:a(\)ms
u They Concluded that _-200 :gglg&)a e e S e e} | 4200 -GsIRo,

model results are
irrelevant to reality
as they seriously AT A A
underestimate T D
extreme events. | |

1960 1970 1980 1990 qg30 1940 1950 1960 v 1970 1980 1990 2000
ear

Upper row: Daily annual z z
o A q = T 0
maximum precipitation at E £
Perpignan and Torrevieja; Lower 5 §
row: empirical distribution 2 " I —Historical .
7] o
A H @ " : 2 —GEV fitted to the observed
functions of the data in upper & —CEVfitedtothe observed | & A .
row. CSIRO CSIRO
. ~-CGCM3 10" S I S N A I |mCGCM3
10109 ' 10" 10° 10° Ret‘lo‘ od (T 10°
Source: Tsaknias et al. (2016) Return period (T) urn period (1)
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The Athens rainfall time

25 All time maximum Annual value
N 2.1 mm (1886) —(li\li‘ml‘eEic vlue {ﬂBO—yeer average)

1 1 = * Py "I=r1rerz\r/1t‘r'6§;tr‘wtl1‘.;’ sTio
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Greece -yl MN Lol Dt
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0.5
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40
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90) 16.6 mm (1986)
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The Thessaloniki rainfall
time series, the second
longest in Greece

m Thessaloniki shows climatic stability,
similar to Athens.

m In the last thirty years there has been
no remarkable climatic event.

m The largest annual rainfall in history
was recorded in the hydrological year
1918-19, and the smallest in 1984-85.

m The all-time high record of rainfall
depth, 115.9 mm/d, occurred in the
hydrological year 1985-86.
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Record high daily rainfall

occurrence in the 238
stations with longest
time series in Greece

m The distribution is as statistically
expected.

m An exception is the lack of a record
in the three-year period 1982-83 to
1984-85.

m There are no noticeable climatic
events.

Record daily rainfall (mm/d)
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Seeking “climatic trends” in annual maximum daily rainfall

m The graph shows linear
trends in the last ~60
years and differences

of two consecutive 30- *
year climatic periods. 15
m The probability g 10
distribution of positive £
and negative trends is S
& 0
balanced. 3
m Thereisanimpressive £
a Linear trend, actual
agreement Of the 10 r Climatic difference, actual
emplncal Va r|at|0ns 15 — — = Linear trend, statistically expected
W|th the theoretica”y — = = Climatic difference, statistically expected
20
expected for a 0 0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 1
stationary process. Non-exceedance probability
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Record high and record low annual . i
rainfall occurrence in the 62

stations with longest complete
daily time series in Greece

10 [ ]

m The 1950s and early 1960s were strongly wet.
m  About 1/3 of the high records of annual rainfall

S 2 ® ol o g C:) : 1 ;
occurred in a single hydrological year, 1962-63. 0 { m L J’ L? TO ﬁg% Ao HS%H@ °

Record value of annual average daily rainfall (mm/d)

1940 1950 1960 1970 1980 1990 2000 2010 2020
m The 20-year period centered in 1990 was o4 1 -
® Empirical value - hig
remarkably dry. 035 O~ Empircal valoe~Tow

Expected value

m In particular, about half of the low records of
annual rainfall occurred in the 5-year period
centered in 1990.
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m The other periods, including the current one, are os | !
climatically neutral. o L | o ) 5

m The entire picture suggests the presence of s S _“____:‘_E_ir_’\\_\i_\_::,./i

Hurst-Kolmogorov dynamics in time and space.
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Part E

- Two main properties of natural
behaviour

- Two main tools for modelling risk

https://www.itia.ntua.gr/2000/
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Property 1: Nature produces change at all time scales

The graph shows the longest instrumental record on Earth, that of the Roda Nilometer
(849 years of Nile’s water level) |

6 Nile River annual minimum

. water level (849 values)
E
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Data from Koutsoyiannis (2013), available at https://www.itia.ntua.gr/1351/; graph from Koutsoyiannis and lliopoulou
(2024); photos from Koutsoyiannis (2024), courtesy of Nikos Mamassis.
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Property 1 seen in modern
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Property 2: Extremes are worse than thought as regular

Probability plot (rainfall depth vs. return
period) for Bologna based on 19 426 daily
rainfall depths observed throughout 206 years.
The exponential distribution, F(x) =

exp(— x/u) has been thought to represent a
“regular” behaviour. However, the actual
distribution tail is heavier than exponential,1

typically of Pareto type, F(x) = (1 + E%)_E

Probability plot showing the
fitting of the Pareto-Burr-Feller
distribution,

F(x)

1

= <1 + (¢ Gf)_g on

the Bologna daily rainfall record
by the indicated methods,
assuming independence.

As in (b) but accounting for long-range
dependence (LRD). The curves of theoretical
and empirical K-moments are
indistinguishable for T > 1 year. The empirical
distribution from order statistics does not
consider dependence so that it is the same as
in (b).

Nb.: Accounting for LRD reduces the return
period estimate up to an order of magnitude.
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Tool 1, the climacogram: Quantifying change across time scales

m  Take the Nilometer time series, x;, X, ..., Xg4q, and calculate the sample estimate of variance y(1), where
the superscript (1) indicates time scale (1 year).

m  Form atime series at time scale 2 (years):
X, = (X + %,)/2, %, = (X3 4 X,)/2, oy Xa2a @) 1= (Xgg7 + Xgag)/2
and calculate the sample estimate of the variance y(2).

m  Repeat the same procedure and form a time series at time scale 3, 4, ... (years), up to scale 84 (1/10 of
the record length) and calculate the variances y(3), y(4),... y(84).

m  The climacogram is the function of the variance y(k) vs. scale k, typically plotted in logarithmic axes.

m If the time series x; represented a pure random process, the climacogram would be a straight line with
slope —1 (the proof is very easy).

m Inreal world processes, the slope is different from —1, designated as 2H — 2, where H is the so-called
Hurst parameter (0 < H < 1).

m  Thescaling law y(k) = y(1) / k> 2" defines the Hurst-Kolmogorov (HK) process.
m  High values of H (> 0.5) indicate enhanced change at large scales, else known as long-term persistence,

or strong clustering (grouping) of similar values. T ——— e —
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The climacogram of the
Nilometer time series

m The Hurst-Kolmogorov process seems
consistent with reality.

m The Hurst parameteris H = 0.85. (Similar H
values are estimated from the
simultaneous record of maximum water
levels and from the modern, 131-year, flow
record of the Nile flows at Aswan).

m The Hurst-Kolmogorov behaviour, seen in
the climacogram, indicates that:

@ long-term changes are more frequent
and intense than commonly perceived,
and

() future states are much more uncertain
and unpredictable on long time horizons
than implied by pure randomness.

The classical
statistical
estimator of
standard
deviation was
used, which
however is
biased for HK
processes

Bias
7/

Variance (m2)

0.1
1

Koutsoyiannis and Iliopoulou (2024)

Minimum water depth (m)
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Tool 2, the knowable moments (K-moments)

Intuitive definition: the K-moment of order p equals the expected value of the upper
or lower extreme of p independent stochastic variables x;,i = 1, ..., p, identical to x,
i.e.,

2 Upper K-moment: Ky = E[max(xy, x, ...,gp)].
—i

0 Lower K-moment: K, = E[min(&,&, ...,gp)].
Direct relationship to extremes, thanks to their definition.

Substitution of classical moments, which are unknowable (not determinable from
samples forp > 2 — 3).

Unbiased estimators (knowable even for very large orders, up to p = n, where n is
the sample size).

Capable of being assigned an empirical return period

Capable of taking account for the effect of (spatial and temporal) dependence in the
estimation of the return period. Koutsoyiannis (2019, 2024)
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Empirical K-moments as transformations of observations
m From an observed sample of size n, x(i,n),i =1,..,n, orderedln ascending o/r\der, we
can estimate n upper K-moments K; and n lower K-moments, Ei, with K; = El = U.

m The three series x; »), K, Ei are linearly equivalent; from any one of the three we can
calculate any other.
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Drought in
Athens:
Was it due
toa
“trend”,
possibly
suggesting
“climate
crisis”?

The historical time series
of runoff up to 1986/87
at one of the rivers
supplying Athens,
Boeoticos Kephisos.

A multi-year “trend” is
observed.

A similar “trend” in the
rainfall time series
explains the “trend” in
runoff.

Next was a shocking
drought.

Intense and persistent:
Mean flow less than half
compared to historical

average; duration 7 years.

Rainfall (mm)
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Handling the long-lasting drought in Athens

Close collaboration of (a) the National Technical University of Athens, (b) the Athens
Water Supply and Sewerage Company (EYDAP), and (c) The Ministry of Environment
and Public Works.

Understanding that droughts are regular natural events.

Proper modelling of the drought within a stochastic Hurst-Kolmogorov framework
(Koutsoyiannis, 2011).

Development of a sophisticated decision support system (Koutsoyiannis et al., 2003).

Transparency and veritable information to the population of Athens, and its
engagement in the management of the crisis.

Design and implementation of an increasing block rate pricing structure, combined
with water conservation legislation measures (Xenos et al., 2002).

Increased water supply through technological measures (see next slide).
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Results of the crisis management

m Not even in one house in not even one day throughout this 7-year period
was there a water supply failure due to the drought.

m The water consumption of Athens was decreased by 1/3.
m  New groundwater resources were exploited.

m In 1.5 year, a new tunnel was constructed and
operated, diverting water from the Evinos
River to Athens.

m |n another 4 years, the new dam on the Evinos
River was completed, thus increasing the water
quantity transferred to Athens.

m  Now Athens has a perfect water supply system. §
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REj ECtEd a p p roac h 1 . Root mean square errors (in m3/s) for the two validation pe.riods

for the linear-trend model and the constant-mean model, fitted

to the calibration period
Trend based ST BE ETT
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of a constant average (see table).

Boeoticos Kephisos runoff and projected trend.

m According to the “trend model”, the 80 T Monthly
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== &= Extrapolated trend
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. . . o of the drought
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c 40
2020 and 2021. 2 NI ||
. . v 30 - | i . | -
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D. Koutsoyiannis & T. lliopoulou, A cool look at hydroclimatic risk 42



Rejected approach 2: Based on climate-models

m  Outputs from 3 climate models for 2 future scenarios were examined (Koutsoyiannis et al., 2007).

m The original climate model outputs (not shown) had no relation to reality (highly negative
efficiencies at the annual time scale and above).

m After adaptations (or “cosmetic lifting”, also known as “downscaling”) the climate model outputs
improved with respect to reality, thus achieving about zero efficiencies at the annual time scale.

m  For the past, despite adaptations, 400

.. . . — —e— MP0O1GGO1 ---o - MP01GSO01
the proximity of models with reality £ 4 CCCma_A2 - -a-- CCCma_B2
. - —e— HADCM3 A2 ---o--- HADCM3 B2
was not satlsfactory. £ 300 { | —=— Obsened —0— Point forecast
. 5 MCCL/HK — — MCCL/classical
m For the future, the runoff obtained by &

adapted climate models was too stable.

m  Conclusion: It is dangerous (too risky)

to use climate model projections.
100 A

Boeoticos Kephisos runoff produced with
downscaled climate model outputs, superimposed
to Monte Carlo confidence limits (MCCL) produced 0 ' ' '

with HK statistics under stationarity. 1930 1960 1990 2020 y 2050
ear

Source of graph and analyses: Koutsoyiannis et al. (2007).
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In the 1990s people were not moro

. e o
The Athens s

ns...

water supply
system,
completed
during the
long-lasting
drought
around 1990.
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Approaches to the hydrologic design of hydraulic structures

m The estimation of design rainfall for hydraulic projects is typically based on the probabilistic
analysis of observed rainfall depths (h) or (time-averaged) intensities (x), leading to the
development of the intensity—timescale—return period relationships (also called ombrian
relationships, or misnamed intensity-duration-frequency relationships, where duration and
frequency are meant to be time scale (k) and return period (T') respectively).

m For large-scale projects, especially dams, the method of Probable Maximum Precipitation (PMP)
used to dominate.

m For the past 25 years, it has been argued that the PMP concept is unscientific and that only
probabilistic methods are scientifically valid (e.g., Koutsoyiannis, 1999, 2007).

m Recently, the new report by the American Committee on Modernizing Probable Maximum
Precipitation Estimation (National Academies of Sciences, 2024) has essentially abolished PMP,
retaining only the name. This is reflected in the new definition it provides:

o “Probable Maximum Precipitation — the precipitation depth for a specific duration, location,
and geographical area, such as a catchment, with an extremely low annual exceedance
probability, for a given climate period.”

0 “The extremely low annual exceedance probabilities range from 107* to 1077”.
m Therefore, the modern definition of the PMP method is in essence a probabilistic one.
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A scientific approach to extreme rainfall: The ombrian model

m  An ombrian model (from the Greek ombros, meaning rainfall) describes the stochastic properties
of the distribution of rainfall at any time scale.

m A stochastic ombrian model, theoretically consistent, detailed and simple, can readily be used to
infer the ombrian relationships.

m  For small time scales a Pareto distribution with discontinuity at the origin is assumed:
-1/¢
K () =1 — pW X
F®(x) = 1— P (1 + fm)
m Itis shown by theoretical reasoning (Koutsoyiannis, 2024) that the tail index ¢ is constant, while
the probability wet, Pl(k), and the state scale parameter, A(k), are functions of the time scale k.

m For large time scales the Pareto-Burr-Feller (PBF) distribution is assumed:

o © NG -1/&
F (X)=1—P1 1+€(m)

m Inthis case a new parameter {(k) is introduced, which is again a function of time scale. The
Pareto distribution is a special case of PFB for {(k) = 1. In contrast to the Pareto distribution,
whose density is a decreasing function of x, the PBF tends to be bell-shaped for increasing { (k).
Here we sacrifice the constancy of tail index (= £/{(k)) to assure simplicity and ergodicity.
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New theoretically consistent framework for modeling
rainfall intensity for any time scale

The recent methodological framework
(Koutsoyiannis, 2024) enables the
construction of ombrian curves across
any time scale—Ilarge or small.

The example shown is for Bologna, Italy
(206 years of data), covering time scales
from 1 hour to 16 years.

This approach requires original high-
resolution data and becomes more
complex when aiming for generalization
over any temporal scale.

Koutsoyiannis (2024)

100
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The simplified framework

m  Under some simplifying assumptions the rainfall intensity x for small timescales k (of the order of
minutes to a few days) and return period T is given by the following relationships, resulting from
the full-scale rainfall model:

o for return period estimated from a full series or of rainfall exceedances over threshold:

b(T T/B) —1
X = (7) = )L( /B) , E>0 h Theoretically equivalent
a(k) (1+k/a)" for all T and for the
o from series of annual maxima (where 4 =1 year): } same pé}ramﬁter values;
. . & giving virtually same
x = /1( (8/4)In(1 — A/T)) 1 §>0 J values for T > 10 years

(1+k/a)n ’
m  The simplified model parameters are:

= A acharacteristic rainfall intensity (scale parameter) in units of x (e.g., mm/h);

= [ atime parameter, related to the mean distance of wet periods, in units 5 parameters

of the return period (e.g., years); } with physical/
= o atimescale parameter in units of timescale (e.g., h) with a > 0; mathematical
= 7 adimensionless parameter, expressing persistence, with 0 < n < 1; / meaning

= & > 0 the tail index of the process distribution.
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Greece’s rainfall network _

m After extensive nationwide data 5280 e
collection, an initial set of 940 stations 74 R 5
was compiled. 39, \ -
. . . i e w
m Following quality control, the final el : ;
dataset includes 783 stations across y B e A .
651 locations, including: : L e N | 3
. : " & B, TEEmeY
o 503 daily rain gauges (130 co- g {, 7 i Mo =
located with rain recorders); ] o | et T
. . 5 ‘ ‘; : S -
0 280 sub-daily rain recorders. : RS B
. . s 'R LI ¥ L
m The longest available record (in i ‘ f :
Athens) spans the period from 1860t0 _| . creme R
2022 T * -
-- Ol l 50 100 km
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Non-conventional rainfall data

U Both data sets (especially the IMERG) underestimate
the highest rainfall depths (as seen in the example for
the station of Karditsa) and proved not appropriate for
the construction of ombrian curves.

O From satellite-based information, we investigated

the usefulness of the IMERG data set (half hourly
time step at 0.1° spatial resolution, period 2000-
today),

O From the reanalysis information we investigated the

Daily rainfall depth (mm)

usefulness of the ERAS data set (daily time step at
0.25° spatial resolution; period 1950-today).

@ Rain gauge, empirical

Rain gauge, theoretical
+  IMERG, empirical
----- IMERG, theoretical

100 i

A ERAS, empirical

== == FRAS, theoretical

0.01 0.1 1 10 100
Return period (years)
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Methodology for regionalization over the Greek Territory

— — Ny
@At-snte independent estimation of parameters %;//,j’”%/
o using Koutsoyiannis’ (2024) new framework for rainfall intensity-timescale-return Z

period relationships (else known as ombrian curves)

@ Evaluation of spatial variability of parameters:

X/

** mostly random patterns % mostly systematic patterns

@ Identification of common parameter values Regionalization using spatial models
o using simultaneous optimization methods o Inverse Distance Weighted (IDW) .
o and stochastic simulations o Bilinear surface smoothing (BSS) | Kﬁ\ -

o Ordjnary Kriging (OK)

FE)
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Final product

The following generalized form of ombrian curves is derived for rainfall intensity x (mm/h), return period T (years)
and temporal scale k (h): (T/B )5 _1

X = A A R T

with the following five parameters:

= timescale parameter a =0.18 h

= tail index £=0.18,

» three spatially varying parameters n,.[—], B. (years)and A, (mm/h) available at a 5 km grid.
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Mapping characteristic design rainfall depths
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Rainfall depth maps for flood resilience assessment

Spatial rainfall estimates are easily derived for timescales up to a few days and any return period.
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Design rainfall at the catchment scale

Following the new methodology, design rainfall
estimates for any region or catchment in Greece
are derived using:

. the two constant parameters

» three spatially varying parameters,
calculated as a weighted average of the grid
points within the area.

K ]341-350

| 35.1-36.0 = _J
=35.1-37_o ‘ fimny r K\

- - CatchmentA=36.30

A
285-34.0

B 371 -406
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Improvements in the spatial representation of design rainfall

m Thisis the first time a geographically distributed design rainfall model is available for the entire
Greek territory with a 5 km spatial resolution.

m Previous design rainfall relationships were estimated on a point basis (2016) necessitating post-
processing and further interpolation assumptions to be applied on the regional scale.
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{  Energyand
Environment, 2016)
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Concluding remarks

Hydrological data do not support the political doctrine of climate crisis.

Change is Nature’s style. It occurs at all times and all time scales, and is unpredictable.
In the past, reason and adaptation have been the humans’ response to change.

If we return to reason, this will also be the case in the future.

Technology has augmented the human ability of adaptation. The results have been
spectacular in the last century.

Human adaptation requires human intelligence. In contrast, moronity results in
devastation.

Human intelligence has produced the field of probability/stochastics to deal with problems
that involve uncertainty and risk.

Recent advances in stochastics include consistent treating of extremes under temporal
and spatial dependence, and changing climate, without resorting to inaccurate climate
models.

Powerful stochastic tools, easy to apply for engineering tasks, have been developed and
showcased in large areas (including the entire territory of Greece).

They can readily be applied to other countries or parts thereof.
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Additional
information
in the book
(Edition 4)

Freein
open access

//www.itia.ntua.gr/2000/

https

Stochastics of Hydroclimatic Extremes is a real monument in stochastics! It is a summary of the
lifetime dedication by Demetris Koutsoyiannis to the science of environmental extremes, itis a
demonstration of the value of stochastics itself to gain a better understanding of why and how
extremes happen. The perspective adopted in the book is thal of a scientist who is able Lo cross and
transform disciplines by proposing an innovative synthesis of knowledge. This book is indeed
presenting new concepts, new theoretical interpretations and new apportunities for engineering
design, for the sake of mitigating the impact of extremes and adapting modern society to
environmental variability.

Itis fascinating that the book is self-produced and openly available to readers. Like any self-produced
creation of the humankind, this book has a unique and independent history that is rooted in the
intimate personality of the author. It is a creation that does not require to adhere to any format

other than those suggested by the author's vision and creativity. For this reason, its value is
incommensurably high, it is a real Cool Look Gt Risk as Demetris says.

I believe time will highligh hastics of llydroclimatic Extremes as a transforming masterpiece
which will bring illuminating ideas to the reader.

Alberto Montanari
Head of the Dept. of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna
President of the European Geosciences Union

This is a book that could not only transform your career, butalso the entire fields of environmental
statistics and stochastic hydrology. This seminal contribution Is not llke other books you have read
which tend to summarize existing knowledge. Rather, it cond; ledge in short order
and spends nearly all its time on new knuwledge much of it never belure pubhshed communicating
effectively both the theoretical and practical aspects of analysis of a wide range of hydroclimatic
extremes. The style of presentation jtself is novel and compelling, so that [ could not resist reading it
from cover to caver.

Ilyou think you understand how to apply probability and statistics to predict uture extreme events,
think again, because very quickly you will be convinced that extremes arise from spatial and temporal
stochastic processes, and are neither independent nor identically distributed (iid) events, nor do
most of our common probability distributions used for flood and drought frequency analysis capture
the type of thick tails which are so convincingly documented in this book.

I predict that many of the novel concepts, ples and techni i duced here, many for Lthe
first time, will find their way into widespread acceptance in hydmdimamlngy aver time, Foremost,
the reader will appreclate the value of viewing extreme cvents as real of stochastic pr

rather than a series of iid annual maxima/minima. The cl gram provides a new window into the
structure of stochastic processes and may be more fund tal than the correlog I can't wait to
test oul the so-called Pareto-Burr-Feller distribution and the novel k abl (K

which appear to have clear advantages over ordinary moments for describing distribution tails.

Itis remarkable that after a long carcer in hydrology, after reading this book, [ gained many new
insights into common statistical methods as well as new methods documented here for the first time.
How | wish my career were just beginning, and thus could have applied all the wonderful ideas and
methods in this book during my career. This is literally a treasure for young scholars interested in the
probabilistic behaviour of hydroclimatic extremes,

' Richard M. Vogel
1, Dept. Civil and Envi t ing, Tufts Univer
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