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1. General
1.1, General situation of hydrologic data in Greece

The general situation of the hydrological data in Greece may be summarized as follows:

n The density or rain gauge network is satisfactory for operational purposes (in agreement
with WMO standards).
] The flow measurement stations network depends on the specific needs of Greek

authorities, and is mainly determined by planned works.

n There are several authorities responsible to perform hydrological measurements and to
keep hydrological data files. The coordination between the authorities is not satisfactory.

n The reliability of measurements and data is poor in some cases, and better in other.

= The data in their majority are not processed. Charts of autographic instruments are not
digitized nor tabulated.

» Although data exist, all the authorities with the exception of the Public Power Corporation

(PPC), do not establish stage-discharge relationships for the river gauge stations. The most
usual situation in the Greek rivers is that stage-discharge relationships are very unstable.

n Untill now all the work for data acquisition and preprocessing is performed manually.
Data files are not yet stored in computers.

] Because of the above, the work required for any hydrological investigation is significantly
increased due to the need for construction of reliable data sets.

1.2. The study area

The Evinos River Basin was selected among 3 possible basins as a study area for the following
reasons:

The Evinos River Basin is situated in the West Sterea Hellas Water District and is sur-
rounded by Panetolikon Mountain (N-NW), Vardoussia Mountains (NE), the Naupactus’ Moun-
tains (SE) and Arakinthos Mountain (W). The surrounding basins are: the Mornos River Basin
from the East, the Sperchios River Basin from NE and from the North and West the Acheloos and
Lake Trichonis basins (see Fig. 1). The most reliable stage recording station is located atPoros
Riganiou with an upstream watershed area of 884 km? while the total basm area is 1129 km2. An
additional stage recorder has recently been installed at Neochori (349 km? ) near the site of the
planned Ag. Dimitrios Dam which will serve the Athens water supply.

The elevations along the main water course range from 150 m.a.s.l. at Poros Riganiou to
1680 m.a.s.l. at the most upstream end, while the mean ground elevation upstream Poros Riganiou
is 990 m. The main tributaries are: Kotsalos in the East and Fidakia and Gidomandritis in the
West. Two basic geological formations prevail: limestone (51.4 %) especially in the central zone
and flysch (48.6%). The mean annual flow at Poros Riganiou amounts 920 mm whereas the mean
annual precipitation is 1463 mm (upstream the Perista dam site).




1.3 Discharge data

The water level is monitored at Poros Riganiou by the Public Power Corporation (PPC). There
are 3 series of staff gauges and one float-type stage recorder while current metering is carried out
with a frequency of 1/month. Continuous series of water level data together with current metering
data are available for two periods: 28-4-61 to 17-11-63 (18 measurements) and 14-10-68 to 1987
(339 measurements).

Construction of the rating curves for the above periods has been done by the research
group. This involves the following steps:

(a)  Plotting of H-Q pairs on a log-log paper (H = water level, Q = discharge).

(b)  Separating the points into subgroups that follow a relatively smooth line. This leads to
separate rating curves for periods of application ranging from 1 to 7 months.

(c) Attaching to all identified rating curves the relatively rare data with large values of H and
Q. 4

(d)  Extrapolation of the rating curves through hydraulic methods based on approximate field
data.

(e) Expression and storage of each rating curve as a series of a limited number of points on a
log-log scale (30 points), thus avoiding restricting analytical expressions.

Based on the above method the research group identified 2 rating curves for the period
1961-63 and 15 for the period 1968-1987 in the framework of a project for the Athens Water
Supply system study (Koutsoyiannis & Xanthopoulos, 1990). In order to be more realistic, one
must also consider the following methodological improvements in order to increase the reliability
of the dischagre data:

(a)  Cross section field measurements and more accurate reconstruction of stage-discarge
curves.

(b)  Water level data correction to account for the discrepancies between measured and es-
timated discharges.

It is worthy to mentlon the most important recorded floods: on 3-12-76 the discharge rose
from 400 m / s to 1676 m / s within 6 hour while on 30-12-70 the discharge increased from a few
m /s to 1351 m /s
1.4 Rainfall data

Three rainfall recording gauges are available in the broader area of the Evinos River Basin, as
shown in the following table

Table 1. Recording raingauges in the Evinos River Basin

Station Name Code Period of operation Elevation (m a.s.l.) Coordinates (p, A)

Drymonas 1971- 900 38:38 21:40
Krikelo 1959- 1120 38:48 21:51
Aniada 1959- 1060 38:9 21:47

All stations are operated by the Public Power Corporation (PPC) and they are considered
reliable. Only Drimonas is located inside the Evinos basin. The raw hourly data were extracted
from the instrument tapes for a 20-year period (1970-1990). The data were entered into a regional




database. The extracted hourly time series were continous in time with very short periods of miss-
ing data. Interruptions of the gauge operation correspond to winter periods with frost or to
periods with malfunctions of the instruments. Generally speaking the data are considered reliable.
The data reliability was tested by constructing comparison plots of the three rainfall series. Some
of these plots are depicted in Figures 2,3 and 4.

In addition to the hourly rainfall data, daily rainfall depths from non-recording raingauges
were used. These data were collected and entered into a database within the framework of
another project. The characteristics of the above gauges together with the period of operation are
presented in the following table

Table 2 Non-recording Rain gauges in the Evinos River Basin.

Station Name Code Period of operation Elevation (ma.s.l.) Coordinates (¢, A)
Analipsi 405  1950- 620 - 38:30 21:42
Poros Righaniou 477  1960- 150 38:30 21:45
Drymonas 424  1970- 900 38:38 21:40
Platanos 475 1950- 900 38:36 21:47
Grammeni Oxia 420  1950- 1160 38:44 22:00
Grighorio 421 1951-1984 1000 38:38 21:59
Arachova 409  1960- 960 38:41 21:52
1.5 Meteorological data

Four station thermometers for air temperature measuremets exist within the Evinos River Basin.
An estimate for mean daily temerature can be derived from these measurements. The stations
together with their codes as shown in Fig. 1, are presented in the following Table.

Table 3 Temperature gauges in the Evinos River Basin

Station Name Code Period of operation  Elevation (m a.s.l.) Coordinates (¢, A)

Arachova 409 " 1973- 960 38:41 21:52
Poros Righaniou 477  1973-82 150 38:30 21:45
Drymonas 424  1973- 900 38:38 21:40
Grammeni Oxia 420  1969- 1160 38:44 22:00

The data from Grammeni Oxia are not considered by the Public Power Corporation (PPC) to be
reliable. As a result, the other 3 stations were used in the AFORISM project. The areal daily
mean temperature for the whole basin was calculated as follows: Estimates of the daily mean tem-
perature at the average elevation of the basin are made first based on the point daily mean tem-
perature from each station and the observed lapse rate. Then the arithmetic mean of these es-
timates is calculated.




2. Data preparation for rainfall-runoff analysis
2.1 Continuous series

A continuous series of hydrological variables was constructed in order to test different rainfall-
runoff models. This series covers a 2-year period from October 1979 to September 1981. This
period was chosen for the following reasons: (i) it contains significant flood events which allow the
fast response components of any rainfall-runoff model to be activated and (ii) there is no sig-
nificant snowfall. The last condition allows us to test different models without the inclusion of a
snowmelt submodel. The data set consists of the following variables:

- Hourly areal rainfall depth in mm
- Hourly discharge in m”/s
- Daily areal temperature in °C.

Some observed hydrographs and hyetographs on an hourly basis are shown in figures 5 and 6 for
1-month periods.

2.2 Event-based data

A set with event-type data was constructed in order to calibrate event-type rainfall-runoff models.
Flood events covering the period 1974-1988 were selected based on the following criteria: (i) there
exists a significant variation in measured water levels within a short period of time (ii) there is no
significant snowfall recorded in the raingauges; (this was the reason we have excluded all late
winter floods) and (iii) there are no missing data or any other problems in the rainfall records.

Finally, 28 flood events were chosen. These events are presented in the following table.

Table 3 Flood events selected in the Evinos River Basin

Event number Duration (hours)  Start

1 120 1973-12-14
2 144 1974-10-20
3 216 1974-10-27
4 96 1975-12-18
5 120 1976-12-02
6 96 1976-12-06
7 144 1976-10-31
8 120 1978-12-13
9 96 1979-01-01
10 144 1979-01-11
11 240 1979-01-24
12 216 1980-12-04
13 120 1980-11-09
14 168 1980-11-28
15 72 1981-12-07
16 144 1981-12-12
17 192 1981-12-22
18 72 1981-10-27
19 168 1982-12-10

[\
o

96 1982-12-17




Table 3 Flood events selected in the Evinos River Basin (Continued)

Event number Duration (hours)  Start

21 192 1982-11-14
22 96 1984-01-10
23 120 1984-11-18
24 192 1985-11-01
25 168 1985-11-19
26 168 1985-11-25
27 120 1988-11-20
28 120 1988-11-24

The observed hydrographs for 4 flood events are depicted in Figures 7 and 8. The corresponding
hyetographs of areal rainfall are also shown in the same Figures.

3. Data preparation for the analysis of intense rainfall
3.1 Criteria for the identification of isolated storms

Two different criteria were used to seperate the rainfall events, based on either the meteorologi-
cal conditions (succession of weather types) or on the statistical properties of the rainfall process
(time duration between events). To develop and apply the first criterion it is necessary to examine
weather maps, determine the successive weather types and seperate the rainfall produced by each
type. The second criterion it is sufficient to examine the rainfall process in time, find the common
dry period in the different rain recorders and consider a threshold for the seperation time be-
tween two events. A value of 8-12 hours was considered as a reasonable estimate of this threshold
for the study area. Comparison plots of the rainfall records in time for different stations such as
the ones in Figures 2-4 are helpful for the identification of seperate storm events.

3.2 Criteria for the selection of intense rainfall event

From the continuous records of rainfall the most severe events were chosen to be studied in
detail. The selection of those intense rainfall events was made by using threshold levels for both
the daily and hourly depths. These threshold levels were selected so as to have a sufficient number
of events. The selected values of the levels were 25 and 7 mm for the daily and hourly depths
respectively. Based on those values, a record of more than 250 events was extracted from a 20 year
period for three rain recorder stations in Evinos River Basin.

3.3 Classification of events by weather type

A classification introduced by Maheras [1982] for weather types in Greece was initially used.
Maheras examined weather maps at the surface and at the 500 mb level and defined five an-
ticyclonic, six cyclonic, two mixed and three special weather types that affect the East Medditer-
ranian territory. The orbits of cyclones and anticyclones, the place of their genesis and the
rrieteorological conditions at the 500 mb levels were the main characteristics for weather type
definitions. He also made a calendar of the weather type of each day for a thirty year period
(1960 - 1990). Two of the above cyclonic weather types (SW1, NW1) and one special weather type




(DOR) produce the main amount of rainfall in Greece. The other four cyclonic types produce
rainfall in smaller amounts. Using this calendar the events of the constructed record of the Evinos
River Basin were classified as follows:

SW1 33%
NW1 28%
w1l  10%
w2 5%
SW2 8%
NW2 8%
DOR 8%

More precice classification is scheduled for the future in order to include the action of other
meteorological patterns such as fronts, sectors and air mass movements.
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Comparison plots for hourly point rainfall intensities
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Comparison plots for hourly point rainfall intensities
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Comparison plots for hourly point rainfall intensities
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Fig. 5 Hourly rainfall-runoff data on a continuous time basis
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Fig. 6 Hourly rainfall-runoff data on a continuous time basis
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Hourly rainfall-runoff data on an event basis
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Hourly rainfall-runoff data on an event basis
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1. INTRODUCTION

Modern flood forecasting systems require, among other components, reliable and accurate
rainfall-runoff models. The identification of these models necessitates high quality and
adequate quantity data. The problem of data adequacy becomes more severe in southern
European countries where the establishment of modern hydrologic networks has had a
considerable delay. The existence of recording devices cannot be guaranteed in many river
basins. Inversely, one can easily find a rather huge amount of daily data from non-
recording devices e.g. staff readings. The calibration of any rainfall-runoff model at
early stages of the forecasting system operation has to be based on a very short record
coming from a newly built data collection system and ignore the old data that seem
inadequate. The problem under investigation is to examine the possibility of extracting
information from daily data and using it within a short time step rainfall-runoff model.
We expect that this extra information may enhance the performance of the model.

Suppose that we need hourly data for our rainfall-runoff model. We may conceive the

following framework for model testing:

1. Calibratiion of an hourly rainfall-runoff model on a short continuous-time data
record (record 1).

2. Verification of the same hourly rainfall-runoff model on a short continuous-time
data record (record 2).

3. Calibration of a daily rainfall-runoff model, having the same structure with the
hourly model, on a relatively long continuous-time data record (record 3).

4. Verification of the above daily rainfall-runoff model on a relatively long
continuous-time data record (record 4).

5. Use, within the hourly model, of some parameters of the daily model either directly
or after transformation and verification on record 2. |
Comparison of results

Extension to other models.

We have chosen SACRAMENTO model (Burnash et al., 1973) as the first model to test because
this model has been applied widely and has inspired many other models. Also, it has been
systematically compared to other models (see Franchini and Pacciani, 1989, 1991). The
behavior of the model concerning its identifiability has also been extensively studied
(Gupta and Sorooshian, 1981, Sorooshian and Gupta, 1983a, Sorooshian and Gupta, 1983b,
Gupta and Sorooshian, 1985, Sorooshian and Gupta, 1985). In this report we present results




on the calibration and validation of this model for daily data of a Greek basin. This work
corresponds to steps 3 and 4 described above. Note that these steps are totally
independent from steps 1 and 2.

2. DESCRIPTION OF THE MODEL

The structure of the SACRAMENTO model is shown in Fig. 1. The basin’s soil consist of two
zones: the Upper Zone and the Lower Zone. Each zone has a tension water storage and a free
water storage. The free water storage of the Lower Zone is further subdivided into two
storages: the primary and the supplementary.

The area of the basin is split into two parts: the first which is impervious and the
second which is pervious. Any precipitation reaching the impervious part is transformed to
direct runoff. Precipitation on the pervious part of the basin follows a rather complex
route through the 5 storage elements of the model. First, the Upper Tension Water Storage
is filled and subsequently the excess water is accumulated in the Upper Zone Free Water
storage. A portion of the content of the latter reservoir is depleted every time step thus
producing interflow; if, in addition, the reservoir capacity is exceeded, excess water
forms surface runoff.

Water from the Upper Zone Free Water percolates into the lower zones before interflow and
surface runoff production. The rate of percolation depends on the water contents of both
the Upper and the Lower Zone storages. The model introduces the concept of percolation
demand of the Lower Zone LZPD. The minimum demand PBASE corresponds to the
saturation of the Lower Zone when it equals the rate of depletion of the Lower Zone Free
Water reservoirs. Analytically we can write

PBASE = (LZFSM x LZSK) + (LZFPM x LZPK) (1)

where
LZFPM and LZFSM are the capacities of the Primary and Supplementary Lower
Zone Free Water respectively, and
LZPK and LZSK are the depletion coefficients of the Primary and Supplementary

Lower Zone Free Water respectively.

During an extremely dry period when the Lower Zone storages are entirely empty we admit a




@IREAL PRECIPITATION]

SPIRATION

[EVAPOTRAN-

l

UPPER
ZONE

«—| TENSION

WATER
STORAGE

UPPER
ZONE
FREE

WATER
STORAGE

>|DIRECT RUNOFF]

|

[PERCOLATION)

EVAPOTRAN-
SPIRATION

W

}

=

LOWER
ZONE
TENSION
WATER
STORAGE

LOWER
ZONE
SUPPLE-
MENTARY
FREE
WATER
STORAGE

2

[ SURFACE |

l

RUNOFF

INTERFLOW

J

N\

TOTAL
RUNOFF

OUTFLOW

[SUBSURFACE]

Figure 1. Schematic presentation of the SACRAMENTO model




percolation rate Z times greater than PBASE that is PBASE(1+2). Generally speaking
percolation demand is obtained by a non-linear interpolation between the above extreme
values

ZL Z deficit
LZPD = PBASE[ 1+ Z f(o——ot Zone denielts ] )
‘ Z Lower Zone capacities
The function fis given by
P ( Z Lower Zone deficits ] REXP 3
Z Lower Zone capacities ®)

where REXP is a model parameter.

The actual percolation rate PERC depends also on the availability of water in the Upper
Zone Free water reservoir as follows

UZFWC
PERC = LZPD ——_ (4)
UZFWM :

The water volume which percolates, first fills tension water requirements before it
appears as free water in the two Lower Zone Free water storages. This ideal behavior would
indeed correspond to a vertical soil column in a laboratory. Spatial variability of soil
properties and precipitation inputs in the catchment scale cause a deviation from the
above behavior. The model assumes that a portion PFREE of the percolating water volume
enters directly the Lower Zone Free Water reservoirs. Distribution of water between the
Lower Zone Free Water storages is made according to their relative deficits. The model
does not permit the relative deficit (content/capacity) of the Lower Zone Tension Water
storage to be greater than that of the Lower Zone Free Water storages. Should this happen,
a transfer of water into the tension storage takes place in order to balance the
difference of relative deficits. A portion of free water defined as the parameter SAVED is

exempted from this transfer.
The groundwater flow QBASE from Lower Zone Free Water reservoirs is given by

QBASE = (LZFSC x LZSK) + (LZFPC x LZPK) ()




where

LZFPCand LZFSC are the water contents of the Primaryand Supplementary Lower Zone
Free Water respectively.

The model accounts also for the subsurface outflow which is not observed at the basin’s
outlet. The parameter SIDE is defined to be the ratio of the outflow to the actually
observed baseflow at the outlet.

The runoff appears in the following 5 forms

= Direct runoff from permanently or provisionally impervious parts of the basin.

= Surface runoff from Upper Zone Free Water storage when precipitation rate exceeds
the sum of the rates of percolation and interflow.

= Interflow due to lateral drainage of the Upper Zone Free Water storage.

= Supplementary baseflow.

= Primary baseflow.

Evaporation from areas covered by water and riparian vegetation occurs at its potential
rate

E; = ED SARVA (6)

where
SARVA is the portion of the basin covered by water or riparian vegetation,
Ej; is evapotranspiration, and

ED is potential evapotranspiration.

The evapotranspiration from Upper Zone Tension Water storage is given by

UZTWC
E, = ED ——— Q)
UZTWM

where
E, is evapotranspiration from the upper zone,
UZTWC is the soil moisture content of the upper zone,
UZTWM is the maximum soil moisture content of the upper zone, and
ED is potential evapotranspiration




The evapotranspiration demand from the Lower Zone Tension Water storage is equal to the

remaining unsatisfied evapotranspiration demand ED - E,;. The actual evapotranspiration
from the lower zone is

LZTWC .
JUZTWM+LZTWM ®)

E2 = (ED - El

where E, is evapotranspiration from the lower zone,

LZTWC is the content of the Lower Zone Tension Water storage, and

LZTWM is the capacity of the Lower Zone Tension Water storage.
In the next paragraphs we present the model inputs, the model parameters and other
intermediate variables.

a. Inputs of the model

al. Time series of daily rainfall depths (mm)

a2. Time series of daily potential evapotranspiration values (mm).
b. Parameters of the model

bl. Percentage of basin’s area which is permanently impervious PCTIM

b2. Maximum percentage of basin’s area which can be provisionally impervious ADIMP

b3 Percentage of basin’s area covered by water and riparian vegetation SARVA

bd. Capacity of the Upper Zone Tension Water storage UZTWM (mm)

b5. Capacity of the Upper Zone Free Water storage UZFWM (mm)

b6. Depletion coefficient of the Upper Zone Free Water storage UZK (% of the
content per time step)

b7. Capacity of the Lower Zone Tension Water storage LZTWM (mm)

b8. Capacity of the Upper Zone Primary Free Water storage LZFPM (mm)

b9. Capacity of the Upper Zone Supplementary Free Water storage LZFSM (mm)

b10. Depletion coefficient of the Lower Zone Primary Free Water storage LZPK (% of
the content per time step)

b1l. Depletion coefficient of the Lower Zone Primary Free Water storage LZSK (% of
the content per time step)

b12. Percentage of increase of percolation demand from saturation to dryness Z

b13. Exponent of equation (3), REXP




bl4. Percentage of percolating water entering directly lower zone free water
storages PFREE

b15. Percentage of lower zone free water not available for evapotranspiration SAVED

b16. Ratio of subsurface outflow or loss to the observed base flow SIDE

C. Intermediate variables

cl. Percentage of impervious areas of the basin ACTIM

c2. Content of the Upper Zone Tension Water storage UZTWC (mm)

c3. Content of the Upper Zone Free Water storage UZFWC (mm)

c4. Content of the Lower Zone Tension Water storage LZTWC (mm)

¢5. Content of the Lower Zone Primary Free Water storage LZFPC (mm)

c6. Content of the Lower Zone Supplementary Free Water storage LZFSC (mm)

Outputs of the model are

- Time series of total runoff

- Time series of runoff components

- Time series of intermediate variables

- Mean water balance for the whole period of application
- Numerical criteria on model performance

The numerical criteria of model’s performance that have been implemented are:

Percentage of explained variance EV given by

Vare
EV =1 - 9
VarQ

where VarQ id the variance of measured discharge described below, and
Vare is the variance of the model residuals described below.
Vare is given by

Z! -

N
vare = - T ((QrQC)-(@-QC) )? (10)
i=1

where Q; and QC; are respectively the measured and estimated discharge for time i,
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Qand QC are respectively the mean values of the measured and estimated discharge,
and N is the length of the period of the model’s application.
VarQ is given by

N
1 =2
VarQ = N z (QrQ) (11
i=1
Efficiency of the model EFF, given by
EFF = 1- 258 12
~ VarQ (12

where MSE is the mean square error of the model residuals estimated by

N
1 2
MSE = N .Zl(Qi'QCi) (13)
i=

3. RESULTS

The SACRAMENTO model was applied to a 9-year continuous series of rainfall, runoff and
evaporation data. The Evinos River Basin, lying in the West Sterea Hellas Water District
(see Fig. 2) was the test basin. Water level data at Poros Righaniou were collected,
digitized and processed to give reliable discharges. The watershed area is 884 km?2 with an
average elevation of +990 m. On the map of Fig. 2 we show the 6 rain gauges and their
codes used in our study: Poros Righaniou (414), Drymonas (424), Platanos (475), Arachova
(409), Analipsi (405), Grighorio (421). The mean monthly temperatures were calculated
based on 3 thermometers at the stations Arachova, Drymonas and Poros Righaniou. The model
was calibrated manually based on the 1980-81 to 1981-82 period and it was validated on the
rest of the available data as shown in Table 1.




Table 1. Performance criteria of the SACRAMENTO model

Period |[EV EFF

1980-82(0.750 0.749
1977-80{0.733 0.733
1982-8610.705 0.705
1977-86|0.728 0.728

Comparison plots of the estimated and measured daily discharges for 1-month periods are
shown in Figures 3, 4 and 5.
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4. FUTURE RESEARCH

Testing of the SACRAMENTO model within the framework proposed in section 1 will be
completed. The hourly version of the model will be calibrated based on a continuous-time
data set of the Evinos River Basin at Poros Righaniou. The calibration will involve the
following steps:

1. Calibration of the Transfer Function or Unit Hydrograph indepehdently of the runoff
production model. The calibration will be performed by the FDTF method (Guillot and
Duband, 1980, Nalbantis, 1987, Nalbantis et al, 1988, Rodriguez et al, 1988,
Duband et al,, 1990). :

2. Calibration of the SACRAMENTO model as a runoff production submodel using the
already identified Unit Hydrograph.

3. Validation of the hourly model.

Testing the possibility of incorporating within the hourly model extra information
coming from the daily model.

S. Extension of the analysis to another model e.g. XINANJIANG (Franchini and Pacciani,
1989, 1991). '

6. Application to the Reno River Basin, Italy and possibly another European catchment.

The steps 2 to 6 are expected to be completed during the second year of the project.
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1. INTRODUCTION

It is known that rainfall-runoff models that are parts of modern flood forecasting
systems, require high quality and adequate quantity of data. In the first report of the
AFORISM project in February 1992 the data paucity in southern European countries was
stressed and a framework for model testing was proposed. The scarcity of recording devices
causes problems to the model calibration at least in the early stages of the establishment
of a flood forecasting system. In such a situation the calibration must be based on a
very short record coming from a newly built data collection system, and it must ignore the
old data that seem to be inadequate. The problem posed is to examine the possibility of
extracting information from daily data in order to use it within a short time-step (e.g.
hourly) rainfall-runoff model.

Suppose that we need hourly data for our rainfall-runoff model. The following framework
for model testing has been proposed in the First Report on AFORISM project (1992):

1. Calibration of an hourly rainfall-runoff model on a short continuous-time data
record (record 1). .

2. Verification of the same hourly rainfall-runoff model on a short continuous-time
data record (record 2).

3. Calibration of a daily rainfall-runoff model, having the same structure with the
hourly model based on a relatively long continuous-time data record (record 3).

4. Verification of the above daily rainfall-runoff model on a relatively long
continuous-time data record (record 4).

5. Use of some parameters of the daily model either directly or after transformation
within the hourly model and verification the latter model based on record 2.

6. Comparison of the results

7. Extension to other models.

The SACRAMENTO model (Burnash et al., 1973) was chosen to be the first model to test. This
model was calibrated and validated on daily data of the Evinos River Basin. Steps 3 and
4 in our framework for model testing, were followed. Note that steps 3 and 4 are
independent from steps 1 and 2. Therefore, the order of application of these two groups of
steps is unimportant. In this report we present our work on the identification of a short
time step (hourly) model. The overall model is decomposed into two submodels:

- A soil moisture accounting submodel or Production Function
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- A Transfer Function of the runoff volume produced by the previous model to the
outlet.

The SACRAMENTO model or any other model that will be tested will play the role of a
Production Function, whereas for the transfer function part, a Linear Transfer Function or
Unit Hydrograph will be used for all Production Functions. Tt follows that the initial
transfer function in all models will not be activated. In this report we present our work
on the Transfer Function identification within step 1 of the above framework. The First
Differenced Transfer Function (or FDTF) method was used. In the following sections we
first  describe the principles of the method and then we present the results and the
future research proposed.

2. DESCRIPTION OF THE FDTF METHOD

The FDTF approach initially proposed by Duband (1978) and Guillot and Duband (1980) is an
extension of the classical Unit Hydrograph method. It assumes that the areal precipitation

over the basin is transformed into runoff at the outlet following the two processes:

- A Runoff Production Function which yields a value of excess rainfall for every time
step. This function is generally highly non-linear.

- A linear Transfer Function which transfers the excess rainfall volumes to the outlet of
the basin.

Additionally, the method operates in a multi-event context. Suppose that we have N events
with n; (j = 1,23,.,N) time steps each. We define as R;; the measured areal rainfall
for the i-th time step of the jth event. Similarly we define P;j and Q;; the excess
rainfall and measured discharge for the i-th time step of the j-th event. The Transfer

Function is expressed as a convolution equation:

K

Q;; = Z Hy Pigyrj + &ij 1
k=1

where
K is the memory length of the Transfer Function,
Hy is the k-th ordinate of the Transfer Function (k = 1,2,3,..,K). and




&;; is the model’s error for the i-th time step of the jth event.

The method identifies two sets of unknowns: The excess rainfall P;; for each time step i
and each event j as well as a Transfer Function with ordinates H, for a finite memory
length K, common to all events. The identification problem which is non-linear, is solved
iteratively by the FDTF algorithm which is similar to the Gradient algorithm (Versiani,
1983) and it is schematized as follows:

TRANSFER FUNCTION
P =Rpr— 0 ¢ Q
+constraints
 [TRANSFER FUNCTION
pt < o ¢ Q
+constraints
P >['rRANsFEILEUNCI'ION], o
+constraints
LR TRANSFEP};UNCI‘ION]% o
+constraints
etc.

Figure 1. The FDTF algorithm-First 2 iterations

A first guess for excess rainfall PO is considered to be the measured rainfall R. A first
estimate H1 for the ordinates of the Transfer Function is obtained based on P® and the
measured discharge Q. Then some feasibility constraints are imposed on the coefficients of

the Transfer Function. A deconvolution is performed to give a better estimate P! for the
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excess rainfall series based on these coefficients and the series of observed discharges
Q. Here constraints are also applied and a new iteration begins. Based on P! and Q, an
improved estimate of the Transfer Function is obtained and so on.

The method operates on the first differences of the observed discharges q;; = Qi,j -
Q;y,j for the following reasons: (i) the coefficients of the FDTF are more decorrelated
than those of the Transfer Function, (ii) differencing filters the baseflow; thus,
arbitrary baseflow separation is by-passed and (iii) the quantity that is really sought in
a flood forecasting situation is the first difference of the discharge and not the

discharge itself. From equation 1 it follows

K

gij = z hg Pigsrj + & (2
k=1

with the First Differenced Transfer Function or FDTF derived from the Transfer Function as

h= H,
hy= Hyp - Hyy
hgy1= -Hpyq = 0

Once the FDTF has been computed the Transfer Function is easily obtained by a simple

summation. The constraints applied on the ordinates of the Transfer Function are

- Non-negativity constraint; that is if H; <0 then we set H,=0
K

- Mass conservation law expressed as Z Hy = 1. In practice we force this sum to be 1. .
k=1

The constraints imposed on excess rainfalls after the deconvolution phase has ended, are

the following:

- Non-negativity constraint; that is if P;;<0 then we set P; ;=0
- Mass conservation law implies that P;;sR;; but R;; are rarely known with sufficient

accuracy to justify such a constraint.

We can write equation 2 for any event j with duration n; time steps. By omitting

subscript j and the error term we obtain the following system of equations
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(¢ ) (P, 0 0 o o .. o 0 )
Q3 P3 P2 Pl 0 0 0 0
CI4 P4 P3 P2 Pl 0 0 0
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Q-1 k1 Pro Pr3 Pry Prs .. Py 0 b
e/% Py Py Py Poy Pry .. P, Py h2
G +1 Peyy Py Py Piy Pz .. Py P, h3
4
- .
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Am+2 0 0 P, P, Prna - - Phkea Poges| \ J
An2 0 0 0 0 P P,
qn-1 0 0 0 P, P
3R 0 0 0 0 Py

Writing the same system in a matrix form as q; = Ph we obtain for a set of N events

r ) r 3

q P
q P,
qQ3 P,
) P.
q]-l - ]'1 Xh
9 P;
Qj+1 Pjs1
qN.1 Pny
qnN Py

. J . J

This system is overdetermined and it can be solved, for example by ordinary least squares.

In the deconvolution phase we can write for the j-th event after omission of subscripts j




r 3\
@ | (B 0 0 o 0 0 0)
P hy, h O 0 0 0 0
B h; h, hy 0 0 0 0
d4 h4 h3 h2 h1 0 0 0
‘ . . ‘ ( Pl 3
qk—l hk—l hk_z hk-3 hk-4 . hl 0 . 0 PZ
‘ 9 hk hk-l hk-2 hk—3 . bz hl .0 P3
Qe+ hk+1 hk hk—l bk~2 . h3 h2 .0 P4
.= x| .
o R L Py
Gm1 | | hmy hpo by Ay - Bpger Bmg o O Pg
Im by hpg Bpp Bps . Bpges Bpger - by .
Im+1 hmi1 By hpg Ay hmk+3 Bmgez - Pp,
. \ J
n2 hny B3 hny Bps . hpg hpgq - hgo
a1 hpy hnp hp3 Bpy . Bpger hpg - hgy
L: qn ) | hn hn-l hn-2 hn—3 : hn-K+2 hn-K+1 . hK

Note that the coefficients h; with k greater than the memory length K are not identified

but they are estimated by extrapolating the Transfer Function with an exponential curve.

The above system of equations can be written in the matrix form q; = Hp; is
overdetermined. It can be solved by ordinary least squares but we face frequent problems
of instability due to the correlation of A’s.

A number of variants of the method were developed (Versiani, 1983; Nalbantis, 1987,
Nalbantis et al, 1988, Rodriguez et al,, 1988, Rodriguez, 1989, Duband et al, 1990) The
variants which have been thoroughly tested by Nalbantis (1987) are the following:

- Transfer Function identification
- Ordinary Least Squares
- ARMAX models
- Constrained Least Squares
- Deconvolution
= Ordinary least squares
- Ridge regression

- Linear programming




The method has been tested on synthetic data (Nalbantis, 1987). Guidelines for users are
given by Nalbantis (1987) and summarized by Sempere Torres (1990).

3. RESULTS

We applied the FDTF method to identify the Transfer Function or the Unit Hydrograph of the
Evinos River Basin at Poros Righaniou (see Fig. 1). The area of the basin is 884 km?2 and
the average ground elevation is +990 m. Hourly data for 20 flood events within the period
1973-1988 were used. Rainfall data from 3 recording rain gauges were collected, digitized
and processed. These stations together with by their codes shown in Figure 1, are:
Drymonas(424), Krikelo(441) and Aniada(408). The rating curves were derived from the
hydrometric data. The Transfer Function identified is depicted in Figure 2. The overall
Determination Coefficient R? varied from 0.823 in the first iteration to 0.918 in the last
(fifth) iteration. As to the individual events, R? varied from 0.723 to 0.980 in the last
iteration. For the vast majority of events R? was greater than 0.90. In Figures 3 and 4 we
compare the measured and the calculated hydrographs for 2 events with high peak discharge

values.
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4. FUTURE RESEARCH

The SACRAMENTO model testing will be completed within the framework proposed in section
1. The hourly version of the model will be calibrated on a continuous-time data set of the

Evinos River Basin at Poros Righaniou. The calibration will involve the following steps:

1. Calibration of the SACRAMENTO model as a runoff production submodel using the
already identified Unit Hydrograph.
Validation of the hourly model.
3. Testing the possibility of incorporating within the hourly model, extra information
| coming from the daily model
4. Extension of the analysis to another model e.g. XINANJIANG (Franchini and Pacciani,
1989, 1991).

6. Application to the Reno River Basin, Italy and possibly another European catchment.

The steps 2 to 6 are expected to be completed during the second year of the project.
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ABSTRACT

Empirical evidence suggests that statistical properties of storm rainfall at a location and within
a homogeneous season have a well structured dependence on storm duration. For example, the mean
and standard deviation of total storm depth increase with duration each according to a power law
with the same exponent; the lag-one correlation coefficient of hourly rainfall depths increases with
duration; and the decay rate of the autocorrelation function of hourly rainfall depths decreases with
duration. Motivated by the first observation, a simple scaling model for fainfall intensity within a
storm was hypothesized and was shown both analytically and empirically that such a model can
explain reasonably well the observed statistical structure in the interior of storms providing thus an
efficient parametrization of storms of varying durations and total depths. This simple scaling model
is also consistent with, and provides a theoretical basis for, the concept of mass curves (normalized
cumulative storm depth vs. normalized cumulative time since the beginning of a storm) which are
extensively used in hydrologic design. In contrast, popular stationary models of rainfall intensity
are shown unable to capture the duration dependent statistical structure of storm depths and are

also inconsistent with the concept of mass curves.




1 Introduction

This study deals with the analysis and modeling of the stochastic structure of rainfall intensities
within storms of varying duration. Storms are defined here as rainfall events which are independent
of each other as based, for example, on Poisson storm arrivals. The need to parametrize the time
distribution of storms which are “similar” apart from total storm depth and storm duration arose
very early and the concept of mass curves, i.e., non-dimensional cumulative storm depth versus non-
dimensional cumulative time since the beginning of a storm, has been extensively used for hydrologic
design (e.g., Huff, 1967; Pilgrim and Cordery, 1975; among others). The idea behind those efforts
was the recognition that for a particular location or within a meteorologically homogeneous region
and for a homogeneous season, storms are expected to exhibit similarities in their internal structure
despite their different durations and total storm depths.

In this study, we provide empirical evidence that the statistical properties of incremental storm
depths, e.g., hourly depths, and total storm depths have a well structured dependence on storm
duration. For example, it is found that the mean and standard deviation of the total storm depth
increase with duration each according to a power law with the same exponent, i.e., the coefficient
of variation of total storm depth is independent of storm duration (see, for example, Fig. 4 to
be discussed in detail later). This motivates the hypothesis of a simple scaling model for the
instantaneous rainfall intensity within a storm with storm duration as the scaling parameter. This
model has been thoroughly examined in this study and the properties of the total storm depth and
incremental rainfall depths have been analytically derived and have been used for model fitting
and model evaluation. Another motivation for examining the simple scaling model is that it is
consistent with the concept of mass curves which are very often used in hydrologic applications.

Most of the available continuous time rainfall models, e.g., the Neyman-Scott rectangular pulses
model (Rodriguez-Iturbe et al., 1984) used to describe rainfall intensities are stationary. In this
study we show that any stationary model is unable to capture the duration dependent statistical
structure of rainfall intensities and is also inconsistent with the concept of mass curves. ‘

This study is structured as follows. Section 2 introduces notation. In section 3 the simple scaling
model for instantaneous rainfall intensities within a storm is presented. The statistical properties
of the total storm depth and incremental storm depths, e.g., hourly depths, are derived in section 4.
In section 5 the simple scaling model is fitted to hourly data from 89 storms in Chalara, Greece and
the performance of the model is evaluated in terms of its ability to capture statistical properties
not explicitly used for model fitting. In section 6 two stationary models of instantaneous rainfall

intensity are examined and it is shown both analytically and empirically that these models are




not able to reproduce some of the observed characteristics of storm rainfall that the simple scaling
model is able to describe. In section 7 the connection of simple scaling models to mass curves is
examined and it is shown that mass curves are consistent with the hypothesis of simple scaling but

are inconsistent with the assumption of any stationary model for instantaneous rainfall intensities.

2 Terminology and preliminaries

Let D denote the duration of a storm and £(¢,D), 0 <t < D the rainfall intensity process within

the storm duration. h(t, D) denotes the cumulative rainfall depth process defined as
t
h(t, D) = / £(s,D)ds, 0<t<D (1)
0

and h*(t, D) = h(t, D)/h(D, D) the nondimensionalized rainfall depth process (see Fig. 1). Let
X (i, D) denote the incremental rainfall depth in the interval ((i — 1)A, iA) ie.,
iA
Xa(i, D) = / DY, =12,k @)
-1)a

1

where k is the integer part of D/A. It is assumed that within a meteorologically homogeneous
region and season every storm of duration D can be considered as a realization of an ensemble
characterized by that duration.

Let n¢(t, D) denote the ensemble average of £(t, D), i.e.,
n¢(¢, D) = E[£(t, D)] )
and Re(t1,1t2; D) the second order product moment of £(¢, D) in the interval of a storm event, i.e.,
Re(t1,13; D) = E[E(t1, D)E(ta, D), 0 <t1,t; < D ()

where again expectation refers to ensemble average. The covariance function of £(¢, D) is then given

as

C&(tl,tz; D) = CO’U[E(tl, D)f(tz, D)] = Rf(tl,tg; D) - 'I']{(tl, D)’I]g(tz, D) (5)

In a similar manner we define the statistical properties of the cumulative depth process A(t, D),
i.e., nu(t, D), Ra(t1,t2; D), and Cr(t1,1t2; D), and those of the incremental depth process X4 (t, D),
i.e., nx, (%, D), Rx,(4,; D), and Cx,(i,5; D).




3 Simple scaling model for storm intensities

The hypothesis is set forward that the process of instantaneous rainfall intensities within a storm,

ie,&(t,D), 0<t<D is a selfsimilar (simple scaling) process with scaling exponent H, i.e.,
{€(t, D)} £ {(x"He(x, AD)) (6)
where the above equa.l';ty is in terms of the finite dimensional probability distribution, i.e.,
Pri§(t, D) < z1,...,{(tn, D) S 2] = PrA™HE(AG, AD) < 24,..., A" HE(Atn, AD) < 2],
0<t,...,ta, <D (7)
(see, for example, Lamperti 1962, where, however, infinite duration stochastic processes are con-
sidered). Consequently the k-th moment of £(¢, D) is given as
E[4(t, D)"] = A= E[g(Xt, AD)] (8)
and the (k,!) second product moment as
E[¢(t1, D)*(ta, DY'] = A=HHD E[E(Ma, AD)*E(At2, AD)] 9)

An intuitive feeling of the notion of scaling in (6) can be obtained from Figure 2 where, for example,
if Dy = AD; then under appropriate scaling of time, i.e., t; = At;, the statistical (ensemble) prop-
erties of the rainfall intensity in storms of duration D, are related to the corresponding statistical
properties of the rainfall intensity in storms of duration D; according to (7).

It is noted that by setting A = 1/D in (6) we obtain

{&(t,D)} £ {D"¢(t/D, 1)} (10)
where £(t/D, 1) represents the intensity process of a storm event normalized to unit duration. It is
then realized from (10) that the hypothesis of scaling implies that the statistical properties of the
rainfall intensity in storms of any duration can be obtained by appropriate scaling of the statistical
properties of the rainfall intensity in a storm normalized to unit duration.

For reasons of simplicity we will assume that the process £(¢, D) is stationary within a storm
event, i.e., the finite dimensional distribution function is invariant to time translation within a

storm,
{€t,D)} £ {€(t+7,D)}, 0<tt+7<D (11)

Note that this is a week stationarity condition in that it represents stationarity of £(¢, D) only
within storm events of a fixed duration and not over any storm, independently of durration, which

would imply

{e@)) £ {et+ 7)) (12)




as most available rainfall intehsity models, e.g., the Neyman-Scott model, assume. Under our
assumption the ensemble statistical properties of the process £ (t, D) do not depend on ¢ for a given
duration D and the ensemble statistical properties of &(t/D,1) are independent of t and D. Let us
define as ¢; the ensemble mean of the process £(t/D, 1), i.e.,

a = E[¢(¢/D,1)] (13)

Since £(t/D, 1) is stationary we also define

¢(r/D) = E[{(t/D,1)§((t + )/ D, 1)] (14)
Based on the above relations and (6) the ensemble statistical properties of &(t, D) can be written
as

E[£(t, D)) = e1DH (15)

Ce(r; D) = Covl€(t, D),£(t+ 7, D)] = (¢(r/ D) — c}) D*H (16)

These equations imply that under the hypothesis of simple scaling (equation 6) and the assumption
of stationarity within an event (equation 11) the statistical properties of &(t, D) can be obtained
from the statistical properties of the normalized to unit duration process &(t/D,1) and a scale
changing transformation which is a power law of the storm duration. Note that the mean of the
rainfall intensity process depend on the duration according to a power law with exponent H, while
the covariance of the rainfall intensity process is also a power law of duration with exponent 2H.

Higher product moments follow similar relationships as implied by (10).

4 Properties of total and incremental storm depths

To be able to test the hypothesis of scaling for £(¢, D) using available rainfall data, the statistical
properties of incremental and total storm depths need to be derived. In this section we show that
both total storm depths h(D, D) and incremental storm depths X (%, D) follow simple scaling laws

and expressions for their mean and covariances are derived.

4.1 Cumulative and total storm depths

It can be shown (see Appendix 1) that under some rather mild restrictions on the covariance of
&(t, D) the cumulative rainfall depth process h(t, D) is also a simple scaling process with exponent
H+1,ie,

{h(t, D)} & (A\-H+DR(xE, AD)} | (17)




Setting t = D and A = 1/D in the above equation we obtain |

{h(D, D)} £ {DH+1h(1,1)} | (18)
Noting that E[h(1,1)] = ¢; and defining

c2 = varlh(1,1)] (19)
we can write the ensemble mean and variance of the total storm depth as

E[hMD,D)] = ¢; DHH? (20)

var(h(D, D)] = ¢, D*(H+1) (21)

Note that as a result of the simple scaling model for rainfall intensities, the coefficient of variation of
the total storm depth is constant and equal to v/¢z/c1. Empirical analysis of rainfall data strongly
support this property (see Fig. 4 to be discussed later) which, however, is not a property of any

stationary model satisfying (12) as it will be discussed in section 6.

4.2 Incremental storm depths

The incremental storm depth at discrete time ¢ = 4, i.e., Xa(4, D) defined in (2),can be written as

the difference of cumulative storm depths as
Xa(i, D) = h(iA, D) - h((i - 1)A, D) (22)

In view of the scaling of h(t, D) (equation 17) the discrete-time incremental depth process Xa (i, D)

is also scaling, i.e.,
; 4 \—(H+1) ; 23

{Xa(s, D)} = {A Xxa(Ai, AD)} (23)
It is easy to show that the ensemble mean of X(¢, D) is

E[XA(i,D)] = e;ADH = ¢ 6DH+! (24)
where § = A/D. After some algebraic manipulations one can derive the variance of X (i, D) as

var[Xa(i, D)] = [$(0,6) — c}6?| D2H+1) - (25)
where

&
P(0;6) = 2 /0 (y)(6 —y) dy (26)




Similarly , the covariance can be derived as
Cx,(m; D) = Coo[Xa(, D), Xa(i + m, D)] = [(m; 6) — c}6?] DAH+Y) (27)

where

mé (m+1)s
#mi6)= [ (= (m- o dy+ [ (m+ D=0y m>0  (@9)

The autocorrelation function can then be written as

P(m; 6) — 362

(29)

It is interesting to note that as a manifestation of the scaling hypothesis for £(¢, D) the autocorre-
lation function of the incremental depth process depends on § = A/D, that is, on the integration
interval normalized by the storm duration, and it does not depend directly on the storm duration
or the integration interval. The consequence of this is that, for example, px,(m; D) = p X, (M;2D)
which means that the lag-one autocorrelation coefficient of hourly data in a storm of duration D is
equal to the lag-one autocorrelation coefficient of two-hour data in a storm of duration 2D. Since,
normally, the autocorrelation increases with the decrease of the lag it follows that the lag-one au-
tocorrelation coefficient of the hourly data in a storm of duration 2D is greater than the one of the
hourly data in a storm of duration D. Thus the lag-one autocorrelation coefficient is expected to be
an increasing function of the storm duration. As it will be seen later the hourly data we analyzed
support this property. Another interesting point to note is that the theoretical autocorrelation
coefficient of the incremental process is allowed to take on negative values, a property exhibited
by hourly rainfall data but not allowed by many stationary models of rainfall intensity as will be

discussed in section 6.

5 Model fitting and performance evaluation
5.1 Model fitting procedure

In the previous section the covariance function of X4 (¢, D) was derived in terms of the covariance
function of £(¢t, D). In order to be able to fit the model to incremental rainfall depths a parametric
form for the covariance function of £(t, D) must be specified and the covariance of Xa (%, D) must
be consequently derived. As it is recalled from (16) the covariance function of £(¢, D) involves a
power function of duration D and a function ¢(7/D) of the normalized lag. Here we assume the

following power law form for ¢(y)

d(y) = ky™? (30)




which implies the following power law second product moment for &(t, D)
Re(r; D) = kDP+MH =8 (31)
Note that this is in contrast to stationary rainfall intensity models for which the above product

moment would be a function of lag 7 only and not duration.

Based on this and after the computation of the integral in (26) it is shown that
Cxa(0; D) = var{Xa(i, D)] = D**Vs2(2k/[(1~ p)(2 - B)] 677 ~ c}} (32)

By considering Cx,(0; D) from the above equation (by setting § = 1) and equating it to (21) one

can see that the parameters k, 8 of the covariance function of &(t, D) are related to ¢; and c; by

ca+ i = 2k/[(1- B)(2 - B)] (33)
By computing the integral in (28) the cévariance function of the incremental storm depths is

Cx,(m; D) = DXHHD§2[(¢e) 4 V6P f(m,B) = c3], m >0 (34)
where

f(m,B) =[(m~1)*7 4 (m+ 1)*F)/2-m?F, m>0 (35)
and |

f(0,8)=1 (36)
Consequently,

(s D) = (2t P (m,) = (37

(ca+¢2)6-8 ~¢2
The model thus has four parameters H,¢;,cs, and 3 (note that k is not an independent param-
eter, since it is related with the others by (33)) which in the empirical analysis that follows were

estimated from the following relationships:
E[h(D,D)] = ¢; DEH! (38)

Var[h(D, D)] = ¢, D¥H+1) (39)

(14 ea/cd)6—P(21-F-1) -1
(1 + 62/6%)6_6 -1

From the first relationship ¢;, and H were estimated by least squares and c, and 8 were estimated

Pxs(1; D) = (40)

from the second and third relationship, respectively. Then using (33) the parameter k was obtained.
To further evaluate the model performance based on properties not explicitly used for model fitting,
the mean, variance, and autocorrelation function of the hourly rainfall depths for storms of different
durations were estimated and compared to the theoretical values for the fitted model (equations

24, 32, and 37, respectively).
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5.2 Performance evaluation

The data used to test the hypothesis of simple scaling for &(t, D) are hourly rainfall depths for a
total of 89 storm events of duration greater or equal to two hours. All events occurred during the
month of April and during 13 years of record (1971 - 1983) at the Chalara station in the Aliakmon
river basin, Greece. Events were identified based on the assumption of independence between
events. This amounts to testing for a Poisson process of storm arrivals or exponential distribution
for interarrival times. A Kolmogorov-Smirnov test was used for this purpose. Thus events were
allowed to include periods of zero rainfall. The maximum zero rainfall period. was found equal to
7 hours The 89 storm events had durations varying from 2 hrs to 49 hrs with a mean duration of
11.8 hrs. General characteristics of the set of storms used are given in Table 1.

To be able to estimate ensemble statistics, the 89 storms were grouped in five classes (1 to 5)
according to their duration as shown in Table 2. For example, class 1 includes all 14 storms with
duration 2 and 3 hours and class 5 all 17 events with duration between 19 and 45 hours. The basis
for selecting this grouping was to have approximately the same number of events in each class. To
each class a duration was assigned equal to the mean duration of all events in that class. The events
were further grouped into two larger classes (A and B) were class A includes all 39 events of classes
1 and 2 and class B all 36 events of classes 3 and 4. Again the mean duration of each class was
used as a representative duration of that class and events in classes A and B were used to estimate
the ensemble autocorrelation functions for two different storm durations. The enlarged size was
necessary in order to achieve reliable estimations of the autocorrelation coefficients for large lags.

Because there is variability in the durations of the events of each class around the mean duration
D assigned to that class a correction procedure was applied (when necessary) in estimating the
variance of the total depth in each class. This correction consisted of subtracting from the calculated
variance the quantity o3 (k% 4 k%) where 0% is the variance of the durations in that class and kq, k
are constants obtained from the linearization of the mean and standard deviation of total depths,
respectively, in the neighborhoud of D, i.e, E[h(D, D)] = k; D and {Var[h(D, D)]}'/? ~ k,D For

(H+1)

the scaling process we have cl—]jH“"1 ~ kD and cz_D_2 ~ k%ﬁz and thus the correction applied

was
ob(c + c2)_52H (41)

It was found that this correction was negligible for all classes except the class with the larger
durations (class 5). The necessity of such a correction implies an iterative process for the estimation
of Co.

Based on the parameter estimation procedure discussed in the previous section the following
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parameter estimates were obtained for this data set:
H=-0.20, & =1.05, & =044, §=0.32 (42)

For these parameters the value of k = 0.88.

The empirical means and standard deviations of total storm depths as a function of duration
as well as the theoretical curves from the fitted model are shown in Figure 3. Fig. 4 shows the
empirical coefficients of variation of the total storm depth which is almost independent of duration
and the theoretical coefficient of variation which is constant and equal to Vea/cr = 0.63. The
empirical and theoretical lag one autocorrelation coefficents of hourly rainfall depths are shown in
Fig. 5 as a function of storm duration. Although deviations between the empirical and theoretical
values are observed when 90% approximate confidence intervals (computed by using the Fisher
transformation for the autocorrelation coefficient) were positioned around the empirical values only
1 of the 5 values was outside the confidence intervals as statistically expected.

To check the performance of the model we computed the empirical and theoretical mean and
standard deviation of the hourly rainfall depths for different durations (shown in Fig. 6) and the
autocorrelation functions for classes A and B (shown in Fig. 7). It is seen that the scaling model
performs reasonably well in terms of capturing statistical properties of total and incremental storm
depths in storms of different durations. The largest deviation between the empirical and theoretical

statistics are found for storms of only two hours duration (see, for example, Fig. 6).

6 Comparison with stationary models

In this section we derive the statistical properties of total and incremental storm depths for two
simple stationary models, i.e., models satisfying (12) and demonstrate both analytically and em-
pirically that these models are not able to capture important statistical characteristics of storm

rainfall that the simple scaling model is able to capture.

6.1 Derivation of statistical properties

It is easy to see that
E[n(D,D)] = E[MD)] = 1D (43)
E[Xa(%,D)] = E[Xa(D)] = a1A (44)

where ¢; = E[{(t,D)] = E[£(t)]. To derive the expressions for the variance and covariance of

h(D) and X (%) we need to specify functional forms for the autocorrelation function of £(t). The
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following two common models (power law and markovian) are examined:

Model 1: Ce¢(r,D)= C¢(r) = kyr™" (45)
Model 2: Ce¢(r,D) = Ce(r) = kyeF2" (46)
After algebraic manipulations it can be shown that for model 1
2k, -
Var[h(D)] = 2=k
(D) (1-p1)(2~ ﬂl)D ' 47
N 2k1 2-4
X = 1
Var[Xa(?)] a —ﬁl)(2—ﬂ1)A (48)
pxa(m) = 5l(m = 1P 4 (1 + 1)) — m2~f1 (49)
and for model 2
Var{h(D)] = 2(k3/83)(82D ~ 1 + e~#P) (50)
Var[Xa(i)] = 2(k3/83)(B2 — 1 4 e=%24) (51)
pxalm) = 50 eopuimia) | (52

2(B2A — 1 + e—F24)

Note that in both of the above models the coefficient of variation of the total storm depth is
not constant but is a function of the storm duration. For example, for model 1 the coefficient of
variation is (y/2k1/[(1 — $1)(2 — B1]/c1)D~F1/2. This property of the model is in disagreement with

the empirical evidence (see Fig. 9) that the coefficient of variation of total strom depths is constant

and independent of storm duration.

In the next section these two models are fitted to the data from the 89 storms described earlier.

6.2 Model fitting and performance evaluation

Both models have three parameters. Equation (43) can be used to estimate ¢, using the sample
of total depths. Equations (49) and (52), when setting m = 1, can be used to estimate §; and
B2, respectively. The empirical lag-one autocorrelation coefficient used in these equations can be
calculated from the whole sample of hourly data. Finally k, and k; are estimated from equations
(48) and (1), respectively, by using the sample of total depths. The following parameters were

estimated for the above two models:

Model 1:¢; =0.65, ky =0.61, 3, =0.51
Model 2:é =0.65, k; =125, B, =1.58 (53)
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Fig. 8 shows the empirical and theoretical mean and standard deviation of the total storm
depths. It is observed that both stationary models are not able to capture the duration dependent
structure of these statistics. This is further verified by Fig. 9 which shows the empirical and
theoretical coefficient of variation of the total storm depths as a function of duration. The empirical
and theoretical first autocorrelation coefficient of the hourly rainfall depths is shown in Fig. 10
as a function of duration. As was analytically seen from (49) and (52) the autocorrelation of
hourly rainfall depths is independent of the duration and cannot obtain negative values This is in
disagreement with the empirical observations (see, for example, Fig. 10).

To further evaluate the model performance based on properties not explicitly used in model
fitting we evaluated the empirical and theoretical mean and standard deviation of the hourly rainfall
depths (equations 44, 48, and §1) and autocorrelation functions (equations 49 and 52) for model
1 and model 2, respectively. These figures together with Figs. 8, 9, and 10 demonstrate the
superiority of the scaling model and the inability of the stationary model to capture important

statistical properties of storm rainfall.

7 Mass curves

The use of dimensionless mass curves, i.e., normalized rainfall depth h*(t/D) versus normalized

time /D, implies that a stochastic function A*(.) can be found such that
h(t,D) = h*(t/D)n(D, D) (54)

where h*(t/D) is a stochastic function independent of D and h(D, D) is a stochastic variable

independent of ¢t. Taking £k moments of the above equation we obtain
E[h(t, D)*] = E[h*(t/D)*|E[h(D, D] (55)

It is easy to show that under the assumption of stationarity over time (12) no function h*(¢/D) can
be found such that (55) is satisfied for all k¥ while under the assumption of scaling and stationarity

within storms (11) such a function exists. Consider, for example, model 1 for which
E[h(t, D)] = Clt = Cl(t/D)D (56)
and

E[h(t, D) = ¢ft* + {2k:/[(1~ B1)(2 - Au]}£*~P
= c}(t/D)’D* + {2k:/[(1 - B1)(2 - ]} (t/D)*~FD** (87)
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It becomes apparent that for k¥ =2 no function h*(t/D) can be found to satisfy (55). At the same

time, for the simple scaling model
E[h(t,D)¥] = DHH+V E[R(1/D,1)¥] ~ (58)

which is consistent with (55)
We conclude that the proposed simple scaling model is consistent with the concept and use of

mass curves while any stationary model is not.
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8 Appendix 1: Self-similarity of h(¢, D)
Let us consider the (k,£) second product moment of h(t, D)

E{h(t1, D)*h(ts, D)%}

= B{([" &) dsl*[ [ &(q, D) de]")

0 ’ 0 ’
11 t1 pt2 123
= [ 7 [ [ Bess, D)ok, D@1, D) -+ (ae, DY}
dsy - dspdgy - dge (59)

Similarly,

E{h(At1, AD)*h(\t3, AD)}

Aty Aty Aty Aty
= /0 -..‘/(; \/0 ,..A E{E(SI,AD)'"E(sk,/\D)g(QI,AD)"'£(ql,AD)}
dsl... dsde1"'dql

11 11 pi2 123
= / / / / E{&(Aa1,AD) -+ -£(Aag, AD)E(Mp1, AD) - - - £(Mpe, AD)} AR
0 0 JO (1]
doy -+ dopdipy - dipy (60)

where the last equality has been obtained by setting s; = Ao; and ¢; = Ay;. Note that this last
equality would not hold if any product moment contained dirac delta terms. This can be seen by
considering for simplicity one term only, say E[£(s,AD)], and observing that if that term had the
form f(s)6(s — so) then [y E[€(s,AD)]ds = [;" f(s)8(s — s0) ds = f(so) while the term obtained
by substituting s = Ao would give [§ E[6(Aa,AD)]Ado = [} f(Aa)6(Aa—s0)Ado = Af(s0) # f(s0)-

In view of (9) the above equality can be further written as
E{h(At1, A\D)*h(Aty, AD)%}

- /\k+l/\H(k+€)/Otl.../Otl‘/:z.../otz E{€(Ao1, AD) -+ -E(Ack, AD)E(Mpy, AD) - - - £(Atby, AD)}
doy -+~ dogdipy - - diby (61)

By comparing (59) and (61) we obtain
A~HEDKE) iyt AD)FR(Aty, AD)Y} = E{h(ty, D)*h(t2, D)t} (62)

This result can be similarly extended to the product moments of any order and thus we conclude
that

{A(t,D)} & {A~H+Dp(xt,AD)} | (63)
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Min Max Mean Std

Duration (h) 2 45 118 8.9
Interarrival time (h) 10 470 101.3 106.2
Total depth (mm) 03 389 75 7.7
Mean intensity (mm/h) 0.1 2.55 0.69  0.48
Hourly depth (mm) 00 82 0.64 093

Table 1: General characteristics of the 89 storms used in the analysis.

No. of Total no. of
. events hourly depths
class Dypin Dmae D op M Ny
1 2 3 22 04 14 31
2 4 7 54 1.2 20 108
3 8 11 9.7 1.1 19 184
4 12 18 142 1.9 19 269
5 19 45 271 6.2 17 461
A=(2+3) 4 11 74 24 39 292
B=(4+5) 12 45 203 7.9 36 730
Total 2 45 11.8 8.9 89 1053

Table 2: Classification of storms according to their duration. The storms in each class were used
to estimate the ensemble statistics of that class.
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Figure 1: Definition of terms.
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Figure 2: Schematic for explanation of scaling.
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Figure 3: Scaling model: empirical and theoretical means and standard deviations of total storm
depths as a function of storm duration (log-log plot).
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Figure 4: Scaling model: empirical and theoretical coefficient of variation of total storm depths as
a function of duration.
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Figure 5: Scaling model: empirical and theoretical first autocorrelation coefficient of hourly rainfall
depths as a function of duration.
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Figure 6: Scaling model: empirical and theoretical mean and standard deviation of hourly rainfall
depths as a function of duration.
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Figure 7: Scaling model: empirical and theoretical autocorrelation function of hourly rainfall depths
as a function of duration.
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Figure 8: Stationary models: empirical and theoretical means and standard deviations of total
storm depths as a function of storm duration (log-log plot).
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Figure 9: Stationary models: empirical and theoretical coefficient of variation of total storm depths
as a function of duration.
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Figure 10: Stationary models: empirical and theoretical first autocorrelation coefficient of hourly
rainfall depths as a function of duration.
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Figure 11: Stationary models: empirical and theoretical mean and standard deviation of hourly
rainfall depths as a function of duration.
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Figure 12: Stationary models: empirical and theoretical autocorrelation function of hourly rainfall
depths as a function of duration.




