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Abstract

Machine learning techniques have been increasingly used in flood management worldwide
to enhance the effectiveness of traditional methods for flood susceptibility mapping. Al-
though these models have achieved higher accuracy than traditional ones, their application
has not yet reached full maturity. We focus on applying machine learning models to create
flood susceptibility maps (FSMs) for Thessaly, Greece, a flood-prone region with extreme
flood events recorded in recent years. This study utilizes 13 explanatory variables derived
from topographical, hydrological, hydraulic, environmental and infrastructure data to train
the models, using Storm Daniel—one of the most severe recent events in the region—as the
primary reference for model training. The most significant of these variables were obtained
from satellite data of the affected areas. Four machine learning algorithms were employed
in the analysis, i.e., Logistic Regression (LR), Support Vector Machine (SVM), Random
Forest (RF) and eXtreme Gradient Boosting (XGBoost). Accuracy evaluation revealed that
tree-based models (RF, XGBoost) outperformed other classifiers. Specifically, the RF model
achieved Area Under the Curve (AUC) values of 96.9%, followed by XGBoost, SVM and
LR, with 96.8%, 94.0% and 90.7%, respectively. A flood susceptibility map corresponding to
a 1000-year return period rainfall scenario at 24 h scale was developed, aiming to support
long-term flood risk assessment and planning. The analysis revealed that approximately
20% of the basin is highly prone to flooding. The results demonstrate the potential of
machine learning in providing accurate and practical flood risk information to enhance
flood management and support decision making for disaster preparedness in the region.

Keywords: flood susceptibility mapping (FSM); machine learning (ML); LR; SVM; RF;
XGBoost; Greece; Thessaly; Storm Daniel

1. Introduction
1.1. General and Literature Review

Flood events are natural phenomena in which normally dry land becomes inundated
due to excessive water accumulation. These result in devastating consequences worldwide,
causing significant economic, environmental, and social impacts [1,2]. They originate from
various factors, including intense or prolonged rainfall, river overflow, storm surges, and
dam failures. Floods are a global challenge, affecting regions regardless of geographical
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boundaries and endangering millions of lives. Their impact highlights the need for con-
tinuous research and strategic planning to mitigate associated risks. To this end, in the
framework of the implementation of the European Union Flood Directive [3], the assess-
ment and management of flood risk have been prioritized. Floods can be categorized
according to their origin, root cause and occurrence, as river floods, flash floods, coastal
floods, urban floods and floods induced by the failure of respective flood protection struc-
tures [4,5]. Effective flood management is crucial for minimizing damage to communities,
infrastructure and the environment.

As suggested by the current legal framework (i.e., Floods Directive 2007/60/EC [3]),
flood susceptibility and hazard maps are essential at the river basin level. By the term
Flood Susceptibility Map (FSM), we refer to a spatial representation of a region or river
basin that identifies areas that are prone to flooding. These maps help to highlight regions
with a higher likelihood of flooding, considering various factors, e.g., topography, rainfall,
land use and historical floods. On the other hand, Flood Hazard Maps (FHMs) measure the
water depth and extent across a flooded area. They play a crucial role in risk assessment,
land-use planning and the development of effective flood management strategies.

Traditionally, flood susceptibility mapping has been conducted using a variety of
qualitative and quantitative approaches. Qualitative methods, such as Multi-Criteria De-
cision Analysis (MCDA) [6], integrate expert knowledge and spatial criteria to evaluate
flood-prone areas. Statistical approaches, including linear regression and frequency ratio
analysis [7], are utilized to assess the relationships between historical flood occurrences
and influencing factors. Hydrological-based models, including HyMOD [8] and the Soil
and Water Assessment Tool (SWAT) [9], simulate the hydrological cycle to estimate sur-
face runoff and flood potential. Additionally, hydraulic models, such as the Hydrologic
Engineering Center’s River Analysis System (HEC-RAS) [10], are employed to simulate
water flow dynamics and floodplain extents based on channel geometry and discharge data.
These conventional methods, while widely used, often require large amounts of data, which
must be weighted by selecting appropriate weights, and often require time-consuming
flood simulations that are based on numerical models, which, in turn, also depend on the
discretization of the physical domain.

To address above limitations, alternative approaches such as Machine Learning (ML)
and Deep Learning (DL) models have been explored in flood susceptibility mapping, of-
fering potential benefits in terms of efficiency and accuracy. ML models can handle large
and complex datasets, and identify non-linear relationships and complicated patterns.
Extensive research has been conducted on the application of these models across various
river basins worldwide. A comprehensive literature review of 58 recent publications is
presented in [4], covering various aspects of flood mapping, including flood inundation,
flood susceptibility and flood hazard, with a focus on DL approaches. Various ML al-
gorithms have been employed for flood susceptibility mapping. In particular, Artificial
Neural Networks (ANNs), Multi-Layer Perceptron (MLP) and Least absolute shrinkage and
selection operator (Lasso) have been used in [11], as well as Random Forest (RF), Support
Vector Machine (SVM), and Convolutional Neural Network (CNN) in [12]. Additionally,
various boosting algorithms, such as AdaBoost, Gradient Boosting, XGBoost, CatBoost,
and Stochastic Gradient Boosting (SGB), have been utilized [13]. Recent advances in flood
susceptibility modeling include the use of the Kolmogorov–Arnold Network (KAN), which
leverages mathematical decomposition techniques to improve prediction accuracy and has
been successfully applied to river basins in Iran [14]. Table 1 presents a brief summary of
selected studies in this field. For each algorithm listed in the table, the best-performing
model is highlighted in bold. Table 2 lists the flood conditioning factors used in the re-
spective studies, which serve as inputs for the corresponding models. Although machine
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learning models are pretty powerful tools, they require a significant amount of high-quality
and labeled data for training. If the data is limited, biased or unreliable, their accuracy can
suffer—making them less effective, especially in areas with little historical flood data. How-
ever, unlike traditional methods, they can often work with smaller, more focused datasets
or utilize techniques like data augmentation and transfer learning to improve accuracy.

Machine learning models can be very useful when combined with satellite data, offer-
ing state-of-the-art, data-driven methods for analyzing large-scale patterns. Satellite im-
agery offers high-resolution, real-time data on some of the most important flood-influencing
variables such as topography, land cover, soil moisture and precipitation, as well as the
flooded area. ML algorithms can process and analyze these large datasets to detect patterns
and flood-prone areas, identify the most influencing features and improve predictive accu-
racy. Flood conditioning factors serve as input to the model (independent variables), while
the output (dependent variable) determines whether an area is classified as flooded or not.
This process can be framed as either a classification or regression problem, depending on
the nature of the output values. By integrating ML with satellite observations, researchers
can enhance flood prediction capabilities, even in regions with limited ground-based hydro-
logical data [15]. However, challenges such as data preprocessing, cloud cover interference,
and model interpretability remain key considerations in optimizing the use of ML for
satellite-based flood susceptibility mapping.

Despite the widespread use and numerous applications of ML models for FSM globally,
their adoption in Greek basins remains limited. This is largely due to challenges such as
a lack of technical expertise and the relatively early stage of ML integration into flood
management practices. An attempt was made in [16] at the national scale for flood hazard
mapping using multi-criteria analysis and ANN. The full potential of ML in FSM remains
underexplored. Similar barriers to ML adoption exist in other regions as well, where limited
resources and expertise block broader implementation. Smaller regions and basins should
also be considered for flood susceptibility mapping to improve accuracy and obtain more
region-specific results. Thessaly, the focus of this study, is a flood-prone region that has
faced severe flood events in recent years, highlighting the importance of flood susceptibility
mapping. One of the most recent extreme events was Storm “Daniel” in September 2023,
which resulted in devastating damage [17]. Storm Daniel, also known as Cyclone Daniel,
took place on 4–7 September 2023. It affected not only Greece but also Bulgaria, Turkey and
Libya, causing extensive flooding. A post-event analysis of Storm Daniel in Thessaly [18]
revealed that the Peneus river basin received an average rainfall of approximately 360 mm,
which triggered extensive flooding. The disaster resulted in the loss of human lives and
caused severe environmental and economic damage. The study calculated that, although
the station-based return period point estimates exhibited substantial variability, the overall
area averaged return period for the 72 h timescale reached up to 150 years, reflecting the
remarkable intensity of the event. Given its unprecedented scale and basin-wide impact,
Storm Daniel presented a unique opportunity to study flood susceptibility under extreme
hydrological conditions.
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Table 1. Summary of selected machine learning applications for FSM. The best-performing model
from each study is highlighted in bold.

Area of Interest Algorithms Evaluation Data Split
Train/Test (%) Total Points Resolution

(m) Ref.

Ibaraki, Japan

ANN-MLP
SVR
GBR
Lasso

MAE
MSE

RMSE
R2

AUC/ROC

70/30 224 30 × 30 [11]

Berlin, Germany

CNN
ANN

RF
SVM

AUC/Kappa 80/20 3934

30 × 30
10 × 10

5 × 5
2 × 2

[12]

Idukki, Kerala
India

AdaBoost
Gradient Boosting

XGBoost
CatBoost

SGB

AUC
Precision

Recall
F1score

NP

70/30 1500 30 × 30 [13]

Periyar River,
India

LR
SVM

Naive Bayes
RF

Ada Boosting
Gradient Boosting

XGBoost

AUC/ROC 30/70 188 30 × 30 [19]

Fujairah, UAE

xDeepFM
DNN
SVM
RF

recall
F1score

precision
accuracy

75/25 2400 30 × 30 [20]

Salzburg, Austria MCDA (AHP, ANP)
ML (RF, SVM)

AUC/ROC 70/30 30 × 30 [21]

Metlili, Morocco

RF
CART
SVM

XGBoost

AUC 70/30 204 30 × 30 [22]

Karun, Iran
Gorganrud, Iran

Deep Forest
CFM

Multi-gained scanning

AUC/ROC
OA
KC

27/73
4160
1278 30 × 30 [23]

Wilayat
As-Suwayq,

Oman

XGBoost
RF

CatBoost
AUC 70/30 446 5 × 5 [24]

Haraz, Iran

ANN
CART
FDA
GLM
GAM
BRT

MARS
MaxEnt

AUC/ROC – 201 20 × 20 [25]

Notes: ANN: Artificial Neural Network; MLP: Multilayer Perceptron; SVR: Support Vector Regression; GBR:
Gradient Boosting Regressor; CNN: Convolutional Neural Network; RF: Random Forest; XGBoost: eXtreme
Gradient Boosting; SVM: Support Vector Machine; SGB: Stochastic Gradient Boosting; LR: Logistic Regression;
xDeepFM: eXtreme Deep Factorization Machine; DNN: Deep Neural Network; AHP: Analytical Hierarchical
Process; ANP: Analytical Network Process; CART: Classification And Regression Trees; CFM: Cascade Forest
Model; FDA: Flexible Discriminant Analysis; GLM: Generalized Linear Model; GAM: Generalized Additive Model;
BRT: Boosted Regression Trees; MARS: Multivariate Adaptive Regression Splines; MaxEnt: Maximum Entropy.
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Table 2. Flood conditioning factors used in each of the selected machine learning applications
for FSM.

Ref. Flood Conditioning Factors

[11] Elevation, Slope, Aspect, Plane Curvature, Profile Curvature, TWI, SPI, DTStreams, DTRiver, DTRoads,
Land Cover

[12] Elevation, Slope, Aspect, Curvature, TWI, DTRiver, DTRoads, DTDrainage, CN, AP, FP

[13] Elevation, Slope, Aspect, Curvature, STI, TRI, TWI, SPI, DTRoads, DTStreams, Soil, Geology,
Geomorphology, LULC, NDVI, Rainfall

[19] Elevation, Slope, Aspect, Flow Direction, Drainage Density, SPI, STI, TPI, NDWI, Rainfall

[20] Elevation, Slope, Curvature, Drainage Density, SPI, TWI, STI, TRI, NDVI, DTDrainage, Rainfall, Land
Use, Geology

[21] Elevation, Slope, Aspect, TWI, SPI, DTRoads, DTDrainage, NDVI, Geology, Rainfall, Land Cover

[22] Elevation, Slope, Aspect, Plan Curvature, TWI, SPI, DTStreams, DTRoads, Lithology, Rainfall, LULC, NDVI

[23] Elevation, Slope, Aspect, Curvature, Plan Curvature, Profile Curvature, TPI, TRI, TWI, SPI, Convergence
Index, LULC, NDVI, Valley Depth, LS Factor, Flow Accumulation, MCA, HOFD, VOFD, CN, MFI

[24] Elevation, Slope, Curvature, TRI, TWI, SPI, DTDrainage, Drainage Density, DTRoads, NDVI, Geology, Soil
Type, Rainfall

[25] Elevation, Slope, Curvature, SPI, TWI, River Density, DTRiver, NDVI, Land Cover, Lithology, Rainfall

Notes: TWI: Topographic Wetness Index; SPI: Stream Power Index; STI: Sediment Transport Index; TPI: Topo-
graphic Position Index; TRI: Topographic; DTStreams: Distance from Streams; DTRiver: Distance from Rivers;
DTRoads: Distance from Roads; DTDrainage: Distance from Drainage; CN: Curve Number; AP: Annual Precipita-
tion; FP: Frequency Precipitation; NDVI: Normalized Difference Vegetation Index; LULC: Land Use Land Cover;
NDWI: Normalized Difference Water Index; MCA: Modified Catchment Area; HOFD: Horizontal Overland Flow
Distance; VOFD: Vertical Overland Flow Distance; MFI: Modified Fournier Index.

1.2. Objectives and Structure of the Study

This study focuses on performing flood susceptibility mapping on the Peneus River
Basin (PRB) with machine learning algorithms, contributing to the advancement of data-
driven approaches in flood risk assessment. The first objective is to evaluate and compare
the performance of various machine learning models—Logistic Regression (LR), Support
Vector Machine (SVM), Random Forest (RF) and eXtreme Gradient Boosting (XGBoost)—
during an extreme flood event, specifically Storm Daniel. Thereafter, the objective is
to further investigate the predictive capability and generalizability of the most effective
model; the best model is applied under different initial training conditions. Finally, a flood
susceptibility map corresponding to a 1000-year return period rainfall scenario is generated.

The contributions of the present paper can be outlined as follows:

• Supporting the development of an early warning system for flood susceptibility
through the exploitation of satellite-derived rainfall data.

• Application and comparative analysis of machine learning models (LR, SVM, RF,
XGBoost) to produce accurate flood susceptibility maps.

• Calculation of feature importance scores to evaluate the influence of each input vari-
able on model predictions.

• Investigation of the impact of different initial training conditions on model performance.
• Development of an FSM based on a 1000-year return period rainfall scenario at the

24 h scale.
• Provision of recommendations for flood risk management and planning in the case

study, based on the results obtained.

The novelty of this study lies in its integration of state-of-the-art machine learning
models with region-specific data to evaluate flood susceptibility in the Peneus watershed—
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a previously underexplored yet flood-prone area. Unlike previous studies that apply ML
models in more generic or well-documented settings, this work addresses a recent extreme
event (i.e., Storm Daniel) in a topographically diverse and vulnerable region, characterized
by extensive flooding. By focusing on Thessaly’s unique combination of lowlands and
hydrological complexity, we not only validate the models in a challenging environment
but also provide actionable insights tailored to local risk management. By applying these
advanced ML techniques to the Peneus watershed, this study contributes to the growing
maturity of ML in FSM, addressing gaps in previous research and providing insights that
have yet to be explored in similar contexts. The integration of regional data with a real-
world extreme event enhances the practical relevance and transferability of the proposed
methodology, offering valuable insights to authorities for informed decision making.

The paper is structured as follows: The case study and data used are described in
Section 2, while the methodological framework is detailed in Section 3. The results, in-
cluding the simulation and experimentation outcomes, and comparisons between different
models are presented in Section 4, followed by a broader discussion in Section 5. Finally,
Section 6 summarizes the key findings and conclusions of this study.

2. Study Area and Data
2.1. Study Area

The selected study region is the Peneus river basin (Figure 1), situated in Thessaly,
Greece. The Peneus basin occupies approximately 85% of the Thessaly Water District,
covering a total area of 11,062 km2. Thessaly’s topography is defined by four surrounding
mountain ranges: Olympus–Kamvounia to the north, Pindus to the west, Othrys to the
south, and Pelion–Ossa to the east. Originating in the Pindus Mountains, the Peneus river
traverses the Thessalian Plain and discharges into the Aegean Sea. The region exhibits
a transition from a Mediterranean climate to an eastern coastal climate. The climatic
conditions vary geographically, with a continental climate prevailing in the central lowlands
and a mountainous climate in the western highlands. Annual precipitation is highest in
the western highlands and decreases toward the lowlands, before increasing again in
the eastern highlands, and it is strongly seasonal [26]. The average annual temperature
ranges between 16 and 17 ◦C. The region holds significant importance due to its extensive
agricultural activity, encompassing approximately 450,000 hectares (ha) of agricultural
land, of which 250,000 hectares (ha) is irrigated. We chose to apply the aforementioned
methodology in the Peneus river basin due to its regional significance and the recurring
flood-related challenges it faces, including extreme events [27]. The area has experienced
numerous flood events over time [28]. Two of the most recent and significant flood events
were caused by Mediterranean cyclone Ianos (18–20 September 2020) [29] and Storm Daniel
(4–7 September 2023) [18]. Both events resulted in loss of life and extensive damage to
infrastructure and agricultural land. Among them, Storm Daniel was the most intense,
causing widespread inundation and catastrophic impacts, which is why we selected it as
the main event in this study. After each similar event, the case for preventive measures
is revived, yet no substantial intervention follows from the responsible authorities. All
the maps (e.g., Figure 1) are generated using the Greek Geodetic Reference System 1987
(GGRS87)/Greek Grid (EPSG:2100), a geodetic coordinate system specifically designed for
the Greek mainland. Coordinates represent eastings and northings (X, Y) in meters.

The correspondence between the grid coordinates and their respective latitude (ϕ) and
longitude (λ) in degrees, in the World Geodetic System 1984 (WGS84), is provided in Table 3.
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Figure 1. Geomorphological map of the study area–Peneus river basin—along with its main hydro-
graphic network. Coordinate System: GGRS87/Greek Grid (EPSG:2100).

Table 3. Correspondence between coordinates in the Greek Geodetic Reference System 1987
(GGRS87)/Greek Grid (EPSG:2100) and the World Geodetic System 1984 (WGS84) for the extent of the
PRB, showing the conversion between eastings and northings (X, Y) in meters and the corresponding
latitude (ϕ) and longitude (λ) in degrees.

GGRS87 (m) WGS84 (°)

X 262,000 Long. 38.95 N
414,000 40.18 N

Y 4,315,000 Lat. 21.25 E
4,448,000 22.99 E

2.2. Flood Inventory Map

Flood maps are fundamental for identifying and extracting samples of flooded and
non-flooded areas. The accuracy of this inventory dataset directly influences the potential
reliability of the models. In this context, we created a flood inventory map using the
most recent significant flood event, i.e., the Storm Daniel flood event in September 2023.
Synthetic Aperture Radar (SAR) image data was used to identify the area of the catchment
flooded by this event, and more specifically, Sentinel-1 mission data was used (https:
//browser.dataspace.copernicus.eu/ (accessed 10 February 2025)). The flood extent was
derived by processing satellite images captured before and after the flood event—on
30 August 2023 and 7 September 2023, respectively (https://rapidmapping.emergency.
copernicus.eu/EMSR692/download (accessed 10 February 2025)). The flood coverage
is highlighted in Figure 2. The flooded and non-flooded areas were assigned values of
“1” (positive class) and “0” (negative class), respectively. From the derived inventory
map of the watershed, 3950, data points were randomly selected to create our dataset
for the modeling, as shown in Figure 3. The selection process ensured that the dataset
remained balanced, maintaining an equal ratio of flooded and non-flooded points. While
this balanced dataset does not reflect the true spatial distribution, where non-flooded pixels
vastly outnumber flooded ones, it is a common and necessary approach in classification
tasks to mitigate model bias toward the majority class and to improve the model’s ability
to learn meaningful patterns for both classes [30]. Direct training on such an imbalanced
dataset would likely result in a model that performs poorly on the minority (flooded) class.

https://browser.dataspace.copernicus.eu/
https://browser.dataspace.copernicus.eu/
https://rapidmapping.emergency.copernicus.eu/EMSR692/download
https://rapidmapping.emergency.copernicus.eu/EMSR692/download
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This initial dataset was divided into 80% for training and validation purposes, and the
remaining 20% for testing the models. Table 4 summarizes the dataset split, showing the
number of samples allocated to the training and testing sets, along with the distribution of
the instances of each class.

Table 4. Distribution of samples and classes in training and testing splits.

Description Split Percentage
(%) Number of Samples Flooded Non-Flooded

Training 80 3160 1595 1565
Testing 20 790 379 411
Total 100 3950 1974 1976

Figure 2. Satellite image showing the area flooded by Storm Daniel. Flood extent is depicted in blue.
Left red part indicates no satellite coverage. Source: Sentinel-1. Coordinate System: GGRS87/Greek
Grid (EPSG:2100).

Figure 3. Illustration of flooded and non-flooded samples used in the study. Coordinate System:
GGRS87/Greek Grid (EPSG:2100).
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2.3. Flood Conditioning Factors

This section outlines and explains each of the factors selected and their relevance
to floods. The selection of conditioning variables for flood susceptibility mapping was
based on a combination of data availability, the relevance to flood-generating processes,
and a brief literature review of previous studies in the field. This approach guarantees
that the selected variables are both publicly accessible and scientifically supported. The
following analysis, processing of input variables, needed calculations and mapping were
conducted using tools available in QGIS 3.34.13 software. We ended up with 13 factors,
i.e., elevation, slope, aspect, curvature, distance from roads, distance from rivers, drainage
density, topographic wetness index (TWI), stream power index (SPI), curve number (CN),
land use/land cover (LULC), normalized difference vegetation index (NDVI) and rainfall.
Figure 4 presents the maps of the derived factors, while Table 5 provides a summary of
their sources. All the data were converted into a 30 × 30 m grid (the grid size of the Digital
Elevation Model) for analysis if their original format differed.

Elevation, obtained from the digital elevation model (DEM), is one of the most critical
factors in flood susceptibility, as lower elevation areas tend to accumulate runoff and are
more likely to flood during heavy rainfall events. On the other hand, high altitudes facilitate
faster drainage, reducing the likelihood of flood occurrence. The source provides data with
a 30 × 30 m size resolution, collected from [31] (Figure 4a).

Slope affects flood dynamics by controlling the speed and direction of surface runoff.
Steeper slopes typically promote faster water flow, reducing the potential for accumulation.
Flat flows increase the likelihood of flooding. Slope angle is calculated directly from the
DEM and is expressed in degrees (Figure 4b).

Aspect, which refers to the direction of the slope, can indirectly influence flood suscep-
tibility by affecting variables such as frontal precipitation direction and evapotranspiration,
and as a result, it also affects vegetation. Aspect is calculated from the DEM and takes
values from 0 to 360 that express the slope direction, starting from North (0°) and continuing
clockwise (Figure 4c).

Curvature describes the shape of the land surface and influences how water flows
across it. Curvature is calculated from the DEM in the QGIS environment. Positive
curvature refers to concave areas, zero values to flat areas, and negative values to convex
areas. Thus, terrain curvature plays a key role in determining water flow patterns and
flood-prone zones (Figure 4d).

Distance from roads (DTRoads) is a significant factor influenced by infrastructure
development, as roads often disrupt natural drainage patterns and can contribute to
flooding. Euclidean distance was used to determine this feature from the road network
(Figure 4e).

Distance from rivers (DTRiver) is crucial, as areas located closer to rivers are more
likely to experience flooding. Euclidean distance was also used for this feature (Figure 4f).

Drainage density refers to the total length of streams and rivers per unit area, and it is
expressed in km/km2 (Figure 4g).

The topographic wetness index (TWI) is a widely used hydrological indicator that
estimates the spatial distribution of moisture in a catchment. High TWI values indicate
areas that are likely to be wetter, such as valleys or flat regions—often prone to flooding.
The TWI was calculated using Equation (1) (Figure 4h).

The topographic wetness index (TWI) is a widely used hydrological indicator that
estimates the spatial distribution of soil moisture and potential water accumulation in
a landscape. It is a quantitative measure of the potential for water accumulation in a
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landscape, based on the local slope and upstream contributing area, and can identify areas
where water is likely to collect

TWI = ln
(

α

tan(β)

)
(1)

where α is the specific catchment area (the flow accumulation at the grid cell multiplied by
the grid cell area and then divided by the contour width, in m2/m) and β is the slope at the
corresponding grid cell (in radians).

The stream power index (SPI) is a hydrological factor that quantifies the erosion from
flowing water based on both the slope and upstream contributing area, helping us to
identify areas at risk of concentrated runoff and flooding. It is calculated with Equation (2)
(Figure 4i).

SPI = αtan(β) (2)

where α and β are as previously defined.
The curve number (CN) is an empirical hydrologic parameter for predicting direct

runoff from rainfall excess. It was developed by the USDA Natural Resources Conservation
Service, with the method of the Soil Conservation Service (SCS) [32]. It reflects how easily
rainfall turns into surface runoff in a particular area (Figure 4j).

A land use/land cover (LULC) map represents the physical and human-defined
characteristics of the watershed surface, which significantly influence flood behavior. Five
classes were identified, taking the first level of the given subdivision, i.e., Artificial Surfaces,
Agricultural Areas, Forest/Semi Natural Areas, Wetlands and Water Bodies (Figure 4k).

The normalized difference vegetation index (NDVI) is a satellite-derived index that
measures the density and health of vegetation by comparing the difference between near-
infrared (NRI) light (which vegetation strongly reflects) and red light (which vegetation
absorbs). Images from the Sentinel 2 mission were used, and Equation (3) was applied.
Four classes were created (Figure 4l) depending on their values; that is,

• −1–0: dead plant;
• 0–0.33: diseased plant;
• 0.33–0.66: moderate healthy plant;
• 0.66–1: very healthy plant.

NDVI =
NRI − Red
NRI + Red

(3)

Rainfall is one of the most critical factors in floods, as it directly contributes to the
volume and intensity of the surface runoff. In this study, we used the rainfall observed in
the IMERG (Integrated Multi-satellite Retrievals for GPM) obtained from Giovanni. This is
a widely used dataset that combines multiple satellite observations to estimate precipitation
at fine spatial and temporal scales. Since the flooded areas used in this study arose from
the extreme Storm Daniel event, it was essential to incorporate the corresponding rainfall
that caused these floods. Therefore, we obtained the rainfall data at 30-min intervals for the
period of 4–7 September 2020, from IMERG, and aggregated it to compute the total rainfall
of the event. The maximum rainfall observed by the satellite inside the river basin was
250 mm (Figure 4m).

Table 5. Data sources of the selected flood conditioning factors.

Data Source

DEM From Copernicus GLO 30
https://dataspace.copernicus.eu/ (accessed on 15 December 2024) [31]

Slope Calculated from DEM

https://dataspace.copernicus.eu/
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Table 5. Cont.

Data Source

Aspect Calculated from DEM

Curvature Calculated from DEM

DTRoads From OSM
https://www.openstreetmap.org/ (accessed on 10 December 2024)

DTRiver From GeoData
http://geodata.gov.gr/ (accessed on 8 January 2025)

Drainage Density From hydrographic network—GeoData
http://geodata.gov.gr/ (accessed on 8 January 2025)

TWI Calculated from DEM

SPI Calculated from DEM

CN Calculated from slope, soil, land use [33]

LULC From National Cadastre CORINE 2018
https://ktimatologio.gr/ (accessed on 5 January 2025)

NDVI From Copernicus Sentinel 2
https://browser.dataspace.copernicus.eu/ (accessed on 5 February 2025)

Rainfall From Giovanni
https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 7 March 2025)

Flooded Area From Copernicus Sentinel 1
https://browser.dataspace.copernicus.eu/ (accessed 10 February 2025)

Elevation 

(a)

Slope 

(b)

Aspect 

(c)

Curvature 

(d)

Figure 4. Cont.

https://www.openstreetmap.org/
http://geodata.gov.gr/
http://geodata.gov.gr/
https://ktimatologio.gr/
https://browser.dataspace.copernicus.eu/
https://giovanni.gsfc.nasa.gov/giovanni/
 https://browser.dataspace.copernicus.eu/
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DTRoads 

(e)

DTRiver 

(f)

Drainage Density

(g)

TWI 

(h)

SPI 

(i)

Curve Number 

(j)

Land Use/Land Cover

(k)

NDVI 

(l)

Figure 4. Cont.
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IMERG Rainfall - Daniel 

(m)
Figure 4. Flood conditioning factors used. (a) Elevation. (b) Slope. (c) Aspect. (d) Curvature.
(e) DTRoads. (f) DTRiver. (g) Drainage Density. (h) SPI. (i) TWI. (j) CN. (k) LULC. (l) NDVI. (m) Total
rainfall during Storm Daniel. Coordinate System: GGRS87/Greek Grid (EPSG:2100).

3. Materials and Methods
There are several ways to develop a model for flood susceptibility analysis. One

approach treats it as a regression problem, predicting water depth as a continuous variable.
Another frames it as a classification task, distinguishing between flooded and non-flooded
areas. In this study, we adopt a classification approach, where the objective is to predict the
likelihood of a location being classified as either flooded (1) or non-flooded (0), based on
a set of input variables. Those explanatory variables are some factors, also referred to as
flood conditioning factors, which significantly influence the probability of flooding. The
selected factors are described in Section 2.3. In general, we create a dataset comprising
some independent variables (flood conditioning factors) and a single dependent variable
(classified as flood-prone or not flood-prone). This setup formulates a binary classification
task suitable for machine learning applications. The overview of the methodology is
depicted in Figure 5. Four well-established machine learning models are chosen to support
this approach (i.e., Logistic Regression, Support Vector Machine, Random Forest and
Extreme Gradient Boosting). Their underlying mechanisms and limitations are discussed
in the following sections.

Target: Flood Inventory Map

Geospatial Database

Inputs

Flooded (1) non-Flooded (0)

Train data 
(80%)

5-fold cv

Test data 
(20%)

Machine Learning 
models:
Classification Problem
LR, SVM, RF, XGBoost

Evaluation
ROC curve
Accuracy
Precision
Recall
Specificity
F1 Score

FSM

LULC

Curvature

CN

DTRiver

DTRoads

Aspect

Slope

Elevation

Rainfall

Drainage Density

NDVI

SPI

TWI

Features

Daniel 
Flood

Figure 5. Flowchart of the methodology used for Flood Susceptibility Mapping.
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3.1. Logistic Regression (LR)

Logistic Regression (LR) [34] is a supervised machine learning algorithm commonly
used to predict the probability of a categorical outcome, particularly in binary classification
tasks, where the goal is to distinguish between two classes. The key characteristic of logistic
regression is that it models the relationship between the input features and the output
probability using an S-shaped curve (Figure 6), known as the logistic or sigmoid function
(Equation (4)). This ensures that the predicted values are always restricted between zero
and one, allowing them to be interpreted as probabilities.

f (z) =
1

1 + e−z (4)

z = wTx + w0 (5)

where z is a linear combination of the input features and their corresponding weights;
x is the feature vector; w is the weight vector; and w0 is the bias term. The weights are
determined during the training process with the maximum-likelihood estimation algorithm
[35]. LR is simple, interpretable and efficient for binary classification tasks, especially
when the relationship between the input and output is approximately linear. However, it
struggles with more complex relationships and non-linear decision boundaries.

x

y

0

0.5

1

threshold

S-curve

Figure 6. Logistic Regression model.

3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM) [36] is a supervised machine learning algorithm com-
monly used for binary classification, though it can also be applied to regression tasks.
SVM’s goal is to find the optimal decision boundary or hyperplane (for >3 features) that
separates the data into two or more classes, while maximizing the margin between them.
An example of the model’s key characteristics is depicted in Figure 7.

x

y

Support vectors

Hyperplane

Class A

Class B

Figure 7. Support Vector Machine model.
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Mathematically, the decision boundary (hyperplane) in linear SVM can be described
by Equation (6):

wTx + w0 = 0 (6)

where x is the input vector, w is the weight vector and w0 is the bias term. Parameters are
calculated through solving an optimization problem that aims to find the hyperplane which
maximizes the margin. When data points are not linearly separable in their original space,
SVM uses the kernel trick [37] to map them into a higher-dimensional space where a linear
separation is possible. Common kernels include the linear, polynomial, radial basis function
(RBF), and sigmoid kernels, which measure similarity between data points to enable
effective separation. SVM is effective in high-dimensional spaces and remains memory-
efficient by relying only on a subset of training points (support vectors) to determine
the decision boundary, but careful normalization is required. At the same time, it is
computationally intensive and slow to train on large datasets, which can negatively impact
scalability and performance.

3.3. Random Forest (RF)

Random Forest (RF) [38] is an ensemble learning algorithm widely used for classifica-
tion and regression tasks. It operates by constructing a large number of decision trees [39]
during training and outputting the class that is the majority vote of the individual trees.
Each tree is trained on a random subset of the data (using a bootstrapping sampling),
and at each split, it considers a random subset of features, which helps reduce overfitting
and improves generalization. This randomness ensures that the trees are independent,
making the overall model more robust than a single decision tree. The final prediction for a
classification problem is typically the class with the most votes among all trees. Figure 8
summarizes the architecture of the RF model. Random Forests are particularly effective
in handling high-dimensional data, capturing non-linear relationships, and working well
with both numerical and categorical features, in tabular form. However, they can be com-
putationally expensive for large datasets and are less interpretable than simpler models
like logistic regression. Despite this, their accuracy, resistance to overfitting and minimal
need for parameter tuning make them a powerful tool in prediction assessment.

Tree 1 Tree 2 Tree n

Data set (X,Y)

Class A Class B Class B

Final Result

…..

Final output

Sample of data

Decision trees

Predictions

Bagging / Majority voting

…..

Leaf nodes

Root nodes

Figure 8. The architecture of the Random Forest algorithm.

3.4. Extreme Gradient Boosting (XGBoost)

XGBoost (eXtreme Gradient Boosting) [40] is a high-performance machine learn-
ing algorithm built upon the gradient boosting framework and has gained widespread
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recognition due to its success in numerous Kaggle competitions [41]. It operates as an en-
semble method, meaning it combines multiple base learners—typically decision trees [39]—
through a boosting process. In this process, models are trained sequentially, with each
one aiming to reduce the errors made by its predecessors. This iterative optimization
leads to continuous performance improvement by minimizing a defined objective function.
Boosting techniques like XGBoost are particularly effective at balancing bias and variance.
In the case of XGBoost, each decision tree assigns a numerical weight to its leaf nodes, and
samples are directed to these leaves based on their feature values, with the leaf’s weight
representing the prediction. The term “gradient” in gradient boosting refers to the use of
gradient descent to minimize errors as more models are added. XGBoost distinguishes
itself from other boosting algorithms through the inclusion of regularization within its
objective function to prevent overfitting and its capability to build trees in parallel, greatly
enhancing computational speed. These features contribute to its reputation as a highly
efficient, flexible and scalable algorithm. The architecture and training process of XGBoost
are illustrated in Figure 9.

Following [40], the objective function that needs to be minimized at the t-th iteration is

L(t) =
n

∑
i=1

l(yi, ŷ(t−1)
i + ft(xi)) + Ω( ft) (7)

Ω( f ) = γT +
1
2

λ∥w∥2 (8)

where yi is the target value, ŷi is the predicted value, l is a differentiable loss function
and ft(xi) is the output from the new model at iteration t, with n being the number of
training samples. The first component of Equation (7) quantifies the model’s performance
on training data, while the second component, Ω, acts as a regularization term that controls
the complexity of the individual learners (i.e., trees), to prevent overfitting. In Equation (8),
T refers to the number of leaves in the tree, with leaf weights denoted by w, and γ and
λ being regularization parameters. The task of optimizing this objective function can be
simplified to minimizing a quadratic function, through the application of the second-order
Taylor expansion [42].

Tree 1 Tree 2 Tree n

Data set (X,Y)

Iteration…..

…
..

𝑓1(𝑋, 𝑌) 𝑓2(𝑋, 𝑌) 𝑓𝑛(𝑋, 𝑌)

෍𝑓(𝑋, 𝑌)

…..

Final output

Sample of data

Construction of 

Decision trees

Predictions

Leaf nodes

Root nodes

Figure 9. The architecture of the XGBoost algorithm.

The main difference between RF and XGBoost lies in how they build and combine
decision trees. RF, a bagging-based method, creates multiple trees and computes their
predictions independently and in parallel. In contrast, XGBoost is a sequential model,
where each tree is influenced by the predictions of the previous one. XGBoost requires



Water 2025, 17, 2678 17 of 31

careful hyperparameter tuning to perform optimally, and this fine-tuning can be challenging
and time-consuming, especially when working with large datasets. Additionally, XGBoost
is designed to handle only numerical data. Its more complex structure also makes it less
interpretable compared to simpler algorithms.

3.5. Feature Importance

With the expanding use of machine learning in decision making, it is becoming ever
more important to ensure transparency and to understand the factors contributing to
a model’s predictions [43]. Feature Importance (FI) in ML refers to techniques used to
quantify the contribution of each input feature to the model’s prediction. Understanding
which features are most influential helps to improve model transparency, supports better
feature selection, and can reveal insights into the underlying data. There are several ways
to calculate feature importance, such as [44]:

1. Coefficient-based feature importance;
2. Permutation-based feature importance;
3. Tree-based feature importance;
4. SHapley Additive exPlanations (SHAP).

Coefficient-based FI is used in linear models (like linear or logistic regression), where
the magnitude of the model coefficients indicates the relative importance of each feature.
Permutation-based FI measures the impact of each feature on model performance by
randomly shuffling its values and observing the decrease in metrics. In a tree-based
model (like RF, XGBoost, etc.), FI is typically calculated based on how much each feature
reduces impurity (e.g., Gini impurity or entropy) [45]. SHAP [46] is a model-agnostic
method based on cooperative game theory. It provides a clear way to see how much
each feature contributes to a model’s prediction by looking at how the prediction changes,
when we include or exclude that feature in different combinations. This makes SHAP
a valuable tool for understanding model behavior. SHAP feature importance serves as
an alternative to permutation-based feature importance. While permutation importance
evaluates the impact of a feature by measuring the decrease in model performance when the
feature values are randomly shuffled, SHAP quantifies importance based on the magnitude
of feature attributions derived from their contributions to individual predictions. By
identifying key drivers of a model’s output, feature importance aids in building more
interpretable and efficient models.

3.6. Evaluation Metrics

Selecting the appropriate evaluation metrics is essential during the model assessment
phase, as they offer a clear understanding of the model’s effectiveness in practical applica-
tions. In binary classification tasks, which is our case, the choice of metrics significantly
impacts how performance is interpreted [47]. The most popular and used metric to evaluate
the performance of classification models is accuracy. Accuracy simply measures the overall
proportion of correct predictions with respect to the total number of data. While accuracy
gives an overall idea of a model’s performance, it can be a misleading metric in some
cases like imbalanced datasets. To overcome the drawbacks, we usually use more metrics
like precision, recall, specificity and F1score, which provide a more detailed evaluation,
especially when dealing with imbalanced data or situations where different types of errors
have different costs. Precision indicates the proportion of true positives among predicted
positives, and recall or sensitivity indicates the proportion of true positives among actual
positives. Specificity provides the number of negative records correctly predicted. The
F1score combines precision and recall into one metric, by calculating the harmonic mean.
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Additionally, Receiver Operating Characteristic (ROC) curves and the corresponding
Area Under the Curve (AUC) are widely used for binary classification algorithms to
evaluate a model’s ability to rank positive instances higher than negatives across various
threshold settings. The ROC curve is produced by calculating and plotting the True Positive
Rate (TPR) on the y-axis, against the False Positive Rate (FPR) on the x-axis, for a classifier
at a variety of thresholds. A good model will have a large ROC-AUC, while a poor model
will be positioned near the diagonal x = y line, which represents random performance.
The ROC-AUC metric is also very useful for comparing different models against each other.
Selecting appropriate metrics depends on the specific goals of the task, particularly in cases
of class imbalance where accuracy alone can be misleading.

Equations (9)–(13) present the formulas for the aforementioned metrics.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Specificity =
TN

TN + FP
(12)

F1score = 2 · Precision · Recall
Precision + Recall

(13)

TPR = Sensitivity = Recall (14)

FPR = 1 − Specificity = 1 − FP
FP + TN

(15)

where TP, TN, FP, and FN stand for True Positives, True Negatives, False Positives, and
False Negatives, respectively. To elaborate, each term means the following:

• True Positives: The number of instances where the model correctly predicted the
positive class;

• True Negatives: The number of instances where the model correctly predicted the
negative class;

• False Positives: The number of instances where the model incorrectly predicted the
negative class for a positive case;

• False Negatives: The number of instances where the model incorrectly predicted the
positive class for a negative case.

4. Analysis and Results
4.1. Problem and Model Setup

As stated in Section 2.2, the overall dataset that is used for the training and testing of
the algorithms contains 3950 grid cell points, equally divided between flooded and non-
flooded instances. Each point includes the 13 independent variables that affect the flood
along with a dependent variable indicating whether the location is flooded or non-flooded.
We then split the data into 80% (i.e., 3160) for the training purposes and the remaining 20%
(i.e., 790) for testing the models, ensuring that the ratio of flooded and non-flooded samples
remained consistent across both subsets.

In order to explore and visualize the linear relationships among the flood condition-
ing variables in the dataset, a Pearson correlation matrix was computed. The resulting
matrix, visualized through a heatmap in Figure 10, reveals both the strength and direc-
tion of pairwise correlations. The values range from −1, indicating a perfect negative
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linear relationship, to +1, indicating a perfect positive linear relationship. Elevation and
slope exhibited the strongest positive correlation (+0.7), while slope and TWI showed the
strongest negative correlation (−0.7). Due to the fact that the highest absolute correlation
coefficient is 0.7, which is below the common multicollinearity threshold of 0.8 [48], we
proceeded to include all features in the training set. We also experimented with removing
the variables showing the highest correlations, but this had no noticeable impact on the
models’ performance, so all the features were retained.

Figure 10. Pearson correlation matrix of all input (independent) variables.

To ensure robust model performance, cross-validation was employed during the
evaluation process. Each model used in this study was trained using five-fold cross-
validation to mitigate overfitting, and accuracy was used as the scoring metric. In this
approach, the dataset is divided into five equal parts; in each iteration, four parts are used
for training and the remaining one for validation, rotating until every subset has been
used for validation once. Following hyperparameter optimization using Grid Search, the
finalized parameter values of the models are as presented in Table 6. All the analyses and
code implementation were carried out using Python 3.11.12 with relevant scientific libraries,
e.g., the XGBoost Python package 2.1.4 and scikit-learn version 1.6.1. Model training was
performed on Google Colab, utilizing an Intel Xeon CPU with 2 vCPUs (virtual CPUs)
and 13 GiB of RAM, to provide a suitable computational environment for the machine
learning tasks.
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Table 6. Values derived from hyperparameter optimization task for the Logistic Regression (LR),
Support Vector Machine (SVM), Random Forest (RF) and eXtreme Gradient Boosting (XGBoost).

Model Hyperparameter Values

LR max iter = 1000; scoring = ‘accuracy’; multi class = ‘auto’; solver = ‘lbfgs’

SVM C = 2; gamma = ‘scale’; kernel = ‘radial basis function (rbf)’; scaler = ‘StandardScaler’

RF no. estimators = 200; max depth = 20; min samples split = 2; min samples leaf = 1;
max features = ‘sqrt’

XGBoost no. estimators = 100; max depth = 7; learning rate = 0.1; subsample = 1.0; colsample by tree = 0.8

4.2. Results and Comparison

With the models being trained, we evaluate their performance on the testing set.
A comparison of confusion matrices for the different models is demonstrated in Figure 11.
The format of the illustrated matrix is as follows:[

TN FP
FN TP

]
Both Logistic Regression (LR) and Support Vector Machine (SVM) yield a high value

of classification errors (i.e., 121 and 107), which means that they predict that the point
is either non-flooded or flooded when it is actually not. Almost all of them are false
positive points, meaning that the model incorrectly flagged them as positive cases (flood)
despite them actually belonging to the negative class (non-flood). Random Forest (RF) and
eXtreme Gradient Boosting (XGBoost) minimize the false positive and negative values,
misclassifying only 55 and 58 samples, respectively, out of 790 total testing samples (cells).

Table 7 summarizes the values of the five metrics, i.e., accuracy, precision, recall,
specificity and F1score. For each evaluation metric, the highest scores are emphasized
in bold. As shown in the table, the tree-based models (i.e., Random Forest and Extreme
Gradient Boosting) demonstrate superior performance in general, achieving consistently
high results across all metrics. Both Random Forest (RF) and XGBoost achieved the highest
accuracy of 0.93, reflecting their superior predictive capability. These two models also led
in precision (0.89) and F1score (0.93), indicating a good balance between precision and
recall. While Logistic Regression (LR) achieved a perfect recall of 1.00, it did so at the cost of
lower specificity (0.71) and precision (0.76), suggesting more false positives. Support Vector
Machine (SVM) showed moderate improvements over LR but was still outperformed by
RF and XGBoost across most metrics. Notably, XGBoost slightly surpassed RF in specificity
(0.90 compared to 0.89), emphasizing its effectiveness in correctly identifying non-flood-
prone areas.

Furthermore, Figure 12 presents the Receiver Operating Characteristic (ROC) curves
and the corresponding Area Under the Curve (AUC). The ROC curve shows the trade-off
between sensitivity (or TPR) and 1 − specificity (or FPR). The dotted lines represent the
ideal classifier (top-left curve) and random classifier (the diagonal where FPR = TPR).
Curves that approach the perfect classifier indicate better performance, whereas on the
contrary, those closer to the random line suggest weaker or poor performance. Aside
from visual inspection, which can be critical in some cases, a measure that summarizes the
performance of each classifier is needed in order to compare different models. The AUC
score measures the area under the ROC curve and gives a general predictive score. From
Figure 12, it can be observed that LR performs worse than the other models (90.7%). SVM
performs slightly better (94%), while the tree-based models (RF and XGBoost) show the
best performance with similar ROC curves—occasionally, one slightly surpasses the other.
Quantitatively, RF achieves the best AUC score of 96.9%, slightly outperforming XGBoost
(AUC = 96.8%). This improved performance can be attributed to their ability to capture
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complex, non-linear relationships and interactions within the data, which simpler models
may fail to detect.

(a) (b)

(c) (d)
Figure 11. Confusion matrices showing model performance on the test dataset. (a) LR. (b) SVM.
(c) RF. (d) XGBoost.

Figure 12. Comparison analysis of models’ performance through ROC curve and AUC score, evalu-
ated on test dataset.
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Table 7. Models’ results for each evaluation metric on the test set. The best-performing model for
each metric is highlighted in bold.

Model Accuracy Precision Recall/Sensitivity Specificity F1 Score

LR 0.85 0.76 1.00 0.71 0.86

SVM 0.86 0.78 0.99 0.75 0.88

RF 0.93 0.89 0.97 0.89 0.93

XGBoost 0.93 0.89 0.96 0.90 0.93

4.3. FSM Maps

It is important to have a flood susceptibility map for the complete watershed, when
an extreme event like Storm Daniel is taking place. Hence, Figure 13 depicts the flood
susceptibility maps generated by each of the models applied, indicating the probability
of flooding for each cell. Higher values (close to one) indicate greater susceptibility to
flooding, while lower values (close to zero) indicate lower susceptibility. LR and SVM
predict significantly larger flood-prone areas compared to RF and XGBoost, which identify
more limited regions as susceptible to flooding. According to tree-based models, which
demonstrated superior performance, the most flood-prone areas are located in the eastern
region and the central-to-southern region, as highlighted in red.

(a) (b)

(c) (d)
Figure 13. Flood susceptibility maps of Peneus river basin for each of the trained models. (a) LR.
(b) SVM. (c) RF. (d) XGBoost.

4.4. Feature Importance

As mentioned in Section 3.5, feature importance allows us to understand the rela-
tionship between the features and the target output. In that manner, which feature is the
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most effective for the model is distinguished. As Random Forest performed the best in the
evaluation assessment, with respect to the ROC curve and AUC score, it was selected as
the primary model for further analysis and investigation. To measure how each feature
influences the output in RF, we used Mean Decrease in Impurity (MDI) (Figure14a) and a
permutation-based method that involved measuring the Mean Decrease in Accuracy (MDA)
(Figure 14b). MDI evaluates the importance of a feature by summing the total decrease in
impurity caused by that feature over all trees in the model. MDA, in contrast, quantifies
the drop in predictive accuracy when a feature’s values are randomly permuted, providing
insight into how much the model depends on that variable. Both methods suggest that
the most influential factors in the RF model are elevation, slope, rainfall and TWI. The
elevation, slope and TWI variables are critical as they directly influence the topographic
characteristics of the landscape, which are crucial in flood modeling. Additionally, rainfall
provides important environmental context, representing precipitation patterns.

(a) (b)
Figure 14. Feature importance for the RF model across different methods. (a) Mean Decrease Impurity.
(b) Mean Decrease in Accuracy.

4.5. Initial Data Experimentation

With the intention of verifying the generalizability of the model and evaluating the
potential impact of the initial training data selection, we conducted two additional experi-
ments. In each experiment, the Peneus watershed was divided into two halves. For the
first experiment, 3950 training data points were sampled exclusively from the western half,
while in the second, the same number of points was selected from the eastern half. After
training the RF model on both datasets, two trained models were developed. FSMs for the
entire basin were generated, and the results are presented in Figure 15. As we can observe,
the training data have some influence on the resulting FSM. To quantify and compare
the results, we produced the ROC and AUPRC (Area Under Precision–Recall) curve in
Figure 16 for the three models, i.e., trained with points from the whole basin, trained with
points from the right-half basin and trained from the left-half basin. Not unexpectedly, the
model trained using data points from the entire basin—thus capturing the spatial variability
across the full study area—exhibited better performance compared to models trained on
spatially limited subsets. Nevertheless, the accuracy of the remaining models remained at
a high level.



Water 2025, 17, 2678 24 of 31

(a) (b)
Figure 15. Flood susceptibility maps of Peneus river basin with Random Forest for different initial
training data. (a) Training with left-half catchment. (b) Training with right-half catchment.

(a) (b)
Figure 16. Comparison analysis of Random Forest models trained on different initial training data,
through ROC and AUPRC curve (Train All: trained using data from the entire basin; Train Left:
trained using data from the left side of the basin; Train Right: trained using data from the right side
of the basin). (a) ROC curves. (b) AUPRC curves.

4.6. FSM for T = 1000-Year Rainfall Scenario

Flood susceptibility maps are essential for identifying high-risk areas and guiding
flood mitigation and land-use planning efforts in the area. Inference in machine learning
refers to the process of applying a trained model to new data in order to generate predic-
tions. Under these circumstances, we constructed an FSM referring to a 1000-year return
period rainfall scenario at a 24 h scale. The new methodological stochastic framework for
the construction of rainfall intensity–time scale–return period relationships [49] (referred
as ombrian curves), was adopted. This approach was applied recently within Greek terri-
tory [50,51]. The relationship between the rainfall intensity x for any timescale k and return
period T is given by Equation (16):

x = λ
(T/β)ξ − 1
(1 + k/α)η (16)

where five parameters are essential, i.e., λ, an intensity scale parameter in units of x (e.g.,
mm/h); β, a timescale parameter in the units of the return period (e.g., years); α, a timescale
parameter in the units of the timescale (e.g., h) with α > 0; η, a dimensionless parameter
with 0 < η < 1; and ξ, the tail index of the process. The total precipitation level can be
determined by multiplying the rainfall intensity x by the corresponding timescale (i.e.,
24 h). Figure 17 shows the rainfall distribution across the study area. The corresponding
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FSM is depicted in Figure 18, highlighting three main classes: low-, moderate- and high-
flood-susceptibility zones. Pixels with prediction probability values between 0 and 0.33
are classified as low-susceptibility, 0.33–0.66 as moderate, and values greater than 0.66 as
high-susceptibility.

Figure 17. Rainfall for T = 1000 years and k = 24 h.

Figure 18. FSM for Peneus basin based on a rainfall scenario for T = 1000 years and k = 24 h.

5. Discussion and Future Research Directions
In recent years, machine learning techniques have been used to map flood suscepti-

bility across many regions globally. These are highly effective in this task because of their
ability to leverage historical flood data to uncover hidden patterns in environmental data.
Through our work, we highlight how these models can be leveraged to make more accurate,
data-driven predictions. However, despite their growing popularity, the application of
these techniques has not yet reached its full potential, and there is still significant room
for improvement. In the present study, we applied machine learning algorithms for the
creation of flood susceptibility maps in the region of Thessaly, aiming to enhance the flood
protection of the area and provide more insights into the applied methodology. We utilized
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satellite-derived data to assess flooded areas from a massive recent extreme event, i.e.,
Storm Daniel, along with the corresponding satellite-based rainfall of the event.

We created a dataset of 3 950 data points consisting of 13 flood conditioning factors
as independent variables and corresponding binary flood labels. The factors included
elevation, slope, aspect, curvature, distance from roads, distance from rivers, drainage den-
sity, topographic wetness index, stream power index, curve number, land use, normalized
difference vegetation index and rainfall. As we divided the balanced dataset into 80% for
training and the remaining 20% for testing, we compared the performance of LR, SVM,
RF and XGBoost in a classification procedure. In this performance assessment, according
to various metrics, like accuracy, precision, recall, specificity, F1 score and ROC curve, the
tree-based algorithms performed better, achieving an Area Under the Curve (AUC) score
of 0.97, with 1.0 representing the highest possible score. More specifically RF, XGBoost,
SVM and LR achieved AUC values of 0.969, 0.968, 0.940 and 0.907, respectively. The feature
importance of RF revealed that terrain variables, such as elevation, slope and TWI, along
with the event’s rainfall, are the most significant contributors. Elevation and slope achieved
the highest scores in both MDI (0.27 and 0.18) and MDA (0.20 and 0.15), respectively.

In comparison with previous studies conducted under similar contexts but different
geographic regions, the AUC values achieved in this work (≈97% with RF and XGBoost) sur-
pass those reported for RF in Periyar (94%) [19], Salzburg (88%) [21], and Metlili (81%) [22],
and are comparable to the higher performance observed for RF in Berlin (96%) [12] and XG-
Boost in Wilayat As-Suwayq (98%) [24], among others. These findings indicate that the pro-
posed modelling framework achieves accuracy levels at the upper range of those reported
in the literature, highlighting the strong potential demonstrated by all the evaluated ML
models to effectively capture complex flood-related patterns in extreme event conditions.

The choice to use data from the Storm Daniel event was driven by both practical
and methodological reasons. As an extreme flood event that impacted the entire river
basin, Storm Daniel offered a rare opportunity to capture the full spatial extent of flood
dynamics across the catchment. Using data from such an event enabled us to derive a rich,
representative sample of flooded and non-flooded areas based on satellite images. The
availability of data for such events is not always present. In fact, other historical flood
events lacked similarly extensive and high-quality satellite data coverage.

To investigate the generalizability of the model and assess the impact of the initial
training data, we conducted additional experiments. As we divided the catchment in
half, we used data from one side each time to train a random forest model. The results
highlight the model’s sensitivity to the training data, suggesting that generalizability may
be influenced by spatial characteristics. In particular, the models trained using data from
the entire basin, the half-left side and the half-right side achieved AUC scores of 0.96, 0.94
and 0.92, respectively, and AUPRC values of 0.57, 0.51 and 0.41. This finding highlights
the need for caution when applying the model to new areas with different spatial features.
To improve generalizability, it may be necessary to incorporate diverse data sources or
ensure a more representative distribution of training data that covers a broader range of
spatial conditions.

Early flood warning systems are critical tools for disaster risk reduction, enabling
timely alerts and proactive measures to minimize damage and protect communities at
risk [52]. The proposed approach can also serve as an early warning system, wherein a
pre-trained model operates for a real-time rainfall forecast to identify areas likely to be most
affected by the event. This method could complement or even replace time-consuming
simulations traditionally conducted with conventional hydraulic models. Physically based
flood models offer detailed process simulation but demand extensive data and computa-
tional resources, which can limit their applicability in data-poor or urgent scenarios. By
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contrast, our machine learning–satellite data approach achieves comparable or superior
accuracy with lower data requirements and faster processing, making it highly suitable
for large-scale or rapid flood susceptibility mapping. Such a scenario was included in the
study, in which a map based on a 1000-year return period rainfall event was generated,
and the susceptible areas were identified. This scenario was created using the updated
parameters of the ombrian curves in Greece, within the implementation of the EU Directive
2007/60/EC [51]. A trained model required less than 5 min to produce the outputs. The
resulted map exhibits approximately 20% of the basin as a highly flood-prone area, showing
two major zones of high flood susceptibility inside the basin, specifically in the eastern and
central-to-southern regions, highlighting the need for targeted measures and actions.

It is important to provide decision makers with information about solutions for ev-
ery situation, regardless of the challenges involved, and also to not attribute failure to
unforeseen events and unrealistic theories. Anticipating and mitigating potential risks can
greatly reduce the aftermath of the resulting consequences; all civil protection guidance
highlights the importance and added value of anticipatory planning and design in disas-
ter management. Our case study area, Thessaly, has been suffering from both flooding
and a lack of water for many years, yet the responses have proven insufficient in many
cases. Solutions can only be achieved through civil engineering works and infrastructure
designed to mitigate these challenges; still, the responsible authorities and sometimes the
wider community often resist the implementation of these projects. A robust strategic plan
could explore the potential benefits of multipurpose dams all around the PRB, evaluating
whether they could serve dual functions, such as providing water for irrigation, industrial
use, and human consumption, while also supporting flood control and hydroelectric power
generation. These infrastructure projects, properly studied, are among the most effective
ways to prevent flooding, and their landscape design is beneficial for landscape quality
perception as well as touristic development [53].

Although the integration of satellite data with machine learning shows great potential
for flood susceptibility analysis, several challenges remain to be addressed. Firstly, there
can be limited spatial and temporal resolution in satellite imagery, and high-quality satellite
data may not be available for the specific period. SAR images often contain noise, which
can reduce the accuracy of flood detection and necessitates complex preprocessing [54].
Moreover, the rainfall data derived from satellite observations may not always be accurate
and can sometimes diverge from the ground truth measurements [55]. Accurate ground
truth data labeling for training a machine learning model can be challenging in some regions.
ML models trained on a specific region may not generalize well to other areas. In addition,
processing high-resolution satellite data may require significant computational resources.

This study can serve as a foundation for future research that can build upon it to
explore potential improvements to the methods used in the current work. To begin with, not
only point-based models (SVM, RF, etc.), but also image-based models like Convolutional
Neural Networks (CNNs) can be adopted. The main benefit from such models is that
they can capture spatial patterns and information, as pixels of the image are not treated
independently. On top of that, comparing the proposed approach with a hydrological
model, along with considering the socio-economic aspects, could offer valuable insights.
Additionally, this study could serve as a key reference for evaluating differences in model
performance using future extreme flood events; however, in that case the feature of rainfall
should be adopted by accounting for all precipitation that contributed to those events. A
key aspect is the model’s generalizability, and future work could explore this by testing it
on different extreme flood events and watersheds to better assess its performance across
varied conditions. It is also worth noting that a key question to address is how many
data samples are necessary to consider the ML model accurate. Another important aspect
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is the reliable quantification of the uncertainty of each model. One way to accomplish
this is via the BlueCat [56] approach, which operates by transforming a point prediction
provided by a model to a corresponding stochastic formulation. While conventional ML
models ignore any underlying physical law, certain types of neural networks, such as
Physics-Informed Neural Networks (PINNs) [57] and Neural Operators [58], which fall
under the broader domain of Scientific Machine Learning, are specifically designed to
incorporate them into the modeling process. PINNs solve partial differential equations
(PDEs) by embedding physical laws into neural networks, while neural operators learn
mappings between function spaces to rapidly approximate solutions to complex systems.
These could be useful, as flood modeling typically employs the shallow water equations or
the Navier–Stokes equations. Last, but equally important, is the growing effort to interpret
how some machine learning models function (Interpretable AI [59]) and provide clear
explanations for their outputs and help decision-making processes (Explainable AI [60]). It
is important to understand the reasoning behind the prediction of each model, regardless
of its complexity.

6. Summary and Conclusions
Our research focuses on the contribution of machine learning algorithms to flood

susceptibility mapping. Using 13 flood conditioning factors and satellite data, we trained
four models on a classification task, focusing on the Peneus Basin case study and with an
extreme flood event serving as a key reference. The performance of Logistic Regression
(LR), Support Vector Machine (SVM), Random Forest (RF) and eXtreme Gradient Boosting
(XGBoost) was compared using standard evaluation indicators. Feature importance was
analyzed for the best-performing model (RF). To assess the generalizability, the RF model
was trained using different subsets of data by splitting the basin in half. Finally, a rainfall
scenario for a 1000-year return period with a 24-hour scale was developed to support
long-term flood risk assessment and planning. Based on the analysis and evaluation of the
applications, the key findings are outlined below:

• Tree-based models, particularly RF and XGBoost, outperformed the other algorithms,
achieving the highest Area Under the Curve AUC scores—RF: 0.969; XGBoost: 0.968;
SVM: 0.940; LR: 0.907.

• Feature importance analysis revealed that the most influential factors contributing
to flood susceptibility, in decreasing order, are elevation, slope, rainfall and TWI,
providing valuable insights for model interpretation and decision making.

• The choice of initial training data impacts model performance and generalizability,
highlighting the need for careful dataset selection in spatial prediction tasks.

• The identified areas with high flood susceptibility are the eastern and the central-
to-southern regions, offering useful information for targeted risk mitigation and
planning efforts.

• Machine learning algorithms offer a promising approach for flood susceptibility
mapping and can be extended as an early warning system, requiring significantly less
time compared to traditional models.

Floods continue to be a major socio-environmental challenge, causing widespread dam-
age and disruption. While accurate FSMs are essential for effective flood risk management
and preparedness, this remains a complex task due to the variability of climatic, hydrologi-
cal and geographical factors. Machine learning offers a promising avenue for improving
predictive capabilities by leveraging data-driven insights. However, ongoing research
is needed to enhance model robustness, generalizability and integration into real-time
early warning systems. Ultimately, the integration of domain knowledge with advanced
technologies offers powerful solutions for developing effective flood control strategies.
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