
Summary of

“Associates systems for decision support”

by A. P. Sage

A. Christofides

7 March 2000

1 Introduction

Decision Support Systems (DSS) are software
systems that support the decision making pro-
cess by helping decision makers understand the
implications of their judgements [Fre00]. Most
such software systems are general-purpose and
can be used in any application domain, for ex-
ample medical, environmental, organisational.
In his paper, Sage [Sag93] provides an overview
of associates systems. By associates, we mean
decision support systems that are specific to
a particular domain. Most associates systems
have been developed for command and con-
trol, that is, the exercise of authority and di-
rection by a purposely designated commander
over assigned forces in the accomplishment of a
mission. However, there are a few exceptions,
and Sage attempts to provide an overview of a
number of diverse associates systems, namely
DSS’s for software engineers, pilots, mission
planners, systems engineers, designers, and op-
erators.

Unfortunately the paper by Sage is some-
what disorganised and occassionally becomes
incomprehensible. He begins by an intro-
duction to command and control, explaining
the purpose and function of related computer
systems; he describes how such systems and
humans work together to comprise a larger
“command, control, communications and in-

telligence” system. He then explores some
conceptual frameworks for information pro-
cessing and problem solving, namely the Ras-
mussen model of judgment and choice, the
Klein model, the Dreyfus model, and the Janis
and Mann model, and he concludes this first
section of the paper with some general com-
ments concerning the need for decision asso-
ciates. The way all this diverse information is
related is not quite clear. However, one of the
points made is that command and control de-
cision making, and probably any decision mak-
ing, involves five activities:

1. Data gathering

2. Processing the data so that it becomes
useful information that can be used for sit-
uation assesment

3. Evaluation of alternatives

4. Decision

5. Action

The results of the action are then observed,
and the procedure is repeated.

The identification of these five activities in-
volves considerable simplification. Even the
division into steps is artificial; the steps may
overlap or occassionally be performed in paral-
lel. It is thus natural for different investigators

1



to come up with different models of the proce-
dure of decision making, but most such models
essentially tell the same thing.

Sage covers most of the rest of the paper by
describing a software engineering tool called
the Programmer’s Apprentice. It is not un-
derstood what exactly the connection of the
Apprentice to the foregoing discussion is; it
is not even clear why the Apprentice should
be considered a DSS. In fact, the original au-
thors [RW90] of the Apprentice do not claim
it to be a DSS, and Sage himself admits that
“it is difficult to make a precise determina-
tion concerning what qualifies as a [DSS] and
what does not.” Systems like the Apprentice
are sometimes called expert systems, because
they attempt to replace human expert think-
ing; however, in almost all cases, expert sys-
tems are used supportively, the final decisions
being made by humans. One of the differences
between expert and associates systems could
be that an expert system actually suggests de-
cisions, whereas an associates system only pro-
vides insight into the implications of possible
decisions. According to this, the Apprentice is
an expert, not an associates system, but ad-
mittedly the difference is subtle and probably
vague.

Most of the rest of this summary describes
the Apprentice and discusses its relationship to
decision making.

2 The Programmer’s Appren-
tice

The development process is divided into four
steps:

1. Requirements specification

2. Design

3. Implementation

4. Verification

After delivery, the cycle typically goes over
again, though some textbooks consider this it-
eration to be a fifth step, which they call main-
tenance. As with decision making, these steps
are artificial; they overlap, they are performed
in parallel, they are further subdivided, and
different authors make slightly different divi-
sions, which, however, all describe essentially
the same thing.

The person responsible for this process is
the software engineer. The Apprentice’s au-
thors, Rich and Waters [RW90], mention that
the engineer’s productivity is dramatically in-
creased when they are assisted by support
staffs, including junior programmers, testers,
documenters, and program librarians, since
this allows them to concentrate their effort on
the most difficult parts of a task, without hav-
ing to waste time on the routine details. Thus,
the main idea of the Apprentice is to provide
the engineer with a substitute for a support
team.

It is worth considering whether an automatic
program generator could be developed, that
would produce the software given the require-
ments. Such a goal is realistic only for specific
very restricted domains, and the Apprentice
aims to be a tool for any kind of application.
Thus, it has been developed with the philos-
ophy of providing assistance to the software
engineer rather than replacing him.

In order to assist the engineer, the Appren-
tice must share some knowledge with him.
This knowledge is organised into small pieces
of information that are called clichés; for ex-
ample, “information system”, “program”, and
“linear-search” are clichés. About 1500 clichés
form the core of the Apprentice’s knowledge
base, but probably many more are needed to
make it effective for a wide-range of applica-
tion domains. Clichés are encoded using the
plan calculus, which has been especially devel-
oped for the Apprentice.

2



The Apprentice aims to provide assistance in
the first three steps of the development process,
and is, accordingly, divided into the Require-
ments Apprentice, the Design Apprentice, and
the Implementation Apprentice. At the time
of publication of [RW90], it seems that con-
siderable progress has been achieved only for
the implementation apprentice, which has been
given the name KBEmacs. Accordingly, Rich
and Waters go into more detail with KBEmacs,
the rest of their exposition being theoretical.
From their discussion, KBEmacs seems like a
high-level language compiler, that translates
the very high-level instructions of the user into
a programming language like LISP or Ada.
One difference from a compiler is that the re-
sulting program is a suggestion only, and the
user is able to modify it.

3 Is it a DSS?

Today we would say that the Apprentice
is a Computer-Aided Software Engineering
(CASE) tool. Rich and Waters [RW90] also
seem to think that, but they classify it as an
intelligent CASE tool. Whether this is the case
or not, it remains to be seen whether the Ap-
prentice can be thought of as a DSS.

First of all, it is very difficult, if at all pos-
sible, to give a precise definition of a DSS.
For example, a CASE tool that provides draw-
ing facilities enables the software designer vi-
sualise better the design he has in mind, and
the resulting drawing helps him understand
the implications of his judgements and accord-
ingly improve his design decisions. Thus, by
French’s definition of DSS’s, which was stated
in the beginning of this summary, such a simple
CASE tool could be considered a DSS, which it
definitely isn’t. Consequently, whether a piece
of software can be considered a DSS is a matter
of judgement.

Sage probably does not classify the Appren-

tice as an expert system, because it does not
replace the engineer. However, hardly any sys-
tems exist that have replaced or even substi-
tuted human experts; virtually all such sys-
tems function supportively.

From a practical point of view, there is not
much point in this discussion. Today, 10 years
after the publication of [RW90], it seems that
the project has almost been abandoned. There
are very few references on the web, and none
suggests that any progress has been made since
1990; and even then, it was in experimental
stage.

4 Other associates systems

The other systems explored by Sage are also
in experimental stage. The pilot’s associate
is software that enables the pilot to monitor
system status, assess the situation and plan
his mission. Mission planning is of interest
to other areas as well, and relevant associates
systems provide support in analysis and selec-
tion for weapons, resources and targets, con-
sideration of environmental factors, distance,
time, and fuel calculations, information ex-
changes with other units, and others. Program
manager’s associates would provide support for
configuration management, cost analysis, risk
management, quality assurance and others.

References

[Fre00] S. French, Decision analysis and decision sup-
port systems, 3rd draft edition, 2000.

[RW90] C. Rich and R. C. Waters, The Programmer’s
Apprentice, ACM Press, 1990.

[Sag93] A. P. Sage, “Associates systems for decision
support”, Information and decision technologies,
19:165–184, 1993.

3


