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. CHAPTER 1

INTRODUCTION

Thessalia valley is in central Greece and is a key agricultural region for the national
economy. However, in recent years, the impacts of population growth and agricultural expansion
have resulted in frequent droughts, diminishing water supplies, and ecosystem degradatioﬁ. To
reverse this trend and to maintain the sustainability of the land resources, a water diversion has
been proposed from the nearby Acheloos River Basin. The diversion is planned to take place
from Sykia, a new reservoir currently being constructed at the upper reaches of the Acheloos
River, Figure 1.1 Schematically depicts the existing and planned hydraulic works that would
enable this inter-basin water transfer. The features of these projects are described in the following
~ section. i

Previous studies (Georgakakos, et al., 1995) have shown that a diversion of 600 million
cubic meters per year would reduce energy generation at the existing hydropower facilities of the
Acheloos River (Kremasta, Kastraki, and Stratos) by about 15% per year, without significantly
affecting the other water uses in the Acheloos Basin. However, this is a partial assessment, and
more detailed studies are needed to evaluate the overall impacts and benefits of the water
resources system to be created after the diversion is in place.

With this background, the purpose of this study is to develop a mathematical model that
incorporates all major elements of the new system configuration and use it to carry out the
aforementioned integrated assessments. The model includes a control (i.e., optimization) and a
control-simulation component. The purpose of the control model is to develop optimal reservoir
operation policies, while that of the control-simulation model is to evaluate the performance of
these policies over the historical inflow record.

The report includes five chapters and one appendix. In the following chapter, we give a
short overview of the Acheloos reservoir system and discuss the data used in the study. In

Chapter 3, we introduce the control model formulation, discuss our modeling assumptions, and



briefly describe the basis of a new optimization methodology implemented in this work. In
Chapter 4, we present and elabovaté on the model results, and in Chapter 5 we summarize the
conclusions and suggest certain modifications and further investigations. Lastly, in the appendix,
we include various reservoir characteristic curves and miscellaneous data. |
We note that this feport is not yet final, but it is issued to solicit the input of the funding
and other interested agencies relative to (1) the validity and suitability of model assumptions and
features and (2) additional operational and planning scenarios that would be of interest to them.
In view of this, the model design is flexible to incorporate such modifications and support future

investigations.
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. CHAPTER 2

THE ACHELOOS-THESSALIA RESERVOIR SYSTEM

The Acheloos River basin (Figﬁfe 1. 1) curréntly includes three reservoirs (Kremasta,
Kastraki, and Stratos), while two other projects (Mesohora and Sykia) are presently under
construction. Of the existing reservoirs, the largest is Kremasta with a total storage of 4, 500x10°
cubic meters, whereas the others are smaller projects with a combined storage of less than
1,500x10° cubic meters. The proposed water diversion to Thessalia would take place from the
Upper Acheloos (Sykia). The Thessalia system includes two proposed reservoirs, Pyli and
Mouzaki. The conservation storage of these reservoirs is used to éupport water supply,
hydropower generation, and environmental protection and extends over the ranges reported in
" Table 2.1.

- Table 2.1: Conservation Storage Ranges

Minimum | Maximum

Reservoir | Storage (1.()‘6 m’) | Elevation (m) ’S’torakge (10°m®) | Elevation (m)
‘Mesohora | 1328 7 358 770
Sykia 94 | 485 508 550
Kremasta | 999 227 4500 | 282
Kastraki 750 142 800 144.2
Stratos 60 U 67 70.2 ~ 68.6
Pyli | 217 | 310 1254 | 355
Mouzaki | 544 250 237.2 200

Average seepage losses amount to 6 m?/sec at Kremasta and 4 m/sec at Stratos, while at others,
they are either negligible or unavailable. Other reservoir data, including elevation versus storage
and area versus storage curves, are included in Appendix A. All projects except Pyli have hydro

electric generation units, the number and capacities of which are shown on Table 2.2.
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Table 2.2: Hydroelectric Plant Characteristics

Reservoir (Number oi“ Units) x (Installed Capacity - MW)
Mesoilora | 2x80
Sykia 2x60
Kremasta 4 x 109 = 436
Kastraki 4 x 80 =320
Strai:os 2x75+2x3= 156
Pyli 0
 Mouzaki 2x 135
 Pefkofito 2x 130

The water diversion from Sykia to Mouzaki passes through the power facility at Pefkofito.
~ The turbines at Pefkofito and Mouzaki can also operate in a pumping mode.

* An approximate relationship between power generation, reservoir elevation, and turbine discharge

is provided in Appendix A for all power facilities. For lack of more detailed data, these

relationships are used herein to model power generation at the monthly time scale.

Figures 2.1, 2.2, and 2.3 respectively summarize the monthly statistics of reservoir inflows
(local drainage basins) for all reservoirs. A correlation analysis for the inflows indicates that the
flows exhibit weak monthly correlations. The previous statistics are based on a 31-year record,

extending from 1961 to 1991. Tables 2.3 and 2.4 report the monthly statistics of the evaporation

and rainfall rates for all reservoirs based on same period.

Table 2.3. Monthly Evaporation Rate (mm)

Month Mesohora Sykié Kremasta | Kastraki | Stratos | Pyli | Mouzaki
Jan 1 352 375 33.370 | 33.370 3_3.370 40.8 41
Feb | 34.v8 40.8 52.860 52.860 52.860 40.3 44.6
Mar 53.3 56.5 79.380 79.380 | 79.380 61.5 | 61.6
Apr 68.3 74.7 119.99 11999 | 119.99 | 78.5 81.3




May | 1153 | 1223 | 16294 | 16294 | 16294 | 1319 | 1327
jun | 1691 | 18557 20624 | 20624 | 20624 | 1926 | 2007
Jul | 2227 | 2365 | 23779 | 23779 | 23779 | 2529 | 2554
Avg | 1769 | 1878 | 21218 | 21218 | 21218 | 201 | 2029
Sep | 1233 | 1353 | 14719 | 14719 | 14709 | 1404 | 1464
ot | 578 | 612 | 76010 | 76010 | 76010 | 662 | 66.4
Nov | 322 | 352 | 38500 | 38500 | 38500 | 371 | 383
Dec | 324 | 344 | 25570 | 25570 | 25570 | 374 | 376

Table 2.4 Monthly Rainfall Rate (mm)

Month | Mesohora | Sykia | Kremasta | Kastraki | Stratos | Pyli | Mouzaki
Jan ’ 223.04 266.65 149.18 134‘.45’ - 134.45 207.49» 194.09

Feb | 21266 | 25106 | 14455 | 13678 | 13678 | 20061 | 17527
Mar | 15956 | 18466 | 11517 | 10432 | 10432 | 16185 | 14327
Apr | 13380 | 15836 | 95880 | 78790 | 78.790 | 144.87 | 125.73
May | 10120 | 10924 | 72310 | 51170 | 51170 | 10488 | s6.61

Jun | 48060 | 53460 | 37620 | 33730 | 33730 | 43520 | 4054
jil | 36750 | 39060 | 23300 | 18.600 | 18.600 | 28.040 | 2553
‘Aug | 34200 [45060 | 20100 | 22860 | 22.860 | 33.900 2077
Sep | 64790 | 75440 | 50030 | 42790 | 42790 | 60350 | 5736
Oct | 16500 | 17491 | 10829 | 103.88 | 103.88 | 18136 | 15415
Nov | 25552 | 29329 | 21631 | 20634 | 20634 | 22585 197.54
Dec | 20599 |34050 | 21060 | 18713 | 187.13 | 287.74 | 245.11

Except for energy generation and flood protection, the reservoir system is expected to

provide water for irrigation and maintain sufficient in-stream flows to preserve environmental



quality. Irrigation withdrawals amount to 35 m®/sec during May through September, while 21
m*/sec are mandated throughoutsthe year for environmental preservation. Both of these
requirements apply to dowhstream of Stratos. Thus, the minimum release from Stratos is 56
m®/sec for May ’th’rough September and 21 mP/sec for the rest of the )?ear. The annual irrigation
requirement for Pyli is 4 million cubic meters distributed from May through September. The
environmental release requirements are 0.5 and 0.15 m® /s, respectively, for Pyli and Mouzaki.
Table 2.5 repods- the combined release constraints fof all reservoirs.

Table 2.5: Monthly' Releasé Constraints (m*/s)

Mesohora | Sykia | Kremasta | Kastraki Str‘atos, Pyli Mouzaki
Jan | 15 s | o o | 2 05 0.15
Feb 15 | s 0 0 21 05 | o015
Mar L5 s 0 o | 21 05 | o1s
Apr | 15 s 0 0 21 058 | o015
May | 15 s 0 0 56 067 | o015
Jun | 15 5 0 0 56 | 08 | 015
o[ 1S 5 0 0 s6 | 097 | o015
Aug | 15 5 0 0 s6 | o091 0.15
Sep | 15 5 0 0 56 055 | 015
ot | 15 5 0 0 21 | os | oi1s
Nov | 15 5 | o o | 21 | os | o
 Dec | 15 5 0 0 21 | o5 | o015

Lastly, the proposed diversion of Acheloos water to the neighboring region of Thessalia is
planned to take place from Sykia. The amount of the diversion is estimated at 600 million cubic

meters annually, with the seasonal distribution shown on Table 2.6.



Table 2.6: Seasonal Distribution of the Proposed Thessalia Diversion

Month | Jan.-Mar. | April May June July Aug. Sep. | Oct.-Dec.

% 0 5 11 236 | 302 | 264 | 38 0




Mesohora

Figura 2.1: Inflow Statistics; Mesohora and Sykia
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. CHAPTER 3

CONTROL MODEL

3.1 Formulation

3.1.1 System Dynamics

The entire reservoir system is modeled by the following water balance relationships:

- 8 k+1) = $,(®) - e®AS,®] - u,®) + w (k) - LK) ,
S(k+1) = S,(B) - e () ALS, ()] - uy (k) + u, (%) - ug®) + ug()+ wy (k) - L, (),
S3k+1) = 8;(8) - e;R)AISRN] - u3(k) + uy(k) + wy®) - Ly®) ,
Syk+1) = §4(k) = e AJS, RN - uyl) + uy (k) + w, (k) - Ly , 3.1)
Ss(k+1) = So(®) - esR) AS,R - ug(®) + u, (k) + ws®) - L) ,
Sg(k+1) = Si(k) - egk) AS(R] - ugk) + we(®) - Lg(h) ,
S, (k+1) = S;(k) - e,(k)A,[S,(k)] - uy(R) + ug(k) + u(®) + w,(®) - L% ,

k=0,1,..,N-1,

where the subscriptﬁ i=1,to 7 respectively denote quantities pertaining to Mesohora, Sykia,
Kremasta, Kastraki, Stratos, Pyli, and Mouzaki; k is the discretization time interval corresponding
to one month; S;(k) is the storage of the ith reservoir at the beginning of the month; (k) is the
evaporation rate; A[S,(k)] is the reservoir area versus storage function; u,(k) is the release
volume; wi(k) is the inflow volume; L,(k) is the water loss; ug(k) is the release from Sykia to
Mouzaki while ug(k) is the pumping volume from Mouzaki to Sykia; The difference of uy(k) and
uy(k) represents the Vwater diversion from Acheloos basin to Thessalia; u,4(k) is the pumping
volume from downstream of Mouzaki; and finally N is the control horizon in month. The
characteristics of the inflow volumes, evaporation rates, area versus storage functions, reservoir
losses, and of the planned diversion have been described in the previous chapter.

Storage and release variables are constrained to be within certain ranges as follows:

12



S™RK) < Sk) < S
u™ k) < u®) < uF) , ' (32)

k=0,1,.,N.

The upper and lower storage limits in (3.2) correspond to the reservoir conservation storage
zones reported in the previous chapter. (Flood storage is not included in the controllable storage
range because the study uses a monthly time discretization.) The lower release 1iri1it are
constrained by the environmental and water supply requirements. The environmental requirements
are constant through out the year while the water supply requirements are change seasonally. The
releases are constrained By irrigation and environmental requirements which are discussed in the
previous chapter (Table 2.5). The planned water diversion is 600 million cubic meters per year

allocated according to the irrigation distribution. The difference of ug(k) and uy(k) is constrained
| by this distribution. The upper release bounds are determined based on the hydro plant capacity
“and the specific power generation curve (reported in Chapter 2 and Appendix A).

In view of the inflow uncertainty, storage constraints are more properly expressed in a

probabilistic form:
Prob[S™"(k) < S(K)] < ©"K)
Prob[S(k) < S;(R)] > =™ (k) (3.3)

i=1,2,.,7, k=0,1,.,N,

where ™ and 7™ are reliability levels. These levels as well as the upper and lower storage and
 release thresholds are denoted here as time-varying, but are usually time-invariant. ‘
Equations (3.1), (3.2), and (3.3) summarize the reservoir system model. In control
systems terminqlogy,’ reservoir storages are the state variables, and releases are the control
variables. The goal of the control procedure is to identify the release sequences {u;"(k),
i=1,2,...10; k=0,1,...,N-1} such that system objectives and constraints are met successfully. The

element of the formulation that brings this about and also measures the success of the various

13



operational alternatives is the performance index which we discuss next.

The goal of the control procedure is to maximize the benefit of the whole reservoir
system, while meeting its environmental and water supply demands. To achieve this objective, we

minimize the following performance index:

. ; N-1 :
J = E{ g Lo P, (uk),S(K) + BP,(SK)] + YP,(SIN)}, G4
where
| Pe,,g(u(k),S(k))*?»,,{z; E,(u(B),S (K)+E,o(ug(k),S,(k))}
- (3.5)
-A{ 2; E (u(R),S (1)) +E (k). S (0)) ~E oo 5 (k). S, () ~E o o(141o(R),S,(F))}
and
P, (S(k)) =Z; P,(S(0)
HS@)-H™®Y, HS@)<Hk) (3.6)

PB) = HS®)-H™®)Y, HS®)>H ™ %)

0, otherwise

In (3.4), E{ } denotes expectation of the quantity in the brackets with respect to the joint -
probability distribution of the reservoir inflows. This expectation is simplified by the fact that
reservoir inflows exhibit only weak autocorrelation and can, therefore, be assumed to be
statistically independent. There are two terms in the performance index, the first term represents

the penalty for the energy value generated from all power facilities in the system including the

14



pumping stations. The energy generation consists of two parts: primary and secondary, with
diﬁ*’érent prices. Primary energy is the energy generated during the peak hours of a day. The peak
time is assumed to be 6 hours a day in this studyb. It is also assumed that the power facility will
always generate energy during the peak time first, then usé the off peak hours. The energy price is’
11.5 dr/KWH for the peak hours (A,) and 6 or 8 dr/KWH for the off peak time (A,). The pump
station can be operated in either a generation mode or a pumping mode. When at pumping mode,
it always consumes secondary energy. The power functions for all facilities are discussed in the
previous chapter. The negative signs in (3.5) implement a minimum objective.

The performance index should also include the benefit from irrigation. However, since we
do not have information on whether water supply in excess of irrigation demand generates benefit,
the irrigation benefit is limited by the irrigation demand, and the optimization results are not
affected by the irrigation term. However, if the.penaltyor loss functions for not meeting the
irrigation are known, then the performance index should include the irrigation benefit (loss) term.

The second term is intended to keep reservoir elevations within their respective bounds,

[H™® H™>]. As shown in (3.6), if reservoir elevation is outside its bounds, a quédratic penalty
term is imposed.

Penalty parameters «, B, and y are used to introduce priorities in the performance index
terms. In this case, these parameters should be determined such that the second term is dominant.
The logic is to determine feasible_ sequences (2nd terin) guaranteed to maximize the energy values

(1st term).

3.2 Modified DP Method

The control problem formulated in the previous section poses a challenge because of'its
large size. It can be solved using techniques such as the Extended Linear Quadratic Gaussian
(ELQG) control method [Georgakakos et al., 1997a,b,c] ,and Dynamic Programming. ELQG is
an iterative optimization procedure and computationally efficient, and especially-suited for
uncertain multi reservoir systems. However, it requires strict conditions for the objective
functions. Moreover, it is difficult to deal with complicate state and control constraints. On the

other hand, Dynamic Programming is a very general optimization tool. It has no strict

15



requiremeﬁts: on the format of the objective ﬁmction, and can handle any type of constraints.
However, the “curse of dimensienality” is always the majof obstacle preventing DP’ s application
to vlarge systems.
In this work, we introduce a new procedure designed to optimize large reservoir systems
based on the traditional DP. The idea of this approach is based on the fact that all reservoirs
within a certain group are generally regulated uniformly. This means that if the operation rules of
some dominant reservoirs are specified, the operation modes for the others can be determined
accordingiy. The dominant reservoirs are usually the large reservoirs in the system and are called
primary reservoirs. The other reservoirs are small and are called secondary reservoirs.
With the help of classification of primary and secondary resérvoirs, the dimension of the
system is reduced to the .number of primary reservoirs. The optimization is carried out on the
primary reservbirs, with the operation of the secondary réservoirs determined based on the
optimal results of the primary reservoirs.

A Two issues need to be addressed in this new procedure: (1) classification of primary and

~ secondary reservoirs and (2) relationship between the primary and the secondary reservoirs.
There are no strict rules to assign a reservoir to which category. In fact, this classification is
purely a mathematical simplification of the original system. The number of primary reservoirs
should be selected first. This number depends on the computational power. Based on our
experience thus far, 5 seems to be appropriate. As the computational power increases, more
primary reservoirs can be included. An intuitive selection for primary reservoirs is one or twb
largest reservoirs on the same river. For this system, Sykia, Kremasta, and Mouzaki are assigned
as primary reservoirs. The rest are assigned as secondary reservoirs. The classification of the

reservoirs is labeled by the following vector:

NP =[NP] =[O0, 1, 1, 0, O, 0, 1] (3.7

A value of “1" for NP; indicates a primary reservoir, while a value of “0" indicates a secondary

reservoir. This classification will split the state vector and control vector into two sub-vectors as

16



below:

- 5=[8)=IS,, S.]

R (3.8)
Sp:A.[’S'Z’ .SS’ S7]’ Ss=[S1’ S4’ Ss, SG]

u=(u}=[u, u]

(3.9)

upz[u2’ u3’ u7’ us’ u9]’ u_,-:[up u4, us, u6]

More details on this new implementation of D.P. will be published elsewhere.
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- CHAPTER 4

CASE STUDIES

4.1 Control Experiments

' In this section, we present some results of the control model. This sample run applies to
the case of no pumping operation. The minimal water diversion of 600 x 10°m® is apportioned
monthly according to the percentages reported in Chaptér 2. The length of the control horizon is
12 months starting October 1st. The objective is to maximize the system benefit (total energy
value) without violating the elevation and release bounds with reliability of more than 95% for the
time. The minimum release from Stratos (for irrigation and environmental preservation) is 147
million cubic meters per month for May through September and 55.2(million cubic meters per
month for the rest of the year. At the beginning of October, the water elevation is arbitrarily set
~at 765 meters at Mesohora, 540 meters at Sykia, 250 meter at Kremasta, 143 meters at Kastraki,
68 meters at Stratos, 335 meters at Pyli, and 270 meters at Mouzaki. Inflow forecasts are
generated from a corridor model which generates 20 equally likely inflow traces for each
reservoir. This model uses the values of the past three month inflows to select historical inflow
traces that resemble the current hydrologic situation the most (in a Euclidian norm sense). All
éuch traces then constitute the forecast ensemble.

Figures 4.1.1 through 4.1.14 show the results of this control model run. The figures
respectively depict the traces of reservoir elevation, forecasted inflow, optimal releases, and the
associated primary and secondary energy generation amounts. The elevation traces fully satisfy
the reliability constraints. As allowed at the 95% reliability level, only one trace for Sykia and one
for Stratos fall below the lower bounds. The water diversion traces (releases from Pefkofito) are
shown in Figure 4.1.14. All traces are above the 600 mcm constraint (which is represented by the
thick line in the figure). The irrigation requirements for Stratos are always met.

Table 4.1.1 includes a summary of the expected annual energy generation and its value by

reservoir and for the entire system. The energy values are estimated based on a price of 11.5

18



- dr/KWH for the primary energy and 6 dr/KWH for the secondary energy.

e

Table 4.1.1: Annual EXpected Energy Statistics

Expected Primary ' Expected Secondary Expected Total
Energy / Value Energy / Value Energy / Value
GWH / 10°drachma GWH/10° drachma GWH /10° drachma

- Mesohora 273.6/3204 112.9/677 391.5/3881
Sykia 144.2 /1658 128.2 /769 272.3 /2427
Kremasta 414.6/ 4768 58.0/ 348 4726/ 5116
Kastraki 264.5 /3042 72.5/435 336.9 /3476
Stratos o 158.5 /1823 15.6/94 174.1/ 1917
Mouzaki 1274.4/3156 20.8/125 295.3 /3281
- Pefkofito 291.4/3351 187.5/ 1125 479.0/ 4477

Total 1826.3 / 21002 595.4 /3573 2421.71 24575

Figures 4.1.15 through 4.1.22 depict the exceedance probability curves for the annual

values of primary energy, secondary energy, and energy values. These curves indicate the ability

of the control model to fully assess the variability of the system outputs.

In the following section, the control model will be used in sequential control-simulation

experiments to assess the impacts of the proposed water diversion.
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4.2 Control-Simulation Experiments
In this section, we describe some tentative model runs in a control-simulation framework.
The purpose of the control-simulation experiments is to quantify the performance of the system
under different scenarios and with the guidance of the control model. The runs described herein
are for demonstration purposes. More comprehensive scenarios will be tested at the next project
phase.
The basis for the experiments presented herein is the 30-year long monthly historical
inflow record (1961-1991) which is shown on Figures 4.2.1, 4.2.2, and 4.2.3. The control-
simulation px;ocess is as follows: For each month of the historical record, the control model is
activated first to generate the optimal reservoir release sequences. The control model is
impiemented with a 95% reliability for reservoir elevation constraint violations, 12-month control
horizon, and inflow forecasts generated by the corridor forecasting model. The values of the
 initial reservoir elevations of each month are determined based on the results of the previous step.
From the 12-month optimal release sequences, only the first month’ s optimal releases are actually

| implemented, and the syStein response is simulated using the historiéally observed inflows. Ifthe
optimal releases result in feasible end-of-the-month reservoir elevations, the program completes
this control-simulation step, records these elevations along with the releases and the energy
generation amounts, and repeats this process at the next month. Otherwise, appropriate release
adjustments are made so that all reservoirs stay within their feasible ranges. This control-
simulation process is repeated for 360 (= 36 x 12) months and results in a long series of simulated
reservoir élevations, releases, and energy generation amounts. This data series is then analyzed to
develop statistics of system performance and make comparisons.

'The first control-simulation experiment corresponds to the base case scenario with zero
diversion and only three active reservoirs: Kremasta, Kastraki, and Stratos. The purpose of this
simulation is to establish a baseline performance of the existing system. In this scenario, the
inflows of Kremasta include all upstream local flows, i.e., local flows of Mesohora and Sykia. The
simulated sequences of reservoir elevation, release, and energy generation are plotted in Figures
4.2.4 t0 4.2.6. The release from Stratos meets the irrigation and environmental flow requirements

all of the time. The primary and secondary energy generation are 1201 and 906 GWH,
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respectively, for a total of 2107 GWH. vThe value of annual enérgy’ generation is 19248 million
draéhma, assurtﬁng that pﬁmary energy is valued at 11.5 dr/KWH, and the secondary energy at 6
dr/KWH. | '

The second experiment correspondé to a scenario where the entire reservoir system is
‘operational, but without the possibility of pump-back operations. Namely, the pumping function

at Pefkofito and Mouzaki is inactivated. The minimum water diversion is 600 million cubic meters
per year. This volume is seasonally distributed according to Table 2.6. Depending on the
hydrologic circumstances and the efficiency of the power facilitieé, the water transferred to
T hessaiia xhziy-excged 600 mem. The simulation sequences of all reservoirs are shown in Figures
427 ,té 4.2.14. The total annual system energy is 3097 GWH, of which 2014 GWH are primary
energy and 1083 are secondary. Of the total energy generation, 2643 GWH is generated from the
Acheloos system (Mesohora, Sykia, Kremasta, Kastraki, and Stratos). The total expected value
of annual enérgy generation in this case is 29659 million drachma, which is 54% higher than the
| baseline scenario. The water actually diverted amounts to an average of 837 mcm per year. Water
*in excess of 600 mcm per year is diverted due to the high generatibn efficiency and value of
power at Pefkofito. Again, the releasé requirements for irrigation and the environment are met
throughout the simulation horizon. |

In this case, the annual energy generation from Kremasta, Kastraki, and Stratos is reduced
to 1766 GWH (as compared to 2107 GWH of the baseline scenario), of which 1098 GWH
represent primary energy and 678 GWH represent secondary energy. Namely, the diversion
results in a 16% decrease in average energy generation from these three reservoirs. The value of
this energy generation is 16695 million drachma which represents a 13% reduction relative to the
baseline scenario.

The third experiment has the same system configuration as the second, but includes
pufnping. The option to pump is decided by the control model based on the potential gains that
may result from the relative difference between on- and off-peak energy pricing and the efficiency
of the power facilities. Two runs with different off-peak energy prices (6 and 8 dr/KWH) are
conducted. For the case of 6 di/KWH off-peak energy, Pefkofito operates ina pumping mode

throughout the simulation horizon, while Mouzaki never pumps. The total annual energy
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generation is 2997 GWH which is a little less than the generation of the previous experiment
(3097 GWH). However, primary energy generation amounts to 2216 GWH per year. which is
higher than the 2014 GWH of the previous case. The resulting annual energy value is increased
to 30172 million drachma as ,compai‘ed to 29659 million of the previous run. The increase is
approximately 2%. This result indicates that if off-peak energy price is 6 dt/KWH or less, it is
beneficial to use dﬂ’-peak energy to pump water back into Sykia and use it to generate during
peak power demand. However, this does not apply to Mouzaki. The corresponding simulated
sequences are shown in Figures 4.~2.‘15‘to 4.2.23. |

The émnual energy generation from Kremasta, Kastraki, and Stratos is 1812 GWH, of
which 1113 GWH are primary energy and 698 GWH are secondary energy. Namely, in
comparison to the second (no-pumping) experiment, this system now produces about 2.6% more
energy per year, with a total value of 16988 million drachma. Compared to 16695 million of the

second experiment, this represents a 1.8% value increase. | '
| The second ‘runbwith an off-peak energy price of 8 dr/KWH generates sequences identical
to the second (no-pumping) experiment. Namely, both Pefkofito and Mouzaki never operate in a
pumping mode. Thus, pumping operation is not profitable at the off-peak price of 8 drt/KWH or
higher.
~ The annual énergy generation and simulated diversion of all control-simulation runs are

summarized in Table 4.2.1. |

Figures 4.2.24 through 4.1.43 depict the exceedance probability cufves- for the annual
values of pr'i-mary. energy, secondary energy, and energy value from the above three experimental
runs, Figure 4.2.44 compares the system exceedance probability curves for these three runs. The
figure indicates that primary energy output and value increased considerably from the baseline to
the other two cases. In addition, pumping produces additional marginal benefits. The distribution
of the secendary energy is similar in the first two cases. When pumping becomes an optibn, part

of this energy is used to support the pumping operation.
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Figure 4.1.15: The exceedance probability curves for Mesohara
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Figure 4.1.16: The exceedance probability curves for Sykia
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Figure 4.1.17: The exceedance probability curves for Kremasta
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Figure 4.1.18: The exceedance probability curves for Kastraki
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Figure 4.1.20: The exceedance probability curves for Mouzaki
43

Energy Value (Million Drachma)

Energy Value (Million Drachma)



Primary Energy (GWH)

Secondary Energy (GWH)

Pefkofito

500 . — G000
480
400 + 5000
350 -;
| + 4000
300
200 -
150 - T 2000
100 -
+ 1000
g0 - :
|:| T | 8 I 'D
(] 20 4 60 B0 100
Exceadance Prabability {36)
GO0 - T 4000
|
+ 3500
500 - !
-+ 3000
400 -
=+ 2500
300 4 ~ 2000
+ 1500
200 -
— 1000
100 - e
= G500
E"'_"' LT . B S —ﬂ
] 20 40 80 a0 100

Exceadance Probability (%)

Figure 4.1.21: The exceedance probability curves for Pefkofito
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Figure 4.1.22: The exceedance probability curves for the entire system
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CHAPTER 5

CONCLUSIONS AND FURTHER INVESTIGATIONS

~ The contributions of the work effort described herein fall in two categories: First, is the
development of an integrated decision model for the planning and management of the Acheloos-

Thessalia reservoir system. And second, is the use of this model to assess the impacts of the

proposed water diversion and performance of various associated system configurations.

The reservoir control model is based on a new adaptation of the dynamic programming
| optimization methodology that circumvents the well-known “dimensionality” limitations. The
new approach represents all system reservoir§ in an optimal fashion, models their hydropower
operations (b_otl; conventional and pumping) as well as their water use requirements, and develops
feedback policies that optimize the system in a fully uncertain operational framework.

To assess the impacts of the water transfer from the Acheloos Basin to the Thessalia
Region, a forecast-control-simulation model was also developed and is a part of the decision
support system. Noteworthy findings of the investigations described herein (Chapter 4) are as
follows:

. With reference to the existing hydropower facilities in the Acheloos River (namely,
Kremasta, Kastraki, and Stratos), an annual diversion of 600 million cubic meters of water
to Thessalia is expected to decrease annual energy generation by about 16% (from
approximately 2,107 GWH per year to 1,766 GWH per year). However, considering the
additional hydropower facilities that will be constructed to facilitate the diversion
(depicted in Figure 1.1), energy generation is expected to increase by 47% (to 3,097
GWH annually). Assuming that peak and off-peak power is respectively valued at 11.5
and 6 drachma per KWH, this hydropower increase ithplies an annual economic benefit of
10.5 billion drachma per year (from 19.2 biliion to 29.7 billion drachma).

. Pumping operations are profitable only when the price difference between peak and off-
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peak power is significant. Specifically, at a price of 8 drachma/off-peak KWH, pumping
operations éannot produce additional revenues. On the other hand, if off-peak power
costs 6 dr/KWH, pumping at Pefkofito increases the economic value of hydropower by
about 2%. ‘

. In all cases tested, the system is able to meet the specified irrigation and environmental

release requirements, in both the Acheloos and the Thessalia valleys.

The decision system can be improved and utilized in several other ways. First, additional
information is needed to better represent the hydropower facilities on the Pamisos River. For
example, the assumption made here is that the tailrace at Pefkofito is controlled by the Mouzaki
reservoir level. - Furthermore, downstream of Mouzaki there are two proposed hydropower
stations, one at the exit of the Mouzaki reservoir and another at Mavromation. However, no
information is available for the latter, and no attempt was made here to model it. Also, the
pumping possibility at the Mouzaki hydropower station require more detailed knowledge of the
downstream impoundments. Since such information is unavailable, our assumption for pump-
back operations at this site is that the station is either pumping for eight hours each day or that it
does not pump at all. Given this assumption, pumping operations at Mouzaki are not profitable.
However, the situation may change if the facility characteristics are modeled in more detail.

The opﬁmization process is designed to maximize the hydropower value given that it
meets certain minimum release requirements for irrigation. As explained in Chapter 3, if water
supply in excess of the agreed diversion amount does not generate additional benefit, the previous
approach is optimal. However, if the benefit or loss functions for water excess or deficit are
known, then the optimization process should be reformulated to explicitly consider the
revenues/losses from irrigation.

The decision system has intentionally been developed with a flexible structure to include
such modifications given additional information. This will hopefully be accomplished in the next

project phase.
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APPENDIX A

RESERVOIR DATA AND CHARACTERISTIC CURVES

A.1 Elevation vs. Storage Relationships

Table A.1.1: Elevation vs. Storage Data for Mesohora

Level (m) | Area (km?) | Storage (mcm)
640 0 0
650 0.055 0.09

- 660 0.24 1.56
670 0.515 5.33
© 680 10.925 - 12.53
690 1.355 23.93
700 1.873 40.07
710 - 2.59 62.38
720 3.22 91.43
730 | 3.985 127.45
740 4.751 171.13
750 5.671 223.26
760 6.738 285.28
770 7.823 358.08
- 780 8.983 442.11
790 10.166 537.85
800 | 1157 | 646.53
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Table A.1.2: Elevation vs. Storage Data for Sykia

Level (m) | Area (km? | Storage (mcm)
410 o 0
420 0.19 0.6
430 0.417 5.56
440 0.695 8.33
450 1 16.8
460 1.6 22.22
470 12,29 41.66
480 | 317 76.3
490 4.17 111.1
500 | 523 159.4
510 6.46 216.64
520 | 7.67 287.6
530 9.24 380.52
540 10.98 480.51
550 12,76 590.8

Table A.1.3: Elevation vs. Storage Data for Kremasta

Level (m) | Area (km’) | Storage (mcm)

27 0 | 99

233 45 1420
240 50 1750
250 | 58 2300
255 61 2600
260 65 2900
265 68 | 3300
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270 71 3650

275 ' 74 4000

282 79 4500

Table A.1.4: Elevation vs. Storage Data for Kastraki
Level (m) | Area (km?) | Storage (mcm)

142 23.3 750
142.5 23.5 755
143 38 | 765
143.2 23.9 770
143.5 24.1 775
144 242 785
144.2 24.4 800

Table A.1.5: Elevation vs. Storage Data for Stratos

Level (m) | Area (km® | Storage (mcm)
64 611 |  43.16
66 ' 6.63 55.79
68 7.05 64.21
70 7.58 84.21
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Table A.1.6: Elevation vs. Storage Data for Pyli

Level (m) | Area (km?) | Storage (mcm)
264 0 0
280 0.11 0.64
300 0.78 9.54
320 1.66 33.94
340 2.82 78.74
360 3.4 140.94

Table A.1.7: Elevation vs. Storage Data for Mouzaki

Level (m) | Area (km?) | Storage (mcm)

205 | 0 0
220 0.51 2.55
240 2.01 26.08
260 3.76 82.81
280 5.38 173.68
300 7.54 302.21
320 9.58 472.94
340 11.89 687.21

360 14.43 949.94
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A.2 Power Functions

Table A.2.1: 'Power function for Mesohora

Power (MW) | Discharge (m*/s) | Gross Head (m)
120 81.37 181
123 82.39 184
128 83.5 188
133 84.81 192
138 86.25 196
143 87.48 200
147 88.77 204
152 90 208
156 90 212
159 90 216

163 90 220

Table A.2.2: Power function for Sykia

Power (MW) | Discharge (m*s) | Gross Head (m)
95 127.23 89
101 127.23 94
107 127.23 99
114 121.23 104
120 127.23 109
126 127.23 114
132 127.23 119
137 126.26 124
138 122.16 129
138 117.82 134
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138 113.86 139
138 110.24 144
138 106.90 149
138 103.78 154

Table A.2.3: Specific Generation Efficiency vs. Elevation Data for Kremasta

98

H (m) -1 227 | 229 | 233 | 237 | 241 | 245 | 249 | 253 | 261 | 265 | 271 | 277 | 283
E (m3/kwh) 55153 | S 47144142 | 4 |38 36132 3 28 | 26
‘Table A.2.4: Specific Generation Efficiency vs. Elevation Data for Kastraki
H(meters)  |142 [1425 |143 [1435 [144 |1445 [1450
E (cubic m*’kwh) { 5.95 5.87 5.78 5.71 5.62 5.56 5.48
Table A.2.5: S eéiﬁc Generation Efficiency vs. Elevation Data for Stratos
1 H (m) 67 675 |68 685 |69
E (m*’kwh) | 11.7 11.54 11.39 11.24 11.10
Table A.2.6: Power function for Mouzaki
Generation Pumping
Power Discharge Gross. Power Discharge Gross
™MW) (m%/s) Head (m) MW) (m’/s) Head (m)
170 236.12 94 313 273.52 94
184 238.70 98 314 . 266.87 98
195 241.04 102 314 260.19 102
207 243.58 106 314 253.50 106
219 245.61 110 314 246.78 110
231 247.74 114 313 240.03 114
243 249.93 118 313 233.27 118
253 251.37 122 312 226.48 122




265 254.27 126 312 219.66 126
276 256.20 130 311 212.82 130
286 - 258.12 134 309 205.96 134
Table A.2.7: Power function for Pefkofito
- Generation Pumping
Power Discharge / Gross Power Discharge Gross Head
(MW) (ms) Head (m) | (MW) (ms) (m)
151 104.72 | 195 195 86.97 195
158 105.80 200 194 84.61 200
171 107.85 210 190 79.84 210
183 109.70 . 220 185 75.03 220
196 111.37 230 180 70.16 230
208 112.80 240‘ 297 105.68 240
221 114.00 250 295 101.95 250
232 114.00 260 292 98.16 260
244 114.00 270 289 94.18 270
255 114.00 280 284 90.10 280
266 114.00 290 279 85.88 290
277 114.00 300 273 81.55 300
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